
UNIT-III ARRAYS AND STRINGS

Contents

Single and Multidimensional Arrays: Array Declaration and Initialization of arrays – Arrays as
function arguments. Strings: Initialization and String handling functions. Structure and Union:
Definition and Declaration - Nested Structures, Array of Structures, Structure as function
arguments, Function that return structure – Union.

ARRAYS

Introduction:

So far we have used only single variable name for storing one data item. If we need to store

multiple copies of the same data then it is very difficult for the user. To overcome the difficulty a

new data structure is used called arrays.

 An array is a linear and homogeneous data structure

 An array permits homogeneous data. It means that similar types of elements are stored

contiguously in the memory under one variable name.

 An array can be declared of any standard or custom data type.

Example of an Array:

Suppose we have to store the roll numbers of the 100 students the we have to declare 100

variables named as roll1, roll2, roll3, ……. roll100 which is very difficult job. Concept of C

programming arrays is introduced in C which gives the capability to store the 100 roll numbers

in the contiguous memory which has 100 blocks and which can be accessed by single variable

name.

1. C Programming Arrays is the Collection of Elements

2. C Programming Arrays is collection of the Elements of the same data type.

3. All Elements are stored in the Contiguous memory

4. All elements in the array are accessed using the subscript variable (index).

Pictorial representation of C Programming Arrays

The above array is declared as int a [5];

a[0] = 4; a[1] = 5; a[2] = 33; a[3] = 13; a[4] = 1;

In the above figure 4, 5, 33, 13, 1 are actual data items. 0, 1, 2, 3, 4 are index variables.

Index or Subscript Variable:

1. Individual data items can be accessed by the name of the array and an integer enclosed

in square bracket called subscript variable / index

http://www.c4learn.com/c-programming/c-contiguous-memory/

2. Subscript Variables helps us to identify the item number to be accessed in the contiguous

memory.

What is Contiguous Memory?

1. When Big Block of memory is reserved or allocated then that memory block is called as

Contiguous Memory Block.

2. Alternate meaning of Contiguous Memory is continuous memory.

3. Suppose inside memory we have reserved 1000-1200 memory addresses for special

purposes then we can say that these 200 blocks are going to reserve contiguous memory.

Contiguous Memory Allocation

1. Two registers are used while implementing the contiguous memory scheme. These

registers are base register and limit register.

2. When OS is executing a process inside the main memory then content of each register

are as

Register Content of register

Base register Starting address of the memory location where
process execution is happening

Limit register Total amount of memory in bytes consumed by
process

Here diagram 1 represents the contiguous allocation of memory and diagram 2 represents non-

contiguous allocation of memory.

3. When process try to refer a part of the memory then it will firstly refer the base address

from base register and then it will refer relative address of memory location with respect to

base address.

How to allocate contiguous memory?

1. Using static array declaration.

2. Using alloc () / malloc () function to allocate big chunk of memory dynamically.

Array Terminologies:

Size: Number of elements or capacity to store elements in an array. It is always mentioned in

square brackets [].

Type: Refers to data type. It decides which type of element is stored in the array. It is also

instructing the compiler to reserve memory according to the data type.

Base: The address of the first element is a base address. The array name itself stores address

of the first element.

Index: The array name is used to refer to the array element. For example num[x], num is array

and x is index. The value of x begins from 0.The index value is always an integer value.

Range: Value of index of an array varies from lower bound to upper bound. For example in

num[100] the range of index is 0 to 99.

Word: It indicates the space required for an element. In each memory location, computer can

store a data piece. The space occupation varies from machine to machine. If the size of element

is more than word (one byte) then it occupies two successive memory locations. The variables

of data type int, float, long need more than one byte in memory.

Characteristics of an array:

1. The declaration int a [5] is nothing but creation of five variables of integer types in

memory instead of declaring five variables for five values.

2. All the elements of an array share the same name and they are distinguished from one

another with the help of the element number.

3. The element number in an array plays a major role for calling each element.

4. Any particular element of an array can be modified separately without disturbing the

other elements.

5. Any element of an array a[] can be assigned or equated to another ordinary variable or

array variable of its type.

6. Array elements are stored in contiguous memory locations.

Array Declaration:

Array has to be declared before using it in C Program. Array is nothing but the collection of

elements of similar data types.

Syntax: <data type> array name [size1][size2].....[sizen];

Syntax Parameter Significance

Data type Data Type of Each Element of the array

Array name Valid variable name

http://www.c4learn.com/c-programming/c-array-types/

Size Dimensions of the Array

Array declaration requirements

Requirement Explanation

Data Type
Data Type specifies the type of the array. We can compute the size
required for storing the single cell of array.

Valid Identifier
Valid identifier is any valid variable or name given to the array.
Using this identifier name array can be accessed.

Size of Array It is maximum size that array can have.

What does Array Declaration tell to Compiler?

1. Type of the Array

2. Name of the Array

3. Number of Dimension

4. Number of Elements in Each Dimension

Types of Array

1. Single Dimensional Array / One Dimensional Array

2. Multi Dimensional Array

Single / One Dimensional Array:

1. Single or One Dimensional array is used to represent and store data in a linear form.

2. Array having only one subscript variable is called One-Dimensional array

3. It is also called as Single Dimensional Array or Linear Array

Single Dimensional Array Declaration and initialization:

Syntax for declaration: <data type> <array name> [size];

Examples for declaration: int iarr[3]; char carr[20]; float farr[3];

Syntax for initialization: <data type> <array name> [size] = {val1, val2, …, valn};

Examples for initialization:

int iarr[3] = {2, 3, 4};

char carr[20] = “program”;

float farr[3] = {12.5, 13.5, 14.5};

Different Methods of Initializing 1-D Array

Whenever we declare an array, we initialize that array directly at compile time.

http://www.c4learn.com/c-programming/c-array/

Initializing 1-D Array is called as compiler time initialization if and only if we assign certain set of

values to array element before executing program. i.e. at compilation time.

Here we are learning the different ways of compile time initialization of an array.

Ways of Array Initializing 1-D Array:

1. Size is Specified Directly

2. Size is Specified Indirectly

Method 1: Array Size Specified Directly

In this method, we try to specify the Array Size directly.

int num [5] = {2,8,7,6,0};

In the above example we have specified the size of array as 5 directly in the initialization

statement. Compiler will assign the set of values to particular element of the array.

num[0] = 2; num[1] = 8; num[2] = 7; num[3] = 6; num[4] = 0;

As at the time of compilation all the elements are at specified position So This initialization

scheme is Called as “Compile Time Initialization“.

Graphical Representation:

Method 2: Size Specified Indirectly

In this scheme of compile time Initialization, We do not provide size to an array but instead we

provide set of values to the array.

http://2.bp.blogspot.com/_ynkoLGkpwXY/TFV2iMt48vI/AAAAAAAAAlY/WzmaDdkJP6M/s1600/c-array-1d-ex.jpg

int num[] = {2,8,7,6,0};

Explanation:

1. Compiler Counts the Number Of Elements Written Inside Pair of Braces and Determines

the Size of An Array.

2. After counting the number of elements inside the braces, The size of array is considered

as 5 during complete execution.

3. This type of Initialization Scheme is also Called as “Compile Time Initialization“

Example Program

#include <stdio.h>

int main()

int num[] = {2,8,7,6,0};

int i;

for (i=0;i<5;i++) {

printf(“\n Array Element num [%d] = %d”,i, num[i]); }

return 0; }

Output:

Array Element num[0] = 2

Array Element num[1] = 8

Array Element num[2] = 7

Array Element num[3] = 6

Array Element num[4] = 0

Accessing Array

1. We all know that array elements are randomly accessed using the subscript variable.

2. Array can be accessed using array-name and subscript variable written inside pair of

square brackets [].

Consider the below example of an array

In this example we will be accessing array like this

arr[3] = Forth Element of Array

arr[5] = Sixth Element of Array

whereas elements are assigned to an array using below way

arr[0] = 51; arr[1] = 32; arr[2] = 43; arr[3] = 24; arr[4] = 5; arr[5] =26;

Example Program1: Accessing array

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[] = {51,32,43,24,5,26};

int i;

for(i=0; i<=5; i++) {

printf("\nElement at arr[%d] is %d",i,arr[i]);

}

getch();

}

Output:

Element at arr[0] is 51

Element at arr[1] is 32

Element at arr[2] is 43

Element at arr[3] is 24

Element at arr[4] is 5

Element at arr[5] is 26

How a[i] Works?

We have following array which is declared like int arr[] = { 51,32,43,24,5,26};

As we have elements in an array, so we have track of base address of an array. Below things

are important to access an array.

Expression Description Example

arr It returns the base address of an array Consider 2000

*arr It gives zeroth element of an array 51

Expression Description Example

*(arr+0) It also gives zeroth element of an array 51

*(arr+1) It gives first element of an array 32

So whenever we tried accessing array using arr[i] then it returns an element at the location*(arr

+ i)

Accessing array a[i] means retrieving element from address (a + i).

Example Program2: Accessing array

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[] = {51,32,43,24,5,26};

int i;

for(i=0; i<=5; i++) {

printf("\n%d %d %d %d",arr[i],*(i+arr),*(arr+i),i[arr]);

}

getch();

}

Output:

51 51 51 51

32 32 32 32

43 43 43 43

24 24 24 24

5 5 5 5

26 26 26 26

Operations with One Dimensional Array

1. Deletion – Involves deleting specified elements form an array.

2. Insertion – Used to insert an element at a specified position in an array.

3. Searching – An array element can be searched. The process of seeking specific

elements in an array is called searching.

4. Merging – The elements of two arrays are merged into a single one.

5. Sorting – Arranging elements in a specific order either in ascending or in descending

order.

Example Programs:

1. C Program for deletion of an element from the specified location

from an Array

#include<stdio.h>

int main() {

int arr[30], num, i, loc;

printf("\nEnter no of elements:");

scanf("%d", &num);

//Read elements in an array

printf("\nEnter %d elements :", num);

for (i = 0; i < num; i++) {

scanf("%d", &arr[i]); }

//Read the location

printf("\nLocation of the element to be deleted :");

scanf("%d", &loc);

/* loop for the deletion */

while (loc < num) {

arr[loc - 1] = arr[loc];

loc++; }

num--; // No of elements reduced by 1

//Print Array

for (i = 0; i < num; i++)

printf("\n %d", arr[i]);

return (0);

}

Output:

Enter no of elements: 5

Enter 5 elements: 3 4 1 7 8

http://www.c4learn.com/c-programs/program-for-deletion-of-element-from.html
http://www.c4learn.com/c-programs/program-for-deletion-of-element-from.html

Location of the element to be deleted: 3

3 4 7 8

2. C Program to delete duplicate elements from an array

int main() {

int arr[20], i, j, k, size;

printf("\nEnter array size: ");

scanf("%d", &size);

printf("\nAccept Numbers: ");

for (i = 0; i < size; i++)

scanf("%d", &arr[i]);

printf("\nArray with Unique list: ");

for (i = 0; i < size; i++) {

for (j = i + 1; j < size;) {

if (arr[j] == arr[i]) {

for (k = j; k < size; k++) {

arr[k] = arr[k + 1]; }

size--; }

else

j++; }

}

for (i = 0; i < size; i++) {

printf("%d ", arr[i]); }

return (0);

}

Output:

Enter array size: 5

Accept Numbers: 1 3 4 5 3

Array with Unique list: 1 3 4 5

3. C Program to insert an element in an array

#include<stdio.h>

int main() {

int arr[30], element, num, i, location;

printf("\nEnter no of elements:");

scanf("%d", &num);

for (i = 0; i < num; i++) {

scanf("%d", &arr[i]); }

printf("\nEnter the element to be inserted:");

scanf("%d", &element);

printf("\nEnter the location");

scanf("%d", &location);

//Create space at the specified location

for (i = num; i >= location; i--) {

arr[i] = arr[i - 1]; }

num++;

arr[location - 1] = element;

//Print out the result of insertion

for (i = 0; i < num; i++)

printf("n %d", arr[i]);

return (0);

}

Output:

Enter no of elements: 5

1 2 3 4 5

Enter the element to be inserted: 6

Enter the location: 2

1 6 2 3 4 5

4. C Program to search an element in an array

#include<stdio.h>

int main() {

int a[30], ele, num, i;

printf("\nEnter no of elements:");

scanf("%d", &num);

printf("\nEnter the values :");

for (i = 0; i < num; i++) {

scanf("%d", &a[i]); }

//Read the element to be searched

printf("\nEnter the elements to be searched :");

scanf("%d", &ele);

//Search starts from the zeroth location

i = 0;

while (i < num && ele != a[i]) {

i++; }

//If i < num then Match found

if (i < num) {

printf("Number found at the location = %d", i + 1);

}

else {

printf("Number not found"); }

return (0);

}

Output:

Enter no of elements: 5

11 22 33 44 55

Enter the elements to be searched: 44

Number found at the location = 4

5. C Program to copy all elements of an array into another array

#include<stdio.h>

int main() {

int arr1[30], arr2[30], i, num;

printf("\nEnter no of elements:");

scanf("%d", &num);

//Accepting values into Array

printf("\nEnter the values:");

for (i = 0; i < num; i++) {

scanf("%d", &arr1[i]); }

/* Copying data from array 'a' to array 'b */

for (i = 0; i < num; i++) {

arr2[i] = arr1[i]; }

//Printing of all elements of array

printf("The copied array is:");

for (i = 0; i < num; i++)

printf("\narr2[%d] = %d", i, arr2[i]);

return (0);

}

Output:

Enter no of elements: 5

Enter the values: 11 22 33 44 55

The copied array is: 11 22 33 44 55

6. C program to merge two arrays in C Programming

#include<stdio.h>

int main() {

int arr1[30], arr2[30], res[60];

int i, j, k, n1, n2;

printf("\nEnter no of elements in 1st array:");

scanf("%d", &n1);

for (i = 0; i < n1; i++) {

scanf("%d", &arr1[i]); }

printf("\nEnter no of elements in 2nd array:");

scanf("%d", &n2);

for (i = 0; i < n2; i++) {

scanf("%d", &arr2[i]); }

i = 0;

j = 0;

k = 0;

// Merging starts

while (i < n1 && j < n2) {

if (arr1[i] <= arr2[j]) {

res[k] = arr1[i];

i++;

k++; }

else {

res[k] = arr2[j];

k++;

j++; }

}

/*Some elements in array 'arr1' are still remaining where as the array

'arr2' is exhausted*/

while (i < n1) {

res[k] = arr1[i];

i++;

k++; }

/*Some elements in array 'arr2' are still remaining where as the array

'arr1' is exhausted */

while (j < n2) {

res[k] = arr2[j];

k++;

j++; }

//Displaying elements of array 'res'

printf("\nMerged array is:");

for (i = 0; i < n1 + n2; i++)

printf("%d ", res[i]);

return (0);

}

Enter no of elements in 1st array: 4

11 22 33 44

Enter no of elements in 2nd array: 3

10 40 80

Merged array is: 10 11 22 33 40 44 80

Programs for Practice

1 C Program to display array elements with addresses

2 C Program for Reading and printing Array Elements

3 C Program to calculate Addition of All Elements in Array

4 C Program to find Smallest Element in Array

5 C Program to find Largest Element in Array

6 C Program to reversing an Array Elements

1. C Program to display array elements with addresses

#include<stdio.h>

#include<stdlib.h>

#define size 10

int main() {

int a[3] = { 11, 22, 33 };

printf("\n a[0],value=%d : address=%u", a[0], &a[0]);

printf("\n a[1],value=%d : address=%u", a[1], &a[1]);

printf("\n a[2],value=%d : address=%u", a[2], &a[2]);

return (0);

}

Output:

a[0],value=11 : address=2358832

a[1],value=22 : address=2358836

a[2],value=33 : address=2358840

2. C Program for Reading and printing Array Elements

#include<stdio.h>

int main()

{

http://www.c4learn.com/c-programs/c-program-rading-array-elements.html
http://www.c4learn.com/c-programs/addition-of-all-elements-in-array.html
http://www.c4learn.com/c-programs/find-smallest-element-in-array-in-c.html
http://www.c4learn.com/c-programs/find-largest-element-in-array-in-c.html
http://www.c4learn.com/c-programs/reversing-of-array-elements-in-c.html
http://www.c4learn.com/c-programs/c-program-rading-array-elements.html

int i, arr[50], num;

printf("\nEnter no of elements :");

scanf("%d", &num);

//Reading values into Array

printf("\nEnter the values :");

for (i = 0; i < num; i++) {

scanf("%d", &arr[i]); }

//Printing of all elements of array

for (i = 0; i < num; i++) {

printf("\narr[%d] = %d", i, arr[i]); }

return (0);

}

Output:

Enter no of elements : 5

Enter the values : 10 20 30 40 50

arr[0] = 10

arr[1] = 20

arr[2] = 30

arr[3] = 40

arr[4] = 50

3. C Program to calculate addition of all elements in an array

#include<stdio.h>

int main() {

int i, arr[50], sum, num;

printf("\nEnter no of elements :");

scanf("%d", &num);

//Reading values into Array

printf("\nEnter the values :");

for (i = 0; i < num; i++)

scanf("%d", &arr[i]);

//Computation of total

sum = 0;

for (i = 0; i < num; i++)

sum = sum + arr[i];

//Printing of all elements of array

for (i = 0; i < num; i++)

printf("\na[%d]=%d", i, arr[i]);

//Printing of total

printf("\nSum=%d", sum);

return (0);

}

Output:

Enter no of elements : 3

Enter the values : 11 22 33

a[0]=11

a[1]=22

a[2]=33

Sum=66

4. C Program to find smallest element in an array

#include<stdio.h>

int main() {

int a[30], i, num, smallest;

printf("\nEnter no of elements :");

scanf("%d", &num);

//Read n elements in an array

for (i = 0; i < num; i++)

scanf("%d", &a[i]);

//Consider first element as smallest

smallest = a[0];

for (i = 0; i < num; i++) {

if (a[i] < smallest) {

smallest = a[i]; } }

// Print out the Result

printf("\nSmallest Element : %d", smallest);

return (0);

}

Output:

Enter no of elements : 5

11 44 22 55 99

Smallest Element : 11

5. C Program to find largest element in an array

#include<stdio.h>

int main() {

int a[30], i, num, largest;

printf("\nEnter no of elements :");

scanf("%d", &num);

//Read n elements in an array

for (i = 0; i < num; i++)

scanf("%d", &a[i]);

//Consider first element as largest

largest = a[0];

for (i = 0; i < num; i++) {

if (a[i] > largest) {

largest = a[i]; } }

// Print out the Result

printf("\nLargest Element : %d", largest);

return (0);

}

Output:

Enter no of elements : 5

11 55 33 77 22

Largest Element : 77

6. C Program to reverse an array elements in an array

#include<stdio.h>

int main() {

int arr[30], i, j, num, temp;

printf("\nEnter no of elements : ");

scanf("%d", &num);

//Read elements in an array

for (i = 0; i < num; i++) {

scanf("%d", &arr[i]); }

j = i - 1; // j will Point to last Element

i = 0; // i will be pointing to first element

while (i < j) {

temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

i++; // increment i

j--; // decrement j

}

//Print out the Result of Insertion

printf("\nResult after reversal : ");

for (i = 0; i < num; i++) {

printf("%d \t", arr[i]); }

return (0);

}

Output:

Enter no of elements : 5

11 22 33 44 55

Result after reversal : 55 44 33 22 11

Multi Dimensional Array:

1. Array having more than one subscript variable is called Multi-Dimensional array.

2. Multi Dimensional Array is also called as Matrix.

http://www.c4learn.com/c-programming/c-multidimensional-array/

Syntax: <data type> <array name> [row subscript][column subscript];

Example: Two Dimensional Arrays

Declaration: Char name[50][20];

Initialization:

int a[3][3] = { 1, 2, 3

 5, 6, 7

 8, 9, 0};

In the above example we are declaring 2D array which has 2 dimensions. First dimension will

refer the row and 2nd dimension will refer the column.

Example: Three Dimensional Arrays

Declaration: Char name[80][20][40];

The following information are given by the compiler after the declaration

Example Type
Array
Name

Dimension
No.

No. of Elements in
Each Dimension

1 integer roll 1 10

2 character name 2 80 and 20

3 character name 3 80 and 20 and 40

Two Dimensional Arrays:

1. Two Dimensional Array requires Two Subscript Variables

2. Two Dimensional Array stores the values in the form of matrix.

3. One Subscript Variable denotes the “Row” of a matrix.

4. Another Subscript Variable denotes the “Column” of a matrix.

Declaration and use of 2D Arrays:

int a[3][4];

http://img.c4learn.com/2009/12/two_dimensional_arrays-in-c-Programming.jpg

for(i=0;i<row,i++)

for(j=0;j<col,j++) {

printf("%d",a[i][j]); }

Meaning of Two Dimensional Arrays:

1. Matrix is having 3 rows (i takes value from 0 to 2)

2. Matrix is having 4 Columns (j takes value from 0 to 3)

3. Above Matrix 3×4 matrix will have 12 blocks having 3 rows & 4 columns.

4. Name of 2-D array is „a„ and each block is identified by the row & column number.

5. Row number and Column Number Starts from 0.

Two-Dimensional Arrays: Summary with Sample Example:

Summary Point Explanation

No of Subscript Variables Required 2

Declaration a[3][4]

No of Rows 3

No of Columns 4

No of Cells 12

No of for loops required to iterate 2

Memory Representation:

1. 2-D arrays are stored in contiguous memory location row wise.

2. 3 X 3 Array is shown below in the first Diagram.

3. Consider 3×3 Array is stored in Contiguous memory location which starts from 4000.

4. Array element a[0][0] will be stored at address 4000 again a[0][1] will be stored to next

memory location i.e. Elements stored row-wise

5. After Elements of First Row are stored in appropriate memory locations, elements of

next row get their corresponding memory locations.

http://www.c4learn.com/c-programming/c-contiguous-memory/

6. This is integer array so each element requires 2 bytes of memory.

Basic Memory Address Calculation:

a[0][1] = a[0][0] + Size of Data Type

Element Memory Location

a[0][0] 4000

a[0][1] 4002

a[0][2] 4004

a[1][0] 4006

a[1][1] 4008

a[1][2] 4010

a[2][0] 4012

a[2][1] 4014

a[2][2] 4016

Initializing 2D Array

Method 1: Initializing all Elements row wise

For initializing 2D Array we need to assign values to each element of an array using the below

syntax.

int a[3][2] = { {1, 4}, {5, 2}, {6, 5} };

Example Program

#include<stdio.h>

int main()

{

int i, j;

int a[3][2] = { { 1, 4 }, { 5, 2 }, { 6, 5 } };

for (i = 0; i < 3; i++) {

for (j = 0; j < 2; j++) {

printf("%d ", a[i][j]); }

printf("\n"); }

return 0;

}

Output:

1 4

5 2

6 5

We have declared an array of size 3 X 2, it contains overall 6

elements.

Row 1: {1, 4},

Row 2: {5, 2},

Row 3: {6, 5}

We have initialized each row independently

a[0][0] = 1

a[0][1] = 4

Method 2: Combine and Initializing 2D Array

Initialize all Array elements but initialization is much straight forward. All values are assigned

sequentially and row-wise

int a[3][2] = {1 , 4 , 5 , 2 , 6 , 5 };

Example Program:

#include <stdio.h>

int main() {

int i, j;

int a[3][2] = { 1, 4, 5, 2, 6, 5 };

for (i = 0; i < 3; i++) {

for (j = 0; j < 2; j++) {

printf("%d ", a[i][j]); }

printf("\n"); }

return 0;

}

Output:

1 4

5 2

6 5

Method 3: Some Elements could be initialized

int a[3][2] = { { 1 }, { 5 , 2 }, { 6 } };

Now we have again going with the way 1 but we are removing some of the elements from the

array. Uninitialized elements will get default 0 value. In this case we have declared and

initialized 2-D array like this

#include <stdio.h>

int main() {

int i, j;

int a[3][2] = { { 1 }, { 5, 2 }, { 6 }};

for (i = 0; i < 3; i++) {

for (j = 0; j < 2; j++) {

printf("%d ", a[i][j]); }

printf("\n"); }

return 0;

}

Output:

1 0

5 2

6 0

Accessing 2D Array Elements:

1. To access every 2D array we requires 2 Subscript variables.

2. i – Refers the Row number

3. j – Refers Column Number

4. a[1][0] refers element belonging to first row and zeroth column

Example Program: Accept & Print 2×2 Matrix from user

#include<stdio.h>

int main() {

int i, j, a[3][3];

// i : For Counting Rows

// j : For Counting Columns

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

printf("\nEnter the a[%d][%d] = ", i, j);

scanf("%d", &a[i][j]); } }

//Print array elements

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

printf("%d\t", a[i][j]); }

printf("\n"); }

return (0);

}

How it Works?

1. For Every value of row Subscript , the column Subscript incremented from 0 to n-1

columns

2. i.e. For Zeroth row it will accept zeroth, first, second column (a[0][0], a[0][1], a[0][2])

elements

3. In Next Iteration Row number will be incremented by 1 and the column number again

initialized to 0.

4. Accessing 2-D Array: a[i][j]  Element From ith Row and jth Column

Example programs for practice:

1. C Program for addition of two matrices

2. C Program to find inverse of 3 X # Matrix

3. C Program to Multiply two 3 X 3 Matrices

4. C Program to check whether matrix is magic square or not?

1. C Program for addition of two matrices

#include<stdio.h>

int main() {

int i, j, mat1[10][10], mat2[10][10], mat3[10][10];

int row1, col1, row2, col2;

printf("\nEnter the number of Rows of Mat1 : ");

scanf("%d", &row1);

printf("\nEnter the number of Cols of Mat1 : ");

scanf("%d", &col1);

printf("\nEnter the number of Rows of Mat2 : ");

scanf("%d", &row2);

printf("\nEnter the number of Columns of Mat2 : ");

scanf("%d", &col2);

/* before accepting the Elements Check if no of rows and columns of

both matrices is equal */

if (row1 != row2 || col1 != col2) {

printf("\nOrder of two matrices is not same ");

exit(0); }

//Accept the Elements in Matrix 1

for (i = 0; i < row1; i++) {

for (j = 0; j < col1; j++) {

printf("Enter the Element a[%d][%d] : ", i, j);

scanf("%d", &mat1[i][j]); } }

//Accept the Elements in Matrix 2

for (i = 0; i < row2; i++)

for (j = 0; j < col2; j++) {

printf("Enter the Element b[%d][%d] : ", i, j);

scanf("%d", &mat2[i][j]); }

//Addition of two matrices

for (i = 0; i < row1; i++)

for (j = 0; j < col1; j++) {

mat3[i][j] = mat1[i][j] + mat2[i][j];}

//Print out the Resultant Matrix

printf("\nThe Addition of two Matrices is : \n");

for (i = 0; i < row1; i++) {

for (j = 0; j < col1; j++) {

printf("%d\t", mat3[i][j]); }

printf("\n"); }

return (0);

}

Output:

Enter the number of Rows of Mat1 : 3

Enter the number of Columns of Mat1 : 3

Enter the number of Rows of Mat2 : 3

Enter the number of Columns of Mat2 : 3

Enter the Element a[0][0] : 1

Enter the Element a[0][1] : 2

Enter the Element a[0][2] : 3

Enter the Element a[1][0] : 2

Enter the Element a[1][1] : 1

Enter the Element a[1][2] : 1

Enter the Element a[2][0] : 1

Enter the Element a[2][1] : 2

Enter the Element a[2][2] : 1

Enter the Element b[0][0] : 1

Enter the Element b[0][1] : 2

Enter the Element b[0][2] : 3

Enter the Element b[1][0] : 2

Enter the Element b[1][1] : 1

Enter the Element b[1][2] : 1

Enter the Element b[2][0] : 1

Enter the Element b[2][1] : 2

Enter the Element b[2][2] : 1

The Addition of two Matrices is :

2 4 6

4 2 2

2 4 2

2. C Program to find inverse of 3 X 3 Matrix

#include<stdio.h>

void reduction(float a[][6], int size, int pivot, int col) {

int i, j;

float factor;

factor = a[pivot][col];

for (i = 0; i < 2 * size; i++) {

a[pivot][i] /= factor; }

for (i = 0; i < size; i++) {

if (i != pivot) {

factor = a[i][col];

for (j = 0; j < 2 * size; j++) {

a[i][j] = a[i][j] - a[pivot][j] * factor; } } } }

void main() {

float matrix[3][6];

int i, j;

for (i = 0; i < 3; i++) {

for (j = 0; j < 6; j++) {

if (j == i + 3) {

matrix[i][j] = 1;}

else {

matrix[i][j] = 0; } } }

printf("\nEnter a 3 X 3 Matrix :");

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

scanf("%f", &matrix[i][j]); } }

for (i = 0; i < 3; i++) {

reduction(matrix, 3, i, i); }

printf("\nInverse Matrix");

for (i = 0; i < 3; i++) {

printf("\n");

for (j = 0; j < 3; j++) {

printf("%8.3f", matrix[i][j + 3]); } } }

Output:

Enter a 3 X 3 Matrix

1 3 1

1 1 2

2 3 4

Inverse Matrix

 2.000 9.000 -5.000

 0.000 -2.000 1.000

 -1.000 -3.000 2.000

3. C Program to Multiply two 3 X 3 Matrices

#include<stdio.h>

int main() {

int a[10][10], b[10][10], c[10][10], i, j, k;

int sum = 0;

printf("\nEnter First Matrix : ");

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

scanf("%d", &a[i][j]); } }

printf("\nEnter Second Matrix :");

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

scanf("%d", &b[i][j]); } }

printf("The First Matrix is : \n");

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

printf(" %d ", a[i][j]); }

printf("\n"); }

printf("The Second Matrix is : \n");

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

printf(" %d ", b[i][j]); }

printf("\n"); }

//Multiplication Logic

for (i = 0; i <= 2; i++) {

for (j = 0; j <= 2; j++) {

sum = 0;

for (k = 0; k <= 2; k++) {

sum = sum + a[i][k] * b[k][j]; }

c[i][j] = sum; } }

printf("\nMultiplication Of Two Matrices : \n");

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

printf(" %d ", c[i][j]); }

printf("\n"); }

return (0);

}

Output:

Enter First Matrix :

1 1 1

1 1 1

1 1 1

Enter Second Matrix :

2 2 2

2 2 2

2 2 2

The First Matrix is :

1 1 1

1 1 1

1 1 1

The Second Matrix is :

2 2 2

2 2 2

2 2 2

Multiplication Of Two Matrices :

6 6 6

6 6 6

6 6 6

Multiplication is possible if and only if

i. No. of Columns of Matrix 1 = No of Columns of Matrix 2

ii. Resultant Matrix will be of Dimension – c [No. of Rows of Mat1][No. of Columns of Mat2]

4. C Program to check whether matrix is magic square or not?

What is Magic Square?

1. A magic square is a simple mathematical game developed during the

1500.

2. Square is divided into equal number of rows and columns.

3. Start filling each square with the number from 1 to num (where

num = No of Rows X No of Columns)

4. You can only use a number once.

5. Fill each square so that the sum of each row is the same as the

sum of each column.

6. In the example shown here, the sum of each row is 15, and the sum

of each column is also 15.

7. In this Example: The numbers from 1 through 9 is used only once.

This is called a magic square.

#include<stdio.h>

#include<conio.h>

int main() {

int size = 3;

int matrix[3][3]; // = {{4,9,2},{3,5,7},{8,1,6}};

int row, column = 0;

int sum, sum1, sum2;

int flag = 0;

printf("\nEnter matrix : ");

for (row = 0; row < size; row++) {

for (column = 0; column < size; column++)

scanf("%d", &matrix[row][column]); }

printf("Entered matrix is : \n");

for (row = 0; row < size; row++) {

printf("\n");

for (column = 0; column < size; column++) {

printf("\t%d", matrix[row][column]); } }

//For diagonal elements

sum = 0;

for (row = 0; row < size; row++) {

for (column = 0; column < size; column++) {

if (row == column)

sum = sum + matrix[row][column]; } }

//For Rows

for (row = 0; row < size; row++) {

sum1 = 0;

for (column = 0; column < size; column++) {

sum1 = sum1 + matrix[row][column]; }

if (sum == sum1)

flag = 1;

else {

flag = 0;

break; } }

//For Columns

for (row = 0; row < size; row++) {

sum2 = 0;

for (column = 0; column < size; column++) {

sum2 = sum2 + matrix[column][row]; }

if (sum == sum2)

flag = 1;

else {

flag = 0;

break; } }

if (flag == 1)

printf("\nMagic square");

else

printf("\nNo Magic square");

return 0;

}

Output:

Enter matrix : 4 9 2 3 5 7 8 1 6

Entered matrix is :

 4 9 2

 3 5 7

 8 1 6

Magic square

Sum of Row1 = Sum of Row2 [Sum of All Rows must be same]

Sum of Col1 = Sum of Col2 [Sum of All Cols must be same]

Sum of Left Diagonal = Sum of Right Diagonal

Limitations of Arrays:

Array is very useful which stores multiple data under single name with same data type.

Following are some listed limitations of Array in C Programming.

A. Static Data

1. Array is Static data Structure

2. Memory Allocated during Compile time.

3. Once Memory is allocated at Compile Time it cannot be changed during Run-time

B. Can hold data belonging to same Data types

http://img.c4learn.com/2012/01/Array-in-C-Programming.gif

1. Elements belonging to different data types cannot be stored in array because array data

structure can hold data belonging to same data type.

2. Example : Character and Integer values can be stored inside separate array but cannot

be stored in single array

C. Inserting data in an array is difficult

1. Inserting element is very difficult because before inserting element in an array we have

to create empty space by shifting other elements one position ahead.

2. This operation is faster if the array size is smaller, but same operation will be more and

more time consuming and non-efficient in case of array with large size.

D. Deletion Operation is difficult

1. Deletion is not easy because the elements are stored in contiguous memory location.

2. Like insertion operation , we have to delete element from the array and after deletion

empty space will be created and thus we need to fill the space by moving elements up in

the array.

E. Bound Checking

1. If we specify the size of array as „N‟ then we can access elements up to „N-1‟ but in C if

we try to access elements after „N-1‟ i.e. Nth element or N+1th element then we does not

get any error message.

2. Process of checking the extreme limit of array is called Bound Checking and C does not

perform Bound Checking.

3. If the array range exceeds then we will get garbage value as result.

F. Shortage of Memory

1. Array is Static data structure. Memory can be allocated at compile time only Thus if after

executing program we need more space for storing additional information then we cannot

allocate additional space at run time.

2. Shortage of Memory , if we don‟t know the size of memory in advance

G. Wastage of Memory

1. Wastage of Memory, if array of large size is defined

Applications of Arrays:

Array is used for different verities of applications. Array is used to store the data or values of

same data type. Below are the some of the applications of array –

A. Stores Elements of Same Data Type

Array is used to store the number of elements belonging to same data type.

http://c4learn.com/c-programs/program-insert-element-in-array.html
http://www.techopedia.com/definition/3769/contiguous-memory-allocation
http://en.wikipedia.org/wiki/Bounds_checking
http://en.wikipedia.org/wiki/Compile_time
http://www.c4learn.com/c-programming/c-array/
http://www.c4learn.com/c-programming/c-array/

int arr[30];

Above array is used to store the integer numbers in an array.

arr[0] = 10;

arr[1] = 20;

arr[2] = 30;

arr[3] = 40;

arr[4] = 50;

Similarly if we declare the character array then it can hold only character. So in short character

array can store character variables while floating array stores only floating numbers.

B. Array Used for maintaining multiple variable names using single name

Suppose we need to store 5 roll numbers of students then without declaration of array we need

to declare following –

int roll1, roll2, roll3, roll4, roll5;

1. Now in order to get roll number of first student we need to access roll1.

2. Guess if we need to store roll numbers of 100 students then what will be the procedure.

3. Maintaining all the variables and remembering all these things is very difficult.

Consider the Array int roll[5]; Here we are using array which can store multiple values and we

have to remember just single variable name.

C. Array can be used for Sorting Elements

We can store elements to be sorted in an array and then by using different sorting technique we

can sort the elements.

Different Sorting Techniques are:

1. Bubble Sort

2. Insertion Sort

3. Selection Sort

4. Bucket Sort

D. Array can perform Matrix Operation

Matrix operations can be performed using the array. We can use 2-D array to store the matrix.

Matrix can be multi dimensional.

E. Array can be used in CPU Scheduling

CPU Scheduling is generally managed by Queue. Queue can be managed and implemented

using the array. Array may be allocated dynamically i.e at run time. [Animation will Explain more

about Round Robin Scheduling Algorithm | Video Animation]

F. Array can be used in Recursive Function

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/rr.htm
http://www.youtube.com/watch?v=GjrxO-PDPdk

When the function calls another function or the same function again then the current values are

stores onto the stack and those values will be retrieving when control comes back. This is

similar operation like stack.

Arrays as Function arguments:

Passing array to function:

Array can be passed to function by two ways:

1. Pass Entire array

2. Pass Array element by element

1. Pass Entire array

 Here entire array can be passed as a argument to function.

 Function gets complete access to the original array.

 While passing entire array address of first element is passed to function, any changes made

inside function, directly affects the Original value.

 Function Passing method : “Pass by Address“

2. Pass Array element by element

 Here individual elements are passed to function as argument.

 Duplicate carbon copy of Original variable is passed to function.

 So any changes made inside function do not affect the original value.

 Function doesn‟t get complete access to the original array element.

 Function passing method is “Pass by Value“

Passing entire array to function:

 Parameter Passing Scheme : Pass by Reference

 Pass name of array as function parameter.

 Name contains the base address i.e. (Address of 0th element)

 Array values are updated in function.

 Values are reflected inside main function also.

Example Program #1:

#include<stdio.h>

#include<conio.h>

void fun(int arr[])

{

int i;

for(i=0;i< 5;i++)

 arr[i] = arr[i] + 10;

}

void main()

{

int arr[5],i;

clrscr();

printf("\nEnter the array elements : ");

for(i=0;i< 5;i++)

scanf("%d",&arr[i]);

printf("\nPassing entire array");

fun(arr); // Pass only name of array

for(i=0;i< 5;i++)

 printf("\nAfter Function call a[%d] : %d",i,arr[i]);

getch();

}

Output :

Enter the array elements : 1 2 3 4 5

Passing entire array

After Function call a[0] : 11

After Function call a[1] : 12

After Function call a[2] : 13

After Function call a[3] : 14

After Function call a[4] : 15

Passing Entire 1-D Array to Function in C Programming:

 Array is passed to function completely.

 Parameter Passing Method : Pass by Reference

 It is Also Called “Pass by Address“

 Original Copy is Passed to Function

 Function Body can modify Original Value.

Example Program #2:

#include<stdio.h>

#include<conio.h>

void modify(int b[3]);

void main()

{

int arr[3] = {1,2,3};

modify(arr);

for(i=0;i<3;i++)

printf("%d",arr[i]);

getch();

}

void modify(int a[3])

{

int i;

for(i=0;i<3;i++)

a[i] = a[i]*a[i];

}

Output:

1 4 9

Here “arr” is same as “a” because Base Address of Array “arr” is stored in Array “a”

Alternate Way of Writing Function Header:

void modify(int a[3]) OR void modify(int *a)

Passing Entire 2D Array to Function in C Programming:

Example Program #3:

#include<stdio.h>

void Function(int c[2][2]);

int main(){

int c[2][2],i,j;

printf("Enter 4 numbers:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j){

scanf("%d",&c[i][j]); }

Function(c); /* passing multi-dimensional array to function */

return 0;

}

void Function(int c[2][2])

{

/* Instead to above line, void Function(int c[][2]) is also valid */

int i,j;

printf("Displaying:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j)

printf("%d\n",c[i][j]);

}

Output:

Enter 4 numbers:

2

3

4

5

Displaying:

2

3

4

5

Passing array element by element to function:

1. Individual element is passed to function using Pass By Value parameter passing scheme

2. An original Array element remains same as Actual Element is never passed to Function.

Thus function body cannot modify Original Value.

3. Suppose we have declared an array „arr[5]‟ then its individual elements are

arr[0],arr[1]…arr[4]. Thus we need 5 function calls to pass complete array to a function.

Consider an array int arr[5] = {11, 22, 33, 44, 55};

Iteration Element Passed to Function Value of Element

1 arr[0] 11

2 arr[1] 22

3 arr[2] 33

4 arr[3] 44

5 arr[4] 55

Example Program #1:

#include< stdio.h>

#include< conio.h>

void fun(int num)

{

printf("\nElement : %d",num);

}

void main() {

int arr[5],i;

clrscr();

printf("\nEnter the array elements : ");

for(i=0;i< 5;i++)

scanf("%d",&arr[i]);

printf("\nPassing array element by element.....");

for(i=0;i< 5;i++)

fun(arr[i]);

getch();

}

Output:

Enter the array elements : 1 2 3 4 5

Passing array element by element.....

Element : 1

Element : 2

Element : 3

Element : 4

Element : 5

Disadvantage of this Scheme:

1. This type of scheme in which we are calling the function again and again but with

different array element is too much time consuming. In this scheme we need to call

function by pushing the current status into the system stack.

2. It is better to pass complete array to the function so that we can save some system time

required for pushing and popping.

3. We can also pass the address of the individual array element to function so that function

can modify the original copy of the parameter directly.

Example Program #2: Passing 1-D Array Element by Element to function

#include<stdio.h>

void show(int b);

void main() {

int arr[3] = {1,2,3};

int i;

for(i=0;i<3;i++)

show(arr[i]);

}

void show(int x)

{

printf("%d ",x);

}

Output:

1 2 3

STRINGS

 A string is a sequence of character enclosed with in double quotes (“ ”) but ends with
\0. The compiler puts \0 at the end of string to specify the end of the string.

 To get a value of string variable we can use the two different types of formats.

Using scanf() function as: scanf(“%s”, string variable);

Using gets() function as : gets(string variable);

STRING HANDLING FUNCTIONS

C library supports a large number of string handling functions. Those functions are stored under
the header file string.h in the program.

Let us see about some of the string handling functions.

(i) strlen() function
 strlen() is used to return the length of the string , that means counts the number
of characters present in a string.

Syntax

integer variable = strlen (string variable);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str[20];

int strlength;

clrscr();

printf(‚Enter String:‛);

gets(str);

strlength=strlen(str);

printf(‚Given String Length Is: %d‛, strlength);

getch();

}

Output:

Enter String

Welcome

Given String Length Is:7

(ii) strcat() function

 The strcat() is used to concatenate two strings. The second string will be appended to

the end of the first string. This process is called concatenation.

Syntax

strcat (StringVariable1, StringVariable 2);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str1[20],str2[20];

clrscr();

printf(‚Enter First String:‛);

scanf(‚%s‛,str1);

printf(‚Enter Second String:‛);

scanf(‚%s‛,str2);

printf(‚ Concatenation String is:%s‛, strcat(str1,str2));

getch();

}

Output:

Enter First String

Good

Enter Second String

Morning

Concatenation String is: GoodMorning

(iii) strcmp() function

 strcmp() function is used to compare two strings. strcmp() function does a case

sensitive comparison between two strings. The two strings are compared character by

character until there is a mismatch or end of one of the strings is reached (whichever occurs

first). If the two strings are identical, strcmp() returns a value zero. If they‟re not, it returns the

numeric difference between the ASCII values of the first non-matching pairs of characters.

Syntax

strcmp(StringVariable1, StringVariable2);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str1[20], str2[20];

int res;

clrscr();

printf(‚Enter First String:‛);

scanf(‚%s‛,str1);

printf(‚Enter Second String:‛);

scanf(‚%s‛,str2);

res = strcmp(str1,str2);

printf(‚ Compare String Result is:%d‛,res);

getch();

}

Output:

Enter First String

Good

Enter Second String

Good

Compare String Result is: 0

(iv) strcmpi() function

strcmpi() function is used to compare two strings. strcmpi() function is not case sensitive.

Syntax

strcmpi(StringVariable1, StringVariable2);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str1[20], str2[20];

int res;

clrscr();

printf(‚Enter First String:‛);

scanf(‚%s‛,str1);

printf(‚Enter Second String:‛);

scanf(‚%s‛,str2);

res = strcmpi(str1,str2);

printf(‚ Compare String Result is:%d‛,res);

getch();

}

Output:

Enter First String

WELCOME

Enter Second String

welcome

Compare String Result is: 0

(v) strcpy() function:

strcpy() function is used to copy one string to another. strcpy() function copy the contents of

second string to first string.

Syntax

strcpy(StringVariable1, StringVariable2);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str1[20], str2[20];

int res;

clrscr();

printf(‚Enter First String:‛);

scanf(‚%s‛,str1);

printf(‚Enter Second String:‛);

scanf(‚%s‛,str2);

strcpy(str1,str2)

printf(‚ First String is:%s‛,str1);

printf(‚ Second String is:%s‛,str2);

getch();

}

Output:

Enter First String

Hello

Enter Second String

welcome

First String is: welcome

Second String is: welcome

(vi) strlwr () function:

This function converts all characters in a given string from uppercase to lowercase letter.

Syntax

strlwr(StringVariable);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str[20];

clrscr();

printf(‚Enter String:‛);

gets(str);

printf(‚Lowercase String : %s‛, strlwr(str));

getch();

}

Output:

Enter String

WELCOME

Lowercase String : welcome

(vii) strrev() function:

strrev() function is used to reverse characters in a given string.

Syntax

strrev(StringVariable);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str[20];

clrscr();

printf(‚Enter String:‛);

gets(str);

printf(‚Reverse String : %s‛, strrev(str));

getch();

}

Output:

Enter String

WELCOME

Reverse String : emoclew

(viii) strupr() function:

strupr() function is used to convert all characters in a given string from lower case to

uppercase letter.

Syntax

strupr(Stringvariable);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

char str[20];

clrscr();

printf(‚Enter String:‛);

gets(str);

printf(‚Uppercase String : %s‛, strupr(str));

getch();

}

Output:

Enter String

welcome

Uppercase String : WELCOME

STRUCTURES

Arrays are used for storing a group of SIMILAR data items. In order to store a group of

data items, we need structures. Structure is a constructed data type for packing different types

of data that are logically related. The structure is analogous to the “record” of a database.

Structures are used for organizing complex data in a simple and meaningful way.

Example for structures:

Student : regno, student_name, age, address

Book : bookid, bookname, author, price, edition, publisher, year

Employee : employeeid, employee_name, age, sex, dateofbirth, basicpay

Customer : custid, cust_name, cust_address, cust_phone

Structure Definition
Structures are defined first and then it is used for declaring structure variables. Let us

see how to define a structure using simple example given below:

 struct book

 {

 int bookid;

 char bookname[20];

 char author[20];

 float price;

 int year;

 int pages;

char publisher[25];

 };

The keyword “struct” is used for declaring a structure. In this example, book is the name of the

structure or the structure tag that is defined by the struct keyword. The book structure has six

fields and they are known as structure elements or structure members. Remember each

structure member may be of a different data type. The structure tag name or the structure

name can be used to declare variables of the structure data type.

The syntax for structure definition is given below:

 struct tagname

 {

 Data_type member1;

 Data_type member2;

 …………….

 ……………

 };

Note:

1. To mark the completion of the template, semicolon is used at the end of the

template.

2. Each structure member is declared in a separate line.

Declaring Structure Variables

First, the structure format is defined. Then the variables can be declared of that structure type.

A structure can be declared in the same way as the variables are declared. There are two

ways for declaring a structure variable.

1) Declaration of structure variable at the time of defining the structure (i.e structure

definition and structure variable declaration are combined)

struct book

{

 int bookid;

 char bookname[20];

 char author[20];

 float price;

 int year;

 int pages;

 char publisher[25];

 } b1,b2,b3;

The b1, b2, and b3 are structure variables of type struct book.

2) Declaration of structure variable after defining the structure

struct book

{

 int bookid;

 char bookname[20];

 char author[20];

 float price;

 int year;

 int pages;

 char publisher[25];

};

struct book b1, b2, b3;

NOTE:

 Structure tag name is optional.

 E.g.

struct

{

 int bookid;

 char bookname[20];

 char author[20];

 float price;

 int year;

 int pages;

 char publisher[25];

}b1, b2, b3;

Declaration of structure variable at a later time is not possible with this type of

declaration. It is a drawback in this method. So the second method can be preferred.

 Structure members are not variables. They don‟t occupy memory until they

are associated with a structure variable.

Accessing Structure Members

There are many ways for storing values into structure variables. The members of a

structure can be accessed using a “dot operator” or “period operator”.

E.g. b1.author -> b1 is a structure variable and author is a structure member.

Syntax

 STRUCTURE_Variable.STRUCTURE_Members

The different ways for storing values into structure variable is given below:

Method 1: Using Simple Assignment Statement

b1.pages = 786;

b1.price = 786.50;

Method 2: Using strcpy function

 strcpy(b1.title, ‚Programming in C‛);

 strcpy(b1.author, ‚John‛);

Method 3: Using scanf function

scanf(‚%s \n‛, b1.title);

scanf(‚%d \n‛, &b1.pages);

Example

#include<stdio.h>

#include<conio.h>

struct book

{

 int bookid;

char bookname[20];

char author[20];

 float price;

 int year;

 int pages;

 char publisher[25];

};

struct book b1, b2, b3;

 main()

{

struct book b1;

clrscr();

printf("Enter the Book Id: ");

scanf("%d", &b1.bookid);

printf("Enter the Book Name: ");

scanf("%s", b1.bookname);

printf("Enter the Author Name: ");

scanf("%s", b1.author);

printf("Enter the Price: ");

scanf("%f", &b1.price);

printf("Enter the Year: ");

scanf("%d", &b1.year);

printf("Enter the Total No. of Pages: ");

scanf("%d", &b1.pages);

printf("Enter the Publisher Name: ");

scanf("%s", b1.publisher);

printf("%d %s %d %f %d %d %s", b1.bookid, b1.bookname,

b1.author, b1.price, b1.year, b1.pages, b1.publisher);

getch();

}

Output

Enter the Book Id: 786

Enter the Book Name: Programming

Enter the Author Name: John

Enter the Price: 123.50

Enter the Year: 2015

Enter the Total No. of Pages: 649

Enter the Publisher Name: Tata McGraw

786 Programming 2118 123.500000 2015 649 Tata

Structure Initialization

Like variables, structures can also be initialized at the compile time.

Example

main()
{
 struct
 {
 int rollno;
 int attendance;
 }
s1={786, 98};
}

The above example assigns 786 to the rollno and 98 to the attendance.

Structure variable can be initialized outside the function also.

Example

main()

{

 struct student

 {

 int rollno;

 int attendance;

 };

 struct student s1={786, 98};

 struct student s2={123, 97};

}

Note:

Individual structure members cannot be initialized within the template. Initialization is

possible only with the declaration of structure members.

Nested Structures or Structures within Structures

Structures can also be nested. i.e A structure can be defined inside another structure.

Example

struct employee

{

 int empid;

 char empname[20];

 int basicpay;

 int da;

 int hra;

 int cca;

} e1;

In the above structure, salary details can be grouped together and defined as a

separate structure.

Example

struct employee

{

 int empid;

 char empname[20];

 struct

 {

 int basicpay;

 int da;

 int hra;

 int cca;

 } salary;

} e1;

The structure employee contains a member named salary which itself is another

structure that contains four structure members. The members inside salary structure

can be referred as below:

 e1.salary.basicpay

 e1.salary.da;

 e1.salary.hra;

 e1.salary.cca;

However, the inner structure member cannot be accessed without the inner structure

variable.

Example

 e1.basicpay

 e1.da

 e1.hra

 e1.cca

are invalid statements

Moreover, when the inner structure variable is used, it must refer to its inner structure

member. If it doesn‟t refer to the inner structure member then it will be considered as

an error.

Example

e1.salary (salary is not referring to any inner structure member. Hence it is wrong)

Note: C permits 15 levels of nesting and C99 permits 63 levels of nesting.

Array of Structures

A Structure variable can hold information of one particular record. For example,

single record of student or employee. Suppose, if multiple records are to be

maintained, it is impractical to create multiple structure variables. It is like the

relationship between a variable and an array. Why do we go for an array? Because we

don‟t want to declare multiple variables and it is practically impossible. Assume that you

want to store 1000 values. Do you declare 1000 variables like a1, a2, a3…. Upto

a1000? Is it easy to maintain such code ? Is it a good coding? No. It is not.

Therefore, we go for Arrays. With a single name, with a single variable, we can store

1000 values. Similarly, to store 1000 records, we cannot declare 1000 structure

variables. But we need “Array of Structures”.

 An array of structure is a group of structure elements under the same structure

variables.

 struct student s1[1000];

 The above code creates 1000 elements of structure type student. Each element

will be structure data type called student. The values can be stored into the array of

structures as follows:

 s1[0].student_age = 19;

Example

#include<stdio.h>

#include<conio.h>

struct book

{

 int bookid;

 char bookname[20];

 char author[20];

};

 Struct b1[5];

main()

{

int i;

clrscr();

for (i=0;i<5;i++)

{

printf("Enter the Book Id: ");

scanf("%d", &b1[i].bookid);

printf("Enter the Book Name: ");

scanf("%s", b1[i].bookname);

printf("Enter the Author Name: ");

scanf("%s", b1[i].author);

}

for (i=0;i<5;i++)

{

printf("%d \t %s \t %s \n", b1[i].bookid, b1[i].bookname,

b1[i].author);

}

getch();

}

Output:

Enter the Book Id: 786

Enter the Book Name: Programming

Enter the Author Name: Dennis Ritchie

Enter the Book Id: 101

Enter the Book Name: Java Complete Reference

Enter the Author Name: Herbert Schildt

Enter the Book Id: 008

Enter the Book Name: Computer Graphics

http://www.amazon.in/Herbert-Schildt/e/B001H6PSMG/ref=dp_byline_cont_book_1

Enter the Author Name: Hearn and Baker

786 Programming Dennis Ritchie

101 Java Complete Reference Herbert Schildt

 008 Computer Graphics Hearn and Baker

Structure as Function Argument

 Example

 struct sample
 {
 int no;
 float avg;
 } a;
 void main()
 {
 a.no=75;
 a.avg=90.25;
 fun(a);
 }

 void fun(struct sample p)
 {
 printf(‚The no is=%d Average is %f‛,p.no , p.avg);
 }

Output

The no is 75 Average is 90.25

Function that returns Structure

 The members of a structure can be passed to a function. If a structure is to be passed to a
called function , we can use any one of the following method.

Method 1 :- Individual member of the structure is passed as an actual argument of the function
call. The actual arguments are treated independently. This method is not suitable if a structure
is very large structure.

Method 2:- Entire structure is passed to the called function. Since the structure declared as

the argument of the function, it is local to the function only. The members are valid for the

http://www.amazon.in/Herbert-Schildt/e/B001H6PSMG/ref=dp_byline_cont_book_1
http://www.amazon.in/Herbert-Schildt/e/B001H6PSMG/ref=dp_byline_cont_book_1
http://www.amazon.in/Herbert-Schildt/e/B001H6PSMG/ref=dp_byline_cont_book_1

function only. Hence if any modification done on any member of the structure , it is not reflected
in the original structure.

Method 3 :- Pointers can be used for passing the structure to a user defined function. When

the pointers are used , the address of the structure is copied to the function. Hence if any
modification done on any member of the structure , it is reflected in the original structure.

Return data type function name (structured variable)

Structured Data type for the structured variable;

 {
 Local Variable declaration;
 Statement 1;
 Statement 2;

 Statement n;
 }

Example :

#include <stdio.h>
struct st
{
char name[20];
int no;
int marks;
};
int main()
{
 struct st x ,y;
 int res;
 printf(‚\n Enter the First Record‛);
 scanf(‚%s%d%d‛,x.name,&x.no,&x.marks);
 printf(‚\n Enter the Second Record‛);
 scanf(‚%s%d%d‛,y.name,&y.no,&y.marks);
 res = compare (x , y);
 if (res == 1)
 printf(‚\n First student has got the Highest Marks‛);
 else
 printf(‚\n Second student has got the Highest Marks‛);
}
compare (struct st st1 , struct st st2)
{
if (st1.marks > st2. marks)
 return (1);
else

 return (0);
}

 In the above example , x and y are the structures sent from the main () function as the

actual parameter to the formal parameters st1 and st2 of the function compare ().

Example program (1) – passing structure to function

#include<stdio.h>
#include<conio.h>
//-------------------------------------
struct Example
{
 int num1;
 int num2;
}s[3];
//-------------------------------------
void accept(struct Example *sptr)
{
 printf("\nEnter num1 : ");
 scanf("%d",&sptr->num1);
 printf("\nEnter num2 : ");
 scanf("%d",&sptr->num2);
}
//-------------------------------------
void print(struct Example *sptr)
{
 printf("\nNum1 : %d",sptr->num1);
 printf("\nNum2 : %d",sptr->num2);
}
//-------------------------------------
void main()
{
int i;
clrscr();
for(i=0;i<3;i++)
accept(&s[i]);

for(i=0;i<3;i++)
print(&s[i]);

getch();
}
Output :

Enter num1 : 10
Enter num2 : 20

Enter num1 : 30
Enter num2 : 40
Enter num1 : 50
Enter num2 : 60
Num1 : 10
Num2 : 20
Num1 : 30
Num2 : 40
Num1 : 50
Num2 : 60

Example program (2) – passing structure to function in C by value:
 In this program, the whole structure is passed to another function by value. It means the

whole structure is passed to another function with all members and their values. So, this
structure can be accessed from called function. This concept is very useful while writing very big
programs in C.

#include <stdio.h>
#include <string.h>

struct student
{
 int id;
 char name[20];
 float percentage;
};

void func(struct student record);

void main()
{
 struct student record;

 record.id=1;
 strcpy(record.name, "Raju");
 record.percentage = 86.5;

 func(record);
 getch();
}

void func(struct student record)
{
 printf(" Id is: %d \n", record.id);
 printf(" Name is: %s \n", record.name);

 printf(" Percentage is: %f \n", record.percentage);
}
Output:

Id is: 1
Name is: Raju
Percentage is: 86.500000

Example program (3) Passing structure by value

 A structure variable can be passed to the function as an argument as normal variable. If
structure is passed by value, change made in structure variable in function definition does not
reflect in original structure variable in calling function.

Write a C program to create a structure student, containing name and roll. Ask user the
name and roll of a student in main function. Pass this structure to a function and display
the information in that function.

#include <stdio.h>
struct student
{
 char name[50];
 int roll;
};
void Display(struct student stu);
/* function prototype should be below to the structure declaration
otherwise compiler shows error */
 int main()
{
 struct student s1;
 printf("Enter student's name: ");
 scanf("%s",&s1.name);
 printf("Enter roll number:");
 scanf("%d",&s1.roll);
 Display(s1); // passing structure variable s1 as argument
 return 0;
}
void Display(struct student stu){
 printf("Output\nName: %s",stu.name);
 printf("\nRoll: %d",stu.roll);
}

Output

Enter student's name: Kevin Amla
Enter roll number: 149
Output

Example program (4) – Passing structure to function in C by address:

 In this program, the whole structure is passed to another function by address. It means

only the address of the structure is passed to another function. The whole structure is not
passed to another function with all members and their values. So, this structure can be
accessed from called function by its address.

#include <stdio.h>
#include <string.h>

struct student
{
 int id;
 char name[20];
 float percentage;
};

void func(struct student *record);

void main()
{
 struct student record;

 record.id=1;
 strcpy(record.name, "Raju");
 record.percentage = 86.5;

 func(&record);
 getch();
}

void func(struct student *record)
{
 printf(" Id is: %d \n", record->id);
 printf(" Name is: %s \n", record->name);
 printf(" Percentage is: %f \n", record->percentage);
}
Output:

Id is: 1
Name is: Raju
Percentage is: 86.500000

Example program (5) Passing structure by reference

 The address location of structure variable is passed to function while passing it by
reference. If structure is passed by reference, change made in structure variable in function
definition reflects in original structure variable in the calling function.

Write a C program to add two distances(feet-inch system) entered by user. To solve this
program, make a structure. Pass two structure variable (containing distance in feet and
inch) to add function by reference and display the result in main function without
returning it.

#include <stdio.h>
struct distance
{
 int feet;
 float inch;
};
void Add(struct distance d1,struct distance d2, struct distance *d3);
int main()
{
 struct distance dist1, dist2, dist3;
 printf("First distance\n");
 printf("Enter feet: ");
 scanf("%d",&dist1.feet);
 printf("Enter inch: ");
 scanf("%f",&dist1.inch);
 printf("Second distance\n");
 printf("Enter feet: ");
 scanf("%d",&dist2.feet);
 printf("Enter inch: ");
 scanf("%f",&dist2.inch);
 Add(dist1, dist2, &dist3);

/*passing structure variables dist1 and dist2 by value whereas passing
structure variable dist3 by reference */
 printf("\nSum of distances = %d\'-%.1f\"",dist3.feet, dist3.inch);
 return 0;
}
void Add(struct distance d1,struct distance d2, struct distance *d3)
{
/* Adding distances d1 and d2 and storing it in d3 */
 d3->feet=d1.feet+d2.feet;
 d3->inch=d1.inch+d2.inch;
 if (d3->inch>=12) { /* if inch is greater or equal to 12,
converting it to feet. */
 d3->inch-=12;
 ++d3->feet;
 }
}
Output

First distance
Enter feet: 12
Enter inch: 6.8

Second distance
Enter feet: 5
Enter inch: 7.5
Sum of distances = 18'-2.3"

Explanation
In this program, structure variables dist1 and dist2 are passed by value (because value of dist1
and dist2 does not need to be displayed in main function) and dist3 is passed by reference ,i.e,
address of dist3 (&dist3) is passed as an argument. Thus, the structure pointer variable d3
points to the address of dist3. If any change is made in d3 variable, effect of it is seed in dist3
variable in main function.

Example program(6) to declare a structure variable as global in C:

 Structure variables also can be declared as global variables as we declare other
variables in C. So, When a structure variable is declared as global, then it is visible to all the
functions in a program. In this scenario, we don‟t need to pass the structure to any function
separately.

#include <stdio.h>
#include <string.h>

struct student
{
 int id;
 char name[20];
 float percentage;
};
struct student record; // Global declaration of structure

void structure_demo();

int main()
{
 record.id=1;
 strcpy(record.name, "Raju");
 record.percentage = 86.5;

 structure_demo();
 return 0;
}

void structure_demo()
{
 printf(" Id is: %d \n", record.id);
 printf(" Name is: %s \n", record.name);
 printf(" Percentage is: %f \n", record.percentage);
}

Output:

Id is: 1
Name is: Raju
Percentage is: 86.500000

Example program(7)Passing Array of Structure to Function in C Programming

Array of Structure can be passed to function as a Parameter.function can also return Structure
as return type.Structure can be passed as follow

Example :

#include<stdio.h>
#include<conio.h>
//-------------------------------------
struct Example
{
 int num1;
 int num2;
}s[3];
//-------------------------------------
void accept(struct Example sptr[],int n)
{
 int i;
 for(i=0;i<n;i++)
 {
 printf("\nEnter num1 : ");
 scanf("%d",&sptr[i].num1);
 printf("\nEnter num2 : ");
 scanf("%d",&sptr[i].num2);
 }
}
//-------------------------------------
void print(struct Example sptr[],int n)
{
 int i;
 for(i=0;i<n;i++)
 {
 printf("\nNum1 : %d",sptr[i].num1);
 printf("\nNum2 : %d",sptr[i].num2);
 }
}
//-------------------------------------
void main()
{
int i;

clrscr();
accept(s,3);
print(s,3);
getch();
}
Output :
Enter num1 : 10
Enter num2 : 20
Enter num1 : 30
Enter num2 : 40
Enter num1 : 50
Enter num2 : 60
Num1 : 10
Num2 : 20
Num1 : 30
Num2 : 40
Num1 : 50
Num2 : 60

Explanation :

Inside main structure and size of structure array is passed. When reference (i.e ampersand) is
not specified in main , so this passing is simple pass by value. Elements can be accessed by
using dot [.] operator

Union

 The concept of Union is borrowed from structures and the formats are also same. The
distinction between them is in terms of storage. In structures , each member is stored in its own
location but in Union , all the members are sharing the same location. Though Union consists of
more than one members , only one member can be used at a particular time. The size of the
cell allocated for an Union variable depends upon the size of any member within Union
occupying more no:- of bytes. The syntax is the same as structures but we use the keyword
union instead of struct.

Example:- the employee record is declared and processed as follows

 union emp
 {
 char name[20];
 int eno;
 float salary;
 } employee;

 where employee is the union variable which consists of the member name,no
and salary. The compiler allocates only one cell for the union variable as

 Employee (only one location)

Location / Cell for name,no and salary

20 bytes cell can be shared by all the members because the member name is occupying the
highest no:- of bytes. At a particular time we can handle only one member.To access the
members of an union , we have to use the same format of structures.

Example program for C union:

#include <stdio.h>
#include <string.h>

union student
{
 char name[20];
 char subject[20];
 float percentage;
};

int main()
{
 union student record1;
 union student record2;

 // assigning values to record1 union variable
 strcpy(record1.name, "Raju");
 strcpy(record1.subject, "Maths");
 record1.percentage = 86.50;

 printf("Union record1 values example\n");
 printf(" Name : %s \n", record1.name);
 printf(" Subject : %s \n", record1.subject);
 printf(" Percentage : %f \n\n", record1.percentage);

 // assigning values to record2 union variable
 printf("Union record2 values example\n");
 strcpy(record2.name, "Mani");
 printf(" Name : %s \n", record2.name);

 strcpy(record2.subject, "Physics");
 printf(" Subject : %s \n", record2.subject);

20 Bytes Length

 record2.percentage = 99.50;
 printf(" Percentage : %f \n", record2.percentage);
 return 0;
}
Output:

Union record1 values example
Name :
Subject :
Percentage : 86.500000;
Union record2 values example
Name : Mani
Subject : Physics
Percentage : 99.500000

Explanation for above C union program:
 There are 2 union variables declared in this program to understand the difference in

accessing values of union members.

Record1 union variable:

 “Raju” is assigned to union member “record1.name” . The memory location name is
“record1.name” and the value stored in this location is “Raju”.

 Then, “Maths” is assigned to union member “record1.subject”. Now, memory location
name is changed to “record1.subject” with the value “Maths” (Union can hold only one
member at a time).

 Then, “86.50” is assigned to union member “record1.percentage”. Now, memory location
name is changed to “record1.percentage” with value “86.50”.

 Like this, name and value of union member is replaced every time on the common
storage space.

 So, we can always access only one union member for which value is assigned at last.
We can‟t access other member values.

 So, only “record1.percentage” value is displayed in output. “record1.name” and

“record1.percentage” are empty.

Record2 union variable:

 If we want to access all member values using union, we have to access the member
before assigning values to other members as shown in record2 union variable in this
program.

 Each union members are accessed in record2 example immediately after assigning
values to them.

 If we don‟t access them before assigning values to other member, member name and
value will be over written by other member as all members are using same memory.

 We can‟t access all members in union at same time but structure can do that.

Example program – Another way of declaring C union:
 In this program, union variable “record” is declared while declaring union itself as shown in

the below program.

#include <stdio.h>
#include <string.h>

union student
{
 char name[20];
 char subject[20];
 float percentage;
}record;

int main()
{

 strcpy(record.name, "Raju");
 strcpy(record.subject, "Maths");
 record.percentage = 86.50;

 printf(" Name : %s \n", record.name);
 printf(" Subject : %s \n", record.subject);
 printf(" Percentage : %f \n", record.percentage);
 return 0;
}
Output:

Name :
Subject :
Percentage : 86.500000

Note:

 We can access only one member of union at a time. We can‟t access all member values at

the same time in union. But, structure can access all member values at the same time. This is
because, Union allocates one common storage space for all its members. Where as Structure

allocates storage space for all its members separately.

Difference between structure and union in C:

S.no C Structure C Union

1
Structure allocates storage
space for all its members
separately.

Union allocates one common storage space for all its

members.

Union finds that which of its member needs high storage

space over other members and allocates that much space

2
Structure occupies higher

memory space.
Union occupies lower memory space over structure.

3
We can access all members

of structure at a time.
We can access only one member of union at a time.

4 Structure example:

struct student

Union example:

union student

{

int mark;

char name[6];

double average;

};

{

int mark;

char name[6];

double average;

};

 5

For above structure, memory

allocation will be like below.

int mark – 2B

char name[6] – 6B

double average – 8B

Total memory allocation =

2+6+8 = 16 Bytes

For above union, only 8 bytes of memory will be allocated

since double data type will occupy maximum space of

memory over other data types.

Total memory allocation = 8 Bytes

Assignment Question

1. Create a structure to store the employee number, name, department and basic salary.

Create a array of structure to accept and display the values of 10 employees.

PRACTICE QUESTIONS

Programs for Practice:

1) Write a C program to initialize an array using functions.

2) Write a C program to interchange array elements of two arrays using functions.

3) Write a C program to pass an array containing age of person to a function. This

function should find average age and display the average age in main function.

4) Write a c program to check whether a given string is a palindrome or not

5) What would be the output of the following programs:

main()

 {

 char c[2] = "A" ;

 printf ("\n%c", c[0]) ;

 printf ("\n%s", c) ;

 }

main()

{

 char str1[] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ } ;

 char str2[] = "Hello" ;

 printf ("\n%s", str1) ;

 printf ("\n%s", str2) ;

 }

a) main()

{

printf (5 + "Good Morning ") ;

 }

6) Point out the errors,if any,in the following programs

(a) main()

{

 char *str1 = "United" ;

 char *str2 = "Front" ;

 char *str3 ;

 str3 = strcat (str1, str2) ;

 printf ("\n%s", str3) ;

}

7) Which is more appropriate for reading in a multi-word string?

` gets() printf() scanf() puts()

8) If the string "Alice in wonder land" is feed to the following

scanf() statement, what will be the contents of the arrays

str1, str2, str3 and str4 ?

 scanf ("%s%s%s%s%s", str1, str2, str3, str4) ;

9) Fill in the blanks:

a. "A" is a ___________ while ‟A‟ is a ____________.

b. A string is terminated by a ______ character, which is written

as ______.

c. The array char name [10] can consist of a maximum of ______ characters.

1. Write a C program to initialize an array using functions.

#include<stdio.h>

int main()

int k, c(), d[]={c(),c(),c(),c(),c()};

printf(‚\nArray d[] elements are:‛);

for(k=0;k<5;k++)

printf(‚%2d‛,d[k]);

return(0);

}

c()

{

int m,n;

m++;

printf(‚\nEnter number d[%d] : ‛,m);

scanf(‚%d‛,&n);

return(n);

}

Output:

Enter Number d[1] : 20

Enter Number d[2] : 30

Enter Number d[3] : 40

Enter Number d[4] : 50

Enter Number d[5] : 60

Array d[] elements are: 20 30 40 50 60

2. Write a C program to interchange array elements of two arrays using

functions.

#include<stdio.h>

#include<conio.h>

void main()

{

int read();

void change(int*,int*);

int x,a[5],b[5];

clrscr();

printf(‚Enter 10 Numbers :‛);

for(x=0;x<10;x++)

{

if(x<5)

a[x]=read();

else

b[x-5]=read();

}

printf(‚\nArray A & B‛);

for(x=0;x<5;x++)

{

printf(‚\n%7d%8d‛,a[x],b[x]);

change(&a[x],&b[x]);

}

printf(‚\nNow A & B‛);

for(x=0;x<5;x++)

{

printf(‚\n%7d%8d‛,a[x],b[x]);

}

}

int read()

{

int x;

scanf(‚%d‛,&x);

return(x);

}

void change(int *a,int *b)

{

int *k;

*a=*a+*b;

*b=*a-*b;

*a=*a-*b;

}

Output:

Enter 10 Numbers:

0 1 2 3 4 5 6 7 8 9

Array A & B

0 5

1 6

2 7

3 8

4 9

Now A & B

5 0

6 1

7 2

8 3

9 4

3. Write a C program to pass an array containing age of person to a

function. This function should find average age and display the

average age in main function.

#include <stdio.h>

float average(float a[]);

int main(){

float avg, c[]={23.4, 55, 22.6, 3, 40.5, 18};

avg=average(c); /* Only name of array is passed as argument. */

printf("Average age=%.2f",avg);

return 0;

}

float average(float a[])

{

int i;

float avg, sum=0.0;

for(i=0;i<6;++i){

sum+=a[i];

}

avg =(sum/6);

return avg;

}

Output:

Average age=27.08

