SUBJECT:ENGINEERING MATHEMATICS-I
SUBJECT CODE :SMT1101
UNIT =1l FUNCTIONS OF SEVERAL VARIABLES

Jacobians

Changing variable is something we come across very often in Integration. There are many
reasons for changing variables but the main reason for changing variables is to convert the
integrand into something simpler and also to transform the region into another region which is
easy to work with. When we convert into a new set of variables it is not always easy to find the
limits. So, before we move into changing variables with multiple integrals we first need to see
how the region may change with a change of variables. In order to change variables in an
integration we will need the Jacobian of the transformation.
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Properties of the Jacobian

1. Chain Rule for Jacobians: If u and v are functions of independent variables r and s and
each of r and s are functions of the variables x and y, then u and v are functions of x and

o(u,v) o(u,v) o(r,s)

o(x,y) a(r,s) a(xy)

2. Ifuand v are functions of x and y, then x and y can be solved in terms of u and v. Then
o(u,v) .a(x, y) iy
o(x,y) o(u,v)

3. Ifu, vand w are functions of x, y and z and if u, v, w are functionally related or

o(u,v,w)
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y. Further the jacobians satisfy the chain rule
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Problems

1. fu=xyz,v=x>+y*+z° , w=x+y+zfind J(x,y, 2)

_ a(x, Y, 2) 1
Solution J (x, Y, z) = B
olution J (x, y, 2) o(u,v,w)  au,v,w)
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2. Ifu=x+y+z uv=y+z u®w=z show that
o(x,y,2)

Solution: uy=u,=u,=1
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ifu=""Yandv=tan? x+tan" y, show that o(u,v) =0
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Solution: Let x =tan® and y = tang,
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4. Show that u = x* — y°z%, v = x* + y?z% + xyz and w = x —yz are functionally dependent and
also find the relation.

Solution: If u, v, w are functionally dependent then ouv,w) _
a(x,y,2)
3x?  =3y’z®  -3y’z?
o(u,v,w) ; ,
————==2X+YyZ 2yz2°+XZ 2Y°Z+Xy
a(x,y,2)
1 -7 — y

3x?  -3y’z® -3y’z®
=Vyz|2X+Yyz 2yz +X 2yz+X| taking zcommonfromc, andyfromc,
1 -1 -1
=0 (Twocolumnsareidentical )
Since x® —y°z® = (x —yz)(x* + xyz + y°z?)
u =V w is the relation between the three variables.

5. If u=e*cosy, v =e€’siny, where x = Ir + sm, y = mr — s, verify if
o(u,v) _ a(u,v) a(x,y)
o(r,s)  a(x,y) o(r,s)

6. O(u,v) |e*cosy —e’siny

o(x,y) |e*siny e”*cosy
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8(X’y)z I m =_|2_m2
o(r,s) m -l
u = e"™"cos(mr-sl), v = e""sin(mr-sl)

Ir+sm

u, = le™"cos(mr-sl) - m €"*"sin(mr-sl)
us = me"™"cos(mr-sl) + | €"*"sin(mr-sl)
v, = le™"sin(mr-sl) + m e"™"cos(mr-sl)
Vs = me"™Msin(mr-sl) - | "*Mcos(mr-sl)
a(U,V) — Ur uS :_eZX(|2+m2): a(U,V) 6()(’ y)
o(r,s) v, Vv, o(x,y) o(r,s)




Useful Links for this topic

1. http://mathwiki.ucdavis.edu/Calculus/Vector Calculus/Multiple Integrals/Jacobians
http://www-astro.physics.ox.ac.uk/~sr/lectures/multiples/Lecture5reallynew.pdf

N

3. http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcal

c/jacpol/jacpol.html

4. http://www.google.co.in/url?sa=t&rct=j&g=&esrc=s&source=web&cd=2&ved=0CCMOFjA

B&url=http%3A%2F%2Fwww.tcc.edu%2FVML%2FMth163%2Fdocuments%2FJacobian

S.pptx&ei=1DKSVZibG867uAS t4CABg&usqg=AFQ{CNHODmMFpTK-
pU16sC61WTkwouEVUFA&bvm=bv.96783405.,d.c2E
5. http://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-3/printversion.pdf

Taylor's Series

Statement : Let f(x,) be a function of two variables x, ¥ which possess continuous partial
derivatives at all points (x, ¥). Then

17 @ a 1/ @ a3\
flx+hyv+k) = flx,y) + T (hﬂJrka_y)“ﬂ(h_erk_r) f+ =|h
Y (AR
41\ dx ay
Another form of Taylor series :
1
fle,y) = fla,b) + ﬂ[ (x— a)fi(a, b) + (v — b)fy(a b))
1
+ 5 [ — @2 ferl@b) + 20— Ay = D) foy (@, 0) + (7 = 1), (a, b)]

+ % [ (x — @) 3 fral@ B) +3(x — @)2(y — B)firry (@, ) + 3(x — )y — B) 2f;.,.,(a, b)

+ (v - B3, (0, b))+ -

Maclaurin's series :

The Taylor series expansion of f{x,¥) about the point (0, 0) is called Maclaurin's series.
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http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/jacpol/jacpol.html
http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/jacpol/jacpol.html
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flx,y) = £(0,0) +% [x£.(0,0) + y£,(0,00] + i [ 2£.00,0) + 2xy£,(0,0) + y2£,(0,0)] +
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Problems
1. Find the Taylor series expansion of cos(x — y)upto second degree terms.
Solution:

Taylor series expansion of f(x,v) upto second degree term is given by

flx,y) = £(0,0) +% [x£.(0,0) +v£,(0,0] + % [ x2£,.(0,0) + 2xy £, (0,0) + y2£,,.(0,0)]
Let f(x,¥) = cos (x — ) £(0,0) = cos0 =1

felx,3) = —sin (x — y) £(0,00=—sin0=0

£(x,y) = sin (x —y) £,(0,0) =sin0 =0

fex(x,3) = —cos(x — ) for(0,0) = —cos0 = —1

fey(x,3) = cos{x —y) £y (0,0) = cos0 =1

fuy(x,¥) = —cos (x —y) fyy(0,0) = —cos0 =—1

Taylor series expansion of f(x,v) = cos{(x —y)upto second degree terms
1 1 . .
cos{x—y) =1+ o [x( 0)+y(0)] + 5 [x2(—1) + 2xy(1) + v3(-1)]
e, coslx—y)=1-— ﬂi [x2 — 2xy + ¥?]

2. Expand e**¥ in powers of ( x — 1) and (v + 1) upto and including second degree term.

Solution:

Taylor series expansion of f(x,¥) about the point (&, b) i.e., in powers of (x —a) and (y — b)
upto second degree term is given by



fle,y) = flab) + - [ (x — a)fela, b) + (v — b)fy(a, B)] + % [(x — a) *fer(a,b)
+ 2(x—a}(}- —b)feyla, b) + (y — b)*f,,(a,b)]

Let flx,v) = e*¥*¥ f(1,-1)=el =g =1
felx,y) = ¥4 fll,-1D=el"t=¢=1
folx, y) = e**y frll,-1)=el"1=g=1
fex(2,y) = €*7¥ ferl,—1) =el™1= gl =1
fey(,y) = &¥7¥ fiyl, -1 =ell=¢e"=1
foy(x,y) = ety (L, -1 =el"1=¢"=1

Taylor series expansion of f(x,¥) = e**¥ in powers of (x — 1) and (¥ + 1) upto second degree
term is given by

fy) = FL-D+ [(x—i};;(i —1) + (v + D1, 1}]+ =[x —D?f,(1,-1)
+2(x 1}(}+1},1;}(1 -1+ v+ 1)3f,(1, 1}]
i.e.,
e = 1+ 2 [G-DW+ @+ DD+ 7 [ - DX+ 26— DO+ DD + (v - D]
e, e = 14+~ [(x D+ +1]]+— [x—D*+ 2x - D+ 1D+ (y—1)7]

3. Expand tan‘lii as a Taylor series in the neighbourhood of (1, 1) upto second degree term

Solution:
Taylor series expansion of f(x,y) in the neighbourhood of (a,b) upto second degree term is

given by

flx,y) = fla b) + %[ (x — a)fela, b) + (v — b)fy(a, B)] + % [(x — a) *fer(a,b)
+ 2(x —a)(y — b)fey,(a, b) + (y— b)2f,,(a,b)]

Let flx,v) = tan‘ii fl1, 1) = tﬂ,n_li :E
1 , , 1
felx,y) = @(—ﬁ)=—xzi}_z }'}(1,1}=—E

fyxy) = 1+|‘_‘,| (5: iy f}'(i’ﬂ:%
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If_x ir }'?‘J': M=y 2x) 2y i
fex(xy) = — FyDE | ()R fer(1,1) = 3
N _ @)y st _
Jﬁv}'(xi }} = [xl+yT)l T (xT#yT)T };}'(1’ D=0
5 _ [+ )0 —=x(2y) _ 2xy 1
fiy(63) = (x2+y2)2 T (xR }3'}'(1’ D= T2

Taylor series expansion of f{x,y) = tan‘lii in the neighbourhood of (1, 1) upto second degree

term is given by

fy) = FAD+ [(x—i};;(i D+ -1 1}]+ =[x —12f, (110
+ E(x Dy — Df, (1, 1)+ (y—1)7 }3}-(11 1}]

o 2 = 24260 (- ) 0-D (] F6-02(2)+

26— Dy = DO + - 1)2(= )]

i.e, tan~1% =
£

[(x—D—-(-1Dl+ = [(x—i}f— (y—1)7

[

T
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4. Using Taylor series show that log{1 + x +y) =

Solution:

Taylor series expansion of f(x,y) upto third degree term is given by
fy) = £(0,0) + 4 [x;;(ﬂ 0 +y50,0] + 5 [x%;xma} + 2xy£y (0,0) + ¥2£,,(0,0]
1
+ 37 [¥fee(0,0) + 3472 }fm(ﬂ 0) + 3xy? fry,,(0,0) + ¥ £;,,,(0,0)]

Let f(x,3) =log(1+x+y) f(0, 0)=logl=0

felxy) = o £0,00=1
Foy) = o £,(0,0) =1
feeG03) = = s £.00,0) = —
fay(ty) = — — £y (0,0) = —

(1+x+y)?



1

&Y == £y (0,0) = —1
fear®Y) = i fuxx(0,0) = 2
fes @) = s fuxy(0,0) = 2
fs06¥) = i feyy(0,0) = 2
frorC0¥) = i fyy (0,00 = 2

Taylor series expansion of f(x,v) =log( 1+ x + ¥) upto third degree term is given by

0g(1 +x+) = 0+ = [x(®) +3]+ 5 (2D + 20y(-D + 2D+ 3 [x°)
+ 3x%y(2) + 3xy(2) + ¥*(2)]

e, logll+x+y) =(x+y) — qi [x% 4+ 2xv + v2]+ § [x3+ 3x%y+ 3xy?® + %]

(rty) _ (xty)® | (at)®

ie,logll+x+v) = T - ;

5. Expand cosx cosy in powers of x, ¥ upto fourth degree terms.

Solution:

Taylor series expansion of f(x,y) upto third degree term is given by

F) = 70,0+ [2£0.0+ 75 0,0]+ 3 [¥2£.0,00 + 227, 0,0) + ¥2£,(0,0)]
1
31

iy [ 2% frrae (0,0) + 43yf;. ... (0,0) + 6x2y2f,,...(0,0) + 4xy?f,....(0,0)

+ ¥* iy (0, ﬂ}]

+ = [ fi(0,0) + 3x29f1r, (0,00 + 3xy2 £y, (0,0) + 33f,,,,,,(0,0]]

[l V]

Let f(x,¥) = cosx cosy f(0,0 =1

felx,y) = —sinx cosy £.(0,00=0
fiolx,¥) = —cosxsiny £,(0,0) =0
fex(%,7) = — cosxcosy for(0,0) = —1

fey(x,¥) = sinxsiny fey(0,0) =0



fyy(x,3) = —cosx cosy fiy(0,0) = -1

fexx(%,¥) = sinx cosy Foe(0,0) = 0
fexy(%,¥) = cosxsiny fuxy(0,0) = 0
E;,—;,—(x; y) = sinx cosy }g}_}_(gj 0)= 0
fryy(2,9) = cosxsiny fyy (0,0) = 0
fewsxX,¥) = cosxcCOSY Foune(0,0) = 1

fexay(x,y) = —sin xsiny fexay(0,0) = 0
fexyyX,¥) = cosxcosy feyy(0,0) = 1
Feyyy(x,y) = —sinx siny fayyy(0,0) = 0
foyyy(%,¥) = cosxcosy Foyyy(0,0) = 1
Taylor series expansion of f(x,y) = cosx cosy in powers of x, ¥ upto fourth degree terms
cosxcosy= 1 +% [ x(0) + y(0)] + % [ x2(—1) + 2xy(0) + ¥3(-1)]
+ = [x%(0) + 3x2(0) + 3xy2(0) + 12(0)]

3
+ 5 [x*(1) + 4x39v(0) + 62292 (1) + 4xv3(0) + v*(1)]

i.e., cosxcos y= 1—% (x2+9y5)+ %} (x* +6x?y? +y*)

Maxima and Minima of functions of two variables

The problem of determining the maximum or minimum of a function is encountered in
geometry, mechanics, physics, and other fields, and was one of the motivating factors in
the development of the calculus in the seventeenth century.

A function of two variables can be written in the form z = f(x, y). A critical point is a point

: L z 0z ,
(a, b) such that the two partial derivatives Z—and 5are zero at the point (a, b). A
X

relative maximum or a relative minimum occurs at a critical point.

A critical point is a maximum if the value of f at that point is greater than its value at all its
sufficiently close neighboring points.



A critical point is a minimum if the value of f at that point is less than its value at all its
sufficiently close neighboring points.

A critical point is a saddle point if the value of f at that point is greater than its value at
some neighboring point and if the value of f at that point is less than its value at some
other neighboring point. Saddle point is a point which is neither a maximum nor a
minimum.

Working rule for identifying critical points of the function z = f(x,y) and to classify
them

Step 1: Find the partial derivatives gand Q Solving Q:Oand g:Ogives the
OX oy OX oy

critical points (a,b) at which a maxima or minima may exist.

. 0°1 0°1 0%z . .
Step 2: Find the value of r=—:,s= and t=— at all the points (a,b) got in
OX OXoy oy
step 1.
Step 3:
i.If r <0 and rt —s®> 0 the f(x,y) has a maximum point at (a,b) and the
corresponding maximum value is f(a,b).
i.f r >0 and rt — s®* > 0 the f(x,y) has a minimum point at (a,b) and the
corresponding minimum value is f(a,b).
iii. If rt — s* < 0 the f(x,y) has neither a maximum nor a minimum point at (a,b)
and the point is called a saddle point.
iv. If rt — s? = 0 the further investigation is required to classify the point
Problems

1. Find the maxima and minima of the function, if any, for the function
f(x,y) = y? + 4xy +3x% +x°

Solution: f, = 4y + 6x + 3x%, f, = 2y + 4x. Equate f, and f,to zero

4y +6x+3x°=0 ...... (1)

2y +4x=0 ... (2)

Solving equations (1) and (2) we get the critical points (0,0) and (2/3,-4/3)
r=fw«=6 + 6X, t="f,=2, s=fy=4



Critical Point r r— s? Classification

(0,0) 6 -4 Saddle point

(2/3,-4/3) 10 4 Minimum point

The point (2/3, -4/3) is a minimum point of the function and the minimum value
F(2/3,-413) = -4/27

Find the maxima and minima of the function f(x,y) = xy (a — X - y)

Solution: f, = ay — 2xy —y?, f, = ax — x* — 2xy. Equate f, and f,to zero
y@a-2x-y)=0...... (1)

x(@a—-x-2y)=0...... (2)

Solving equations (1) and (2) we get the critical points (0,0), (a,0), (0,a) and

(a/3, a/3).

r=fx=-2y, t="f,=-2x, s=fy=a-2x-2y

Critical Point r r—s° Classification
(0,0) 0 -a’ Saddle point
(a,0) 0 -a’ Saddle point
(0,a) -2a -a’ Saddle point

(a/3, a/3) -2a/3 a’l3 Maximum or
minimum point

(a/3, a/3) is the only point which could be either be a maximum or a minimum.

r depends on the value of ‘a’.

r=-2a/3 <0if ‘a’ is positive

r=-2al/3 > 0 if ‘a’ is negative

Hence f(x,y) has a maximum at (a/3, a/3) if ‘a’ is positive and has a minimum at
(a/3, a/3) if ‘a’ is negative.

3

The value is f(a/3, a/3) = 2—7

Examine the function f(x,y) = x® + 3xy® -15x* +72x -15y” for extreme values

Solution: f, = 3x* +3y* -30x +72, f, = 6xy — 30y. Equate f, and f,to zero




3x% +3y*-30x +72=0 ...... (1)

6xy—-30y=0 ... (2)

Solving equations (1) and (2) we get the critical points (5,1), (5,-1), (4,0) and
(6,0).

r = fu = 6x-30, t = f,, = 6x-30, s =f,y= 6y

Critical Point r r—s* Classification
(5,1) 0 -36 Saddle point
(5,-1) 0 -36 Saddle point
(4,0) -6 36 Maximum point
(6, 0) 6 36 Minimum point

(4, 0) is a maximum point and the maximum value is f(4,0) = 112
(6, 0) is a minimum point and the minimum value is f(6,0) = 108

Find the extreme values of the function u = x*y? —5x? —8xy — 5y
Solution: u, = 2xy” -10x - 8y, u, = 2x’y — 8x -10y. Equate f, and f,to zero
2xy? -10x -8y =0 ...... (1)

2x°y —8x-10y =0 ...... (2)

Since (0,0) satisfies both (1) and (2), (0, 0) is a critical point. To get the other
points rewrite equation (1)

From (1) we get x = 8—y ....... (3).
y
Substitute this in (2)

2
-3 |y g - | 10y-0...@
2y -10 2y =10

Solving (4) we gety = 3, -3, 1, -1 Substitute these values in (3) we get the critical
points (0, 0), (1,-1), (-1,1), (3,3), (-3,-3).

r=fu=2y>-10, t=f,=2x*-10, s=fy=4xy-8




Critical Point r rn—s’ Classification
(0,0 -10 36 Maximum point
(1,-1) -8 -80 Saddle point
(-1,1) -8 -80 Saddle point
(3,3) 8 -720 Saddle point
(-3, -3) 8 -720 Saddle point

(0,0) is a maximum point and the maximum value is f(0,0) = 0.

Show that x = a/2, y = a/3 makes the function u = ax® y* — x* y* — x%y® a
maximum.

Solution:
u, =3ax’y? —4x3y? —3x%y*........ (@)
u, =2ax’y —2x*y =3x’y’...........| (2)

Put x = a/2 and y =a/3 in both equations (1) and (2)
Since both u, and uy are zero at ( a/2,a/3), it is a critical point.

u,, =6axy’ —12x’y* —6xy°
3 4 3
u, =2ax’ —2x" -6x7y

u, =6ax’y—8x’y-9x’y’

4

a

r at (a/2, a/3) = —— which is negative for any value of ‘a’.
a‘4

t at (3/2, a/3) = —?

sat (a/2, a/3) = —i—z

8
a
rt—s®at (a/2, a/3) = mwhich is positive for any value of ‘a’.

Since r is negative and rt — s? is positive the point (a/2, a/3) is a maximum point




Useful Links for this topic

http://personal.maths.surrey.ac.uk/st/S.Zelik/teach/calculus/max_min_2var.pdf
http://www.maths.manchester.ac.uk/~mheil/Lectures/2M1/Material/Chapter2.pdf
http://tutorial.math.lamar.edu/Classes/Calclll/RelativeExtrema.aspx
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/f10/lectures/11.4.
Maximizing.pdf

5. http://www.maths.manchester.ac.uk/~ngray/MATH19662/Section%204%20-
%20Functions%200f%20Two%20Variables.pdf
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Constrained Maxima and Minima

Sometimes we may require to find the extreme values of a function of three ( or
more ) variables say f{x,v,z) which are not independent, but are connected by a

relation say g{x,, z) = 0. The extreme values of a function in such a situation is called

constrained extreme values.
In such situations, we use g{x,¥, z) = 0 to eliminate one of the variables, say z

from the given function, thus converting the function of three variables as a function of
only two variables. Then we find the unconstrained maxima and minima of the converted

function.
When this procedure cannot be used, we use Lagrange's method.

Lagrange's Multiplier Method
Sometimes we may require to find the maximum and minimum values of a
function f(x,v,z) where x, ¥,z subject to the constraint glx,y,z) = 0.
(1)
We define a function F(x,v,z) = f(x,v,z) + Ag(x v z)
where A is the Lagrange's multiplier independent of x, y, z.
The neccessary condition for a maximum or minimum are
aF
E —_—
(2)
0

3
0

4)

Solving the four equations (1), (2), (3) and (4) we get the values of x, y, z, A which give
the extreme values of f{x,v,z)

aF
dy -

3F _

gz

Problems


http://personal.maths.surrey.ac.uk/st/S.Zelik/teach/calculus/max_min_2var.pdf
http://www.maths.manchester.ac.uk/~mheil/Lectures/2M1/Material/Chapter2.pdf
http://tutorial.math.lamar.edu/Classes/CalcIII/RelativeExtrema.aspx
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/f10/lectures/11.4.Maximizing.pdf
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/f10/lectures/11.4.Maximizing.pdf
http://www.maths.manchester.ac.uk/~ngray/MATH19662/Section%204%20-%20Functions%20of%20Two%20Variables.pdf
http://www.maths.manchester.ac.uk/~ngray/MATH19662/Section%204%20-%20Functions%20of%20Two%20Variables.pdf

1. Prove that the stationary values of ax2 + b3y? + ¢3z2 where 2 + 3 + =1 occurat

x ¥ =
atb+tc atb+tc atb+e
= y ¥ = y &=
a b c
Solution:
Let f = a?x?+ b3y2+ ¢3z2
i 01 1
g= x+ ;,-+ - 1
_ — 3.2 3.,2 3.2 t1,1,1
and F =f+ Ag =a¥x*+ b3yi+ 3z 4+ A(-+ -+ -—-1)
x ¥ =
aF . . i a
— =0 implies 2a®x— — =0>a%x¥= =
fx x2 2
8 @) a
F . . a
— 3 — 3,3 —
—_ = f—_ — = = 2 —
5y 0 implies 2b=y - 0= b2y .
(2)
aF . . i A
—=0 implies 2c3x— = =0=¢3z¥= -
o= =2 2
3)
From (1), (2) and (3) we get a?x?® = b3y? = ¢3z3
e, ax= by= cz
. ) b c atb+c et+b+te
lLe., T =T=1 :-_'_'_zT
x y = P
. ] a+b+ec at+b+c
consider — = X =
= 1 2
. b at+b+c at+b+c
consider + = Sy =
3 1 B
. c atb+tc atbtc
consider — =
z ([
. . . . etbte atb+tc atb+tc
Thus f is stationary at this point = Y= = .

2. Find three positive constants such that their sum is a constant and their product is
maximum.

Solution:
Let the three positive constants be x, v,z such that x + v+ z = a.

Let f =xyz

and g=x+vyv+z—a (1)
We have to maximize f = xyz subjecttothe constraintg=x+yv+z—a

Let F=f+ Ag =xyz+ A{x+y+z—a)



=0 implies vz+ A(1)=0=>yz = -4
(2)
Z—j_=ﬂ implies xz+ A(1)=0=>xz= —4
(3)
£=o0 implies xy + A(1) = 0 = xy = —A
(4)

From (2), (3) and (4) we get vz = xz= xy

Consider yz = xz > y = x

Consider xz= xy = z= ¥

Thereforex =y = =z

Substituting in (1), weget x+x+x=a =23x = a >x =

I'.I.'I|n

Therefore = g z = g

Hence the three numbers are g g

I'.|J||::|

3. Split 24 into three parts such that continued product of the first , square of the second
and cube of the third may be minimum.
Solution:
Let the three parts be x, ¥,z such that x + y+ z = 24,
Let f = xy?z*® (1)
We have to minimize f = xy*z? subject to the constraint g =x +y +z — 24
let F=f+ Ag = xy%z% + A({x+v+z—-24)
% =0 implies y*z3 + A(1) =0 =y?z = -4
)
0 implies 2xyz®+ A(1)=0> 2xyz?= —4

3)
0 implies 3xy?z®+ A(1) =0= 3xy%*z* = -4

aF
By -

9F _
d=
4)
From (2), (3) and (4) we get y?z% = 2xyz? = 3xy?z?
Consider y?z%=2xyz?® => y = 2x
Consider y?z? = 3xy%z? = z=3x
Substituting in (1), weget x +2x+3x =24 = 6x = 24 >x = 4

Therefore = 8, z = 12,
Hence the three parts of 24 are 4, 8,12.



4. Find the shortest distance of the point (2, 1, -3) from the plane 2x + y =2z + 4

Solution:
Let the foot of the perpendicular from the point (2, 1, -3) to the plane be 2x +y =2z+ 4

be P(x,v,z).

Shortest distance from (2, 1, -3) to the point P{x,¥,z) on the plane is the perpendicular
distance d= J(x—2)2+ (y—1)2+(z+3)?

Ldf=(x-2)%+ (y—1)%+(z+3)?

We have to find the minimum distance d equivalently d* subject to the constraint
2x+y =22+ 4,

Let f=(x—2)*+ (y—1)*+ (z+3)*?

and g= 2x+y—2z —4 D)
let F=f+ Ag = {(x—-2)°+ (v—1)?+{(z+3)?+ A(2x+y—-2z—4)

?:{] implies 2(x—2)+ 1(2)=0 = x—-2= -4 )
z—*:_=ﬂ implies 2(y —1) + 2(1)=0 = 2(y—1) = -1 3)
aF

=0 implies 2(z+3)+ A(-2) =0 = —(z+3)= -4

=

(4)

From (2), (3) and (4) we get x —2=2(y —1) = —(z + 3)
Consider x —2 = 2(_}-‘—']_} N 2}-‘ >y = ;

r

Consider x—2= —z—-3 =2 x= —=z—-1=2>z=-1—x

Substituting this in (1) we get 2x + =+ 2x+2 =4 = x = ‘—;

13

and z = —?

o | B

4 . L
ﬁ}:ﬁ lLe.,, ¥y =

Shortest distance from (2, 1, -3) to the point P(‘—;J EJ— 1—;) on the plane is given by

[ 4 ﬂ 2 5 13 g _ 7
_J(E—Z} + (E—'l} +(—?+3} _E

5. Find the points on the surface z* = xy + 1 nearest to the origin

Solution:

Let the point on the surface z2 = xy + 1, which is nearest to the origin be P(x,v,z).
Distance from this point P(x,v,z) to the originis d = +/x% +y% + z*

~flayz) = x* +y? +2° 1)
Butzz=xy+1 (2)

Using (2) in (1), we get f{x,v.z) = x?+y?+ xv+ 1

o _ ; 8 — oy
Now E':r_zx-l_} a}_—E} +x



a8 F @
=2 5= Bxﬂ_}'_

_ 8% _ _
r_ﬂxz_z t= dy2

To find the point at which maximum and minimum occurs we equate

E— JF —
=0 = 2x+y=0 (3)

ay
Solving (3) and (4) weget= x=0, y=10

Substituting forx =0, y=0in (2)wegetz?=1 = z= *1

Therefore stationary points are (0,0, 1) and 0, O, -1).

At the stationary point (0, 0, 1) rt — 52 =3 =0 = the function has a minimum at (0, O,

1)
At the stationary point (0, 0, -1) rt — 52 =3 = 0 = the function has a minimum at (0, O,-

1)
Hence the points on the surface nearest to the origin are (0,0, 1) and 0, 0, -1).



