
SUBJECT NAME: ENGINEERING MATHEMATICS III 

(Common to ALL branches except BIO GROUPS, CSE & IT) 

SUBJECT CODE: SMT1201 

COURSE MATERIAL 

UNIT IV PARTIAL DIFFERENTIAL EQUATIONS 

 

 

Formation of equations by elimination of arbitrary constants and arbitrary functions - Solutions 

of PDE - general, particular and complete integrals - Solutions of First order Linear PDE ( 

Lagrange’s linear equation ) - Solution of Linear Homogeneous PDE of higher order with 

constant coefficients. 

 

INTRODUCTION 

 A partial differential equation is an equation involving a function of two or more 

variables and some of its partial derivatives. Therefore a partial differential equation contains one 

dependent variable and more than one independent variable 

Notations in PDE 

p = ∂z/∂x     q = ∂z/∂y     r = ∂2z/∂x2        s = ∂2z/∂x∂y     t = ∂2z/∂y2         

Formation of partial differential equations: 

There are two methods to form a partial differential equation. 

(i) By elimination of arbitrary constants. 

(ii) By elimination of arbitrary functions. 

 

Formation of partial differential equations by elimination of arbitrary constants: 

1. Form a p.d.e  by eliminating the arbitrary constants a and b from   Z=(x+a)2+(y-b)2 

       Solution: 

                Given Z= (x+a)2+(y-b)2    
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                which is the required p.d.e. 

 

2. Find the p.d.e of all planes having equal intercepts on the X and Y axis. 

     Solution: 

     Intercept form of the plane equation is  1
c
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          Given :  a=b.  [Equal intercepts on the x and y axis] 
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         Here a   and c are the two arbitrary constants. 

          Differentiating (1) p.w.r.to ‘x’ we get 
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          Diff (1) p.w.r.to. ‘y’ we get  
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            From    (2) and (3)   - q
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                        p = q   ,which is the required p.d e.     

 

3. Form the p.d.e by eliminating the constants a and b from z = axn+byn. 

    Solution:          

          Given:   z = axn+byn.     (1) 

                  P =
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 = anxn-1 
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              Multiply ‘ x’ we get, n

px
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            Multiply  ‘ y’   we get , n

qy
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           Substitute (2) and (3) in (1) we get the required p.d.e   z = n
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+ n
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             zn = px+qy. 



Formation of partial differential equations by elimination of arbitrary functions: 

1. Eliminate the arbitrary function f from z= 








x

y
f   and   form a partial differential 

equation. 

         Solution: 

                 Given  z =  
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             Differentiating   (1) p.w.r.to   ‘x’  we get 
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              Differentiating  (1)  p.w.r.to  y  we get 
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                       px = -qy 

             ie)      px+qy =  0  is the required   p.d.e. 

 

2. Eliminate the arbitrary functions f  and g from  z = f(x+iy)+g(x-iy)  to obtain a partial 

        differential equation involving z,x,y. 

       Solution: 

   Given :  z = f(x+iy)+g(x-iy)        (1) 

    P =
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= f ′(x+iy)+g ′(x-iy)       (2) 

q = 
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=i f ′(x+iy)-ig ′(x-iy)     (3) 
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= -f″(x+iy)-g″(x-iy)    (5) 

              r + t = 0    is the required p.d.e. 

3. Form the p.d.e by eliminating arbitrary function  from the relation  
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Solution: 

The pde is obtained from 0
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(yz+xyp)(2y+2zq)-(xz+xyq)(2x+2zp)=0   

 

SOLUTION OF PDE 

Complete solution: A solution which contains as many arbitrary constants  as there  are 

independent   variables  is called a complete integral (or)complete  solution.(number of arbitrary 

constants=number of independent variables) 

Particular solution: A solution obtained by giving particular values to the arbitrary constants in 

a complete integral is called a particular integral (or) particular solution. 

General solution:  A solution of a p.d.e which contains the maximum possible number of 

arbitrary functions is called a general integral (or) general solution. 

1. Find the general solution of   
2

2

y

z




= 0 
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              Given     
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        Integrating w.r.to ‘y’ on both sides  
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= a (constants) 

            ie) 
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    Again integrating w.r.to ‘y’ on both sides. 

            z = f(x) y + b which is the required solution. 

Lagrange’s linear equations: 

The equation of the form     Pp + Qq = R  is known as Lagrange’s equation, where P, Q and R 

are functions of x, y and z. To solve this equation it is enough to solve the subsidiary equations. 

 dx/P = dy/Q = dz/R    

If the solution of the subsidiary equation is of the form u(x, y, z) = c1 and v(x, y, z) = c2 then the 

solution of the given Lagrange’s equation is Φ(u, v) = 0. 

To solve the subsidiary equations we have two methods: 

 1     Method of Grouping:               

                Consider the subsidiary equation dx/P = dy/Q = dz/R..Take any two members say first 

two or last two or first and last members. Now consider the first two members dx/P = dy/Q. If P 

and Q contain z (other than x and y) try to eliminate it. Now direct integration gives u(x, y) = c1. 

Similarly take another two members dy/Q = dz/R. If Q and R contain x(other than y and z) try to 

eliminate it. Now direct integration gives v(y, z) = c2 . Therefore solution of the given Lagrange’s 

equation is Φ(u, v) = 0. 

 

1. Solve px + qy = z 

Solution: 

      The Lagrange's eqn is Pp + Qq = R 

   and the auxilliary eqn. is
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Taking the first two ratios, 
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Integrating, logx = logy + loga 
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Similarly, taking last two ratios of eqn (1), 
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Integrating, logy = logz + logb 
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Eqns (2) and (3) are independent solns of (1). 

Hence the complete soln of the given eqn. is φ(u,v)=0 

      ie;  0, 
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Method of  multiplier’s             

                

  Choose any three multipliers l, m, n may be constants or function of x, y and z such that 
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the expression lP + mQ + nR = 0. Hence    ldx + mdy + ndz = 0    

[ since each of the above ratios equal to a constant )(sayk
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If  0 nRmQlP  then 0 ndzmdyldx ] 

Now direct integration gives u(x, y, z) = c1. 

similarly choose another set of multipliers l′, m′, n′ 
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  the expression RnQmPl   = 0 

therefore dzndymdxl   = 0 (as explained earlier) 

Now direct integration gives v(x, y, z) = c2. 

Therefore solution of the given Lagrange’s equation is Φ(u, v) = 0. 

 

1. Solve )()()( 222222 yxzqxzypzyx   

Solution: 

The Lagrange's eqn is Pp + Qq = R 

   and the auxilliary eqn. is
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Taking multpliers as x,y,z;  
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zdzydyxdx  =0                                                          

Integrating , 
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ie;  x2 + y2 + z2 = c      



u = x2 + y2 + z2        (1) 

Again taking the multipliers as 1/x,-1/y,-1/z,  

 
)(

)()()(

111

)()( 222222222222
sayk

yxxzzy

dz
z

dy
y

dx
x

yxz

dz

xzy

dy

zyx

dx

















  

)()()(
111 222222 yxxzzykdz

z
dy

y
dx

x








 

dz
z

dy
y

dx
x

111 



 =0 

            Integrating, log x- log y- log z= log C’ 
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Homogeneous Linear partial differential equations: 

Equation of the form ),(.........
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F (x, y) = [a0 D
n + a1 D

n-1 D′ + a2 D
n-2 D′2 + ……. + anD′n]z   

where D = ∂/∂x and D′ = ∂/∂y 

 

Solution of Homogeneous Linear partial differential equations: 

 The Complete solution consists of two parts namely complementary function and 

particular integral.  

i.e ) Z = C.F + P.I                                          

 

 



To find the Complementary function (C.F.): 

The complementary function is the solution of the equation 

                        a0 D
n + a1 D

n-1 D′ + a2 D
n-2 D′2 + ……. + anD′n = 0. 

In this equation, put D = m and D′ = 1 then we get an equation, which is called auxiliary 

equation.Hence the auxiliary equation is  

a0 m
n + a1 m

n-1  + a2 m
n-2 + ……. + an  

 = 0. 

Let the root of this equation be m1, m2, m3,……….. mn. 

Case 1: If the roots are real or imaginary and different say m1 ≠ m2 ≠  m3 ≠……..  ≠ mn. then the  

 C.F. is Z = f1 (y + m1x) + f2 (y + m2x) +……… + fn (y + mnx)  

Case 2: If any two roots are equal, say m1 = m2 = m, and others are different then the C.F. is 

                          Z = f1 (y + mx) + xf2 (y + mx) + f3 (y + m3x) +……… + fn (y + mnx)  

Case 3: If three roots are equal, say m1 = m2 = m3 = m,  then the C.F. is 

                          Z = f1 (y + mx) + xf2 (y + mx) + x2f3 (y + mx) +……… + fn (y + mnx) . 

  

To find the Particular Integral: 

Rule1: If F(x, y) = eax+by  then 

           P.I.  = 
 

byaxe
DD
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1


  

                   = 1 / Φ (a, b). eax+by   provided Φ (a, b) ≠ 0 [Replace D by a and D′ by b] 

           If   Φ (a, b) = 0 refer rule 4. 

  

Rule2: If F(x, y) = sin (mx + ny) or cos (mx + ny) then  

           P.I.  = 
 

)cos(         )sin(
,
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         Replace D2 by –m2, D′2 by –n2 and DD′ by –mn in provided the denominator is 

not equal to zero. If the denominator is zero refer rule 4. 



Rule3: If F(x, y) = xm yn 

           P.I.  = 
 

nm yx
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                           =  [Φ (D, D′)]-1 xm yn 

Expand [Φ (D, D′)]-1    by using binomial theorem and then operate on xm yn 

Note: 1/ D denotes integration w.r.t x, 1/ D′ denotes integration w.r.t y. 

  

Rule4: If F(x, y) is any other function, resolve Φ (D, D′) in to linear factor say (D – m1 D′) 

 (D – m2 D′) etc. then the P.I. = 
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Note:1 
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  =  ∫ F(x, c-mx) dx, where y = c-mx. 

Note:2 

If the denominator is zero in rule (1) and (2) then apply Rule (4) 

 

1. Solve  (D2-2DD′+ D′2)z = 0 

       Solution: 

              Given   (D2-2DD′+ D′2) z = 0 

            The auxiliary eqn is m2-2m+1=0 

             ie) (m-1)2 =0 

        m =1,1 

   The roots are equal. 

       C.F = f1(y+x)+xf2(y+x) 

Hence    z = C.F 

    z  = f1(y+x)+xf2(y+x). 



2. Solve   (D4-D′4)z = 0 

       Solution: 

             Given   (D4-D′4) z = 0 

             The auxiliary equation is   m4-1= 0 

            [Replace D  by m  and D′  by 1] 

            Solving   (m2-1) (m2+1) = 0 

                 m2-1=0     ,          m2+1 =0 

                   m2 =1        ,           m2 = -1 

                      m =±1     ,             m = ± 1 = ± i 

                     ie)m =1,-1,i,-i 

                     The solution is  z = f1(y+x)+ f2(y-x)+f3(y+ix)+f4(y-ix). 

3. Find the P.I of   
xeyDDD  ]4[ 2
 

       Solution: 

         P.I = 
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1xe   Replace D  by 1 and  D by 0 

              = ex . 

 Solution is y = ex . 

4. Solve yxe
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Solution: 

             The symbolic form is yxezDDDD 2323 )43(                                                                                                                                                         



            A.E is m3 – 3m2 +4 =0 

            m = -1 , 2 ,2 

            C.F is z =  f1(y-x) + f2(y+2x) +x f3(y+2x) 

  P.I  =   yxe
DDDD
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The complete solution is  

                z =    f1(y-x) + f2(y+2x) +x f3(y+2x) + 
yxe 2
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5. Solve ]2[ 22 DDDD   z = cos(x-3y). 

       Solution: 

           Given  ]2[ 22 DDDD  z = cos(x-3y). 

           The auxiliary  equation  is  m2-2m+1=0 

          (m-1)2 = 0 

          m =1,1 

           C.F = f1(y+x)  + xf2(y+x). 

                     P.I  = )3cos(
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         The complete solution is   Z = f1(y+x) + xf2(y+x) - 
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Solution: 

           The symbolic form is yxzDDDD  ]23[ 22
  

                A.E is m2 + 3m +2 =0 

                 m = -1 , -2 

                 C.F is z =  f1(y-x) + f2(y-2x)  
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The complete solution is  

                               z =  f1(y-x) + f2(y-2x) + 
32
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7. Solve xy
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Solution: 

The symbolic form is xyzDDDD cos]6[ 22   

             A.E is m2 + m -6 =0 

                        m = -3 , 2 

                  C.F is z =  f1(y-3x) + f2(y+2x)  

  P.I = xy
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                                     =     ]cos2sin)3[( dxxxxc   

   = 2sinx  -3sinx3x)cosx3x-(y   

                            = -ycosx + sinx 

                          The complete solution is  

                               z =    f1(y-3x) + f2(y+2x) – ycosx+sinx 


