
UNIT – V 

HEAT TRANSFER 

Heat Energy and Heat Transfer  

Heat is a form of energy in transition and it flows from one system to another, without 

transfer of mass, whenever there is a temperature difference between the systems. The process of 

heat transfer means the exchange in internal energy between the systems and in almost every 

phase of scientific and engineering work processes, we encounter the flow of heat energy.  

Importance of Heat Transfer  

Heat transfer processes involve the transfer and conversion of energy and therefore, it is 

essential to determine the specified rate of heat transfer at a specified temperature difference. 

The design of equipments like boilers, refrigerators and other heat exchangers require a detailed 

analysis of transferring a given amount of heat energy within a specified time. Components like 

gas/steam turbine blades, combustion chamber walls, electrical machines, electronic gadgets, 

transformers, bearings, etc require continuous removal of heat energy at a rapid rate in order to 

avoid their overheating. Thus, a thorough understanding of the physical mechanism of heat flow 

and the governing laws of heat transfer are a must.  

Modes of Heat Transfer  

The heat transfer processes have been categorized into three basic modes: Conduction, 

Convection and Radiation.  

Conduction –  It is the energy transfer from the more energetic to the less energetic particles of a 

substance due to interaction between them, a microscopic activity.  

Convection -  It is the energy transfer due to random molecular motion a long with the 

macroscopic motion of the fluid particles.  

Radiation - It is the energy emitted by matter which is at finite temperature. All forms of 

matter emit radiation attributed to changes m the electron configuration of the 

constituent atoms or molecules The transfer of energy by conduction and 

convection requires the presence of a material medium whereas radiation does 

not. In fact radiation transfer is most efficient in vacuum.  



All practical problems of importance encountered in our daily life Involve at least two, 

and sometimes all the three modes occuring simultaneously When the rate of heat flow is 

constant, i.e., does not vary with time, the process is called a steady state heat transfer process. 

When the temperature at any point in a system changes with time, the process is called unsteady 

or transient process. The internal energy of the system changes in such a process when the 

temperature variation of an unsteady process describes a particular cycle (heating or cooling of a 

budding wall during a 24 hour cycle), the process is called a periodic or quasi-steady heat 

transfer process.  

Heat transfer may take place when there is a difference In the concentration of the 

mixture components (the diffusion thermoeffect). Many heat transfer processes are accompanied 

by a transfer of mass on a macroscopic scale. We know that when water evaporates, the heal 

transfer is accompanied by the transport of the vapour formed through an air-vapour mixture. 

The transport of heat energy to steam generally occurs both through molecular interaction and 

convection. The combined molecular and convective transport of mass is called convection mass 

transfer and with this mass transfer, the process of heat transfer becomes more complicated.  

Mechanism of Heat Transfer by Conduction  

The transfer of heat energy by conduction takes place within the boundaries of a system, 

or a cross the boundary of t he system into another system placed in direct physical contact with 

the first, without any appreciable displacement of matter comprising the system, or by the 

exchange of kinetic energy of motion of the molecules by direct communication, or by drift of 

electrons in the case of heat conduction in metals. The rate equation which describes this 

mechanism is given by Fourier Law  

Q kAdT/dx   

where  Q  = rate of heat flow in X-direction by conduction in J/S or W,  

k = thermal conductivity of the material. It quantitatively measures the heat conducting 

ability and is a physical property of t he material that depends upon the composition of the 

material, W/mK,  

A = cross-sectional area normal to the direction of heat flow, m2,  



dT/dx = temperature gradient at the section, as shown in Fig. 1 I The neganve sign IS 

Included to make the heat transfer rate Q positive in the direction of heat flow (heat flows in the 

direction of decreasing temperature gradient).  

 

                     Fig 1.1:          Heat flow by conduction 

 Thermal Conductivity of Materials  

Thermal conductivity is a physical property of a substance and In general, It depends 

upon the temperature, pressure and nature of the substance. Thermal conductivity of materials 

are usually determined experimentally and a number of methods for this purpose are well known.  

Thermal Conductivity of Gases: According to the kinetic theory of gases, the heat 

transfer by conduction in gases at ordinary pressures and temperatures take place through the 

transport of the kinetic energy arising from the collision of the gas molecules. Thermal 

conductivity of gases depends on pressure when very low «2660 Pal or very high (> 2 × 109 Pa). 

Since the specific heat of gases Increases with temperature, the thermal conductivity Increases 



with temperature and with decreasing molecular weight.  

Thermal Conductivity of Liquids: The molecules of a liquid are more closely spaced 

and molecular force fields exert a strong influence on the energy exchange In the collision 

process. The mechanism of heat propagation in liquids can be conceived as transport of energy 

by way of unstable elastic oscillations. Since the density of liquids decreases with increasing 

temperature, the thermal conductivity of non-metallic liquids generally decreases with increasing 

temperature, except for liquids like water and alcohol because their thermal conductivity first 

Increases with increasing temperature and then decreases.  

Thermal Conductivity of Solids (i) Metals and Alloys: The heat transfer in metals arise 

due to a drift of free electrons (electron gas). This motion of electrons brings about the 

equalization in temperature at all points of t he metals. Since electrons carry both heat and 

electrical energy. The thermal conductivity of metals is proportional to its electrical conductivity 

and both the thermal and electrical conductivity decrease with increasing temperature. In contrast 

to pure metals, the thermal conductivity of alloys increases with increasing temperature. Heat 

transfer In metals is also possible through vibration of lattice structure or by elastic sound waves 

but this mode of heat transfer mechanism is insignificant in comparison with the transport of 

energy by electron gas. (ii) Nonmetals: Materials having a high volumetric density have a high 

thermal conductivity but that will depend upon the structure of the material, its porosity and 

moisture content High volumetric density means less amount of air filling the pores of the 

materials. The thermal conductivity of damp materials considerably higher than the thermal 

conductivity of dry material because water has a higher thermal conductivity than air. The 

thermal conductivity of granular material increases with temperature. (Table 1.2 gives the 

thermal conductivities of various materials at 0oC.)              

  STEADY STATE CONDUCTION ONE DIMENSION 

The General Heat Conduction Equation   

Any physical phenomenon is generally accompanied by a change in space and time of 

its physical properties. The heat transfer by conduction in solids can only take place when there 

is a variation of temperature, in both space and time. Let us consider a small volume of a solid 

element as shown in Fig. 1.2. The dimensions are: ∆x, ∆y, ∆z along the X-, Y-, and Z- 



coordinates.  

 

Fig 1.2 Elemental volume in Cartesian coordinates 

First we consider heat conduction the X-direction. Let T denote the temperature at the 

point P (x, y, z) located at the geometric centre of the element. The temperature gradient at the 

left hand face (x - ~x12) and at the right hand face  
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Similarly for Y- and Z-direction,  

We have 2 2k x y z T / y        and 2 2k x y z T / z      .  

If there is heat generation within the element as Q, per unit volume and the internal 

energy of the element changes with time, by making an energy balance, we write  

 Heat generated within Heat conducted away Rate of change of internal 

 the element from the element energy within with the element 



or,      2 2 2 2 2 2
vQ x y z k x y z T/ x T/ y T/ z               

 c x y z T / t        

Upon simplification, 2 2 2 2 2 2
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or,   2
vT Q / k 1/ T / t        

where k / . c   , is called the thermal diffusivity and is seen to be a physical property 

of the material of which the solid is composed.  

One-Dimensional Heat Flow  

The term 'one-dimensional' is applied to heat conduction problem when:  

(i)  Only one space coordinate is required to describe the temperature distribution 

within a heat conducting body;  

(ii)  Edge effects are neglected;  

(iii)  The flow of heat energy takes place along the coordinate measured normal to the 

surface.  

 Thermal Diffusivity and its Significance  

Thermal diffusivity is a physical property of the material, and is the ratio of the 

material's ability to transport energy to its capacity to store energy. It is an essential parameter 

for transient processes of heat flow and defines the rate of change in temperature. In general, 

metallic solids have higher while nonmetallics, like paraffin, have a lower value of . Materials 

having large  respond quickly to changes in their thermal environment, while materials having 

lower a respond very slowly, take a longer time to reach a new equilibrium condition.  

  TEMPERATURE DISTRIBUTIONS  

 A Plane Wall  

A plane wall is considered to be made out of a constant thermal conductivity material 

and extends to infinity in the Y- and Z-direction. The wall is assumed to be homogeneous and 

isotropic, heat flow is one-dimensional, under steady state conditions and losing negligible 



energy through the edges of the wall under the above mentioned assumptions the Eq.   

d2T / dx2 = 0; the boundary conditions are: at  x = 0, T = T1 

Integrating the above equation,  x = L, T = T2 

T = C1x + C2, where C1 and C2 are two constants.  

Substituting the boundary conditions, we get C2 = T1 and C1 = (T2 – T1)/L The 

temperature distribution in the plane wall is given by  

 T = T1 – (T1 – T2) x/L   

which is linear and is independent of the material. 

Further, the heat flow rate, Q /A = –k dT/dx = (T1– T2)k/L, and therefore the 

temperature distribution can also be written as  

   1T T Q/ A x / k    

i.e., “the temperature drop within the wall will increase with greater heat flow rate or 

when k is small for the same heat flow rate,"  

           A Cylindrical Shell-Expression for Temperature Distribution  

In the cylindrical system, when the temperature is a function of radial distance only and 

is independent of azimuth angle or axial distance, the differential equation  would be,  

d2T /dr2 +(1/r) dT/dr = 0  

with boundary conditions: at r = rl, T = T1 and at r = r2, T = T2. 

The differential equation can be written as:  

  
1 d

rdT / dr 0
r dr

 ,  or,    
d

r dT / dr 0
dr

  

upon integration, T = C1 ln (r) + C2, where C1 and C2 are the arbitrary constants.  



 

      Fig :     A Cylindrical shell 

By applying the boundary conditions,  

    1 2 1 2 1C T T / ln r / r    

and      2 1 1 2 1 2 1C T ln r . T T / ln r / r     

The temperature distribution is given by  

      1 2 1 1 2 1T T T T . ln r / r / ln r / r    and 

 Q/ L kA dT/dr       1 2 2 12 k T T / ln r / r     

From the above Eqn  It can be seen that the temperature varies 10gantJunically through 

the cylinder wall In contrast with the linear variation in the plane wall . 

If we write Eq. (2.5) as    m 1 2 2 1Q kA T T / r r    , where 

   m 2 1 2 1A 2 r r L/ ln r / r         2 1 2 1A A / ln A / A    

where A2 and A1 are the outside and inside surface areas respectively. The term Am is 

called ‘Logarithmic Mean Area' and the expression for the heat flow through a cylindrical wall 

has the same form as that for a plane wall.  

 Spherical and Parallelopiped Shells--Expression for Temperature 

Distribution  

Conduction through a spherical shell is also a one-dimensional steady state problem if 

the interior and exterior surface temperatures are uniform and constant. The  one-dimensional 

spherical coordinates can be written as  



    2 2d
1/ r r dT / dr 0

dT
 , with boundary conditions, 

at 1 1 2 2r r , T T ; at r r , T T     

or,  2d
r dT / dr 0

dr
  

and upon integration, T = –C1/r + C2, where c1 and c2 are constants. substituting the 

boundary conditions,  

   1 1 2 1 2 1 2C T T r r / r r   ,  and    2 1 1 2 1 2 1 1 2C T T T r r / r r r     

The temperature distribution m the spherical shell is given by  
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and the temperature distribution associated with radial conduction through a sphere is 

represented by a hyperbola. The rate of heat conduction is given by  

         
½

1 2 1 2 2 1 1 2 1 2 2 1Q 4 k T T r r / r r k A A T T / r r         

where 2
1 1A 4   and 2

2 2A 4 r    

If Al is approximately equal to A2 i.e., when the shell is very thin,  

    1 2 2 1Q kA T T / r r   ; and  1 2Q/ A T T / r / k    

which is an expression for a flat slab. 

The above equation  can also be used as an approximation for parallelopiped shells 

which have a smaller inner cavity surrounded by a thick wall, such as a small furnace surrounded 

by a large thickness of insulating material, although the h eat flow especially in the corners, 

cannot be strictly considered one-dimensional. It has been suggested that for (A2/A1) > 2, the rate 

of heat flow can be approximated by the above equation by multiplying the geometric mean area  

Am = (A1 A2)
½ by a correction factor 0.725.]  

4.4  Composite Surfaces  

There are many practical situations where different materials are placed m layers to 



form composite surfaces, such as the wall of a building, cylindrical pipes or spherical shells 

having different layers of insulation. Composite surfaces may involve any number of series and 

parallel thermal circuits.  

4.5  Heat Transfer Rate through a Composite Wall  

Let us consider a general case of a composite wall as shown m Fig. 2 There are ‘n’ 

layers of different materials of thicknesses L1, L2, etc and having thermal conductivities kl, k2, 

etc. On one side of the composite wall, there is a fluid A at temperature TA and on the other side 

of the wall there is a fluid B at temperature TB. The convective heat transfer coefficients on the 

two sides of the wall are hA and hB respectively. The system is analogous to a series of 

resistances as shown in the figure. 

 

Fig 2:        Heat transfer through a composite wall 

4.6 The Equivalent Thermal Conductivity  

The process of heat transfer through compos lie and plane walls can be more 

conveniently compared by introducing the concept of 'equivalent thermal conductivity', keq. It is 

defined as:  

 
n n

eq i i i

i 1 i 1

k L L / k
 

 
  
 
       

Total thickeness of the composite wall
=

Total thermal resistance of the composite wall
 

And, its value depends on the thermal and physical properties and the thickness of each 



constituent of the composite structure.  

Example 1. A furnace wall consists of 150 mm thick refractory brick (k = 1.6 W/mK) and 

150 mm thick insulating fire brick (k = 0.3 W/mK) separated by an au gap 

(resistance 0 16 K/W). The outside walls covered with a 10 mm thick plaster (k = 

0.14 W/mK). The temperature of hot gases is 1250°C and the room temperature 

is 25°C. The convective heat transfer coefficient for gas side and air side is 45 

W/m2K and 20 W/m2K. Calculate (i) the rate of heat flow per unit area of the 

wall surface (ii) the temperature at the outside and Inside surface of the wall and 

(iii) the rate of heat flow when the air gap is not there.  

Solution: Using the nomenclature of Fig. 2.3, we have per m2 of the area, hA = 45, and 

RA = 1/hA = 1/45 = 0.0222; hB = 20, and RB = 1120 = 0.05  

Resistance of the refractory brick, R1 = L1/k1 = 0.15/1.6 = 0.0937  

Resistance of the insulating brick, R3 = L3/k3 = 0.15/0.30 = 0.50  

The resistance of the air gap, R2 = 0.16  

Resistance of the plaster, R4 = 0.01/0.14 = 0.0714  

Total resistance = 0.8973, m2K/W  

Heat flow rate = ∆T/R = (1250-25)/0.8973= 13662 W/m2  

Temperature at the inner surface of the wall  

  = TA – 1366.2 × 0.0222 = 1222.25  

Temperature at the outer surface of the wall  

  = TB + 1366.2 × 0.05 = 93.31 °C  

When the air gap is not there, the total resistance would be  

 0.8973 - 0.16 = 0.7373  

and the heat flow rate = (1250 – 25)/0/7373 = 1661.46 W/m2  

The temperature at the inner surface of the wall  

 = 1250 – 1660.46 × 0.0222 = 1213.12°C  



i.e., when the au gap is not there, the heat flow rate increases but the temperature at the 

inner surface of the wall decreases.  

The overall heat transfer coefficient U with and without the air gap is  

  U= Q/A / T  

    = 13662 / (1250 – 25) = 1.115 Wm2 °C  

and 1661.46/l225 = 1356 W/m2oC  

The equivalent thermal conductivity of the system without the air gap  

keq = (0.15 + 0.15 + 0.01)/(0.0937 + 0.50 + 0.0714)  = 0.466 W/mK.  

Example 2. A brick wall (10 cm thick, k = 0.7 W/m°C) has plaster on one side of the wall 

(thickness 4 cm, k = 0.48 W/m°C). What thickness of an insulating material (k = 

0.065 W moC) should be added on the other side of the wall such that the heat loss 

through the wall IS reduced by 80 percent.  

Solution: When the insulating material is not there, the resistances are:  

 R1 = L1/k1 = 0.1/0.7 = 0.143  

and  R2 = 0.04/0.48 = 0.0833  

Total resistance = 0.2263  

Let the thickness of the insulating material is L3. The resistance would then be  

L3/0.065 = 15.385 L3 

Since the heat loss is reduced by 80% after the insulation is added.  

Q with insulation R without insulation
0.2

Q without insulation R with insulation
   

or, the resistance with insulation = 0.2263/0.2 = 01.1315  

and, 15385  L3 = I 1315 – 0.2263 = 0.9052  

  L3 = 0.0588 m = 58.8 mm  

Example 3.   A composite furnace wall is to be constructed with two layers of materials (k1 = 



2.5 W/moC and k2 = 0.25 W/moC). The convective heat transfer coefficient at the 

inside and outside surfaces are expected to be 250 W/m2oC and 50 W/m2oC 

respectively.  The temperature of gases and air are 1000 K and 300 K.  If the 

interface temperature is 650 K, Calculate (i) the thickness of the two materials 

when the total thickness does not exceed 65 cm and (ii) the rate of heat flow. 

Neglect radiation. 

Solution: Let the thickness of one material (k = 2.5 W / mK) is xm, then the thickness of the 

other material (k = 0.25 W/mK) will be (0.65 –x)m.  

For steady state condition, we can write 

 
Q 1000 650 1000 300

1 x 0.65 xA 1 x 1

250 2.5 250 2.5 0.25 50

 
 


   

 

    700 0.004 0.4x 350 0.004 0.4x 4 0.65 x 0.02        

(i) 6x = 3.29 and x=  0.548 m. 

and the thickness of the other material = 0.102 m. 

(ii) Q/ A  = (350) / (0.004 + 0.4 × 0.548) = 1.568  kW/m2 

Example 4. A composite wall consists of three layers of thicknesses 300 rum, 200 mm and 100 

mm with thermal conductivities 1.5, 3.5 and is W/mK respectively. The inside 

surface is exposed to gases at 1200°C with convection heat transfer coefficient as 

30W/m2K. The temperature of air on the other side of the wall is 30°C with 

convective heat transfer coefficient 10 Wm2K. If the temperature at the outside 

surface of the wall is 180°C, calculate the temperature at other surface of the 

wall, the rate of heat transfer and the overall heat transfer coefficient.  

Solution: The composite wall and its equivalent thermal circuits is shown in the figure.  



 

                                                      Fig 1.6 

The heat energy will flow from hot gases to the cold air through the wall.  

From the electric Circuit, we have  

    2
2 4 0Q/ A h T T 10 180 30 1500W / m       

also,   1 1Q/ A h 1200 T   

 o
1T 1200 1500/30 1150 C    

  1 2 1 1Q/ A T T / L / k   

 2 1T T 1500 0.3/1.5 850     

Similarly,    2 3 2 2Q/ A T T / L / k   

 o
3 2T T 1500 0.2/3.5 764.3 C     

and    3 4 3 3Q/ A T T / L / k   

  3 3L / k 764.3 180 /1500   and k3 = 0.256 W/mK 

Check: 

 Q/ A 1200 30 / R;      



 where 1 1 1 2 2 3 3 2R 1/ h L / k L / k L / k 1/ h       

R 1/30 0.3/1.5 0.2/3.5 0.1/0.256 1/10 0.75        

and 2Q / A 1170 / 0.78 1500 W / m   

The overall heat transfer coefficient, 2U 1/ R 1/ 0.78 1.282 W / m K     

Since the gas temperature is very high, we should consider the effects of radiation also.  

Assuming the heat transfer coefficient due to radiation = 3.0 W/m2K the electric circuit would 

be: 

The combined resistance due to convection and radiation would be  

2o
c r

1 2

c r

1 1 1 1 1
h h 60W / m C

1 1R R R

h h

        

   1 1Q/ A 1500 60 T T 60 1200 T       

o
1

1500
T 1200 1175 C

60
     

again,     o
1 2 1 1 2 1Q/ A T T / L / k T T 1500 0.3/1.5 875 C         

and o
3 2T T 1500 0.2/3.5 789.3 C     

 3 3 3L / k 789.3 180 /1500; k 0.246 W/ mK     

 
1 0.3 0.2 0.2 0.1 1

R 0.78
60 1.5 1.5 3.5 0.246 10

         

and 
2U 1/ R 1.282 W / m K    

 Example 5. A 20 cm thick slab of aluminium (k = 230 W/mK) is placed in contact with a 15 

cm thick stainless steel plate (k = 15 W/mK). Due to roughness, 40 percent of the area is in direct 

contact and the gap (0.0002 m) is filled with air (k = 0.032 W/mK). The difference in 

temperature between the two outside surfaces of the plate is 200°C Estimate (i) the heat flow 

rate, (ii) the contact resistance, and (iii) the drop in temperature at the interface.  



Solution:  Let us assume that out of 40% area m direct contact, half the surface area is occupied 

by steel and half is occupied by aluminium.  

The physical system and its analogous electric circuits is shown in Fig. 2.13.  

1

0.2
R 0.00087

230 1
 


,    6

2

0.0002
R 4.348 10

230 0.2

  


 

2
3

0.0002
R 1.04 10

0.032 0.6

  


, 5
4

0.0002
R 6.667 10

15 0.2

  


 

and  
 5

0.15
R 0.01

15 1
 


 

Again  2,3, 4 2 3 41/ R 1/ R 1/ R 1/ R    

5 4 42.3 10 96.15 1.5 10 24.5 10        

Therefore, 6
2, 3, 4R 4.08 10   

 

                                         

Total resistance,  1 2,3,4 5R R R R     

6 6 6 2870 10 4.08 10 1000 10 1.0874 10            

Heat flow rate, Q  = 200/1.087 × 10–2 = 18.392 kW per unit depth of the plate. 

Contact resistance, R
6

2, 3, 4R 4.08 10 mK / W   

Drop in temperature at the interface, ∆T = 4.08 × 10–6 × 18392 = 0.075oC 



An Expression for the Heat Transfer Rate through a Composite Cylindrical System  

Let us consider a composite cylindrical system consisting of two coaxial cylinders, radii 

r1, r2 and r2 and r3, thermal conductivities kl and k2 the convective heat transfer coefficients at the 

inside and outside surfaces h1 and h2 as shown in the figure. Assuming radial conduction under 

steady state conditions we have:         

       1 1 1 1 1R 1/ h A 1/ 2 Lh    

 2 2 1 1R ln r / r 2 Lk   

 3 3 2 2R ln r / r 2 Lk   

4 2 2 3 2R 1/ h A 1/ 2 h L    

And  1 0Q/ 2 L T T / R     

      1 0 1 1 2 1 1 3 2 2 2 3T T / 1/ h r ln r / r / k ln r r / k 1/ h r         

Example 6. A steel pipe. Inside diameter 100 mm, outside diameter 120 mm (k 50 W/mK) IS 

Insulated with a 40 mm thick high temperature Insulation  

(k = 0.09 W/mK) and another Insulation 60 mm thick (k = 0.07 W/mK). The 

ambient temperature IS 25°C. The heat transfer coefficient for the inside and 

outside surfaces are 550 and 15 W/m2K respectively. The pipe carries steam at 

300oC. Calculate (1) the rate of heat loss by steam per unit length of the pipe (11) 



the temperature of the outside surface  

Solution: I he cross-section of the pipe with two layers of insulation is shown 111 Fig. 1.16. with 

its analogous electrical circuit.  

 

 Cross-section through an insulated cylinder, thermal resistances in series. 

For L = 1.0 m. we have  

R1, the resistance of steam film = 1/hA = 1/(500 × 2 ×3.14× 50 × 10–3) = 0.00579  

R2, the resistance of steel pipe = ln(r2/rl) / 2 π k  

 = ln(60/50)/2 π × 50 = 0.00058  

R3, resistance of high temperature Insulation  

 ln(r3/r2) / 2 π k = ln(100/60) / 2 π × 0.09 = 0.903  

R4 = 1n(r4/r3)/2 π k = ln(160/100)/2 π × 0.07 = 1.068  

R5 = resistance of the air film = 1/(15 × 2 π  × 160 × 10–3) = 0.0663  

The total resistance = 2.04367  

and Q T / R    = (300 – 25) / 204367 = 134.56 W per metre length of pipe. 

Temperature at the outside surface. T4 = 25 + R5,  

 Q  = 25 + 134.56 × 0.0663 = 33.92o C  

When the better insulating material (k = 0.07, thickness 60 mm) is placed first on the 



steel pipe, the new value of R3 would be  

R3 =  ln(120 /60) / 2 π × 0.07 = 1.576 ; and the new value of R4 will be  

R4 = ln(160/120) 2 π × 0.09 = 0.5087  

The total resistance = 2.15737 and Q = 275/2.15737 = 127.47 W per m length (Thus the 

better insulating material be applied first to reduce the heat loss.) The overall heat transfer 

coefficient, U, is obtained as U = Q / A T   

The outer surface area = π × 320 × 10–3 × 1 = 1.0054  

and U = 134.56/(275 × 1.0054) = 0.487 W/m2 K.  

Example 7. A steam pipe 120 mm outside diameter and 10m long carries steam at a pressure of 

30 bar and 099 dry. Calculate the thickness of a lagging material (k = 0.99 

W/mK) provided on the steam pipe such that the temperature at the outside 

surface of the insulated pipe does not exceed 32°C when the steam flow rate is 1 

kg/s and the dryness fraction of steam at the exit is 0.975 and there is no pressure 

drop.  

Solution: The latent heat of vaporization of steam at 30 bar = 1794 kJ/kg.  

The loss of heat energy due to condensation of steam = 1794(0.99 – 0.975)  

= 26.91 kJ/kg.  

Since the steam flow rate is 1 kg/s, the loss of energy = 26.91 kW.  

The saturation temperature of steam at 30 bar IS 233.84°C and assuming that the pipe 

material offers negligible resistance to heat flow, the temperature at the outside surface of the 

uninsulated steam pipe or at the inner surface of the lagging material is 233.84°C. Assuming 

one-dimensional radial heat flow through the lagging material, we have  

Q  = (T1 – T2 )/[ln(r2/ rl)] 2 π Lk  

or, 26.91 × 1000 (W) = (233.84 – 32) × 2 π × 10 × 0.99/1n(r/60)  

ln (r/60) = 0.4666  

r2/60 = exp (0.4666) = 1.5946  



r2 = 95.68 mm and the thickness = 35.68 mm  

Example 8.  A Wire, diameter 0.5 mm length 30 cm, is laid coaxially in a tube (inside diameter 

1 cm, outside diameter 1.5 cm, k = 20 W/mK). The space between the wire and 

the inside wall of the tube behaves like a hollow tube and is filled with a gas. 

Calculate the thermal conductivity of the gas if the current flowing through the 

wire is 5 amps and voltage across the two ends is 4.5 V, temperature of the wire 

is 160°C, convective heat transfer coefficient at the outer surface of the tube is 12 

W/m2K and the ambient temperature is 300K.  

 Solution: Assuming steady state and one-dimensional radial heat flow, we can draw the thermal 

circuit as shown In Fig.  

 

 

The rate of heat transfer through the system,  

Q /2 π L = VI/2 π L = (4.5 × 5)/(2 × 3.142 × 0.3) = 11.935 (W/m)  

R1, the resistance due to gas = ln(r2/rl), k  = ln(0.01/0.0005)/k = 2.996/k. 

R2, resistance offered by the metallic tube = ln( r3 / r2) k  

=  ln(1.5 /1.0) / 20 = 0.02  

R3, resistance due to fluid film at the outer surface  

 l/hr3 = 1/(l2×1.5×I0-2) =5.556  

and Q  / 2 π L = L/R = [(273 + 160) – 300]/R 



Therefore, R = 133/11.935 = 11.l437, and  

R1 = 2.9996/k = 11.1437 – 0.02 – 5.556 = 5.568  

or, k = 2.996/5.568 = 0.538 W/mK.  

Example 9. A steam pipe (inner diameter 16 cm, outer diameter 20 cm, k = 50 W/mK) is 

covered with a 4 cm thick insulating material (k = 0.09 W/mK). In order to 

reduce the heat loss, the thickness of the insulation is Increased to 8mm. 

Calculate the percentage reduction in heat transfer assuming that the convective 

heat transfer coefficient at the Inside and outside surfaces are 1150 and 10 

W/m2K and their values remain the same.  

Solution: Assuming one-dimensional radial conduction under steady state, 

 Q  / 2*3014*L = ∆T/∆R 

R1, resistance due to steam film = 1/hr = 1/(1150 × 0.08) = 0.011 

R2, resistance due to pipe material = ln (r2/r1)/k = ln (10/8)/50 = 0.00446 

R3, resistance due to 4 cm thick insulation  

 = ln(r3/r2)/k = ln(14/10)/0.09 = 3.738 

R4, resistance due to air film = 1/hr = 1/(10 × 0.14) = 0.714. 

Therefore, Q/ 2 L T   / (0.011 + 0.00446 + 3.738 + 0.714) = 0.2386∆T 

When the thickness of the insulation is increased to 8 cm, the values of R3 and R4 will 

change. 

R3 = ln(r3/r2)/k = ln(18/10)/0.09 = 6.53 ; and 

R4 =  1/hr = 1/(10 × 0.18) = 0.556 

Therefore, Q/ 2 L T    / (0.011 + 0.00446 + 6.53 + 0.556) 

= T  / 7.1 = 0.14084 T  

Percentage reduction in heat transfer = 
 0.22386 0.14084

0.37 37%
0.22386


   



Example 10. A small hemispherical oven is built of an inner layer of insulating fire brick 125 

mm thick (k = 0.31 W/mK) and an outer covering of 85% magnesia 40 mm thick (k 

= 0.05 W/mK). The inner surface of the oven is at 1073 K and the heat transfer 

coefficient for the outer surface is 10 W/m2K, the room temperature is 20oC.  

Calculate the rate of heat loss through the hemisphere if the inside radius is 0.6 m. 

Solution: The resistance of the fire brick  

 =  2 1 1 2

0.725 0.6
r r / 2 kr r 0.1478

2 0.31 0.6 0.725


   

  
 

The resistance  of 85% magnesia  

 =  3 2 2 3

0.765 0.725
r r / 2 kr r 0.2295

2 0.05 0.725 0.765


   

  
 

The resistance due to fluid film at the outer surface = 1/hA 

 
 

1
0.2295

10 2 0.765 0.765
 

  
 

The resistance due to fluid film at the outer surface = 1/hA 

 
 

1
0.0272

10 2 0.765 0.765
 

  
 

Rate of heat flow, 
800 20

Q T / R 1930W
0.1478 0.2295 0.272


    

 
 

Therefore,  594.44 = (68531.84 + 16825.4) k; or,  k = 6.96 × 10–3 W/mK. 

Example 11. A spherical vessel, made out of2.5 em thick steel plate IS used to store 

10m3 of a liquid at 200°C for a thermal storage system. To reduce the heat loss to the 

surroundings, a 10 cm thick layer of insulation (k = 0.07 W/rnK) is used. If the convective heat 

transfer coefficient at the outer surface is W/m2K and the ambient temperature is 25°C, calculate 

the rate of heat loss neglecting the thermal resistance of the steel plate.  

If the spherical vessel is replaced by a 2 m diameter cylindrical vessel with flat ends, 

calculate the thickness of insulation required for the same heat loss.  



Solution: Volume of the spherical vessel = 
3

3 4 r
10m

3


   r 1.336 m   

Outer radius of the spherical vessle, 2r 1.3364 0.025 1.361 m    

Outermost radius of the spherical vessel after the insulation = 1.461 m. 

Since the thermal resistance of the steel plate is negligible, the temperature at the inside 

surface of the insulation is 200oC. 

Thermal resistance of the insulating material =  3 2 3 2r r / 4 k r r   

 
0.1

0.057
4 0.07 1.461 1.361

 
  

 

Thermal resistance of the fluid film at the outermost surface = 1/hA 

 
2

1/ 10 4 1.461 0.00373    
 

 

Rate of heat flow =    T/ R 200 25 / 0.057 0.00373 2873.8 W       

Volume of the insulating material used =    3 3 3
3 24 / 3 r r 2.5 m    

Volume of the cylindrical vessel  
2310 m d L; L 10 / 3.183m

4


       

Outer radius of cylinder without insulation = 1.0 + 0.025 = 1.025 m. 

Outermost radius of the cylinder (with insulation) = r3. 

Therefore, the thickness of insulation = r3 – 1.025  

Resistance, the heat flow by the cylindrical element 

   3 3

3

ln r /1.025 ln r /1.025 1
1/ hA

2 Lk 2 3.183 0.07 10 2 r 3.183
   

     
 

= 0.714 ln (r3 / 1.025) + 0.005/r3 

Resistance to heat flow through sides of the cylinder 



 
 32 r 1.025 1

2 / kA 1/ hA
0.07 1 10 2


    

  
 

  39.09 r 1.025 0.0159    

For the same heat loss, T/ R   would be equal in both cases, therefore, 

   3 3 3

1 1 1

0.06073 0.714 ln r /1.025 0.005/ r 9.09 r 1.025 0.0159
 

  
 

Solving by trial and error, (r –  

and the volume of the insulating material required = 2.692 m3. 

CONVECTION 

 Convection Heat Transfer-Requirements  

The heat transfer by convection requires a solid-fluid interface, a temperature difference 

between the solid surface and the surrounding fluid and a motion of the fluid. The process of heat 

transfer by convection would occur when there is a movement of macro-particles of the fluid in 

space from a region of higher temperature to lower temperature.  

 Convection Heat Transfer Mechanism  

Let us imagine a heated solid surface, say a plane wall at a temperature Tw placed in an 

atmosphere at temperature T  , Fig. 2.1 Since all real fluids are viscous, the fluid particles 

adjacent to the solid surface will stick to the surface. The fluid particle at A, which is at a lower 

temperature, will receive heat energy from the plate by conduction. The internal energy of the 

particle would Increase and when the particle moves away from the solid surface (wall or plate) 

and collides with another fluid particle at B which is at the ambient temperature, it will transfer a 

part of its stored energy to B. And, the temperature of the fluid particle at B would increase. This 

way the heat energy is transferred from the heated plate to the surrounding fluid. Therefore the 

process of heat transfer by convection involves a combined action of heat conduction, energy 

storage and transfer of energy by mixing motion of fluid particles.  



 

Fig. 2.1 Principle of heat transfer by convection  

Free and Forced Convection  

When the mixing motion of the fluid particles is the result of the density difference 

caused by a temperature gradient, the process of heat transfer is called natural or free convection. 

When the mixing motion is created by an artificial means (by some external agent), the process 

of heat transfer is called forced convection Since the effectiveness of heat transfer by convection 

depends largely on the mixing motion of the fluid particles, it is essential to have a knowledge of 

the characteristics of fluid flow.  

Basic Difference between Laminar and Turbulent Flow  

In laminar or streamline flow, the fluid particles move in layers such that each fluid p 

article follows a smooth and continuous path. There is no macroscopic mixing of fluid particles 

between successive layers, and the order is maintained even when there is a turn around a comer 

or an obstacle is to be crossed. If a lime dependent fluctuating motion is observed indirections 

which are parallel and transverse to the main flow, i.e., there is a random macroscopic mixing of 

fluid particles across successive layers of fluid flow, the motion of the fluid is called' turbulent 

flow'. The path of a fluid particle would then be zigzag and irregular, but on a statistical basis, 

the overall motion of the macro particles would be regular and predictable.  

Formation of a Boundary Layer  

When a fluid flow, over a surface, irrespective of whether the flow is laminar or 

turbulent, the fluid particles adjacent to the solid surface will always stick to it and their velocity 

at the solid surface will be zero, because of the viscosity of the fluid. Due to the shearing action 

of one fluid layer over the adjacent layer moving at the faster rate, there would be a velocity 

gradient in a direction normal to the flow.  



 

                         Fig 2.2: sketch of a boundary layer on a wall 

Let us consider a two-dimensional flow of a real fluid about a solid (slender in cross-

section) as shown in Fig. 2.2. Detailed investigations have revealed that the velocity of the fluid 

particles at the surface of the solid is zero. The transition from zero velocity at the surface of the 

solid to the free stream velocity at some distance away from the solid surface in the V-direction 

(normal to the direction of flow) takes place in a very thin layer called 'momentum or 

hydrodynamic boundary layer'. The flow field can thus be divided in two regions:  

( i) A very thin layer in t he vicinity 0 f t he body w here a velocity gradient normal to 

the direction of flow exists, the velocity gradient du/dy being large. In this thin region, even a 

very small Viscosity   of the fluid exerts a substantial Influence and the shearing stress 

   du/dy may assume large values. The thickness of the boundary layer is very small and 

decreases with decreasing viscosity.  

(ii) In the remaining region, no such large velocity gradients exist and the Influence of 

viscosity is unimportant. The flow can be considered frictionless and potential.  

 Thermal Boundary Layer  

Since the heat transfer by convection involves the motion of fluid particles, we must 

superimpose the temperature field on the physical motion of fluid and the two fields are bound to 

interact. It is intuitively evident that the temperature distribution around a hot body in a fluid 

stream will often have the same character as the velocity distribution in the boundary layer flow. 

When a heated solid body IS placed in a fluid stream, the temperature of the fluid stream will 

also vary within a thin layer in the immediate neighborhood of the solid body. The variation in 

temperature of the fluid stream also takes place in a thin layer in the neighborhood of the body 



and is termed 'thermal boundary layer'. Fig. 2.3 shows the temperature profiles inside a thermal 

boundary layer.  

 

                    Fig2.3:   The thermal boundary layer 

 Dimensionless Parameters and their Significance  

The following dimensionless parameters are significant in evaluating the convection 

heat transfer coefficient:  

(a) The Nusselt Number (Nu)-It is a dimensionless quantity defined as hL/ k, where h = 

convective heat transfer coefficient, L is the characteristic length and k is the thermal 

conductivity of the fluid The Nusselt number could be interpreted physically as the ratio of the 

temperature gradient in the fluid immediately in contact with the surface to a reference 

temperature gradient (Ts - T  ) /L. The convective heat transfer coefficient can easily be obtained 

if the Nusselt number, the thermal conductivity of the fluid in that temperature range and the 

characteristic dimension of the object is known.  

Let us consider a hot flat plate (temperature Tw) placed in a free stream (temperature 

T  < Tw). The temperature distribution is shown ill Fig. 2.4. Newton's Law of Cooling says that 

the rate of heat transfer per unit area by convection is given by  

 wQ/ A h T T      

w

Q
h(T T )

A
   

= w

t

T T
k 


 



h = 
t

k


 

Nu = 
t

hL L

k



 

 

Fig. 2.4 Temperature distribution in a boundary layer: Nusselt modulus  

The heat transfer by convection involves conduction and mixing motion of fluid 

particles. At the solid fluid interface (y = 0), the heat flows by conduction only, and is given by  

Y 0

Q dT
k

A dy


 
   

 
  h = 

 
 

dT

y 0

w

k
dy

T T








 

Since the magnitude of the temperature gradient in the fluid will remain the same, 

irrespective of the reference temperature, we can write dT = d(T - Tw) and by introducing a 

characteristic length dimension L to indicate the geometry of the object from which the heat 

flows, we get  

 
 

y 0

w

dT
dyhL

k T T / L








, and in dimensionless form, 

= 
 

w w

y 0

d(T T) /(T T )

d y / L





  
  
 

 

 (b) The Grashof Number (Gr)-In natural or free convection heat transfer, die motion of 

fluid particles is created due to buoyancy effects. The driving force for fluid motion is the body 



force arising from the temperature gradient. If a body with a constant wall temperature Tw is 

exposed to a qui scent ambient fluid at T  , the force per unit volume can be written as 

 wg t T   where   = mass density of the fluid,  = volume coefficient of expansion and g is 

the acceleration due to gravity.  

The ratio of inertia force × Buoyancy force/(viscous force)2 can be written as 

   

 

2 2 3
w

2

V L g T T L
Gr

VL

   



 

= 
 

 
2 3

w 3 2
w2

g T T L
g L T T /




  
   


 

The magnitude of Grashof number indicates whether the flow is laminar or turbulent. If 

the Grashof number is greater than 109, the flow is turbulent and for Grashof number less than 

108, the flow is laminar. For 108 < Gr < 109, It is the transition range.  

(c) The Prandtl Number (Pr) - It is a dimensionless parameter defined as 

Pr = pC / k /     

Where   is the dynamic viscosity of the fluid, v = kinematic viscosity and   = thermal 

diffusivity.  

This number assumes significance when both momentum and energy are propagated 

through the system. It is a physical parameter depending upon the properties of the medium It is 

a measure of the relative magnitudes of momentum and thermal diffusion in the fluid: That is, 

for Pr = I, the r ate of diffusion of momentum and energy are equal which means that t he 

calculated temperature and velocity fields will be Similar, the thickness of the momentum and 

thermal boundary layers will be equal. For Pr <<I (in case of liquid metals), the thickness of the 

thermal boundary layer will be much more than the thickness of the momentum boundary layer 

and vice versa. The product of Grashof and Prandtl number is called Rayleigh number. Or, Ra = 

Gr × Pr.  

Which the variations in velocity and temperature would remain confined. The relative 

thickness of the momentum and the thermal boundary layer strongly depends upon the Prandtl 



number. Since in natural convection heat transfer, the motion of the fluid particles is caused by 

the temperature difference between the temperatures of the wall and the ambient fluid, the 

thickness of the two boundary layers are expected to be equal. When the temperature of the 

vertical plate is less than the fluid temperature, the boundary layer will form from top to bottom 

but the mathematical analysis will remain the same.  

The boundary layer will remain laminar upto a certain length of the plate (Gr < 108) and 

beyond which it will become turbulent (Gr > 109). In order to obtain the analytical solution, the 

integral approach, suggested by von-Karman is preferred.  

We choose a control volume ABCD, having a height H, length dx and unit thickness 

normal to the plane of paper, as shown in Fig. 25. We have:  

(b) Conservation of Mass:  

Mass of fluid entering through face AB = 
H

AB 0
m udy   

Mass of fluid leaving face CD = 
H H

CD 0 0

d
m udy udy dx

dx

    
     

  Mass of fluid entering the face DA = 
H

0

d
udy dx

dx

 
    

(ii) Conservation of Momentum:  

Momentum entering face AB = 
H 2

0
u dy  

Momentum leaving face CD = 
H H2 2

0 0

d
u dy u dy dx

dx

   
     

  Net efflux of momentum in the + x-direction = 
H 2

0

d
u dy dx

dx

 
    

The external forces acting on the control volume are:  

(a) Viscous force = 

y 0

du
dx

dy


 acting in the –ve x-direction  



 (b) Buoyant force approximated as  
H

0
g T T dy dx

   
    

From Newton’s law, the equation of motion can be written as:  

 2

0 0
y 0

d du
u dy g T T dy

dx dy

 





       
      (2.2) 

because the value of the integrand between   and H would be zero.  

(iii) Conservation of Energy:  

ABQ , convection + ADQ ,convection + BCQ ,conduction = CDQ convection  

or, 
H H

0 0
y 0

d dT
uCTdy CT udy dx k dx

dx dy




 
    

 
   

= 
H H

0 0

d
uCTdy uTCdy dx

dx

   
     

or  
0

y 0 y 0

d k dT dT
u T T dy

dx C dy dy





 

   
    

RADIATION   

Definition: 

Radiation is the energy transfer across a system boundary due to a ΔT, by the mechanism of 

photon emission or electromagnetic wave emission. 

Because the mechanism of transmission is photon emission, unlike conduction and convection, 

there need be no intermediate matter to enable transmission. 

 



The significance of this is that radiation will be the only mechanism for heat transfer whenever a 

vacuum is present. 

 Electromagnetic Phenomena. 

We are well acquainted with a wide range of electromagnetic phenomena in modern life. These 

phenomena are sometimes thought of as wave phenomena and are, consequently, often described 

in terms of electromagnetic wave length, λ. Examples are given in terms of the wave distribution 

shown below: 

 

 

One aspect of electromagnetic radiation is that the related topics are more closely associated with 

optics and electronics than with those normally found in mechanical engineering courses. 

Nevertheless, these are widely encountered topics and the student is familiar with them through 

every day life experiences. 

From a viewpoint of previously studied topics students, particularly those with a background in 

mechanical or chemical engineering will find the subject of Radiation Heat Transfer a little 

unusual. The physics background differs fundamentally from that found in the areas of 

continuum mechanics. Much of the related material is found in courses more closely identified 

with quantum physics or electrical engineering, i.e. Fields and Waves. At this point, it is 

important for us to recognize that since the subject arises from a different area of physics, it will 

be important that we study these concepts with extra care. 

Stefan-Boltzman Law 

Both Stefan and Boltzman were physicists; any student taking a course in quantum physics will 

become well acquainted with Boltzman’s work as he made a number of important contributions 

to the field. Both were contemporaries of Einstein so we see that the subject is of fairly recent 

vintage. (Recall that the basic equation for convection heat transfer is attributed to Newton) 

 



 

where: Eb = Emissive Power, the gross energy emitted from an ideal surface per unit area, time. 

σ = Stefan Boltzman constant, 5.67⋅10-8 W/m2⋅K4 

Tabs = Absolute temperature of the emitting surface, K. 

Take particular note of the fact that absolute temperatures are used in Radiation. It is suggested, 

as a matter of good practice, to convert all temperatures to the absolute scale as an initial step in 

all radiation problems. 

You will notice that the equation does not include any heat flux term, q”. Instead we have a term 

the emissive power. The relationship between these terms is as follows. Consider two infinite 

plane surfaces, both facing one another. Both surfaces are ideal surfaces. One surface is found to 

be at temperature, T1, the other at temperature, T2. Since both temperatures are at temperatures 

above absolute zero, both will radiate energy as described by the Stefan-Boltzman law. The heat 

flux will be the net radiant flow as given by: 

 

Plank’s Law 

While the Stefan-Boltzman law is useful for studying overall energy emissions, it does not allow 

us to treat those interactions, which deal specifically with wavelength, λ. This problem was 

overcome by another of the modern physicists, Max Plank, who developed a relationship for 

wave-based emissions. 

 

 



We haven’t yet defined the Monochromatic Emissive Power, Ebλ. An implicit definition is 

provided by the following equation: 

 

We may view this equation graphically as follows: 

 

 

A definition of monochromatic Emissive Power would be obtained by differentiating the integral 

equation: 

 

The actual form of Plank’s law is: 

 

 

 

Where: h, co, k are all parameters from quantum physics. We need not worry about their precise 

definition here. 



This equation may be solved at any T, λ to give the value of the monochromatic emissivity at 

that condition. Alternatively, the function may be substituted into the integral 

 to find the Emissive power for any temperature. While performing this 

integral by hand is difficult, students may readily evaluate the integral through one of several 

computer programs, i.e. MathCad, Maple, Mathmatica, etc.  

 

 Emission over Specific Wave Length Bands 

Consider the problem of designing a tanning machine. As a part of the machine, we will need to 

design a very powerful incandescent light source. We may wish to know how much energy is 

being emitted over the  

Ultraviolet band (10-4 to 0.4 μm), known to be particularly dangerous. 

 

With a computer available, evaluation of this integral is rather trivial. Alternatively, the text 

books provide a table of integrals. The format used is as follows: 

 

Referring to such tables, we see the last two functions listed in the second column. In the first 

column is a parameter, λ⋅T. This is found by taking the product of the absolute temperature of 

the emitting surface, T, and the upper limit wave length, λ. In our example, suppose that the 

incandescent bulb is designed to operate at a temperature of 2000K. Reading from the table: 

λ.,  

 

 

This is the fraction of the total energy emitted which falls within the IR band. To find the 

absolute energy emitted multiply this value times the total energy emitted: 

 



 

Solar Radiation 

The magnitude of the energy leaving the Sun varies with time and is closely associated with such 

factors as solar flares and sunspots. Nevertheless, we often choose to work with an average 

value. The energy leaving the sun is emitted outward in all directions so that at any particular 

distance from the Sun we may imagine the energy being dispersed over an imaginary spherical 

area. Because this area increases with the distance squared, the solar flux also decreases with the 

distance squared. At the average distance between Earth and Sun this heat flux is 1353 W/m2, so 

that the average heat flux on any object in Earth orbit is found as: 

 

Where Sc = Solar Constant, 1353 W/m2 

f = correction factor for eccentricity in Earth Orbit, (0.97<f<1.03) 

θ = Angle of surface from normal to Sun. 

Because of reflection and absorption in the Earth’s atmosphere, this number is significantly 

reduced at ground level. Nevertheless, this value gives us some opportunity to estimate the 

potential for using solar energy, such as in photovoltaic cells. 

Example 12. A large vertical flat plate 3 m high and 2 m wide is maintained at 75°C and is 

exposed to atmosphere at 25°C. Calculate the rate of heat transfer.  

Solution: The physical properties of air are evaluated at the mean temperature. i.e. T = 

(75 + 25)/2 = 50°C  

From the data book, the values are:  

 = 1.088 kg/m3; Cp = 1.00 kJ/kg.K;  

= 1.96 × 10-5 Pa-s  k = 0.028 W/mK.  

Pr = Cp/k = 1.96 × 10-5 × 1.0 × 103 /0.028 = 0.7  

1 1

T 323
    

Gr =  2 3 2g T L /     



= 
   

 

2 3

2
5

1.088 9.81 1 3 50

323 1.96 10

   

 

 

= 12.62 × 1010 

Gr.Pr = 8.834 × 1010 

Since Gr.Pr lies between 109 and 1013 

We have from Table 2.1  

 
1/ 3hL

Nu 0.1 Gr.Pr 441.64
k

    

h = 441.64 × 0.028/3 = 4.122 W/m2K 

 Q hA T 4.122 6 50 1236.6W       

We can also compute the boundary layer thickness at x = 3m  

x

2x 2 3
1.4 cm

Nu 441.64


      

Example 13. A vertical flat plate at 90°C. 0.6 m long and 0.3 m wide, rests in air at 

30°C. Estimate the rate of heat transfer from the plate. If the plate is immersed in water at 30°C. 

Calculate the rate of heat transfer  

Solution: (a) Plate in Air: Properties of air at mean temperature 60°C 

Pr = 0.7, k = 0.02864 W/ mK, v = 19.036 × 10-6 m2/s  

Gr = 9.81 × (90 – 30)(0.6)3/ [333 (19.036 × 10-6)2]  

= 1.054 × 109; Gr × Pr 1.054 ×109 × 0.7 = 7.37 × 108 < 109  

From Table 5.1: for Gr × Pr < 109, Nu = 0.59 (Gr. Pr)1/4  

  h = 0.02864 × 0.59 (7.37 × 108)1/4/0.6 = 4.64 W/m2K  

The boundary layer thickness,   = 2 k/h = 2 × 0.02864/4.64 = 1.23 cm  

and Q  = hA ( T ) = 4.64 × (2 × 0.6 × 0.3) × 60 = 100 W.  

Using Eq (2.8). Nu = 0.677 (0.7)0.5 (0.952 +0.7)0.25 (1.054 ×109)0.25,  



Which gives h = 4.297 W/m2K and heat transfer rate, Q  92.81 W  

Churchill and Chu have demonstrated that the following relations fit very well with 

experimental data for all Prandtl numbers.  

For RaL < 109, Nu = 0.68 + (0.67 RaL
0.25)/ [1 + (0.492/Pr)9/16]4/9)  (5.9) 

RaL> 109, Nu = 0.825 + (0.387 RaL
1/6)/[1 + (0.492/Pr)9/16]8/27  (5.10) 

Using Eq (5.9): Nu = 0.68 + [0.67(7.37 × 108)0.25] / [1 + (0.492/0.7)9/16]4/9 

 = 58.277 and h = 4.07 W /m2k; Q  = 87.9 W  

(b) Plate in Water: Properties of water from the Table  

Pr = 3.01, 2 g   Cp/ k = 6.48 × 1010;  

Gr.Pr = 2 g   Cp L
3( T)/  k = 6.48 × 1010 × (0.6)3 × 60 = 8.4 × 1011 

Using Eq (5.10): Nu = 0.825 + [0.387 (8.4 ×1011)1/6]/ [1+ (0.492/3.01)9/16)]8/27 = 89.48 

which gives h = 97.533 and Q = 2.107 kW.  

Example 14. Glycerine at 35°C flows over a 30cm by 3Ocm flat plate at a velocity of 

1.25 m/s. The drag force is measured as 9.8 N (both Side of the plate). Calculate the heat transfer 

for such a flow system.  

Solution: From tables, the properties of glycerine at 35°C are:  

  = 1256 kg/m3, Cp = 2.5 kJ/kgK,   = 0.28 kg/m-s, k = 0.286 W/mK, Pr = 2.4 Re= 

VL/  = 1256 × 1.25 × 0.30/0.28 = 1682.14, a laminar flow.*  

Average shear stress on one side of the plate = drag force/area  

= 9.8/(2 × 0.3 × 0.3) = 54.4  

and shear stress = C f   U2/2  

The average skin friction coefficient, Cr/ 2 = 
2U




 

= 54.4/( 1256 ×1.25 × 1.25) = 0.0277  

From Reynolds analogy, Cf /2 = St. Pr 2/3  

or, h =   Cp U × Cf/2 × Pr -2/3 = 
 

0.667

1256 2.5 1.25 0.0277

2.45

  
=59.8 kW/m2K.  
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