
UNIT-IV         STORAGE CLASS AND POINTERS 

Contents 

 
Storage Class Specifier 

                The scope of the variable specifies the part / parts in which the variable is alive. 
Depending on the place of the variable declared , the variables are classified  into two broad 
categories as  Global and Local variables.  In some languages like BASIC,  all the variables 

are global and the values are retained throughout the program. But in C language , the 
availability of value of the variable  depends on the ‘storage ‘ class of variable. In C , there are 
four types of storage classes. They are  
  

1) Local  or Automatic variables 
2) Global or External variables 
3) Static Variables 
4) Register Variables. 

 
1. Automatic variable:  

 
              An Automatic variable is a local variable which is declared inside the function.  The 
memory cell is created  at the time of declaration statement is executed and is destroyed when 
the flow comes out of the function. These variables are also called as the internal variables. A 
variable which is declared inside the function without using any storage class is assumed as the 
local variable because the default storage class is automatic. A variable can be declared 
automatic explicitly by using the keyword “auto” as 
 

  main ( ) 
  { 
  auto int x; 
  … 
  ….. 
  } 

2. External variable:  

 
   External variable is a global variable which is declared outside the  function.  The memory cell 
is created at the time of declaration statement is executed and is not destroyed when the flow 
comes out of the function. The global variables can be accessed by any function in the same 

program. A global variable can be declared externally in the global variable declaration section. 

 

  int x = 100; 
  main ( ) 
  { 
  ….. 

Storage Class Specifier - Auto, Extern, Static and Register. The Pointers – ‘& ‘ and ‘*’ Pointers, 

Pointer Expressions, Arrays using pointers, Structures using pointers, Functions using pointers, 

Function as argument, Command Line arguments. 



  x = 200; 
  f1 ( ); 
  f2 ( ); … 
  ….. 
  } 
 
  f1 ( ) 
  { 
  x = x + 1; 
  …. 
  ….. 
  } 
  f2 ( ) 
  { 
  x = x + 100; 
  …. 
  ….. 
  } 

 
 The variable x is declared above all the functions. It can be accessed by all the functions as 

main( ) , f1( ) and f2( ). The final value of x is 301. 

 

3. Static Variables    

 
These variables are alive throughout the program. A variable can be  declared as static by using 
the keyword “ static ”as  

     staic int x ; 
 A static variable can be initialized only once at the time of declaration. The initialization part  
 is executed only once and retain the remainder value of the program.  
 
 Example 

   main ( ) 
   { 
   void f1( ); 
   f1 ( ); 
   f1 ( ); 
   f1 ( ); 
   } 
   void f1( ) 
   { 
   static int x = 0; 
   x = x + 1; 
   printf(“\n The Value of X is %d “,x ); 
   }           
 The above program produces the following output 
  The Value of X is 1 



         The Value of X is 2 
  The Value of X is 3. 
 

4. Register Variables 

           
             If we want to store the variable in a register instead of memory , the variable can be 
declared as the register variables by using the keyword “register ” as 
 
                   register  int x; 
 
If the variables are stored in the registers , they can be accessed faster than a memory access. 
So the frequently accessed variables can be declared as the register variables. 
 
Example 

  

main ( ) 
{ 
register x , y, z; 
scanf(“%d%d”,&x,&y); 
z=x+y; 
printf(“\n The Output is %d”,z); 
} 
 
In the above program , all the variables are stored in the registers instead of memory. 
 

Examples 

Auto 
  

eg:1 
#include<stdio.h> 
void main() 
{ 
 auto mum = 20 ; 
 { 
      auto num = 60 ; 
      printf("nNum : %d",num); 
 } 
 printf("nNum : %d",num); 
} 
 
Output : 
Num : 60 
Num : 20 
 
Note : 

Two variables are declared in different blocks, so they are treated as different variables 



 

eg:2 
 
#include<stdio.h> 
void increment(void); 
void main() 
{ 
increment(); 
increment(); 
increment(); 
increment(); 
} 
void increment(void) 
{ 
auto int i = 0 ; 
printf ( “%d “, i ) ; 
i++; 
} 
 
Output: 
 
0 0 0 0 
 

 
Extern 

 

eg:1 
 
#include<stdio.h> 
int num =  75 ;   
void display(); 
void main() 
{ 
 extern int num ; 
 printf("nNum : %d",num); 
 display(); 
} 
void display() 
{ 
 extern int num ; 
 printf("nNum : %d",num); 
} 
 
Output : 
Num : 75 
Num : 75 



 
Note : 

Declaration within the function indicates that the function uses external variable 
Functions belonging to same source code do not require declaration (no need to write extern). If 
variable is defined outside the source code, then declaration using extern keyword is required. 

 

 

eg:2 
 
#include<stdio.h> 
int x = 10 ; 
void main( ) 
{ 
extern int y; 
printf(“The value of x is %d \n”,x); 
printf(“The value of y is %d”,y); 
 
 
} 
int y=50; 
Output: 
 
The value of x is 10 
The value of y is 50 
Example program for register variable in C: 
 
Static 

 

eg:1 
 
#include<stdio.h> 
void Check(); 
int main(){ 
   Check(); 
   Check(); 
   Check(); 
} 
void Check(){ 
    static int c=0; 
    printf("%d\t",c); 
    c+=5; 
} 
 
Output 
 
0      5     10 



 
Note: 

During first function call, it will display 0. Then, during second function call, variable c will not be 
initialized to 0 again, as it is static variable. So, 5 is displayed in second function call and 10 in 
third call. 
If variable c had been automatic variable, the output would have been: 
 

0     0     0 
 

eg:2 
 
#include<stdio.h> 
void increment(void); 
int main() 
{ 
increment(); 
increment(); 
increment(); 
increment(); 
return 0; 
} 
void increment(void) 
{ 
static int i = 0 ; 
printf ( “%d “, i ) ; 
i++; 
} 
Output: 
 
0 1 2 3 
 
 
Register 

 

eg:1 
 
#include<stdio.h> 
void main() 
{ 
int num1,num2; 
register int sum; 
printf("\nEnter the Number 1 : "); 
scanf("%d",&num1); 
printf("\nEnter the Number 2 : "); 
scanf("%d",&num2); 
sum = num1 + num2; 



printf("\nSum of Numbers : %d",sum); 
} 
 

 

 
eg:2 

 
#include <stdio.h> 
int main() 
{ 
register int i; 
int arr[5];// declaring array 
arr[0] = 10;// Initializing array 
arr[1] = 20; 
arr[2] = 30; 
arr[3] = 40; 
arr[4] = 50; 
for (i=0;i<5;i++) 
{ 
// Accessing each variable 
printf(“value of arr[%d] is %d \n”, i, arr[i]); 
} 
return 0; 
} 
 Output: 
 
value of arr[0] is 10 
value of arr[1] is 20 
value of arr[2] is 30 
value of arr[3] is 40 
value of arr[4] is 50 



 
 

POINTERS 

Definition:- 

A pointer is a variable whose value is the address of another variable. Like any variables, we 

must declare a pointer variable at the beginning of the program. We can create pointer to any 

variable type as given in te below examples. 

The general format of a pointer variable declaration is as follows:- 

datatype *pointervariable; 

  Examples:        int *ip;                         //pointer to an integer variable 

    float *fp;                      //pointer to a float variable 

    double *dp;                 //pointer to a double variable 

    char *cp;                      //pointer to a character variable 
 

POINTER OPERATORS: 

Operator Operator Name Purpose 

* Value at address Operator Gives Value stored at Particular address 

& Address Operator Gives Address of Variable 

 

POINTER ADDRESS OPERATOR 

1. Pointer address operator is denoted by ‘&’ symbol 

2. When we use ampersand symbol as a prefix to a variable name ‘&’, it gives the address of 

that variable. 

Take an example – 

&n  -  It gives an address of variable n 

 

WORKING OF ADDRESS OPERATOR 

Examples: 

 

(1) #include<stdio.h> 

void main() 

{ 



int n = 10; 

printf("\nValue of n is : %d",n); 

printf("\nAddress of n is : %u",&n); 

} 

 

Output : 

Value of  n is : 10 

Address of n is : 1002 

 

Explanation: 

Consider the above example, where we have used to print the address of the variable using 

ampersand operator. 

In order to print the variable we simply use name of variable while to print the address of the 

variable we use ampersand along with %u 

printf("\nValue of &n is : %u",&n); 

 

(2) #include<stdio.h> 

Void main() 

{ 

Int n=20; 

Printf(“The value of n is: %d”,n); 

Printf(“The address of n is: %u”,&n); 

Printf(“The value of n is: %d”,*(&n)); 

} 

 

OUTPUT: 

The value of n is:20 

The address of n is:1002 

The value of n is:20 

 

Explanation: 

In the above program, first printf displays the value of n. The second printf displays the address 

of the variable n i.e) 1002, which is obtained by using &n(address of variable n). The last printf 

can be explained as follows, 

    *(&n) = *(Address of variable n) 

             =*(1002) 

             =Value at address 1002 

               Therefore        *(&n)=20 

 

 

 

 



UNDERSTANDING ADDRESS OPERATOR 

Initialization of Pointer can be done using following 4 Steps : 

i. Declare a Pointer Variable and Note down the Data Type. 

ii. Declare another Variable with Same Data Type as that of Pointer Variable. 

iii. Initialize Ordinary Variable and assign some value to it. 

iv. Now Initialize pointer by assigning the address of ordinary variable to pointer variable. 

Below example will clearly explain the initialization of Pointer Variable. 

#include<stdio.h> 

int main() 

{ 

 

int a;       // Step 1 

int *ptr;    // Step 2 

a = 10;      // Step 3 

ptr = &a;    // Step 4 

 

return(0); 

} 

 

Explanation of Above Program : 

 Pointer should not be used before initialization. 

 “ptr” is pointer variable used to store the address of the variable. 

 Stores address of the variable ‘a’ . 

 Now “ptr” will contain the address of the variable “a” . 

 

Note : 

Pointers are always initialized before using it in the program  

 

Consider the following program – 

#include<stdio.h> 

void main() 

{  

int i = 5; 

int *ptr; 

ptr = &i; 

printf("\nAddress of i    : %u",&i); 

printf("\nValue of ptr is : %u",ptr); 

} 



 

OUTPUT: 

Address of i    : 65524 

Value of ptr is : 65524 

 

After declaration memory map will be like this – 

int i = 5; 

int *ptr; 

 

After assigning the address of variable to pointer, i.e after the execution of this statement – 

ptr = &i; 

 

Program : accessing value and address of Pointer 

/* Program to display the contents of the variable and their address using pointer variable*/ 

(1) #include<stdio.h> 

main()  

{ 

   int i = 3, *j; 

   j = &i; 

   printf("\nAddress of i = %u", &i); 

   printf("\nAddress of i = %u", j); 

   printf("\nAddress of j = %u", &j); 

   printf("\nValue of j   = %u", j); 

   printf("\nValue of i   = %d", i); 

   printf("\nValue of i   = %d", *(&i)); 

   printf("\nValue of i   = %d", *j); 

      } 

Output : 

Address of i = 65524 



Address of i = 65524 

Address of j = 65522 

Value of   j = 65524 

Value of   i = 3 

Value of   i = 3 

Value of   i = 3 

 

Variable Actual Value 

 

Value of i 

Value of j 

Address of i 

Address of j 

 

 

3 

65524 

65524 

65522 

 

(2) #include< stdio.h > 

main() 

  { 

 int num, *intptr; 

 float x, *floptr; 

 char ch, *cptr; 

 num=123; 

 x=12.34; 

 ch=’a’; 

 intptr=&num; 

 cptr=&ch; 

 floptr=&x; 

 printf(“Num %d stored at address %u\n”,*intptr,intptr); 

 printf(“Value %f stored at address %u\n”,*floptr,floptr); 

 printf(“Character %c stored at address %u\n”,*cptr,cptr); 

 } 

 

Output : 

Num 123 stored at address  1000 

Value 12.34 stored at address 2000 

Character a stored at address 3000 

 

 

 

POINTER EXPRESSIONS 

 

Like any other variables pointer variables can be used in an expression. In general, 

expressions involving pointer conform to the same rules as other expressions. The pointer 

expression is a linear combination of pointer variables, variables and operators. Pointer 

expression gives either numerical output or address output. 

Example: 



 y = *p1 * *p2; 

 sum = sum + *p1; 

 z = 5 - *p2/*p1; 

 *p2 = *p2 + 10;  

 

/*Pointer expression and pointer arithmetic*/ 

#include< stdio.h > 

void main() 

{ 

int *ptr1,*ptr2; 

int a,b,x,y; 

a=30;b=6; 

ptr1=&a; 

ptr2=&b; 

x=*ptr1+ *ptr2 –b; 

y=b - *ptr1/ *ptr2 +a; 

printf(“\nAddress of a %u”,ptr1); 

printf(“\nAddress of b %u”,ptr2); 

printf(“\na=%d, b=%d”,a,b); 

printf(“\nx=%d,y=%d”,x,y); 

} 

 

OUTPUT: 

Address of a 65522 

Address of b 65524 

a=30   b=6 

x=30   y=31 

 

EXPLANATION OF PROGRAM: 

In the above example program, ptr1, ptr2 are the pointer variables which are used to store 

the address of the two variables a and b respectively using the statements ptr1=&a, ptr2=&b. In 

the pointer expressions which are given below, the value of x and y are calculated as follows, 

   x=*ptr1+ *ptr2 - b; 

      =30 + 6 – 6 

   x=30 

   y=b - *ptr1/ *ptr2 +a; 

    =6 - 30/6 + 30 

    =6 – 5 + 30 

             y=31 

 

 

POINTER ASSIGNMENT 

 

 We can use a pointer on the right-hand side of an assignment statement to assign its 

value to another pointer. For example, 

 



#include< stdio.h > 

void main() 

{ 

int *p1,*p2; 

int x=99; 

 

p1=&x; 

p2=p1;    /*pointer assignment*/ 

printf(“\nValues at p1 and p2: %d %d”,*p1,*p2);   /*print the value of x twice*/ 

printf(“\nAddresses pointed to by p1 and p2: %u %u”,p1,p2); /*print the address of x twice*/ 

} 

 

OUTPUT: 

Values at p1 and p2: 99 99 

Addresses pointed to by p1 and p2: 5000 5000 

 

EXPLANATION OF PROGRAM: 

After the assignment sequence, 

 p1=&x; 

 p2=p1; 

Both p1and p2 point to x. Thus both p1 and p2 refer to the same value. 

 

 

ARRAYS USING POINTER 

 

When an array is declared, compiler allocates sufficient amount of memory to contain all 

the elements of the array. Base address gives location of the first element which is also allocated 

by the compiler. 

Suppose we declare an array arr, 

int arr[5]={ 1, 2, 3, 4, 5 }; 

Assuming that the base address of arr is 1000 and each integer requires two byte, the five 

element will be stored as follows 

 



Here variable arr will give the base address, which is a constant pointer pointing to the 

element, arr[0]. Therefore arr is containing the address of arr[0] i.e 1000. 

arr is equal to &arr[0]   // by default 

We can declare a pointer of type int to point to the array arr. 

int *p; 

p = arr;   

or p = &arr[0];  //both the statements are equivalent. 

Now we can access every element of array arr using p++ to move from one element to another. 

NOTE : You cannot decrement a pointer once incremented. p-- won't work. 

 

POINTER TO ARRAY 

As studied above, we can use a pointer to point to an Array, and then we can use that pointer to 

access the array. Lets have an example, 

int i; 

int a[5] = {1, 2, 3, 4, 5}; 

int *p = a;      // same as int*p = &a[0] 

for (i=0; i<5; i++) 

{ 

 printf("%d", *p); 

 p++; 

} 

In the above program, the pointer *p will print all the values stored in the array one by one. We 

can also use the Base address (a in above case) to act as pointer and print all the values. 



 

 

/*Program to print the addresses of array elements */  

 

#include <stdio.h> 

void main(){ 

   char c[4]; 

   int i; 

   for(i=0;i<4;++i){ 

      printf("Address of c[%d]=%x\n",i,&c[i]); 

   } 

} 

OUTPUT: 

Address of c[0]=28ff44 

Address of c[1]=28ff45 

Address of c[2]=28ff46 

Address of c[3]=28ff47 

 

Notice, that there is equal difference (difference of 1 byte) between any two consecutive 

elements of array. 

 

Consider the following:  

int my_array[] = {1,23,17,4,-5,100}; 



 Here we have an array containing 6 integers. We refer to each of these integers by means of a 

subscript to my_array, i.e. using my_array[0] through my_array[5]. But, we could alternatively 

access them via a pointer as follows:  

int *ptr;  

ptr = &my_array[0];         /* pointer points to the first integer in our array */ 

 And then we could print out our array either using the array notation or by dereferencing our 

pointer. The following code illustrates this: 

#include <stdio.h> 

int main(void) 

 { 

int my_array[] = {1,23,17,4,-5,100}; 

 int *ptr;  

 int i; 

 ptr = &my_array[0] ;  /* point pointing to the first element of the array */ 

 printf("\n\n");  

for (i = 0; i < 6; i++)  

{ 

 printf("my_array[%d] = %d ",i,my_array[i]);           /*<-- A */  

printf("ptr + %d = %d\n",i, *(ptr + i));                      /*<-- B */ 

 } 

 return 0;  

} 

 Compile and run the above program and carefully note lines A and B and that the program prints 

out the same values in either case. Also observe how we dereferenced our pointer in line B, i.e. 

we first added i to it and then dereferenced the new pointer. Change line B to read:  

printf("ptr + %d = %d\n",i, *ptr++);  

and run it again. then change it to:  

printf("ptr + %d = %d\n",i, *(++ptr));   

and try once more.Each time try and predict the outcome and carefully look at the actual 

outcome.  

In C, the standard states that wherever we might use &var_name[0] we can replace that with 

var_name, thus in our code where we wrote:  

ptr = &my_array[0];  

we can write: 

 ptr = my_array;  



to achieve the same result. 

/* Example program to print the array elements using pointer */ 

#include <stdio.h> 

int main(){ 

   int data[5], i; 

   printf("Enter elements: "); 

   for(i=0;i<5;++i) 

     scanf("%d",data[i]); 

   printf("You entered: "); 

   for(i=0;i<5;++i) 

      printf("%d\n",*(data+i)); 

   return 0; 

} 

Output 
Enter elements: 1 

2 

3 

5 

4 

You entered: 1 

2 

3 

5 

4 

 

/* Program to find sum of array elements using pointer */ 

#include<stdio.h> 

#include<conio.h> 

void main()  

{ 

   int numArray[10]; 

   int i, sum = 0; 

   int *ptr; 

  

   printf("\nEnter 10 elements : "); 

  

   for (i = 0; i < 10; i++) 

      scanf("%d", &numArray[i]); 

  

   ptr = numArray;             

  

   for (i = 0; i < 10; i++) { 



      sum = sum + *ptr; 

      ptr++; 

   } 

 printf("The sum of array elements : 

%d", sum); 

} 

OUTPUT 

 

Enter 10 elements : 11 12 13 14 15 16 17 18 19 20 

The sum of array elements is 155 

 

EXPLANATION OF PROGRAM: 

Accept the 10 elements from the user in the array. 

1 

2 

for (i = 0; i < 10; i++) 

 scanf("%d", &numArray[i]); 

We are storing the address of the array into the pointer. 

1 ptr = numArray;            /* a=&a[0] */ 

Now in the for loop we are fetching the value from the location pointer by pointer variable. 

Using De-referencing pointer we are able to get the value at address. 

1 

2 

3 

4 

for (i = 0; i < 10; i++) { 

   sum = sum + *ptr; 

   ptr++; 

} 

Suppose we have 2000 as starting address of the array. Then in the first loop we are fetching the 

value at 2000. i.e 

1 

2 

3 

sum = sum + (value at 2000) 

    = 0   + 11 

    = 11 

In the Second iteration we will have following calculation – 

1 

2 

3 

sum = sum + (value at 2002) 

    = 11  + 12 

    = 23 

Pointer example-1 

#include <stdio.h> 

#include <math.h> 

main() 

{ 

            int num [ ] = { 10,20,30,40,50 } 

            print ( &num, 5, num); 

} 

print ( int *j, int n, int b[5]) 

{ 

            int i; 

            for(i=0;i<=4;i++) 



            { 

                        printf (  "  %u  %d  %d  %u  \n  ", &j[i]  ,  *j , *(b+i)  ,  &b); 

                        j++; 

            } 

} 

  

In this example we have a single dimensional array num and a function print . We are passing,  

the address to the first element of the array, the number of elements and the array itself, to this 

function.  When the function receives this arguments, it maps the first one to another 

pointer j and the array num  is copied into another array b .  (The type declarations are made here 

itself. Note that these declarations can also be given just below this line). j is now a pointer to the 

array b. 

 Inside the function we are printing out the address of the array element and the value of the 

array element in two ways. One using the pointer j and the other using the array b. If we compile 

and run this code we get the following out put, 

3221223408 10 10 3221223376 

3221223416 20 20 3221223376 

3221223424 30 30 3221223376 

3221223432 40 40 3221223376 

3221223440 50 50 3221223376 

   

Note that as we increment j it points to the successive elements of the array. We can get both the 

address of the array elements and the value stored there using this. However the array name, 

which acts also as the pointer to its base address, is not able to give us the address of its 

elements. Or in other words, the array name is a constant pointer. Also note that while j  ispoints 

to the elements of the array num, b is pointing to its copy. 

  

Next we have an example that uses a two dimensional array. Here care should be taken to 

declare the number of columns correctly. 

  

Pointer example-2 

  

#include <stdio.h> 

#include <math.h> 

main() 

{ 

            int arr [ ][3] = {{11,12,13}, {21,22,23},{31,32,33},{41,42,43},{51,52,53}}; 



            int I , j ; 

int  *p ,  (*q) [3], *r ; 

p = (int *) arr ; 

q = arr; 

r = (int *) q ; 

printf (  "  %u  %u  %d  %d  %d  %d \n  ", p ,  q  ,  *p , *(r)  ,  *(r+1),  *(r+2)); 

p++ ; 

q++ ; 

r = (int *) q ; 

printf (  "  %u  %u  %d  %d  %d  %d \n  ", p ,  q  ,  *p , *(r)  ,  *(r+1),  *(r+2)); 

  

  

} 

  

Here we have a pointer p and a pointer array q. The first assignment statement is to 

make the pointer p points to the array arr.  While assigning, we also declare the type of the 

variable arr.  Note that variables on both side of this statement should have the same type.  Next 

line is a similar statement, now with q and arr. Since q is a pointer array, the array can be directly 

assigned to it and there is no need for specifying the type of the variable.  In the next line we 

make the pointer r to point to the pointer array q . Then we will print out the different values. 

Here is what we get from this,  

3221223344  3221223344  11 11 12 13 

3221223348  3221223356  12 21 22 23 

Here we see that incrementing  p  make it just jump through each element of the array, 

where as  incrementing q,  will move it from one row to another row. 

 

ARRAY OF POINTERS 

Just like array of integers or characters, there can be array of pointers too. An array of pointers 

can be declared as : 

<datatype> *<pointername> [number-of-elements]; 

 

For example : 

 char *ptr[3]; 

The above line declares an array of three character pointers. Let’s take a working example : 



#include<stdio.h>  

int main(void) 

{ 

    char *p1 = "Himanshu"; 

    char *p2 = "Arora"; 

    char *p3 = "India";  

 

    char *arr[3];  

 

    arr[0] = p1; 

    arr[1] = p2; 

    arr[2] = p3;  

 

   printf("\n p1 = [%s] \n",p1); 

   printf("\n p2 = [%s] \n",p2); 

   printf("\n p3 = [%s] \n",p3);  

 

   printf("\n arr[0] = [%s] \n",arr[0]); 

   printf("\n arr[1] = [%s] \n",arr[1]); 

   printf("\n arr[2] = [%s] \n",arr[2]);  

 

   return 0; 

} 

In the above code, we took three pointers pointing to three strings. Then we declared an array 

that can contain three pointers. We assigned the pointers ‘p1′, ‘p2′ and ‘p3′ to the 0,1 and 2 index 

of array.  

 

Let’s see the output : 

 

 p1 = [Himanshu]  

 p2 = [Arora]  

 p3 = [India]  

 arr[0] = [Himanshu]  

 arr[1] = [Arora]  

 arr[2] = [India] 

So we see that array now holds the address of strings. 

 

Let us consider the following example, which makes use of an array of 3 integers: 

 

int main () 

{ 



   int  var[] = {10, 100, 200}; 

   int i; 

  

   for (i = 0; i < 3; i++) 

   { 

      printf("Value of var[%d] = %d\n", i, var[i] ); 

   } 

   return 0; 

} 

 

OUTPUT: 

Value of var[0] = 10 

Value of var[1] = 100 

Value of var[2] = 200 

 

There may be a situation when we want to maintain an array, which can store pointers to an int 

or char or any other data type available. Following is the declaration of an array of  pointers to an 

integer: 

  int *ptr[3]; 

This declares ptr as an array of 3 integer pointers. Thus, each element in ptr, now holds a pointer 

to an int value.  

 

Following example makes use of three integers, which will be stored in an array of pointers as 

follows: 

 

#include <stdio.h> 

 int main () 

{ 

   int  var[] = {10, 100, 200}; 

   int i, *ptr[3]; 

  

      ptr[0] = &var[0];  /* assign the address of 1st integer element */ 

      ptr[1] = &var[1];  /* assign the address of 2nd integer element */ 

      ptr[2] = &var[2];  /* assign the address of 3rd integer element */ 

 

   for ( i = 0; i < 3; i++) 

   { 

      printf("Value of var[%d] = %d\n", i, *ptr[i] ); 

   } 

   return 0; 

} 

 

OUTPUT: 

 Value of var[0] = 10 

Value of var[1] = 100 



Value of var[2] = 200 

Questions to practice: 

 

1. Write a program to find largest element of an array using pointer. 

2. Write a program to calculate average of array elements using pointer. 

3. Write a program to sort elements of an array using pointer. 

4. Write a program to print the value and address of each element of an array using pointer. 

5.  What is the output of the following program? 

#include<stdio.h> 

   int main() 

   { 

   int i; 

   char *arr[4] = {"C","C++","Java","VBA"}; 

   char *(*ptr)[4] = &arr; 

   for(i=0;i<4;i++) 

      printf("Address of String %d : %u\n",i+1,(*ptr)[i]); 

   return 0;} 

6.  What is the output of the following program? 

#include<stdio.h> 

int main() 

{ 

int i; 

 char *arr[4] = {"C","C++","Java","VBA"}; 

char *(*ptr)[4] = &arr; 

printf("%s",++(*ptr)[2]); 

return 0; 

 } 

7.  Consider the following code and find the output. 

 

main() 

{ 

int x[] = {1,2,3,4,5}; 

int *ptr,i ; 



ptr = x 

for(i=0;i<5;i++) 

    { 

    printf("nAddress : %u",&x[i]); 

    printf("nElement : %d",x[i]); 

    printf("nElement : %u",*(x+i)); 

    printf("nElement : %d",i[x]); 

    printf("nElement : %d",*ptr); 

    }   

}  

8.  How much Memory required to store Pointer variable? 

9. What is the output of the following program? 

#include<stdio.h> 

int main() 

{ 

int a = 10, *ptr; 

char a = 'a', *cptr; 

float a = 3.14, *fptr; 

ptr = &a; 

cptr = &a; 

fptr = &a; 

printf("\nSize of Integer Pointer : %d",sizeof(ptr)); 

printf("\nSize of Character Pointer : %d",sizeof(cptr)); 

printf("\nSize of Character Pointer : %d",sizeof(fptr)); 

return(0); 

} 

10. Are *ptr++ and ++*ptr are same ? Justify your answer. 

11.   Give the output of following programs. 

 (i) Incrementing Integer Pointer 

#include<stdio.h> 

int main(){ 

int *ptr=(int *)1000; 

ptr=ptr+1; 

printf("New Value of ptr : %u",ptr); 



return 0;} 

 

(ii) Program to Compute Difference between Pointers: 

#include<stdio.h> 

int main() 

{ 

int num , *ptr1 ,*ptr2 ; 

ptr1 = &num ; 

ptr2 = ptr1 + 2 ; 

printf("%d",ptr2 - ptr1); 

return(0); 

} 

 

(iii) Comparison between two Pointers: 

#include<stdio.h> 

int main() 

{ 

int *ptr1,*ptr2; 

ptr1 = (int *)1000; 

ptr2 = (int *)2000; 

if(ptr2 > ptr1) 

   printf("Ptr2 is far from ptr1"); 

return(0); 

} 

 

Pointer and Function 

Function Pointer 

#include <stdio.h> 

 void subtractAndPrint(int x, int y); 

 void subtractAndPrint(int x, int y) { 

  int z = x - y; 

  printf("Simon says, the answer is: %d\n", z); 

} 

 int main() 

 { 

  void (*sapPtr)(int, int) = subtractAndPrint; 

  (*sapPtr)(10, 2); 



  sapPtr(10, 2); 

} 

The pointer can be used as an argument in functions. The arguments or parameters to the 

function are passed in two ways. 

 Call by value 

 Call by reference 

 In ‘C Language there are two ways that the parameter can be passed to a function they 

are 

o Call by value 

o Call by reference 

Call by Value: 

 This method copies the value of actual parameter into the formal parameter of the 

function. 

 The changes of the formal parameters cannot affect the actual parameters, because formal 

arguments are photocopy of the actual argument. 

 The changes made in formal argument are local to the block of the called functions. Once 

control return back to the calling function the changes made disappear. 

 

Example: 

 #include<stdio.h> 

 #include<conio.h> 

 void cube(int); 

 int cube1(int); 

void main() 

 { 

  int a; 

  clrscr(); 

  printf(“Enter one values”); 

  scanf(“%d”,&a); 

  printf(“Value of cube function is=%d”, cube(a)); 

  printf(“Value of cube1 function is =%d”, cube1(a )); 

  getch(); 

 } 

 void cube(int x) 

 { 

  x=x*x*x*; 

  return x; 

 } 

 

 int cube1(int x) 

 { 

  x=x*x*x*; 

  return x; 

 } 

 

Call by reference 

Output: 
 

Enter one values  3     
Value of cube function is  3 
Value of cube1 function is 729 



 Call by reference is another way of passing parameter to the function. 

 Here the address of argument are copied into the parameter inside the function, the 

address is used to access arguments used in the call. 

 Hence changes made in the arguments are permanent. 

 Here pointer are passed to function, just like any other arguments. 

Example:- 

#include<stdio.h> 

 #include<conio.h> 

 void swap(int,int); 

 void main() 

 { 

  int a=5,b=10; 

  clrscr(); 

  printf(“Before swapping a=%d b=%d”,a,b); 

  swap(&a,&b); 

  printf(“After swapping a=%d b=%d”,a,b); 

  getch(); 

 } 

 void swap(int *x,int *y) 

 { 

  int *t; 

  t=*x; 

  *x=*y; 

  *y=t; 

} 

 

 

 

 

 

Function Returning Pointer 

 

A function can return a single value by its name or return multiple values through pointer 

parameters. Since pointers are a data type in c, we can also force a function to return a pointer to 

the calling function.  

Program: 

  int *larger(int*,int*); 

  void main() 

  { 

   int a=10; 

   int  b=20; 

   int *p; 

   p =larger(&a,&b); 

   printf(“%d”,*p); 

  } 

  int *larger(int *x, int *y) 

Output: 
Before swapping a=5  b=10 
After swapping a=10  b=5 

Output: 
 
20 



  { 

   if(*x>*y) 

    return(x); 

   else 

    return (y); 

  } 

 

 

 

 

 

 

 

STRUCTURE USING POINTER 

 

 

struct name  

{ 

    member1; 

    member2; 

    . 

    . 

}; 

-------- Inside function ------- 

struct name *ptr; 

Here, the pointer variable of type struct name is created. 

 

Structure's member through pointer can be used in two ways:  

1. Referencing pointer to another address to access memory 

2. Using dynamic memory allocation 

Consider an example to access structure's member through pointer.  

#include <stdio.h> 

struct name{ 



   int a; 

   float b; 

}; 

int main() 

{ 

    struct name *ptr,p; 

    ptr=&p;            /* Referencing pointer to memory address of p */ 

    printf("Enter integer: "); 

    scanf("%d",&(*ptr).a); 

    printf("Enter number: "); 

    scanf("%f",&(*ptr).b); 

    printf("Displaying: "); 

    printf("%d%f",(*ptr).a,(*ptr).b); 

    return 0; 

} 

In this example, the pointer variable of type struct name is referenced to the address 

of p. Then, only the structure member through pointer can can accessed.  

Structure pointer member can also be accessed using -> operator. 

(*ptr).a is same as ptr->a 

(*ptr).b is same as ptr->b 

 

ACCESSING STRUCTURE MEMBERS WITH POINTER 

To access members of structure with structure variable, we used the dot .  operator. But when we 

have a pointer of structure type, we use arrow ->  to access structure members. 

struct Book 

{ 



 char name[10]; 

 int price; 

} 

 

int main() 

{ 

 struct Book b; 

 struct Book* ptr = &b;    

 ptr->name = "Dan Brown";      //Accessing Structure Members 

 ptr->price = 500; 

} 

Example program for C structure using pointer: 

           In this program, “record1″ is normal structure variable and “ptr” is pointer structure variable. 

As you know, Dot(.) operator is used to access the data using normal structure variable and arrow(-
>) is used to access data using pointer variable. 

#include <stdio.h> 

#include <string.h> 

 

struct student  

{ 

     int id; 

     char name[30]; 

     float percentage; 

}; 

 

int main()  

{ 

     int i; 

     struct student record1 = {1, "Raju", 90.5}; 

     struct student *ptr; 

 

     ptr = &record1;      

 

         printf("Records of STUDENT1: \n"); 

         printf("  Id is: %d \n", ptr->id); 

         printf("  Name is: %s \n", ptr->name); 

         printf("  Percentage is: %f \n\n", ptr->percentage); 

 

     return 0; 



} 

Output: 

Records of STUDENT1: 
Id is: 1 
Name is: Raju 
Percentage is: 90.500000 

 

 

 


