UNIT - II
 GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature:

At each point on a curve, with equation $y=f(x)$, the tangent line turns at a certain rate. A measure of this rate of turning is the curvature
$K=\frac{f^{\prime \prime}(x)}{\left(1+\left[f^{\prime}(x)\right]\right)^{3 / 2}}$

Radius of curvature in Cartesian form:

If the curve is given in Cartesian coordinates as $y(x)$, then the radius of curvature is
$\rho=\left(1+\llbracket y^{\prime} \searrow^{\mathrm{\top}} 2\right)^{\mathrm{\top}}(3 / 2) / y^{\text {s }}$ where $\mathrm{y}^{\prime}=\frac{d y}{d x}, y^{\text {s }}=\left(d^{\mathrm{\top}} 2 y\right) /\left(d x^{\mathrm{\top}} 2\right)$.
Radius of curvature in Parametric form:
If the curve is given parametrically by functions $x(t)$ and $y(t)$, then the radius of curvature is $\rho=\frac{\left(x^{\prime 2}+y^{\prime 2}\right)^{\frac{3}{2}}}{x^{\prime} y-\mathbb{B}[\mathbb{Z}}, x^{\prime}=\frac{d x}{d t}, x=\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}, y^{\prime \prime}=\frac{\mathrm{dy}}{\mathrm{dt}}, y=\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}$

Examples:

1. Find the radius of the curvature at the point $\left(\frac{\frac{1}{4,1}}{4}\right)$ on the curve $\sqrt{x}+\sqrt{y}=\mathbf{1}$.

Solution: $\sqrt{x}+\sqrt{y}=1$
Differentiating w. r. tx, we get

$$
\begin{aligned}
& \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} y^{\prime}=0 . \quad y^{\prime}=-\frac{\sqrt{y}}{\sqrt{x}} \\
& \text { At }\left(\frac{\frac{1}{4,1}}{4}\right), y^{\prime}=-1 . \\
& y^{\prime \prime}=-\left[\left(\sqrt{x} 1 /(2 \sqrt{ } y) y^{\prime}-\sqrt{y} 1 /(2 \sqrt{x})\right) / x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { At }\left(\frac{\frac{1}{4,1}}{4}\right), y^{n}=-[(1 / 21 /(21 / 2)(-1)-1 / 21 /(21 / 2)) /(1 / 4)]=4 . \\
& \rho=\frac{(1+1)^{\frac{3}{2}}}{4}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

2. Show that the radius of the curvature at any point of the curve ${ }^{y=\operatorname{coosh}\left(\frac{x}{c}\right)}$ is $\frac{y^{2}}{c}$.

Solution: $y=\operatorname{coosh}\left(\frac{x}{c}\right)$
Differentiating y w. r. tx we get

$$
\begin{aligned}
& y^{\prime}=\sinh \left(\frac{x}{c}\right) \\
& y^{\prime \prime}=1 / c \cosh (x / c) \\
& \rho=\frac{\left[1+\sinh ^{2}\left(\frac{x}{c}\right)\right]^{\frac{a}{2}}}{\frac{1}{c} \cosh \left(\frac{x}{c}\right)}=\cosh ^{2}\left(\frac{x}{c}\right)=\frac{y^{2}}{c} .
\end{aligned}
$$

3. Find the radius of the curvature of the curve $y=x^{2}(x-3)$ at the points where the tangent is parallel to the x - axis.

Solution: $y=x^{2}(x-3)$
Differentiating y w. r.t x we get
$y^{\prime}=3 x^{2}-6 x$
$y^{\prime \prime}=6 x-6$
The points at which the tangent parallel to the x - axis can be found by equating y ' to zero.
i.e., $3 x^{2}-6 x=0 \Rightarrow x=0, x=2$.

At $x=0, y^{\prime \prime}=-6$. At $x=2, y^{\prime \prime}=6$.
Therefore at $\mathrm{x}=0$ and $\mathrm{x}=2, \quad \rho=\frac{\mathbf{1}}{6}$.
4. Prove that the radius of the curvature of the curve at any point of the cycloid
$x=a(t+\sin t), y=a(1+\cos t)$ is $\frac{4 \mathrm{acos} t}{2}$.

Solution: We have $x=a(t+\sin t), y=a(1+\cos t)$.
Therefore $\frac{d x}{d t}=a(1+\cos t), \frac{d y}{d t}=a \sin t$.
$\frac{d y}{d t}=\frac{d y / d t}{d x / d t}=\frac{a \sin t}{a(1+\cos t)}=\frac{\frac{\frac{2 \sin t}{2} \cos t}{2}}{2 \cos ^{2} \frac{t}{2}}=\frac{\tan t}{2}$.

Also $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{\tan t}{2}\right)=\left\{\frac{d}{d t}\left(\frac{\tan t}{2}\right)\right\} \frac{d t}{d x}=\frac{1}{2} \sec ^{2} \frac{t}{2} \frac{1}{a(1+\cos t)}=\frac{1}{\mathbf{4} a} \sec ^{4} \frac{t}{2}$.
Hence $\rho=\frac{\left(1+\tan ^{2} \frac{t}{2}\right)^{\frac{3}{2}}}{\frac{1}{4 a} \sec ^{4} \frac{t}{2}}=\frac{4 \mathrm{acos} t}{2}$.

Centre and Circle of curvature:

Let the equation of the curve be $y=f(x)$. let P be the given point (x, y) on this curve and Q the point $(x+\Delta x, y+\Delta y)$ in the neighborhood of P. let N be the point of intersection of the normals at P and Q. As $Q \rightarrow P$, suppose $N \rightarrow C$. Then C is the centre of curvature of P. The circle whose centre C and radius ρ is called the circle of curvature. The co-ordinates of the centre of curvature is denoted as (x, y).

Equation of the circle of curvature:

If (\bar{x}, \bar{y}) be the coordinates of the centre of curvature and ρ be the radius of curvature at any point (x, y) on a curve, then the equation of the circle of curvature at that point is
$(x-\bar{x})^{2}+(y-\bar{y})^{2}=\rho^{2}$

Examples:

1. Find the centre of curvature of the curve $a^{2} y=x^{3}$.

$$
\begin{aligned}
& \text { Solution: } a^{2} y=x^{3} \\
& \frac{d y}{d x}=\frac{3 x^{2}}{a^{2}} \text { and } \frac{d^{2} y}{d x^{2}}=\frac{6 x}{a^{2}}
\end{aligned}
$$

$\bar{x}=x-\frac{x}{2}\left(1+\frac{9 x^{4}}{a^{4}}\right)=\frac{x}{2}\left[1-\frac{9 x^{4}}{a^{4}}\right]$
$\bar{y}=\frac{x^{3}}{a^{2}}+\frac{\left[1+\frac{9 x^{4}}{a^{4}}\right]}{\frac{6 x}{a^{2}}}=\frac{5 x^{3}}{2 a^{2}}+\frac{a^{2}}{6 x}$
Therefore the required centre of curvature is $\left(\frac{x}{2}\left[1-\frac{9 x^{4}}{a^{4}}\right] \cdot \frac{5 x^{3}}{2 a^{2}}+\frac{a^{2}}{6 x}\right)$.
2. Find the centre of curvature of $y=x^{2}$ at $\left(\frac{\frac{1}{2,1}}{4}\right)$.

Solution: $y^{\prime}=2 x, y^{\prime \prime}=2$.
At $\left(\frac{\frac{1}{2,1}}{4}\right), y^{\prime}=1, y^{\prime \prime}=2$.
Therefore $\bar{x}=\frac{1}{2}-\frac{(1+1)}{2}=-\frac{1}{2}, \bar{y}=\frac{1}{4}+1=\frac{5}{4}$.
Therefore the required centre of curvature is $\left(-\frac{\frac{1}{2,5}}{4}\right)$.
3. Find the centre of curvature of the curve $x y=a^{2}$ at (a, a).

Solution: $y^{\mathrm{t}^{r}}=-a^{\mathrm{T}} 2 / x^{\mathrm{\top}} 2 \quad, y^{\mathrm{m}}=2 a^{\mathrm{\top}} 2 x^{\top}(-3)$. At $(\mathrm{a}, \mathrm{a}) \mathrm{y}^{\prime}=-1, \mathrm{y}^{\prime \prime}=\frac{2}{a}$
Therefore $\bar{x}=a+\frac{2}{2 / a}=2 a, \bar{y}=a+\frac{2}{2 / a}=2 a$.
The required centre of curvature is $(2 a, 2 a)$.
4. Find the circle of curvature of the curve $x^{3}+y^{3}=3 a x y$ at the point $\left(\frac{\frac{3 a}{2,3 a}}{2}\right)$.

Solution: $x^{3}+y^{3}=3 a x y$
$3 x^{2}+3 y^{2} y^{\prime}=3 a\left(x y^{\prime}+y\right)$
$y^{\prime}=\frac{a y-x^{2}}{y^{2}-a x}$
y^{\prime} at $\left(\frac{\frac{3 a}{2,3 a}}{2}\right)$ is -1.

$$
\begin{aligned}
& \left.y^{\mathrm{s}}=\left(y^{\mathrm{t}} 2-a x\right)\left(a y^{\mathrm{t}}-2 x\right)-\left(a y-x^{\mathrm{t}} 2\right)\left(2 y y^{\mathrm{t}}-a\right)\right) /\left(y^{\mathrm{t}} 2-a x\right)^{\mathrm{t} 2} \\
& y^{\prime \prime} a t(3 a / 2,3 a / 2)=(-32) / 3 a \\
& \rho=\frac{2 \sqrt{2(3 a)}}{32} \\
& \bar{x}=\frac{3 a}{2}-\frac{2}{32 / 3 a}=\frac{21 a}{16} \\
& \bar{y}=\frac{3 a}{2}-\frac{2}{32 / 3 a}=\frac{21 a}{16}
\end{aligned}
$$

The circle of curvature is $\left(x-\frac{21 a}{16}\right)^{2}+\left(y-\frac{21 a}{16}\right)^{2}=\frac{9 a^{2}}{128}$
5. Find the circle of curvature at the point $(2,3)$ on $\frac{x^{2}}{4}+\frac{y^{2}}{9}=2$.

Solution: $\frac{2 x}{4}+\frac{2 y y^{\prime}}{9}=0 \Rightarrow y^{\prime}=\frac{-9 x}{4 y} \Rightarrow y^{\prime}(2,3)=\frac{-3}{2}$

$$
\begin{aligned}
& y^{\mathrm{s}}=\left(-9\left(y-x y^{\mathrm{T}}\right)\right) /\left(4 y^{\mathrm{t}} 2\right), y^{\mathrm{s}} \text { at }(2,3)=(-3) / 2 \\
& \rho=\frac{13^{\frac{3}{2}}}{12}, \quad \bar{x}=2-\frac{(-3 / 2)(1+9 / 4)}{\frac{-3}{2}}=\frac{-5}{4} \\
& \bar{y}=3+\frac{(1+9 / 4)}{\frac{-3}{2}}=\frac{5}{6}
\end{aligned}
$$

The circle of curvature is $\left(x+\frac{5}{4}\right)^{2}+\left(y-\frac{5}{6}\right)^{2}=\frac{13^{2}}{12^{2}}$

Evolute and Involute

Evolute: Evolute of the curve is defined as the locus of the centre of curvature for that curve.

Involute : If C^{\prime} is the evolute of the curve C then C is called the involute of the curve C^{\prime}.

Procedure to find the evolute:

Let the given curve be $f(x, y, a, b)=0$.
Find y ' and y " at the point P.
 $(y)^{-}=y+\left(\left(1+\llbracket y^{\dagger \geqslant} \rrbracket^{\Uparrow} 2\right)\right) / y^{\prime \prime}$.

Eliminate x, y from (1), (2) we get $f\left((x)^{-},(y), a, b\right)=0 .(3)$
Equation (3) is the required evolute.

Examples:

1. Show that the evolute of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ is another cycloid given by $x=a(\theta-\sin \theta), y-2 a=a(1+\cos \theta)$.

Solution: $\frac{d x}{d \theta}=a(1+\cos \theta), \frac{d y}{d \theta}=a \sin \theta$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{a \sin \theta}{a(1+\cos \theta)}=\frac{\tan \theta}{2} \\
& y^{\text {s }}=d / d \theta(\tan \theta / 2)(d \theta) / d x=\left(\mathbb{\operatorname { s e c } \boldsymbol { D } ^ { \mathrm { t } } 4 \theta / 2) / 4 a}\right.
\end{aligned}
$$

$$
\bar{x}=a(\theta+\sin \theta)-\frac{\frac{\tan \theta}{2\left(1+\tan ^{2} \frac{\theta}{2}\right)}}{\sec ^{4} \frac{\theta}{2} / 4 a}=a(\theta+\sin \theta)-2 a \sin \theta=a(\theta-\sin \theta)
$$

$$
\bar{y}=a(1-\cos \theta)+\frac{\left(1+\tan ^{2} \frac{\theta}{2}\right)}{\sec ^{4} \frac{\theta}{2} / 4 a}=a(1-\cos \theta)+4 a \cos ^{2} \frac{\theta}{2}=a(1+\cos \theta)+2 a
$$

$\overline{\boldsymbol{x}}=a(\theta-\sin \theta), \overline{\boldsymbol{y}}-2 a=a(1+\cos \theta)$.
The locus of \bar{x} and \bar{y} is $x=a(\theta-\sin \theta), y-2 a=a(1+\cos \theta)$.
2. Prove that the evolute of the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ is a $\operatorname{circle} x^{2}+y^{2}=a^{2}$.

Solution: $\frac{d x}{d \theta}=a(-\sin \theta+\sin \theta+\theta \cos \theta)=a \theta \cos \theta, \frac{d y}{d \theta}=a \theta \sin \theta$.
$\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{a \theta \cos \theta}{a \theta \sin \theta}=\tan \theta$
$y^{\mathrm{s}}=\mathbf{1} /\left(a \theta \mathbb{Z} \cos \rrbracket^{\mathbf{\top}} \mathbf{3} \theta\right)$,

$$
\begin{aligned}
& \bar{x}=a(\cos \theta+\theta \sin \theta)-\frac{\tan \theta\left(1+\tan ^{2} \theta\right)}{1 / a \theta \cos ^{\mathbf{a}} \theta}=a \cos \theta, \\
& \bar{y}=a(\sin \theta-\theta \cos \theta)+\frac{\left(1+\tan ^{2} \theta\right)}{1 / a \theta \cos ^{\mathbf{a}} \theta}=a \sin \theta .
\end{aligned}
$$

Eliminating, \bar{x} and \bar{y} we get $\bar{x}^{2}+\bar{y}^{2}=a^{2}$.
The evolute of the given curve is $x^{2}+y^{2}=a^{2}$.

