SUBJECT NAME: ENGINEERING MATHEMATICS III (Common to ALL branches except BIO GROUPS, CSE \& IT)
 SUBJECT CODE: SMT1201
 COURSE MATERIAL

 UNIT IV PARTIAL DIFFERENTIAL EQUATIONS

 UNIT IV PARTIAL DIFFERENTIAL EQUATIONS}

Formation of equations by elimination of arbitrary constants and arbitrary functions - Solutions of PDE - general, particular and complete integrals - Solutions of First order Linear PDE (Lagrange's linear equation) - Solution of Linear Homogeneous PDE of higher order with constant coefficients.

INTRODUCTION

A partial differential equation is an equation involving a function of two or more variables and some of its partial derivatives. Therefore a partial differential equation contains one dependent variable and more than one independent variable

Notations in PDE
$\mathrm{p}=\partial \mathrm{z} / \partial \mathrm{x} \quad \mathrm{q}=\partial \mathrm{z} / \partial \mathrm{y} \quad \mathrm{r}=\partial^{2} \mathrm{z} / \partial \mathrm{x}^{2} \quad \mathrm{~s}=\partial^{2} \mathrm{z} / \partial \mathrm{x} \partial \mathrm{y} \quad \mathrm{t}=\partial^{2} \mathrm{z} / \partial \mathrm{y}^{2}$

Formation of partial differential equations:

There are two methods to form a partial differential equation.
(i) By elimination of arbitrary constants.
(ii) By elimination of arbitrary functions.

Formation of partial differential equations by elimination of arbitrary constants:

1. Form a p.d.e by eliminating the arbitrary constants a and b from $Z=(x+a)^{2}+(y-b)^{2}$

Solution:

Given $\mathrm{Z}=(\mathrm{x}+\mathrm{a})^{2}+(\mathrm{y}-\mathrm{b})^{2}$

$$
\begin{aligned}
& \mathrm{P}=\frac{\partial z}{\partial x}=2(\mathrm{x}+\mathrm{a}), \quad \text { ie) } \mathrm{x}+\mathrm{a}=\frac{p}{2} \\
& \mathrm{q}=\frac{\partial z}{\partial y}=2(\mathrm{y}-\mathrm{b}), \quad \text { ie) } \mathrm{y}-\mathrm{b}=\frac{q}{2} \\
& \therefore(1) \Rightarrow z=\left(\frac{p}{2}\right)^{2}+\left(\frac{q}{2}\right)^{2} \\
& \mathrm{z}=\frac{p^{2}}{4}+\frac{q^{2}}{4} \\
& 4 \mathrm{z}=\mathrm{p}^{2}+\mathrm{q}^{2}
\end{aligned}
$$

which is the required p.d.e.
2. Find the p.d.e of all planes having equal intercepts on the X and Y axis.

Solution:

Intercept form of the plane equation is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
Given : $\mathrm{a}=\mathrm{b}$. [Equal intercepts on the x and y axis]

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \tag{1}
\end{equation*}
$$

Here a and c are the two arbitrary constants.
Differentiating (1) p.w.r.to ' x ' we get

$$
\begin{align*}
& \frac{1}{a}+0+\frac{1}{c} \frac{\partial z}{\partial x}=0 \\
& \frac{1}{a}+\frac{1}{c} p=0 \\
& \frac{1}{a}=-\frac{1}{c} p \tag{2}
\end{align*}
$$

Diff (1) p.w.r.to. 'y' we get

$$
\begin{align*}
& 0+\frac{1}{a}+\frac{1}{c} \frac{\partial z}{\partial y}=0 . \\
& \frac{1}{a}+\frac{1}{c} q=0 \\
& \frac{1}{a}=-\frac{1}{c} q \tag{3}
\end{align*}
$$

From (2) and (3) $\Rightarrow-\frac{1}{c} p=-\frac{1}{c} q$
$\mathrm{p}=\mathrm{q}$,which is the required p.de.
3. Form the p.d.e by eliminating the constants a and b from $z=a x^{n}+b y^{n}$.

Solution:

Given: $\mathrm{z}=a x^{\mathrm{n}}+\mathrm{by}^{\mathrm{n}}$.

$$
\begin{align*}
& \mathrm{P}=\frac{\partial z}{\partial x}=\mathrm{anx}^{\mathrm{n}-1} \tag{1}\\
& \frac{p}{n}=\mathrm{ax}^{\mathrm{n}-1}
\end{align*}
$$

$$
\begin{equation*}
\text { Multiply ' } \mathrm{x} \text { ' we get, } \frac{p x}{n}=\mathrm{ax}^{\mathrm{n}} \tag{2}
\end{equation*}
$$

$$
\mathrm{q}=\frac{\partial z}{\partial y}=\text { bny }^{\mathrm{n}-1}
$$

$$
\frac{q}{n}=\mathrm{by}^{\mathrm{n}-1}
$$

$$
\begin{equation*}
\text { Multiply ' } \mathrm{y} \text { ' we get }, \frac{q y}{n}=\text { by }^{\mathrm{n}} \tag{3}
\end{equation*}
$$

Substitute (2) and (3) in (1) we get the required p.d.e $\mathrm{z}=\frac{p x}{n}+\frac{q y}{n}$
$\mathrm{zn}=\mathrm{px}+\mathrm{q} y$.

Formation of partial differential equations by elimination of arbitrary functions:

1. Eliminate the arbitrary function f from $\mathrm{z}=f\left(\frac{y}{x}\right)$ and form a partial differential equation.

Solution:

Given $\mathrm{z}=f\left(\frac{y}{x}\right)$
Differentiating (1) p.w.r.to ' x ' we get

$$
\begin{equation*}
\mathrm{P}=\frac{\partial z}{\partial x}=f^{\prime}\left(\frac{y}{x}\right)\left(\frac{-y}{x^{2}}\right) \tag{2}
\end{equation*}
$$

Differentiating (1) p.w.r.to y we get

$$
\begin{align*}
& \mathrm{q}=\frac{\partial z}{\partial y}=f^{\prime}\left(\frac{y}{x}\right)\left(\frac{1}{x}\right) \tag{3}\\
& \frac{(2)}{(3)} \Rightarrow \frac{p}{q}=\frac{-y}{x}
\end{align*}
$$

$\therefore \mathrm{px}=-\mathrm{qy}$
ie) $p x+q y=0$ is the required p.d.e.
2. Eliminate the arbitrary functions f and g from $z=f(x+i y)+g(x-i y)$ to obtain a partial differential equation involving $\mathrm{z}, \mathrm{x}, \mathrm{y}$.

Solution:

$$
\begin{align*}
& \text { Given : } \mathrm{z}=\mathrm{f}(\mathrm{x}+\mathrm{iy})+\mathrm{g}(\mathrm{x}-\mathrm{iy}) \tag{1}\\
& \mathrm{P}=\frac{\partial z}{\partial x}=\mathrm{f}^{\prime}(\mathrm{x}+\mathrm{iy})+\mathrm{g}^{\prime}(\mathrm{x}-\mathrm{iy}) \tag{2}\\
& \mathrm{q}=\frac{\partial z}{\partial y}=\mathrm{if} \mathrm{f}^{\prime}(\mathrm{x}+\mathrm{iy})-\mathrm{ig} \mathrm{~g}^{\prime}(\mathrm{x}-\mathrm{i} y) \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{r}=\frac{\partial^{2} z}{\partial x^{2}}=\mathrm{f}^{\prime \prime}(\mathrm{x}+\mathrm{iy})+\mathrm{g}^{\prime \prime}(\mathrm{x}-\mathrm{iy}) \tag{4}\\
& \mathrm{t}=\frac{\partial^{2} z}{\partial y^{2}}=-\mathrm{f}^{\prime \prime}(\mathrm{x}+\mathrm{iy})-\mathrm{g}^{\prime \prime}(\mathrm{x}-\mathrm{iy}) \tag{5}\\
& \mathrm{r}+\mathrm{t}=0 \quad \text { is the required p.d.e. }
\end{align*}
$$

3. Form the p.d.e by eliminating arbitrary function ϕ from the relation

$$
\phi\left(x y z, x^{2}+y^{2}+z^{2}\right)=0
$$

Solution:

The pde is obtained from $\left|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y}\end{array}\right|=0$

$$
\left|\begin{array}{ll}
y z+x y p & 2 x+2 z p \\
x z+x y q & 2 y+2 z q
\end{array}\right|=0
$$

$$
(y z+x y p)(2 y+2 z q)-(x z+x y q)(2 x+2 z p)=0
$$

SOLUTION OF PDE

Complete solution: A solution which contains as many arbitrary constants as there are independent variables is called a complete integral (or)complete solution.(number of arbitrary constants=number of independent variables)

Particular solution: A solution obtained by giving particular values to the arbitrary constants in a complete integral is called a particular integral (or) particular solution.

General solution: A solution of a p.d.e which contains the maximum possible number of arbitrary functions is called a general integral (or) general solution.

1. Find the general solution of $\frac{\partial^{2} z}{\partial y^{2}}=0$

Solution:

Given $\quad \frac{\partial^{2} z}{\partial y^{2}}=0$
ie) $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=0$
Integrating w.r.to ' y ' on both sides
$\frac{\partial z}{\partial y}=\mathrm{a}($ constants $)$
ie) $\frac{\partial z}{\partial y}=\mathrm{f}(\mathrm{x})$
Again integrating w.r.to ' y ' on both sides.
$z=f(x) y+b$ which is the required solution.

Lagrange's linear equations:

The equation of the form $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ is known as Lagrange's equation, where P, Q and R are functions of x, y and z . To solve this equation it is enough to solve the subsidiary equations.
$d x / P=d y / Q=d z / R$
If the solution of the subsidiary equation is of the form $u(x, y, z)=c_{1}$ and $v(x, y, z)=c_{2}$ then the solution of the given Lagrange's equation is $\Phi(u, v)=0$.

To solve the subsidiary equations we have two methods:

1 Method of Grouping:

Consider the subsidiary equation $\mathrm{dx} / \mathrm{P}=\mathrm{dy} / \mathrm{Q}=\mathrm{dz} / \mathrm{R}$.. Take any two members say first two or last two or first and last members. Now consider the first two members $d x / P=d y / Q$. If P and Q contain z (other than x and y) try to eliminate it. Now direct integration gives $u(x, y)=c_{1}$.
 eliminate it. Now direct integration gives $v(y, z)=c_{2}$. Therefore solution of the given Lagrange's equation is $\Phi(\mathrm{u}, \mathrm{v})=0$.

1. Solve $\mathrm{px}+\mathrm{qy}=\mathrm{z}$

Solution:

The Lagrange's eqn is $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$
and the auxilliary eqn. is $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$

$$
\begin{equation*}
\text { ie } \frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z} \tag{1}
\end{equation*}
$$

Taking the first two ratios,

$$
\frac{d x}{x}=\frac{d y}{y}
$$

Integrating, $\log x=\log y+\log a$

$$
\begin{equation*}
\frac{x}{y}=a \tag{2}
\end{equation*}
$$

Similarly, taking last two ratios of eqn (1),

$$
\frac{d y}{y}=\frac{d z}{z}
$$

Integrating, $\log y=\log z+\log b$

$$
\begin{equation*}
\frac{y}{z}=b \tag{3}
\end{equation*}
$$

Eqns (2) and (3) are independent solns of (1).
Hence the complete soln of the given eqn. is $\varphi(\mathrm{u}, \mathrm{v})=0$
ie; $\phi\left(\frac{x}{y}, \frac{y}{z}\right)=0$

Method of multiplier's

Choose any three multipliers $1, \mathrm{~m}, \mathrm{n}$ may be constants or function of x, y and z such that in $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}=\frac{l d x+m d y+n d z}{l P+m Q+n R}$
the expression $\mathrm{lP}+\mathrm{mQ}+\mathrm{nR}=0$. Hence $\quad \mathrm{ldx}+\mathrm{mdy}+\mathrm{ndz}=0$
[since each of the above ratios equal to a constant $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}=\frac{l d x+m d y+n d z}{l P+m Q+n R}=k($ say $)$
$l d x+m d y+n d z=k(l P+m Q+n R)$

If $l P+m Q+n R=0$ then $l d x+m d y+n d z=0]$
Now direct integration gives $u(x, y, z)=c_{1}$.
similarly choose another set of multipliers $\mathrm{l}^{\prime}, \mathrm{m}^{\prime}, \mathrm{n}^{\prime}$
$\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}=\frac{l^{\prime} d x+m^{\prime} d y+n^{\prime} d z}{l^{\prime} P+m^{\prime} Q+n^{\prime} R}$
the expression $l^{\prime} P+m^{\prime} Q+n^{\prime} R=0$
therefore $l^{\prime} d x+m^{\prime} d y+n^{\prime} d z=0$ (as explained earlier)
Now direct integration gives $\mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}_{2}$.
Therefore solution of the given Lagrange's equation is $\Phi(u, v)=0$.

1. Solve $x\left(y^{2}-z^{2}\right) p-y\left(z^{2}+x^{2}\right) q=z\left(x^{2}+y^{2}\right)$

Solution:

The Lagrange's eqn is $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$
and the auxilliary eqn. is $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$

$$
\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}
$$

Taking multpliers as $\mathrm{x}, \mathrm{y}, \mathrm{z}$;

$$
\begin{aligned}
& \frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}=\frac{x d x+y d y+z d z}{x^{2}\left(y^{2}-z^{2}\right)-y^{2}\left(z^{2}+x^{2}\right)+z^{2}\left(x^{2}+y^{2}\right)}=k(\text { say }) \\
& x d x+y d y+z d z=k\left(x^{2}\left(y^{2}-z^{2}\right)-y^{2}\left(z^{2}+x^{2}\right)+z^{2}\left(x^{2}+y^{2}\right)\right) \\
& x d x+y d y+z d z=0 \\
& \text { Integrating }, \frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=\frac{c}{2} \\
& \text { ie; } \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{c}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{u}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \tag{1}
\end{equation*}
$$

Again taking the multipliers as $1 / \mathrm{x},-1 / \mathrm{y},-1 / \mathrm{z}$,

$$
\begin{aligned}
\frac{d x}{x\left(y^{2}-z^{2}\right)} & =\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}=\frac{\frac{1}{x} d x+\frac{-1}{y} d y+\frac{-1}{z} d z}{\left(y^{2}-z^{2}\right)+\left(z^{2}+x^{2}\right)-\left(x^{2}+y^{2}\right)}=k(\text { say }) \\
\frac{1}{x} d x & +\frac{-1}{y} d y+\frac{-1}{z} d z=k\left(y^{2}-z^{2}\right)+\left(z^{2}+x^{2}\right)-\left(x^{2}+y^{2}\right) \\
\frac{1}{x} d x+\frac{-1}{y} d y+\frac{-1}{z} d z & =0
\end{aligned}
$$

Integrating, $\log x-\log y-\log z=\log C^{\prime}$

$$
\begin{align*}
& \frac{x}{y z}=c^{\prime} \\
& \mathrm{v}=\frac{x}{y z} \tag{2}
\end{align*}
$$

solution is $\phi\left(x^{2}+y^{2}+z^{2}, \frac{x}{y z}\right)=0$

Homogeneous Linear partial differential equations:

Equation of the form $a_{0} \frac{\partial^{n} z}{\partial x^{n}}+a_{1} \frac{\partial^{n-1} z}{\partial x^{n-1} \partial y}+\ldots \ldots . . . a_{n} \frac{\partial^{n} z}{\partial y^{n}}=F(x, y)$
$F(x, y)=\left[a_{0} D^{n}+a_{1} D^{n-1} D^{\prime}+a_{2} D^{n-2} D^{\prime 2}+\ldots \ldots .+a_{n} D^{\prime \prime}\right] z$
where $\mathrm{D}=\partial / \partial \mathrm{x}$ and $\mathrm{D}^{\prime}=\partial / \partial \mathrm{y}$

Solution of Homogeneous Linear partial differential equations:

The Complete solution consists of two parts namely complementary function and particular integral.
i.e) $Z=C . F+P . I$

To find the Complementary function (C.F.):

The complementary function is the solution of the equation

$$
a_{0} D^{n}+a_{1} D^{n-1} D^{\prime}+a_{2} D^{n-2} D^{\prime 2}+\ldots \ldots .+a_{n} D^{\prime n}=0
$$

In this equation, put $\mathrm{D}=\mathrm{m}$ and $\mathrm{D}^{\prime}=1$ then we get an equation, which is called auxiliary equation.Hence the auxiliary equation is
$a_{0} m^{n}+a_{1} m^{n-1}+a_{2} m^{n-2}+\ldots \ldots .+a_{n}=0$.
Let the root of this equation be $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \ldots \ldots \ldots . . . \mathrm{m}_{\mathrm{n}}$.
Case 1: If the roots are real or imaginary and different say $m_{1} \neq m_{2} \neq m_{3} \neq \ldots \ldots \ldots \neq m_{n}$. then the

$$
\text { C.F. is } Z=f_{1}\left(y+m_{1} x\right)+f_{2}\left(y+m_{2} x\right)+\ldots \ldots . .+f_{n}\left(y+m_{n} x\right)
$$

Case 2: If any two roots are equal, say $m_{1}=m_{2}=m$, and others are different then the C.F. is

$$
Z=f_{1}(y+m x)+x f_{2}(y+m x)+f_{3}\left(y+m_{3} x\right)+\ldots \ldots \ldots+f_{n}\left(y+m_{n} x\right)
$$

Case 3: If three roots are equal, say $m_{1}=m_{2}=m_{3}=m$, then the C.F. is

$$
Z=f_{1}(y+m x)+x f_{2}(y+m x)+x^{2} f_{3}(y+m x)+\ldots \ldots \ldots+f_{n}\left(y+m_{n} x\right) .
$$

To find the Particular Integral:

Rule1: If $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{e}^{\mathrm{ax}+\mathrm{by}}$ then
P.I. $=\frac{1}{\phi\left(D, D^{\prime}\right)} e^{a x+b y}$
$=1 / \Phi(\mathrm{a}, \mathrm{b}) . \mathrm{e}^{\mathrm{ax}+\mathrm{by}} \operatorname{provided} \Phi(\mathrm{a}, \mathrm{b}) \neq 0$ [Replace D by a and D^{\prime} by b$]$
If $\Phi(\mathrm{a}, \mathrm{b})=0$ refer rule 4 .

Rule2: If $\mathrm{F}(\mathrm{x}, \mathrm{y})=\sin (\mathrm{mx}+\mathrm{ny})$ or $\cos (m x+n y)$ then
P.I. $=\frac{1}{\phi\left(D, D^{\prime}\right)} \sin (m x+n y)$ or $\cos (m x+n y)$

Replace D^{2} by $-\mathrm{m}^{2}, \mathrm{D}^{\prime 2}$ by $-\mathrm{n}^{2}$ and DD^{\prime} by -mn in provided the denominator is not equal to zero. If the denominator is zero refer rule 4.

Rule3: If $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}}$

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{\phi\left(D, D^{\prime}\right)} x^{m} y^{n} \\
& =\left[\Phi\left(\mathrm{D}, \mathrm{D}^{\prime}\right)\right]^{-1} \mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}}
\end{aligned}
$$

Expand $\left[\Phi\left(D, D^{\prime}\right)\right]^{-1}$ by using binomial theorem and then operate on $x^{m} y^{n}$
Note: 1/ D denotes integration w.r.t $\mathrm{x}, 1 / \mathrm{D}^{\prime}$ denotes integration w.r.t y.

Rule4: If $F(x, y)$ is any other function, resolve $\Phi\left(D, D^{\prime}\right)$ in to linear factor say $\left(D-m_{1} D^{\prime}\right)$
$\left(\mathrm{D}-\mathrm{m}_{2} \mathrm{D}^{\prime}\right)$ etc. then the P.I. $=\frac{1}{\left(D-m_{1} D^{\prime}\right)\left(D-m_{2} D^{\prime}\right)} F(x, y)$

Note: 1

$\frac{1}{(D-m D)} F(x, y)=\int \mathrm{F}(\mathrm{x}, \mathrm{c}-\mathrm{mx}) \mathrm{dx}$, where $\mathrm{y}=\mathrm{c}-\mathrm{mx}$.

Note: 2

If the denominator is zero in rule (1) and (2) then apply Rule (4)

1. Solve $\left(D^{2}-2 D^{\prime}+D^{\prime 2}\right) z=0$

Solution:

Given $\left(D^{2}-2 D^{\prime}+D^{\prime 2}\right) z=0$
The auxiliary eqn is $\mathrm{m}^{2}-2 \mathrm{~m}+1=0$
ie) $(m-1)^{2}=0$
$\mathrm{m}=1,1$
The roots are equal.
$\therefore \quad C . F=f_{1}(y+x)+\mathrm{xf}_{2}(\mathrm{y}+\mathrm{x})$
Hence $\mathrm{z}=\mathrm{C} . \mathrm{F}$
$z=f_{1}(y+x)+x f_{2}(y+x)$.
2. Solve $\left(D^{4}-D^{\prime 4}\right) z=0$

Solution:

Given $\left(D^{4}-D^{\prime 4}\right) \mathrm{z}=0$
The auxiliary equation is $\mathrm{m}^{4}-1=0$
[Replace D by m and D^{\prime} by 1]
Solving $\left(m^{2}-1\right)\left(m^{2}+1\right)=0$

$$
\begin{array}{lll}
\mathrm{m}^{2}-1=0 & , & \mathrm{~m}^{2}+1=0 \\
\mathrm{~m}^{2}=1 & , & \mathrm{~m}^{2}=-1 \\
\mathrm{~m}= \pm 1 & , & \mathrm{~m}= \pm \sqrt{-1}= \pm \mathrm{i}
\end{array}
$$

ie) $m=1,-1, i,-\mathrm{i}$
The solution is $\mathrm{z}=\mathrm{f}_{1}(\mathrm{y}+\mathrm{x})+\mathrm{f}_{2}(\mathrm{y}-\mathrm{x})+\mathrm{f}_{3}(\mathrm{y}+\mathrm{ix})+\mathrm{f}_{4}(\mathrm{y}-\mathrm{ix})$.
3. Find the P.I of $\left[D^{2}+4 D D^{\prime}\right] y=e^{x}$

Solution:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{D^{2}+4 D D^{\prime}} e^{x} \\
& =\frac{1}{D^{2}+4 D D^{\prime}} e^{x+0 y} \\
& =e^{x}\left[\frac{1}{1+4(1)(0)}\right] \text { Replace D by } 1 \text { and } D^{\prime} \text { by } 0 \\
& =\mathrm{e}^{\mathrm{x}} .
\end{aligned}
$$

Solution is $y=e^{x}$.
4. Solve $\frac{\partial^{3} z}{\partial x^{3}}-3 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+2 y}$

Solution:

The symbolic form is $\left(D^{3}-3 D^{2} D^{\prime}+4 D^{\prime 3}\right) z=e^{x+2 y}$
A.E is $m^{3}-3 m^{2}+4=0$
$\mathrm{m}=-1,2,2$
C. F is $z=f_{1}(y-x)+f_{2}(y+2 x)+x f_{3}(y+2 x)$

$$
\begin{aligned}
\text { P.I } & =\frac{1}{D^{3}-3 D^{2} D^{1}+4 D^{\prime 3}} e^{x+2 y} \\
& =\frac{1}{1-(3)(1)(2)+(4)(8)} e^{x+2 y} \\
& =\frac{1}{27} e^{x+2 y}
\end{aligned}
$$

The complete solution is
$z=f_{1}(y-x)+f_{2}(y+2 x)+x f_{3}(y+2 x)+\frac{1}{27} e^{x+2 y}$
5. Solve $\left[D^{2}-2 D D^{\prime}+D^{\prime 2}\right] \mathrm{z}=\cos (\mathrm{x}-3 \mathrm{y})$.

Solution:

Given $\left[D^{2}-2 D D^{\prime}+D^{\prime 2}\right] \mathrm{z}=\cos (\mathrm{x}-3 \mathrm{y})$.
The auxiliary equation is $\mathrm{m}^{2}-2 \mathrm{~m}+1=0$

$$
\begin{aligned}
&(\mathrm{m}-1)^{2}=0 \\
& \mathrm{~m}=1,1
\end{aligned} \quad \begin{aligned}
\text { C.F }= & \mathrm{f}_{1}(\mathrm{y}+\mathrm{x})+\mathrm{xf}_{2}(\mathrm{y}+\mathrm{x}) . \\
\text { P.I } & =\frac{1}{D^{2}-2 D D^{\prime}+D^{\prime 2}} \cos (x-3 y) \\
& =\frac{\cos (x-3 y)}{-1-2(3)-9} \\
& =\frac{-1}{16} \cos (x-3 y)
\end{aligned}
$$

\therefore The complete solution is $Z=f_{1}(y+x)+\mathrm{xf}_{2}(\mathrm{y}+\mathrm{x})-\frac{1}{16} \cos (\mathrm{x}-3 \mathrm{y})$.
6. Solve $\frac{\partial^{2} z}{\partial x^{2}}-3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=x+y$

Solution:

The symbolic form is $\left[D^{2}+3 D D^{\prime}+2 D^{\prime 2}\right] z=x+y$
A.E is $m^{2}+3 m+2=0$
$m=-1,-2$
C.F is $z=f_{1}(y-x)+f_{2}(y-2 x)$

$$
\begin{aligned}
\text { P.I } & =\frac{1}{D^{2}+3 D D^{\prime}+2 D^{\prime 2}} x+y \\
& =\frac{1}{D^{2}\left[1+\frac{3 D^{\prime}}{D}+\frac{2 D^{\prime 2}}{D^{2}}\right]} x+y \\
& =\frac{1}{D^{2}}\left[1+\frac{3 D^{\prime}}{D}+\frac{2 D^{\prime 2}}{D^{2}}\right]^{-1} x+y \\
& =\frac{1}{D^{2}}\left[1-\left(\frac{3 D^{\prime}}{D}+\frac{2 D^{\prime 2}}{D^{2}}\right)+\ldots . . .\right] x+y \\
& =\frac{1}{D^{2}}\left[1-\frac{3 D^{\prime}}{D}\right] x+y \\
& =\frac{1}{D^{2}}\left[(x+y)-\frac{3 D^{\prime}}{D}(x+y)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{D^{2}}[(x+y)-3 x] \\
& =\frac{1}{D^{2}}[y-2 x] \\
& =\quad \frac{1}{D^{2}}[(x+y)-3 x] \\
& =\frac{1}{D^{2}}[y-2 x] \\
& =\frac{y x^{2}}{2}-\frac{x^{3}}{3}
\end{aligned}
$$

The complete solution is

$$
\mathrm{z}=\mathrm{f}_{1}(\mathrm{y}-\mathrm{x})+\mathrm{f}_{2}(\mathrm{y}-2 \mathrm{x})+\frac{y x^{2}}{2}-\frac{x^{3}}{3}
$$

7. Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=y \cos x$

Solution:

The symbolic form is $\left[D^{2}+D D^{\prime}-6 D^{\prime 2}\right] z=y \cos x$
A.E is $m^{2}+m-6=0$
$\mathrm{m}=-3,2$
C.F is $z=f_{1}(y-3 x)+f_{2}(y+2 x)$
P.I $=\frac{1}{D^{2}+D D^{\prime}-6 D^{\prime 2}} y \cos x$
$=\quad \frac{1}{\left(D+3 D^{\prime}\right)\left(D-2 D^{\prime}\right)} y \cos x$
$=\frac{1}{\left(D+3 D^{\prime}\right)} \int(c-2 x) \cos x d x$

$$
\begin{array}{ll}
= & \frac{1}{\left(D+3 D^{\prime}\right)} \int\left[(c-2 x) \sin x-\int-2 \sin x\right] d x \\
= & \frac{1}{\left(D+3 D^{\prime}\right)}[(y+2 x-2 x) \sin x-2 \cos x] \\
= & \frac{1}{\left(D+3 D^{\prime}\right)}[y \sin x-2 \cos x] \\
= & \int[(c+3 x) \sin x-2 \cos x] d x \\
= & (y-3 x+3 x) \cos x+3 \sin x-2 \sin x \\
= & -y \cos x+\sin x
\end{array}
$$

The complete solution is

$$
z=f_{1}(y-3 x)+f_{2}(y+2 x)-y \cos x+\sin x
$$

