
SATHYABAMA UNIVERSITY

FACULTY OF ELECTRICAL AND ELECTRONICS

SEC1201 MICROPROCESSORS AND MICROCONTROLLERS

COURSE MATERIAL

UNIT 1 INTRODUCTION TO MICROPROCESSORS
Introduction, 8085 Architecture, Pin Diagram and signals, Addressing Modes, Timing Diagram-

Memory read,Memory write, I/O cycle, Interrupts and its types, Introduction to 8086

microprocessors and its operation.

MICROPROCESSORS

Microcomputer System – 8085 Architecture – 8085 Pin Diagram – Buses and Memory

Operations – Addressing Modes, Basic concepts of microprocessor programming – Mnemonics

– Hex code – fundamentals of assembly language - Instruction set for 8085.

Basic Concepts of Microprocessors

Differences between: Microcomputer, Microprocessor and Microcontroller

 Microcomputer is a computer with a microprocessor as its CPU. Includes memory,

I/O etc.

 Microprocessor is a silicon chip which includes ALU, register circuits & control

circuits

 Microcontroller is a silicon chip which includes microprocessor, memory & I/O in a

single package.

What is micro?

Micro is a new addition.

 In the late 1960’s, processors were built using discrete elements.

These devices performed the required operation, but were too large and too slow.

 It went directly from discrete elements to a single chip. However, comparing

today’s microprocessors to the ones built in the early 1970’s you find an extreme

increase in the amount of integration.

What is a microprocessor?

• The word comes from the combination of micro and processor.

• Processor means a device that processes whatever. In this context processor means a

device that processes numbers, specifically binary numbers, 0’s and 1’s.

• To process means to manipulate. It is a general term that describes all manipulation. Again

in this content, it means to perform certain operations on the numbers that depend on the

microprocessor’s design. It is a programmable device that takes in numbers, performs on

them arithmetic or logical operations according to the program stored in memory and then

produces other numbers

As a Programmable device:

• The microprocessor can perform different sets of operations on the data it receives

depending on the sequence of instructions supplied in the given program.

• By changing the program, the microprocessor manipulates the data in different ways as

Instructions, Words, Bytes, etc.

• They processed information 8-bits at a time. That’s why they are called ―8-bit

processors‖. They can handle large numbers, but in order to process these numbers,

they broke them into 8-bit pieces and processed each group of 8-bits separately.

What is memory?

– Memory is the location where information is kept while not in current use. It is stored in

memory

– Memory is a collection of storage devices. Usually, each storage device holds one bit.

Also, in most kinds of memory, these storage devices are grouped into groups of 8.

These 8 storage locations can only be accessed together. So, one can only read or write

in terms of bytes to and form memory.

– Memory is usually measured by the number of bytes it can hold. It is measured in Kilos,

Megas and lately Gigas. A Kilo in computer language is 210 =1024. So, a KB (KiloByte)

is 1024 bytes. Mega is 1024 Kilos and Giga is 1024 Mega.

– When a program is entered into a computer, it is stored in memory. Then as the

microprocessor starts to execute the instructions, it brings the instructions from memory

one at a time.

– Memory is also used to hold the data.

– The microprocessor reads (brings in) the data from memory when it needs it and writes

(stores) the results into memory when it is done.

A MICROPROCESSOR-BASED SYSTEM

From the above description, we can draw the following block diagram to represent a

microprocessor-based system as shown in fig 1

Fig.1. Microprocessor based system (organization of microcomputer)

In this system, the microprocessor is the master and all other peripherals are

slaves. The master controls all peripherals and initiates all operations. The buses are group of

lines that carry data, address or control signals. The CPU interface is provided to demultiplex

the multiplexed lines, to generate the chip select signals and additional control signals. The

system bus has separate lines for each signal.

All the slaves in the system are connected to the same system bus. At any time

instant communication takes place between the master and one of the slaves. All the slaves

have tristate logic and hence normally remain in high impedance state. The processor selects a

slave by sending an address. When a slave is selected, it comes to the normal logic and

communicates with the processor.

The EPROM memory is used to store permanent programs and data. The RAM

memory is used to store temporary programs and data. The input device is used to enter

program, data and to operate system. The output device is also used for examining the results.

Since the speed of IO devices does not match with speed of microprocessor, an interface

device is provided between system bus and IO device.

CENTRAL PROCESSING UNIT:

The CPU consists of ALU (Arithmetic and Logic Unit), Register unit and control unit. The

CPU retrieves stored instructions and data word from memory; it also deposits processed data

in memory.

a) ALU (Arithmetic and Logic Unit)

This section performs computing functions on data. These functions are arithmetic operations

such as additions subtraction and logical operation such as AND, OR rotate etc. Result are

stored either in registers or in memory or sent to output devices.

b) REGISTER UNIT:

It contains various register. The registers are used primarily to store data temporarily during the

execution of a program. Some of the registers are accessible to the uses through instructions.

c) CONTROL UNIT:

It provides necessary timing & control signals necessary to all the operations in the

microcomputer. It controls the flow of data between the p and peripherals (input, output &

memory). The control unit gets a clock which determines the speed of the p.

The CPU has three basic functions

• It fetches an instructions word stored in memory.

• It determines what the instruction is telling it to do.(decodes the instruction)

• It executes the instruction. Executing the instruction may include some of the following

major tasks.

o Transfer of data from reg. to reg. in the CPU itself.

o Transfer of data between a CPU reg. & specified memory location.

o Performing arithmetic and logical operations on data from a specific memory

location or a designated CPU register.

o Directing the CPU to change a sequence of fetching instruction, if processing the

data created a specific condition.

o Performing housekeeping function within the CPU itself inorder to establish desired

condition at certain registers.

o It looks for control signal such as interrupts and provides appropriate responses.

o It provides states, control, and timing signals that the memory and input/output

section can use.

There are three buses:

Address Bus:

It is a group of wires or lines that are used to transfer the addresses of Memory or I/O

devices. It is unidirectional. In Intel 8085 microprocessor, Address bus was of 16 bits. This

means that Microprocessor 8085 can transfer maximum 16 bit address which means it can

address 65,536 different memory locations. This bus is multiplexed with 8 bit data bus. So the

most significant bits (MSB) of address goes through Address bus (A7-A0) and LSB goes

through multiplexed data bus (AD0-AD7).

Data Bus:

Data Bus is used to transfer data within Microprocessor and Memory/Input or Output

devices. It is bidirectional as Microprocessor requires to send or receive data. The data bus also

works as address bus when multiplexed with lower order address bus. Data bus is 8 Bits long.

The word length of a processor depends on data bus, thats why Intel 8085 is called 8 bit

Microprocessor because it have an 8 bit data bus.

Control Bus:

Microprocessor uses control bus to process data that is what to do with the selected

memory location. Some control signals are Read, Write and Opcode fetch etc. Various

operations are performed by microprocessor with the help of control bus. This is a dedicated

bus, because all timing signals are generated according to control signal. The microprocessor is

the master, which controls all the activities of the system. To perform a specific job or task, the

microprocessor has to execute a program stored in memory. The program consists of a set of

instructions stored in consecutive memory location. In order to execute the program the

microprocessor issues address and control signals, to fetch the instruction and data from

memory one by one. After fetching each instruction it decodes the instruction and carries out the

task specified by the instruction.

Memory

To execute a program:

 The user enters its instructions in binary format into the memory.

 The microprocessor then reads these instructions and whatever data is needed from

memory, executes the instructions and places the results either in memory or produces it

on an output device.

The three cycle instruction execution model

 To execute a program, the microprocessor ―reads‖ each instruction from memory,

―interprets‖ it, then ―executes‖ it.

 To use the right names for the cycles

 The microprocessor fetches each instruction, decodes it, and then executes it. This

sequence is continued until all instructions are performed.

The 8085 Machine Language

The 8085 (from Intel) is an 8-bit microprocessor. The 8085 uses a total of 246 bit

patterns to form its instruction set. These 246 patterns represent only 74 instructions. The

reason for the difference is that some (actually most) instructions have multiple different

formats. Because it is very difficult to enter the bit patterns correctly, they are usually entered in

hexadecimal instead of binary.

For example, the combination 0011 1100 which translates into ―increment the number in the

register called the accumulator‖, is usually entered as 3C.

Assembly Language

Entering the instructions using hexadecimal is quite easier than entering the binary

combinations. However, it still is difficult to understand what a program written in hexadecimal

does. So, each company defines a symbolic code for the instructions.

These codes are called ―mnemonics‖.

The mnemonic for each instruction is usually a group of letters that suggest the operation

performed.

• Using the same example from before,

00111100 translates to 3C in hexadecimal (OPCODE)

Its mnemonic is: ―INR A‖.

INR stands for ―increment register‖ and A is short for accumulator.

It is important to remember that a machine language and its associated assembly language are

completely machine dependent. In other words, they are not transferable from one

microprocessor to a different one.

Assembling” The Program

How does assembly language get translated into machine language?

– There are two ways:

– 1st there is ―hand assembly‖.

• The programmer translates each assembly language instruction into its equivalent

hexadecimal code (machine language). Then the hexadecimal code is entered into

memory.

• The other possibility is a program called an ―assembler‖, which does the translation

automatically.

8085 MICROPROCESSOR ARCHITECTURE

Features of 8085

• 8-bit general purpose µp

• Capable of addressing 64 k of memory

• Has 40 pins as shown in fig 2

• Requires +5 v power supply

• Can operate with 3 MHz clock

• 8085 upward compatible

Pin Diagram of 8085

Fig .2 Pin Diagram of 8085

A8 - A15 (Output 3 State)

Address Bus:The most significant 8 bits of the memory address or the 8 bits of the I/0

address,3 stated during Hold and Halt modes.

AD0 - AD7 (Input/Output 3state)

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0 address) appear on

the bus during the first clock cycle of a machine state. It then becomes the

data bus during the second and third clock cycles. 3 stated during Hold and Halt modes.

ALE (Output) Address Latch Enable

It occurs during the first clock cycle of a machine state and enables the address to get latched

into the on chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold

times for the address information. ALE can also be used to strobe the status information. ALE

is never 3stated.

SO, S1 (Output)

Data Bus Status. Encoded status of the bus cycle: S1 S0 0 0 HALT 0 1 WRITE 1 0 READ 1 1

FETCH S1 can be used as an advanced R/W status.

RD (Output 3state)

READ: indicates the selected memory or 1/0 device is to be read and that the Data Bus is

available for the data transfer.

WR (Output 3state)

WRITE: Indicates the data on the Data Bus is to be written into the selected memory or 1/0

location. Data is set up at the trailing edge of WR. 3 stated during Hold and Halt modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or peripheral is

ready to send or receive data. If Ready is low, the CPU will wait for Ready to go high before

completing the read or write cycle.

HOLD (Input)

It indicates that another Master is requesting the use of the Address and Data Buses. The

CPU, upon receiving the Hold request will relinquish the use of buses as soon as the

completion of the current machine cycle. Internal processing can continue.

The processor can regain the buses only after the Hold is removed. When the Hold is

acknowledged, the Address, Data, RD, WR, and IO/M lines are stated.

HLDA (Output)

HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and that it

will relinquish the buses in the next clock cycle. HLDA goes low after the Hold request is

removed. The CPU takes the buses one half clock cycle after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled only during the

next to the last clock cycle of the instruction. If it is active, the Program Counter (PC) will be

inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL

instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and

disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE: is used instead of (and has the same timing as) RD during

the Instruction cycle after an INTR is accepted. It can be used to activate the 8259 Interrupt

chip or some other interrupt port.

RESTART INTERRUPTS: These three inputs have the same timing as INTR except they

cause an internal RESTART to be automatically inserted. RST 7.5 ~~ Highest Priority RST 6.5

RST 5.5 Lowest Priority

TRAP (Input)

Trap interrupt is a nonmaskable restart interrupt. It is recognized at the same time as INTR. It

is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA

flipflops. None of the other flags or registers (except the instruction register) are affected The

CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output)

Indicates CPU is being reset also used as a system RESET. The signal is synchronized to

the processor clock.

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1 can also be an

external clock input instead of a crystal. The input frequency is divided by 2 to give the internal

operating frequency.

CLK (Output)

Clock Output for use as a system clock when a crystal or R/ C network is used as an input

to the CPU. The period of CLK is twice the X1, X2 input period.

IO/M (Output)

IO/M indicates whether the Read/Write is to memory or l/O Tristated during Hold and Halt

modes.

SID (Input)

Serial input data line The data on this line is loaded into accumulator bit 7 whenever a

RIM instruction is executed.

SOD (output)

Serial output data line. The output SOD is set or reset as specified by the SIM instruction.

Vcc +5 volt supply.

Vss Ground Reference.

Signal Classification of 8085

The signal Classification of 8085 is as shown in fig3.

Fig: 3 Signal Classifications of 8085

System Bus – wires connecting memory & I/O to microprocessor

– ADDRESS BUS

 Unidirectional

 Identifying peripheral or memory location

– DATA BUS

 Bidirectional

 Transferring data

– CONTROL BUS

 Synchronization signals

 Timing signals

 Control signal

ARCHITECTURE OF INTEL 8085 MICROPROCESSOR

Fig:4 Architecture of intel 8085 microprocessor

The architecture of INTEL 8085 microprocessor is as shown in fig4.

Intel 8085 Microprocessor

Microprocessor consists of:

– Control unit: control microprocessor operations.

– ALU: performs data processing function.

– Registers: provide storage internal to CPU.

– Interrupts

– Internal data bus

The ALU

• In addition to the arithmetic & logic circuits, the ALU includes the accumulator, which is

part of every arithmetic & logic operation.

• Also, the ALU includes a temporary register used for holding data temporarily during the

execution of the operation. This temporary register is not accessible by the programmer.

Registers

General Purpose Registers

 B, C, D, E, H & L (8 bit registers)

 Can be used singly

 Or can be used as 16 bit register pairs

BC, DE, HL

 H & L can be used as a data pointer (holds memory address)

 Special Purpose Registers

 Accumulator (8 bit register)

 Store 8 bit data

 Store the result of an operation

 Store 8 bit data during I/O transfer Address

Flag Register

– 8 bit register – shows the status of the microprocessor before/after an operation

– S (sign flag), Z (zero flag), AC (auxillary carry flag), P (parity flag) & CY (carry flag)

D7 D6 D5 D4 D3 D2 D1 D0

S Z X AC X P X CY

Sign Flag

• Used for indicating the sign of the data in the accumulator

• The sign flag is set if negative (1 – negative)

• The sign flag is reset if positive (0 –positive)

Zero Flag

• Is set if result obtained after an operation is 0

• Is set following an increment or decrement operation of that register

Carry Flag

 10110011

+ 01001101

 00000000

 – Is set if there is a carry or borrow from arithmetic operation

 1011 0101 1011 0101

+ 0110 1100 - 1100 1100

 --------------- ---------------

Carry 1 0010 0001 Borrow 1 1110 1001

Auxillary Carry Flag

– Is set if there is a carry out of bit 3

Parity Flag

• Is set if parity is even

• Is cleared if parity is odd

The Internal Architecture

We have already discussed the general purpose registers, the Accumulator, and

the flags.

The Program Counter (PC)

– This is a register that is used to control the sequencing of the execution of instructions.

– This register always holds the address of the next instruction.

– Since it holds an address, it must be 16 bits wide.

The Stack pointer

– The stack pointer is also a 16-bit register that is used to point into memory.

– The memory this register points to is a special area called the stack.

– The stack is an area of memory used to hold data that will be retreived soon.

– The stack is usually accessed in a Last In First Out (LIFO) fashion.

Non Programmable Registers

Instruction Register & Decoder

– Instruction is stored in IR after fetched by processor

– Decoder decodes instruction in IR

Internal Clock generator

– 3.125 MHz internally

– 6.25 MHz externally

The Address and Data Busses

•The address bus has 8 signal lines A8 – A15 which are unidirectional.

•The other 8 address bits are multiplexed (time shared) with the 8 data bits.

So, the bits AD0 – AD7 are bi-directional and serve as A0 – A7 and D0 – D7 at the same time.

•During the execution of the instruction, these lines carry the address bits during the early part,

then during the late parts of the execution, they carry the 8 data bits.

In order to separate the address from the data, we can use a latch to save the value before the

function of the bits changes.

Demultiplexing AD7-AD0

– From the above description, it becomes obvious that the AD7– AD0 lines are serving a dual

purpose and that they need to be demultiplexed to get all the information.

– The high order bits of the address remain on the bus for three clock periods. However, the low

order bits remain for only one clock period and they would be lost if they are not saved

externally. Also, notice that the low order bits of the address disappear when they are needed

most.

– To make sure we have the entire address for the full three clock cycles, we will use an

external latch to save the value of AD7– AD0 when it is carrying the address bits. We use the

ALE signal to enable this latch.

Demultiplexing AD7-AD0

Given that ALE operates as a pulse during T1, we will be able to latch the address. Then

when ALE goes low, the address is saved and the AD7– AD0 lines can be used for their

purpose as the bi-directional data lines.

Demultiplexing the Bus AD7 – AD0

• The high order address is placed on the address bus and hold for 3 clk periods,

• The low order address is lost after the first clk period, this address needs to be hold

however we need to use latch

• The address AD7 – AD0 is connected as inputs to the latch 74LS373.

• The ALE signal is connected to the enable (G) pin of the latch and the OC – Output

control – of the latch is grounded

ADDRESSING MODES

The microprocessor has different ways of specifying the data for the instruction.

These are called ―addressing modes‖.

The 8085 has four addressing modes:

– Implied CMA

– Immediate MVI B, 45

– Direct LDA 4000

– Indirect LDAX B

Load the accumulator with the contents of the memory location whose address is stored in the

register pair BC).

Many instructions require two operands for execution. For example transfer of data

between two registers. The method of identifying the operands position by the instruction format

is known as the addressing mode. When two operands are involved in an instruction, the first

operand is assumed to be in a register Mp itself.

Types of Addressing Modes

• Register addressing

• Direct addressing mode

• Register indirect addressing

• Immediate Addressing mode

• Implied addressing mode

Register Addressing

This type of addressing mode specifies register or register pair that contains

data.ie (only the register need be specified as the address of the operands).

Example MOV B, A (the content of A is copied into the register B)

Direct Addressing Mode

Data is directly copied from the given address to the register.

Example LDA 3000H (The content at the location 3000H is copied to the register A).

Register Indirect Addressing

In this mode, the address of operand is specified by a register pair

Example MOV A, M (Move data from memory location specified by H-L pair to

accumulator)

Immediate Addressing Mode

In this mode, the operand is specified within the instruction itself.

Example MVI A, 05 H (Move 05 H in accumulator.)

Implied Addressing Mode

This mode doesn't require any operand. The data is specified by opcode itself.

Example RAL,

CMP

TIMING DIAGRAM

Timing diagram is the display of initiation of read/write and transfer of data operations under the

control of 3-status signals IO / M, S1, and S0. All actions in the microprocessor are controlled by

either leading or trailing edge of the clock.

,

Machine Cycle

It is the time required by the microprocessor to complete the operation of accessing the memory

devices or I/O devices. In machine cycle various operations like opcode fetch, memory read,

memory write, I/O read, I/O write are performed.

T-State

Each clock cycle is called as T-states.

Each machine cycle is composed of many clock cycles. Since, the data and instructions,

both are stored in the memory, the µP performs fetch operation to read the instruction or data

and then execute the instruction. The 3-status signals: IO / M, S1, and S0 are generated at the

beginning of each machine cycle. The unique combination of these 3-status signals identify read

or write operation and remain valid for the duration of the cycle.

Table 1 Machine Cycle Status And Control Signals

Table1 shows details of the unique combination of these status signals to identify

different machine cycles. Thus, time taken by any µP to execute one instruction is calculated in

terms of the clock period. The execution of instruction always requires read and writes

operations to transfer data to or from the µP and memory or I/O devices. Each read/ write

operation constitutes one machine cycle (MC1) as indicated in Fig.7. Each machine cycle

consists of many clock periods/ cycles, called T-states.

Fig.7 Machine cycle showing clock periods

Processor Cycle:

The functions of the microprocessor are divided into fetch and execute cycle of any

instruction of a program. The program is nothing but number of instructions stored in the

memory in sequence. In the normal process of operation, the microprocessor fetches (receives

or reads) and executes one instruction at a time in the sequence until it executes the halt (HLT)

instruction.

Instruction Cycle

An instruction cycle is defined as the time required to fetch and execute an instruction.

For executing any program, basically 2-steps are followed sequentially with the help of clocks

• Fetch, and

• Execute.

The time taken by the µP in performing the fetch and execute operations are called fetch

and execute cycle. Thus, sum of the fetch and execute cycle is called the

instruction cycle as indicated in Fig. 8. Each read or writes operation constitutes a machine

cycle. The instructions of 8085 require 1–5 machine cycles containing 3–6 states (clocks). The

1st machine cycle of any instruction is always an Op Code fetch cycle in which the processor

decides the nature of instruction. It is of at least 4-states. It may go up to 6-states.

Fig.8 Processor cycle

Rules To Identify Number Of Machine Cycles In An Instruction:

• If an addressing mode is direct, immediate or implicit then No. of machine cycles = No. of

bytes.

• If the addressing mode is indirect then No. of machine cycles = No. of bytes + 1. Add +1

to the No. of machine cycles if it is memory read/write operation.

• If the operand is 8-bit or 16-bit address then, No. of machine cycles = No. of bytes +1.

• These rules are applicable to 80% of the instructions of 8085.

Timing Diagram of Opcode Fetch

The process of Opcode fetch operation requires minimum 4-clock cycles T1, T2, T3, and

T4 and is the 1st machine cycle (M1) of every instruction.

Example

Fetch a byte 41H stored at memory location 2105H.
For fetching a byte, the microprocessor must find out the memory location where it is stored.

Then provide condition (control) for data flow from memory to the microprocessor. The process

of data flow and timing diagram of fetch operation are shown in Fig. 9. The microprocessor

fetches Opcode of the instruction from the memory as per the sequence below

 A low IO/M means microprocessor wants to communicate with memory.

 The microprocessor sends a high on status signal S1 and S0 indicating fetch operation.

 The microprocessor sends 16-bit address. AD bus has address in 1st clock of the 1st

machine cycle, T1.

 AD7 to AD0 address is latched in the external latch when ALE = 1.

 AD bus now can carry data.

 In T2, the RD control signal becomes low to enable the memory for read operation.

 The memory places opcode on the AD bus

 The data is placed in the data register (DR) and then it is transferred to IR.

 During T3 the RD signal becomes high and memory is disabled.

 During T4 the opcode is sent for decoding and decoded in T4.

 The execution is also completed in T4 if the instruction is single byte.

 More machine cycles are essential for 2- or 3-byte instructions. The 1st machine cycle M1

is meant for fetching the opcode. The machine cycles M2 and M3 are required either

read/ write data or address from the memory or I/O devices.

Fig. 9 Opcode fetch

Example For Opcode Fetch

 Explain the execution of MVI B, 05H stored at locations indicated below

Fig. 10 Timing diagram for MVI B,05H

The MVI B, 05H instruction requires 2-machine cycles (M1 and M2). M1 requires 4-

states and M2 requires 3-states, total of 7-states as shown in Fig. 10. Status signals IO/M, S1
and S0 specifies the 1st machine cycle as the op-code fetch. In T1-state, the high order address

{10H} is placed on the bus A15 ⇔A8 and low-order address {00H} on the bus AD7 ⇔AD0 and
ALE = 1. In T2 -state, the RD line goes low and the data 06 H from memory location 1000H are
placed on the data bus. The fetch cycle becomes complete in T3-state. The instruction is
decoded in the T4-state. During T4-state, the contents of the bus are unknown. With the change
in the status signal, IO/M = 0, S1 = 1 and S0 = 0, the 2nd machine cycle is identified as the
memory read. The address is 1001H and the data byte [05H] is fetched via the data bus. Both
M1 and M2 perform memory read operation, but the M1 is called op-code fetch i.e., the 1st
machine cycle of each instruction is identified as the opcode fetch cycle.

TIMING DIAGRAM OF MEMORY READ

Operation:

 It is used to fetch one byte from the memory.

 It requires 3 T-States.

 It can be used to fetch operand or data from the memory.

 During T1, A8-A15 contains higher byte of address. At the same time ALE is high.

Therefore Lower byte of address A0-A7 is selected from AD0-AD7 as shown in fig 11.

 Since it is memory ready operation, IO/M (bar) goes low.

 During T2 ALE goes low, RD (bar) goes low. Address is removed from AD0-AD7 and data

D0-D7 appears on AD0-AD7.

 During T3, Data remains on AD0-AD7 till RD (bar) is at low signal.

Fig 11.Memory read timing diagram

TIMING DIAGRAM OF MEMORY WRITE

Operation:

 It is used to send one byte into memory.

 It requires 3 T-States.

 During T1, ALE is high and contains lower address A0-A7 from AD0-AD7.

 A8-A15 contains higher byte of address.

 As it is memory operation, IO/M (bar) goes low.

 During T2, ALE goes low, WR (bar) goes low and Address is removed from AD0-AD7 and

then data appears on AD0-AD7 as in fig 12.

 Data remains on AD0-AD7 till WR (bar) is low.

Fig 12.Memory Write timing diagram

TIMING DIAGRAM OF IO READ

Operation:

 It is used to fetch one byte from an IO port.

 It requires 3 T-States.

 During T1, The Lower Byte of IO address is duplicated into higher order address bus A8-

A15 as in fig13.

 ALE is high and AD0-AD7 contains address of IO device.

 IO/M (bar) goes high as it is an IO operation.

 During T2, ALE goes low, RD (bar) goes low and data appears on AD0-AD7 as input from

IO device.

 During T3 Data remains on AD0-AD7 till RD (bar) is low.

Fig 13.IO Read timing diagram

TIMING DIAGRAM OF IO WRITE

Operation:

 It is used to writ one byte into IO device.

 It requires 3 T-States.

 During T1, the lower byte of address is duplicated into higher order address bus A8-A15

as in fig 14.

 ALE is high and A0-A7 address is selected from AD0-AD7.

 As it is an IO operation IO/M (bar) goes low.

 During T2, ALE goes low, WR (bar) goes low and data appears on AD0-AD7 to write data

into IO device.

 During T3, Data remains on AD0-AD7 till WR(bar) is low.

Fig 14. IO Write timing diagram

INTERRUPT:
An interrupt is a signal initiated by an external device to the microprocessor. Once this

signal is received, the microprocessor completes the execution of the current instruction and

responds to the interrupt

Interrupts

Hardware Interrupt (TRAP, RST 7.5, RST
6.5,

Software Interrupt (RST 0 to RST
7

 RST 5.5, INTR)

Vectored

Non-

Non- Maskable

Interrupt Vectored Interrupt Maskable

TRAP(RS
T

 Interrupt

 Interrupt

 RST 7.5,

4.5) INTR RST 6.5, TRAP

RST 7.5, RST 5.5,

 RST 6.5,

 INTR

 RST 5.5,

Fig 15. Structured classification of interrupts

SOFTWARE INTERRUPTS OF 8085

The software interrupts are program instructions. When the instruction is executed, the

processor executes an interrupt service routine stored in the vector address of the software

interrupt instruction. The software interrupts of 8085 are RST 0, RST 1, RST 2, RST 3, RST 4,

RST 5, RST 6 and RST 7.

The vector addresses of software interrupts are given in table below

The software interrupt instructions are included at the appropriate (or required) place in

the main program. When the processor encounters the software instruction, it pushes the

content of PC (Program Counter) to stack. Then loads the Vector address in PC and starts

executing the Interrupt Service Routine (ISR) stored in this vector address. At the end of ISR, a

return instruction - RET will be placed. When the RET instruction is executed, the processor

POP the content of stack to PC. Hence the processor control returns to the main program after

servicing the interrupt. Execution of ISR is referred to as servicing of interrupt. All software

interrupts of 8085 are vectored interrupts. The software interrupts cannot be masked and they

cannot be disabled. The software interrupts are RST0, RST1, … RST7 (8 Nos).

HARDWARE INTERRUPTS OF 8085

These are the interrupts provided as signals to the microprocessor. There are five

interrupt signals in 8085. They are Trap, RST 7.5, RST 6.5, RST 5.5 and INTR. The

priority of the interrupts is from TRAP to INTR. The program executed for the service of the

interrupting device is called the service routine.

TRAP

• This interrupt is a Non-Maskable interrupt (NMI). It is unaffected by any mask or interrupt

enable.

• TRAP is the highest priority and vectored interrupt(as vector address is fixed i.e. memory

location where to transfer control).

• TRAP interrupt is edge and level triggered. This means hat the TRAP must go high and

remain high until it is acknowledged.

• In sudden power failure, it executes a ISR and send the data from main memory to backup

memory.

• The signal, which overrides the TRAP, is HOLD signal. (i.e., If the processor receives

HOLD and TRAP at the same time then HOLD is recognized first and then TRAP is

recognized).

• There are two ways to clear TRAP interrupt.

1.By resetting microprocessor (External signal)

2.By giving a high TRAP ACKNOWLEDGE (Internal signal)

RST 7.5

• The RST 7.5 interrupt is a Maskable interrupt.

• It has the second highest priority.

• It is edge sensitive. i.e. Input goes to high and no need to maintain high state until it

recognized.

• Maskable interrupt. It is disabled by,

1.DI instruction

2.System or processor reset.

3.After reorganization of interrupt.

RST 6.5 and 5.5

• The RST 6.5 and RST 5.5 both are level triggered (i.e.) Input goes to high and stay high until it

recognized.

• Maskable interrupt. It is disabled by,

1. DI, SIM instruction

2. System or processor reset.

3. After reorganization of interrupt.

• Enabled by EI instruction.

• The RST 6.5 has the third priority whereas RST 5.5 has the fourth priority.

These interrupts are classified further into two classes based on the destination address and

response. Based on the service routine address, interrupts are classified in to vectored and non-

vectored interrupt.

Vectored Interrupt:

If the address of the service routine is known to the microprocessor, i.e. if the service

routine begins at a predefined address, then the interrupts are called vectored interrupts. The

vectored address is calculated as (nx8)16 where n is the number of RST.

For example:

The vectored address of RST 7.5 is 7.5 x 8=60.0

60 in hexadecimal number system is 003C. Therefore the branching address of RST 7.5 is

003C.

Interrupt Address

RST 7.5 003C

RST 6.5 0034

RST 5.5 002C

TRAP (RST 4.5) 0024

Non vectored Interrupt:

The address of the service routine is not known in prior to the microprocessor. It is sent by the

interrupting device.

 INTR

 INTA

 CD

Microprocessor
 INTA

Interrupting

Lower Order Address

Device

INTA

Higher Order Address

Fig 16.Work flow of Non vectored Interrupt

When the interrupt flipflop is enabled and INTR is high, microprocessor executes the current

instruction and makes INTA low. The interrupting device sends the service routine address to

the microprocessor as shown in fig 16.

Based on the flexibility to enable or disable interrupt, the interrupts are classified as

maskable interrupt and non maskable interrupt.

Maskable Interrupt: Even if the interrupt signals are high, microprocessor will respond to

these signals only when interrupt flip flop is enabled. Example RST 7.5, RST 6.5, RST 5.5,

INTR

Non-Maskable Interrupt:

Once the signal is enabled, the microprocessor immediately responds to this interrupt.

Example: TRAP

STACK

Stack is the upper part of the memory used for storing temporary information. It is a

Last In First Out Memory (LIFO) . In 8085, it is accessed using PUSH and POP instructions.

During pushing, the stack operates in a ―decrement then store‖ style. The stack pointer is

decremented first, then the information is placed on the stack. During poping, the stack

operates in a ―use then increment‖ style. The information is retrieved from the top of the

the stack and then the pointer is incremented. The SP pointer always points to ―the top of

the stack‖.

Program Status Word (PSW)

The 8085 recognizes one additional register pair called the PSW (Program Status Word).

This register pair is made up of the Accumulator and the Flags registers. It is possible to

push the PSW onto the stack, do whatever operations are needed, then POP it off of the

stack. The result is that the contents of the Accumulator and the status of the Flags are

returned to what they were before the operations were executed.

INTRODUCTION TO INTEL 8086 MICROPROCESSOR

Fundamental components of 8086/8088

The 8086/8088 microprocessor consists of four functional units.

1) Execution unit (EU): decodes and executes machine instructions.

2) Arithmetic and logic unit (ALU): performs math and logical operations on command

by the EU.

3) Internal storage (sometime called registers): is used for internal data storage.

4) Bus interface unit (BIU): handles all communications with the I/O via the system bus

and maintains instruction queue.

Block Diagram of 8086 Microprocessor

Execution Unit (EU)

The Execution Unit controls the activity within the processor. It is responsible for retrieving

binary machine-language instructions from the Instruction Queue maintained by the Bus

Interface Unit deciphering them, and seeing to it that the correct steps are performed within

the processor to carry out each instruction. If an instruction requires the use of data that is

stored internally, in a register, then the Execution Unit retrieves the data from the correct

register; if the instruction requires external data, from memory perhaps, then the EU

requests the data from the Bus Interface Unit.

Whenever an instruction calls for an arithmetic or logical function, the EU passes the data to

Arithmetic and Logic Unit together with a command telling the ALU what to do with the data.

The EU then accepts the resulting data from the ALU and sees to it that it is stored into

correct location (register or memory), as designated by the instruction.

Arithmetic and Logic Unit (ALU)

The ALU contains circuitry that is capable to perform arithmetic (+, -, *, /) operations and

logic operations (AND, OR, NOT, XOR) operations. As the ALU completes a requested

operation, it also controls individual bits of Flags register (sometimes called the program

status register). It sets (1) or clear (0) the correct bits to reflect specific characteristics of the

result of the operation, such as whether the result was zero or non-zero, whether it was

positive or negative, or if the result is too big to be stored in a byte or word. The EU checks

the status of those Flag bits whenever executing conditional jump instructions.

Bus Interface Unit (BIU)

BIU is a circuitry to response memory access and communicate with I/O devices. In most

microprocessors, these functions are performed by EU, and some times the EU has to be

idle due to different speed and serial execution.

In the design of the 8086/8088, Intel introduces BIU in order to avoid idle time and hold an

instruction queue such that instructions can be executed in a pipeline fashion.

System Bus and Other Support Hardware Devices in IBM PC

 In order to build a complete computer, there are a number of other hardware devices

(chips) in the IBM PC. Some of them are:

Memory

Up to one megabyte of system memory, including that which is on the system board,

the video adapter card, and any add-on memory boards.

Timer chip

Generates an external interrupt every fifty-five milliseconds to allow the PC to keep

track of real time (system data and time).

8259 Interrupt Controller chip

Processes hardware (external) interrupts.

6845 CRT Controller

Located on the video adapter card. Controls the video signals to the monitor.

NEC D765 or Intel 8272 Floppy Disk Controller

Located on the disk adapter card. Acts as an interface between the processor and

the disk drive.

Inter 8237 Direct Memory Access (DMA) Controller

Located on the system board. Used by the disk controller to transfer data between

disk and memory.

8250 Asynchronous Communications Element or Universal Asynchronous

Receiver/Transmitter (UART)

Located on each serial communications adapter card (COM1, COM2, etc.).

System Bus: is a series of conductive traces of signal lines on the system board, which is

used to communicate between 8086/8088 (cpu) and all other devices.

The system bus is made up of three functional parts:

1) Data bus

2) Address bus

3) Control bus

8086/8088 Memory I/O port1 I/O portn

BIU

To read from memory, for example, the Bus Interface Unit puts the correct memory address

onto the Address Bus and puts the command to read from memory onto the Control Bus. All

devices connected to the bus see this address and command simultaneously, but only the

memory-control circuitry respond to it. The memory-control circuitry is then responsible for

decoding the address, retrieving the data from the appropriate memory chips, and placing

the data onto the Data Bus for retrieval by the BIU.

To write to memory, the BIU puts the memory address onto the Address Bus, the byte of

data onto the Data Bus, and a command to write data onto memory of the control bus. The

memory-control circuitry decodes the command and the address, retrieves the data from the

Data Bus, and stores it into the correct memory chips. All other circuitry simply ignores the

command.

Communication with the many special-purpose microprocessors attached to the System Bus

is accomplished through I/O ports. I/O ports are used for the transfer of data between the

8086/8088 processor and the other support hardware within the system. The In and OUT

instructions tell the processor to input or output data through the I/O ports.

When executing an IN instruction, the BIU puts the I/O port address onto the Address Bus

and puts the command to input data onto the Control Bus. The circuitry on some peripheral

device attacked to the bus recognizes the red command and decodes the I/O port as the

address of some register within the peripheral device. It then retrieves the data from the

register and places it onto the Data Bus from which it is retrieved by the BIU and fed to the

Execution Unit within the processor.

To execute an OUT instruction, the BIU puts the command to output data onto the Control

Bus, and I/O address onto the Address Bus, and the data to be output onto the Data Bus.

The circuitry of a peripheral device is then responsible for recognizing the output command

and the I/O address and for retrieving the data from the data bus.

Memory and Internal Storage

Storage Elements

 Bits: The smallest storage element on any computer is the bit, which can have a

value of 0 or 1.

 Nibbles: A nibble is a sequence of 4 bits.

e.g.

 bit 3 bit 0

 Bytes: A byte is a sequence of 8 bits.

1 1 0 1

e.g.

 bit 7 bit 0

 Words: in 8086/8088, a word consists of 16 bits that can be viewed as:

1) A horizontal sequence of 16 bits or.

e.g.

 bit 15 bit 0

2) A vertical sequence of 2 bytes e.g..

 bit 15 bit 8

 bit 7 bit 0

 Note: in memory, the least significant bye (bits 0-7) is stored in lower numbered

memory location, and the most significant byte (bits 8-15) is stored in the next

higher numbered location.

 Double words: Two words represents a double word which is viewed as

1) A horizontal sequence of 32 bits or

2) A vertical sequence of 2 words or

3) A vertical sequence of 4 bytes

Note: in memory, its 0-7 bits would come first; bits 8-15 would be in the next higher

numbered byte and so on.

 Quadword: A quadword is 2 double words, hence 4 words or 8 bytes.

 Tenbytes: A tenbyte is a sequence of 10 bytes.

Memory

Computer memory consists of an ordered sequence of storage units (8-bits called bytes),

each with its own address.

 8086/8088’s memory is bytes-addressable, which means that each byte has its own

address, e.g. if A is the address of a word (16 bits), then A is actually the address of

1 1 1 0 0 0 1 1

1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1

1 1 1 0 0 0 1 1

1 1 1 0 0 0 1 1

the first byte (bits 0-7) of the word, A+1 is the address of the second byte (bits 8-15)

of the word, and A+2 is the address of the next word.

 Memory address space: (MAS): 220= 1,048,576= 1M(bytes) (address space: 0—220-

1, i.e.00000-fffff: in hexadecimal)

 Map of the memory address space (MAS)

The whole MAS is organized by a 216 * 24 matrix: there are 216 paragraphs, each of

which with 16 (24) bytes.

Paragraph numbers:

 0000

 0001

 0002

 FFFE

 FFFF

Figure 1: Map of the memory address space (MAS) of the 8086/8088.

 Hexadecimal number system

The hexadecimal number system uses sixteen characters to represent umbers:0

through 9 and A through F; A is worth ten, B is worth eleven, …, and F is fifteen. In

assembly program, the hexadecimal will be indicated by the letter h.

Example: 7Fh is the number 127(7*16+15*1) and its equivalent binary number is

01111111b.

The conversion between binary and hexadecimal is simple. To covert from

hexadecimal to binary: just represent each hexadecimal digit by four binary digits:

Example: 74Dh = 011101001101b

To convert from binary to hexadecimal: break the binary number into groups of four

digits, and convert each group into one hexadecimal digit:

 Example: 101001001110b = A4Fh

 Character representation

Each character is represented by a byte or two hexadecimal digits according to

ASCII code.

For example: ASCII code Letter

 41h A

 … … …

 … … …

… … …

 …

 …

00001 00000 0000E 0000F

FFFF1 FFFFE FFFF0

0002F 0002E 00021 00020

00C1E 0001F 00011 00010

FFFE0 FFFE1 FFFEE FFFEF

FFFFF

 42h B

 . .

 . .

 5Ah Z

 61h a

 62h b

 . .

 . .

 7Ah z

 30h 0

 . .

 . .

 39h 9

In assembly the ASCII representation of character can be defined by enclosing the

characters in paired single (‘) or double (“) quotes.

Example: ‘A’ ‘e’ “9”

Note ‘A’ = 41h, ‘a’ = 61h and “9” = 39h

 Segment-relative addresses.

1) There are 16 bits in a segment register. The content of the segment register

represents the paragraph number of the paragraph at which it begins.

2) All memory address are formed by segment-relative format which is

computed as follows:

Absolute address=(segment register)*16 + offset (16-bit) denoted by segment

register: where the offset can be content of a register (16-bit) and a 16-bit

value.

e.g.

where CS is the code segment register, IP is the instruction pointer register

Program stack

A program stack is a region of memory (RAM), which is defined by the assembly program.

The program stack is implemented by setting the SS (stack segment) register and by

initializing the SP (stack pointer) register to the byte immediately above the top of the sack

segment. Data is moved onto the stack in word- sized units by an operation called a push

CS: 1110000000000000

CS*16: 11100000000000000000 (Beginning of code segment)

IP: 0000000000001101 (offset)
--

CS : IP = 11100000000000001101 (Actual location (absolute address) in
memory)

and retrieved from the stack in word-sized units by an operation called pop in the reversed

order (last in- first out).

Figure: Stack operations

A Push operation decrements the SP register twice (-2) and put the word at SS : SP. A Pop

operation retrieves the word at SS: SP and increments the SP register twice (+2)

Example: A program stack is to use 100h bytes and SS= 58A1h, A = 1234h and B = 5678h.

Figure 3 shows the “empty” stock, where the initial value of SP register = 100h and the stack

starts at address of 58A10h and ends at address of 58B0Fh (100 bytes). Figure 4 shows the

stack after two Push operations: Push A and Push B, and Figure 5 shows the stack after two

Pushes and one Pop operations (Pop B).

Figure 3: Empty stack

Figure 4: Stack after two Pushes

Figure 5: Stack after two Pushes and one Pop

Internal Storage (Registers)

Registers: there are 14 registers, each 16 bits (bits 0-15) in length. 14 registers are divided

into five groups:

1) Four segment registers

2) Four data registers

3) Two pointer and two index registers

4) The instruction pointer register

5) The flag register (status register)

Status register

In 8086/8088 the status register is called the flag register. The flag register contains

information about the most recently executed instruction. There are 16 bits in register. But

only bits 0, 2, 4 and 6-11 are used

 OF IF SF AF PF CF

? ? ? ? ? ? ?

 DF TF ZF

1) CF (bit 0): the carry flag.

2) PF (bit 2): the parity flag.

3) AF (bit 4): the auxiliary flag.

4) ZF (bit 6): the zero flag.

5) SF (bit 7): the sign flag.

6) TF (bit 8): the trap flag.

7) IF (bit 9): the interrupt flag.

8) DF (bit 10): the direction flag.

9) OF (bit 11): the overflow flag.

Figure 6: Register Map of 8086/8088

Segment Registers

The 8086/8088 has four separate “work area” for the parts of an assembly language program: data, instruction, stack and extra

data. Each area is called a segment and has a register to associate with called segment register. Each segment can be up to

65,536 bytes, and two segments my overlap.

1) Data segment register (DS): indicates the beginning of the data segment.

2) Code segment register (CS): indicates the beginning of the code segment.

3) Stack segment register (SS): the stack is a part of memory. The stack is only word-addressable.

4) Extra data segment register (ES): points to the beginning of the extra data

Data Registers

There are four 16-bit data registers that are used to store data.

1) Accumulator: AX (used for arithmetic and logic instruction).

2) Base register: BX (stored data)

3) Count register: CX (is altered by the loop instruction).

4) Data register: DX (used for multiply and divide instructions). An “X” register can be subdivided into a high part (H, 8-15 bits)

and a low part (L, 0-7bits).

AH AL

BH BL

CH CL

DH DL

 15 8 7 0

Pointer And Index Registers

The segment registers point to the beginning of the various memory segments. The point registers are used to calculate offsets

(displacements) into these segments.

 There are two pointer registers:

1) Stack pointer (SP)

2) Base pointer (BP)

 Stack pointer (SP): SP is used to hold the current stack location. SS contains the address of the beginning of the stack

segment and SP contains the offset.

 A stack is a pile or list of items that can be accessed one at a time and from only one end, usually the items are removed

from the top and added to the top. Thus, the stack is also called last-in first-out (LIFO) list. In8086/8088, the stack is

implemented by a segment of the memory, each item is a 16-bit word (2 bytes). There are two registers associated with

stack: SS and SP.

 There are two basic stack operations in 8086/8088. a. PUSH (operand) it decreases the SP by 1 word (2 bytes), then

stores a word on the stack e.g. current SP=204. AX=0010. Execution of PUSH AX will result: SP=204-2=202 and store

0010 at memory location at address 202. b. POP (operand it removes the top word from the stack, and then add 1 word (2

bytes) to the SP.

 The base pointer (BP): BP is also can be used to point to offset within stack segment. Primarily it is used for base indexed

addressing modes.

 There are two index registers:

1) Source index register (SI)

AX

BX

CX

DX

2) Destination index register (DI) there is no significance to the words source and destination, and SI and DI can be

used interchangeably. Index registers are used in the same way subscripts that are used in high-level language.

That enable us to access the elements in an array or table.

Instruction Pointer

The instruction pointer (IP) contains the offset address in the code segment of the next instruction to be executed. The absolute

address of the next instruction = CS : IP.

UNIT 2 PROGRAMMING 8085 MICROPROCESSOR
8085 assembly language programming, addressing modes, 8085 instruction set, Instruction

formats, Instruction Classification: data transfer, arithmetic operations, logical operations,

branching operations, machine control —Stack and subroutines, Example Programs

INSTRUCTION SET OF 8085

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions that a microprocessor supports is called Instruction Set.

Since the 8085 is an 8-bit device it can have up to 28 (256) instructions. However, the 8085 only

uses 246 combinations that represent a total of 74 instructions. Each instruction has two parts.

The first part is the task or operation to be performed. This part is called the ―opcode‖

(operation code). The second part is the data to be operated on. This part is called the

―operand‖.

Instruction Size

• Depending on the operand type, the instruction may have different sizes. It will occupy a

different number of memory bytes.

– Typically, all instructions occupy one byte only.

– The exception is any instruction that contains immediate data or a memory address.

• Instructions that include immediate data use two bytes.

– One for the opcode and the other for the 8-bit data.
• Instructions that include a memory address occupy three bytes.

– One for the opcode, and the other two for the 16-bit address.

Classification of Instruction Set

• Data Transfer Instruction

• Arithmetic Instructions

• Logical Instructions

• Branching Instructions

• Machine Control Instructions

DATA TRANSFER INSTRUCTIONS

Opcode Operand Description

MOV Rd, Rs Copy from source to

 M, Rs destination.

 Rd, M

This instruction copies the contents of the source register into the destination register. The

contents of the source register are not altered. If one of the operands is a memory location, its

location is specified by the contents of the HL registers. Example: MOV B, C or MOV B, M.

Opcode Operand Description

MVI Rd, Data

 M, Data Move immediate 8-bit

The 8-bit data is stored in the destination register or memory. If the operand is a memory

location, its location is specified by the contents of the H-L registers. Example: MVI B, 57H or

MVI M, 57H.

Opcode Operand Description

LDA 16-bit address Load Accumulator

The contents of a memory location, specified by a 16- bit address in the operand, are copied to

the accumulator. The contents of the source are not altered. Example: LDA 2034H

Opcode Operand Description

LDAX B/D Register Pair Load accumulator indirect

The contents of the designated register pair point to a memory location. This instruction copies

the contents of that memory location into the accumulator. The contents of either the register

pair or the memory location are not altered. Example: LDAX B

Opcode Operand Description

STA 16-bit address Store accumulator direct

The contents of accumulator are copied into the memory location specified by the operand.

Example: STA 2500 H

Opcode Operand Description

STAX Reg. pair Store accumulator indirect

The contents of accumulator are copied into the memory location specified by the contents of

the register pair. Example: STAX B

Opcode Operand Description

SHLD 16-bit address Store H-L registers direct

The contents of register L are stored into memory location specified by the 16-bit address. The

contents of register H are stored into the next memory location. Example: SHLD 2550 H

Opcode Operand Description

XCHG None Exchange H-L with D-E

The contents of register H are exchanged with the contents of register D. The contents of

register L are exchanged with the contents of register E. Example: XCHG

Opcode Operand Description

SPHL None Copy H-L pair to the Stack

 Pointer (SP)

This instruction loads the contents of H-L pair into SP. Example: SPHL

Opcode Operand Description

XTHL None Exchange H–L with top of

 stack

The contents of L register are exchanged with the location pointed out by the contents of the

SP. The contents of H register are exchanged with the next location (SP + 1). Example: XTHL

Opcode Operand Description

PCHL None Load program counter with

 H-L contents

The contents of registers H and L are copied into the program counter (PC). The contents of H

are placed as the high-order byte and the contents of L as the low-order byte. Example: PCHL

Opcode Operand Description

PUSH Reg. pair Push register pair onto

 stack

The contents of register pair are copied onto stack. SP is decremented and the contents of high-

order registers (B, D, H, A) are copied into stack. SP is again decremented and the contents of

low-order registers (C, E, L, Flags) are copied into stack. Example: PUSH B

Opcode Operand Description

POP Reg. pair Pop stack to register pair

The contents of top of stack are copied into register pair. The contents of location pointed

out by SP are copied to the low-order register (C, E, L, Flags). SP is incremented and the

contents of location are copied to the high-order register (B, D, H, A). Example: POP H

Opcode Operand Description

OUT 8-bit port address Copy data from

 accumulator to a port with

 8- bit address

The contents of accumulator are copied into the I/O port. Example: OUT 78 H

Opcode Operand Description

IN 8-bit port address Copy data to accumulator

 from a port with 8- bit

 address

The contents of I/O port are copied into accumulator. Example: IN 8C H

1. ARITHMETIC INSTRUCTIONS

These instructions perform arithmetic operations such as addition, subtraction, increment, and

decrement.

Addition

Any 8-bit number, or the contents of register, or the contents of memory location can be added

to the contents of accumulator. The result (sum) is stored in the accumulator. No two other 8-bit

registers can be added directly. Example: The contents of register B cannot be added directly to

the contents of register C.

Opcode Operand Description

ADD R Add register or memory to

 M accumulator

The contents of register or memory are added to the contents of accumulator. The result

is stored in accumulator. If the operand is memory location, its address is specified by H-L pair.

All flags are modified to reflect the result of the addition. Example: ADD B or ADD M

Opcode Operand Description

ADC R Add register or memory to

 M accumulator with carry

The contents of register or memory and Carry Flag (CY) are added to the contents of

accumulator. The result is stored in accumulator. If the operand is memory location, its address

is specified by H-L pair. All flags are modified to reflect the result of the addition. Example: ADC

B or ADC M

Opcode Operand Description

ADI 8-bit data Add immediate to

 accumulator

The 8-bit data is added to the contents of accumulator. The result is stored in accumulator. All

flags are modified to reflect the result of the addition. Example: ADI 45

H

Opcode Operand Description

ACI 8-bit data Add immediate to

 accumulator with carry

The 8-bit data and the Carry Flag (CY) are added to the contents of accumulator. The

result is stored in accumulator. All flags are modified to reflect the result of the addition.

Example: ACI 45 H

Opcode Operand Description

DAD Reg. pair Add register pair to H-L

 pair

The 16-bit contents of the register pair are added to the contents of H-L pair. The result is

stored in H-L pair. If the result is larger than 16 bits, then CY is set.No other flags are changed.

Example: DAD B

Subtraction

Any 8-bit number, or the contents of register, or the contents of memory location can be

subtracted from the contents of accumulator.The result is stored in the accumulator.Subtraction

is performed in 2’s complement form. If the result is negative, it is stored in 2’s complement

form. No two other 8-bit registers can be subtracted directly.

Opcode Operand Description

SUB R Subtract register or

 M memory from accumulator

The contents of the register or memory location are subtracted from the contents of the

accumulator. The result is stored in accumulator. If the operand is memory location, its address

is specified by H-L pair. All flags are modified to reflect the result of subtraction. Example: SUB

B or SUB M

Opcode Operand Description

SBB R Subtract register or

 M memory from accumulator

 with borrow

The contents of the register or memory location and Borrow Flag (i.e. CY) are subtracted from
the contents of the accumulator. The result is stored in accumulator. If the operand is memory
location, its address is specified by H-L pair. All flags are modified to reflect the result of
subtraction. Example: SBB B or SBB M

Opcode Operand Description

SUI 8-bit data Subtract immediate from

 accumulator

The 8-bit data is subtracted from the contents of the accumulator.The result is stored in

accumulator. All flags are modified to reflect the result of subtraction. Example: SUI 45

H

Opcode Operand Description

SBI 8-bit data Subtract immediate from

 accumulator with borrow

The 8-bit data and the Borrow Flag (i.e. CY) is subtracted from the contents of the accumulator.

The result is stored in accumulator.All flags are modified to reflect the result of subtraction.

Example: SBI 45 H

Increment/Decrement

The 8-bit contents of a register or a memory location can be incremented or decremented by

1.The 16-bit contents of a register pair can be incremented or decremented by 1. Increment or

decrement can be performed on any register or a memory location.

Opcode Operand Description

INR R Incrementregisteror

 M memory by 1

The contents of register or memory location are incremented by 1. The result is stored in the

same place. If the operand is a memory location, its address is specified by the contents of H-L

pair. Example: INR B or INR M

Opcode Operand Description

INX R Increment register pair by

 1

The contents of register pair are incremented by 1. The result is stored in the same place.

Example: INX H

Opcode Operand Description

DCR R Decrement register or

 M memory by 1

The contents of register or memory location are decremented by 1. The result is stored in the

same place. If the operand is a memory location, its address is specified by the contents of H-L

pair. Example: DCR B or DCR M

Opcode Operand Description

DCX R Decrement register pair by

 1

The contents of register pair are decremented by 1. The result is stored in the same place.

Example: DCX H

2. LOGICAL INSTRUCTIONS

These instructions perform logical operations on data stored in registers, memory and status

flags. The logical operations are:

 AND

 OR

 XOR

 Rotate

 Compare

 Complement

AND, OR, XOR

Any 8-bit data, or the contents of register, or memory location can logically have

 AND operation

 OR operation

 XOR operation

with the contents of accumulator. The result is stored in accumulator.

Opcode Operand Description

ANA R Logical AND register or

 M memory with accumulator

The contents of the accumulator are logically ANDed with the contents of register or memory.

The result is placed in the accumulator. If the operand is a memory location, its address is

specified by the contents of H-L pair. S, Z, P are modified to reflect the result of the operation.

CY is reset and AC is set. Example: ANA B or ANA M.

Opcode Operand Description

ANI 8-bit data Logical AND immediate

 with accumulator

The contents of the accumulator are logically ANDed with the 8-bit data. The result is placed in

the accumulator. S, Z, P are modified to reflect the result.CY is reset, AC is set. Example: ANI

86H.

Opcode Operand Description

ORA R Logical OR register or

 M memory with accumulator

The contents of the accumulator are logically ORed with the contents of the register or

memory. The result is placed in the accumulator. If the operand is a memory location, its

address is specified by the contents of H-L pair.S, Z, P are modified to reflect the result. CY and

AC are reset. Example: ORA B or ORA M.

Opcode Operand Description

ORI 8-bit data Logical OR immediate with

 accumulator

The contents of the accumulator are logically ORed with the 8-bit data. The result is placed in

the accumulator. S, Z, P are modified to reflect the result.CY and AC are reset. Example: ORI

86H.

Opcode Operand Description

XRA R Logical XOR register or

 M memory with accumulator

The contents of the accumulator are XORed with the contents of the register or memory. The

result is placed in the accumulator. If the operand is a memory location, its address is specified

by the contents of H-L pair. S, Z, P are modified to reflect the result of the operation. CY and AC

are reset. Example: XRA B or XRA M.

Opcode Operand Description

XRI 8-bit data XOR immediate with

 accumulator

The contents of the accumulator are XORedwith the 8-bit data. The result is placed in the

accumulator. S, Z, P are modified to reflect the result. CY and AC are reset. Example: XRI 86H.

Rotate

Each bit in the accumulator can be shifted either left or right to the next position as shown in

fig5.

Opcode Operand Description

RLC None Rotate accumulator left

Fig 5. : Work flow of RLC

Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the position

of D0 as well as in the Carry flag. CY is modified according to bit D7. S, Z, P, AC are not

affected. Example: RLC.

Opcode Operand Description

RRC None Rotate accumulator right

Each binary bit of the accumulator is rotated right by one position. Bit D0 is placed in the

position of D7 as well as in the Carry flag. CY is modified according to bit D0. S, Z, P, AC are

not affected. Example: RRC.

Opcode Operand Description

RAL None Rotate accumulator left

 through carry

ig 6. : Work flow of RAL

Each binary bit of the accumulator is rotated left by one position through the Carry flag

as shown in fig 6. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the least

significant position D0. CY is modified according to bit D7. S, Z, P, AC are not affected.

Example: RAL.

Opcode Operand Description

RAR None Rotate accumulator right

 through carry

Each binary bit of the accumulator is rotated right by one position through the Carry flag. Bit D0

is placed in the Carry flag, and the Carry flag is placed in the most significant position D7. CY is

modified according to bit D0. S, Z, P, AC are not affected. Example: RAR.

COMPARE

Any 8-bit data, or the contents of register, or memory location can be compares for:

 Equality

 Greater Than

 Less Than

with the contents of accumulator. The result is reflected in status flags.

Opcode Operand Description

CMP R Compareregisteror

 M memory with accumulator

The contents of the operand (register or memory) are compared with the contents of the

accumulator. Both contents are preserved .The result of the comparison is shown by setting the

flags of the PSW as follows:

 if (A) < (reg/mem): carry flag is set

 if (A) = (reg/mem): zero flag is set

 if (A) > (reg/mem): carry and zero flags are reset.

Example: CMP B or CMP M

Opcode Operand Description

CPI 8-bit data Compare immediate with

 accumulator

The 8-bit data is compared with the contents of accumulator.The values being compared

remain unchanged. The result of the comparison is shown by setting the flags of the PSW as

follows:

 if (A) < data: carry flag is set

 if (A) = data: zero flag is set

 if (A) > data: carry and zero flags are reset

Example: CPI 89H
COMPLEMENT

The contents of accumulator can be complemented. Each 0 is replaced by 1 and each 1 is

replaced by 0.

Opcode Operand Description

CMA None Complement accumulator

The contents of the accumulator are complemented. No flags are affected. Example: CMA.

Opcode Operand Description

CMC None Complement carry

The Carry flag is complemented. No other flags are affected. Example: CMC.

Opcode Operand Description

STC None Set carry

The Carry flag is set to 1. No other flags are affected. Example: STC.

3. BRANCHING INSTRUCTIONS

The branching instruction alters the normal sequential flow. These instructions alter either

unconditionally or conditionally.

Branch operations are of two types:
Unconditional branch-- Go to a new location no matter what.

Conditional branch-- Go to a new location if the condition is true.

Opcode Operand Description

JMP 16-bit address Jump unconditionally

The program sequence is transferred to the memory location specified by the 16-bit address

given in the operand.

Example: JMP 2034 H.

Opcode Operand Description

Jx 16-bit address Jump conditionally

The program sequence is transferred to the memory location specified by the 16-bit address

given in the operand based on the specified flag of the PSW. Replace x with condition

Example: JZ 2034 H.

Jump conditionally

Opcode Description Status flag

JC Jump if Carry CY = 1

JNC Jump if no carry CY=0

JP Jump if positive S=0

JM Jump if minus S=1

JZ Jump if Zero Z=1

JNZ Jump if no zero Z=0

JPE Jump if parity even P=1

JPO Jump if parity odd P=0

Opcode Operand Description

CALL 16-bit address Call unconditionally

The program sequence is transferred to the memory location specified by the 16-bit address

given in the operand. Before the transfer, the address of the next instruction after CALL (the

contents of the program counter) is pushed onto the stack.

Example: CALL 2034 H.

Opcode Operand Description

Cx 16-bit address Call conditionally

The program sequence is transferred to the memory location specified by the 16-bit

address given in the operand based on the specified flag of the PSW. Before the transfer, the

address of the next instruction after the call (the contents of the program counter) is pushed

onto the stack. Replace x with condition

Example: CZ 2034 H.

Call Conditionally

Opcode Description Status flag

CC Call if carry CY=1

CNC Call if no carry CY=0

CP Call if positive S=0

CM Call if minus S=1

CZ Call if Zero Z=1

CNZ Call if no zero Z=0

CPE Call if parity even P=1

CPO Call if parity odd P=0

Opcode Operand Description

RET None Return unconditionally

The program sequence is transferred from the subroutine to the calling program. The two bytes

from the top of the stack are copied into the program counter, and program execution begins at

the new address.

Example: RET.

Opcode Operand Description

Rx None Call conditionally

The program sequence is transferred from the subroutine to the calling program based on the

specified flag of the PSW. The two bytes from the top of the stack are copied into the program

counter, and program execution begins at the new address. Example: RZ. Replace x with

condition

RETURN CONDITIONALLY

Opcode Description Status flag

RC Return if carry CY=1

RNC Return if no carry CY=0

RP Return Call if positive S=0

RM Return if minus S=1

RZ Return if Zero Z=1

RNZ Return if no zero Z=0

RPE Return if parity even P=1

RPO Return if parity odd P=0

Opcode Operand Description

RST 0-7 Restart (Software

 Interrupts)

The RST instruction jumps the control to one of eight memory locations depending upon the

number. These are used as software instructions in a program to transfer program execution to

one of the eight locations. Example: RST 3.

RESTART Address table

Instructions Restart address

RST 0 0000 H

RST 1 0008 H

RST 2 0010 H

RST 3 0018 H

RST 4 0020 H

RST 5 0028 H

RST 6 0030 H

RST 7 0038 H

4. MACHINE CONTROL INSTRUCTIONS

The control instructions control the operation of microprocessor.

Opcode Operand Description

NOP None No operation

No operation is performed. The instruction is fetched and decoded but no operation is executed.

Usually used for delay or to replace instructions during debugging.

Example: NOP

Opcode Operand Description

HLT None Halt

The CPU finishes executing the current instruction and halts any further execution. An interrupt

or reset is necessary to exit from the halt state. Example: HLT

Opcode Operand Description

DI None Disable interrupt

The interrupt enable flip-flop is reset and all the interrupts except the TRAP are disabled.

No flags are affected.

Example: DI

Opcode Operand Description

EI None Enable interrupt

The interrupt enable flip-flop is set and all interrupts are enabled. No flags are affected. This

instruction is necessary to re-enable the interrupts (except TRAP).

Example: EI

Opcode
Operand Description

RIM None Read Interrupt Mask

This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5, 5.5 and read

serial data input bit. The instruction loads eight bits in the accumulator with the following

interpretations.

Example: RIM

RIM Instruction

Opcode Operand Description

SIM None Set Interrupt Mask

This is a multipurpose instruction and used to implement the 8085 interrupts 7.5, 6.5, 5.5, and

serial data output. The instruction interprets the accumulator contents as follows.

Example: SIM

SIM Instruction

Write an ALP to alter the contents of the flag register using STACK:

LXI SP 0000

PUSH PSW

POP H

MOV A L

MOV L A

PUSH H
POP PSW

Subroutines

A subroutine is a group of instructions that will be used repeatedly in different locations of the

program. Rather than repeat the same instructions several times, they can be grouped into a

subroutine that is called from the different locations. In Assembly language, a subroutine can

exist anywhere in the code. However, it is customary to place subroutines separately from the

main program. The 8085 has two instructions for dealing with subroutines. The CALL instruction

is used to redirect program execution to the subroutine. The RET instruction is used to return

the execution to the calling routine.

CALL

CALL 4000H (3 byte instruction)

When CALL instruction is fetched, the MP knows that the next two Memory location contains

16bit subroutine address in the memory.

Fig 17.Work flow of CALL instruction

MP Reads the subroutine address from the next two memory location and stores the higher

order 8bit of the address in the W register and stores the lower order 8bit of the address in the Z

register. Push the address of the instruction immediately following the CALL onto the stack

[Return address]. Loads the program counter with the 16-bit address supplied with the CALL

instruction from WZ register as shown in fig 17.

RET

RET (1 byte instruction)

Retrieve the return address from the top of the stack. Load the program counter with the return

address as seen in fig 18.

Fig 18.Work flow of RET instruction

Write an ALP to ON and OFF 8 LEDs connected to 8085 MP.

START: MVI A,FF

OUT 00

CALL DELAY

MVI A,00

OUT 00

CALL DELAY

JUMP START

DELAY: MVI B, 10H ; 7 T-States

LOOP2: MVI C, FFH ; 7 T-States

LOOP1: DCR C ; 4 T-States

 JNZ LOOP1 ; 10 T-States

 DCR B ; 4 T-States

 JNZ LOOP2 ; 10 T-States

RET

The calculation remains the same except that it the formula must be applied recursively to

each loop. Start with the inner loop, then plug that delay in the calculation of the outer loop.

•Delay of inner loop

–TO1 = 7 T-States

•MVI C, FFH instruction
–TL1 = (255 X 14) - 3 = 3567 T-States

•14 T-States for the DCR C and JNZ instructions repeated 255 times (FF16 =

25510) minus 3 for the final JNZ.

–TLOOP1 = 7 + 3567 = 3574 T-States

•Delay of outer loop

–TO2 = 7 T-States

•MVI B, 10H instruction
–TL1 = (16 X (14 + 3574)) - 3 = 57405 T-States

•14 T-States for the DCR B and JNZ instructions and 3574 T-States for loop1

repeated 16 times (1016 = 1610) minus 3 for the final JNZ.
–TDelay = 7 + 57405 = 57412 T-States

•Total Delay

–TDelay = 57412 X 0.5 Sec = 28.706 mSec

8085 PROGRAMS

Programs:

ADDITION OF TWO 8 BIT NUMBERS

AIM:

To perform addition of two 8 bit numbers using 8085.

ALGORITHM:

1) Start the program by loading the first data into Accumulator.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Store the value of sum and carry in memory location.
7) Terminate the program.

PROGRAM:

MVI C, 00 Initialize C register to 00

LDA 4150 Load the value to Accumulator.

MOV B, A
Move the content of Accumulator to B
register.

LDA 4151 Load the value to Accumulator.

ADD B Add the value of register B to A

JNC LOOP Jump on no carry.

INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (SUM).

MOV A, C Move content of register C to Acc.

STA 4153 Store the value of Accumulator (CARRY)

HLT Halt the program.

OBSERVATION:

Input: 80 (4150)

 80 (4251)

Output: 00 (4152)

 01 (4153)

RESULT:

Thus the program to add two 8-bit numbers was executed.

SUBTRACTION OF TWO 8 BIT NUMBERS

AIM:

To perform the subtraction of two 8 bit numbers using 8085.

ALGORITHM:

• Start the program by loading the first data into Accumulator.
• Move the data to a register (B register).
• Get the second data and load into Accumulator.
• Subtract the two register contents.
• Check for carry.
• If carry is present take 2’s complement of Accumulator.
• Store the value of borrow in memory location.
• Store the difference value (present in Accumulator) to a memory
• location and terminate the program.

PROGRAM:

MVI C, 00 Initialize C to 00

LDA 4150 Load the value to Acc.

MOV B, A
Move the content of Acc to B
register.

LDA 4151 Load the value to Acc.

SUB B

JNC LOOP Jump on no carry.
CMA Complement Accumulator contents.

INR A Increment value in Accumulator.

INR C Increment value in register C

LOOP: STA 4152 Store the value of A-reg to memory address.

MOV A, C Move contents of register C to Accumulator.

STA

4153 Store the value of Accumulator memory

address.

HLT Terminate the program.

OBSERVATION:

Input: 06 (4150)

02 (4251)
Output: 04 (4152)

01 (4153)

RESULT:

Thus the program to subtract two 8-bit numbers was executed.

MULTIPLICATION OF TWO 8 BIT NUMBERS

AIM:

To perform the multiplication of two 8 bit numbers using 8085.

ALGORITHM:

1) Start the program by loading HL register pair with address of memory location.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Increment the value of carry.
7) Check whether repeated addition is over and store the value of product and carry in

memory location.
8) Terminate the program.

PROGRAM:

 MVI D, 00 Initialize register D to 00

 MVI A, 00 Initialize Accumulator content to 00

 LXI H, 4150

 MOV B, M Get the first number in B - reg

 INX H

 MOV C, M Get the second number in C- reg.

LOOP: ADD B
Add content of A - reg to register
B.

 JNC NEXT Jump on no carry to NEXT.

 INR D Increment content of register D

NEXT: DCR C Decrement content of register C.

 JNZ LOOP Jump on no zero to address

 STA 4152 Store the result in Memory

 MOV A, D

 STA 4153 Store the MSB of result in Memory

 HLT Terminate the program.

OBSERVATION:

 Input: FF (4150)

 FF (4151)

 Output: 01 (4152)

 FE (4153)

RESULT:Thus the program to multiply two 8-bit numbers was executed.

DIVISION OF TWO 8 BIT NUMBERS

AIM:

To perform the division of two 8 bit numbers using 8085.

ALGORITHM:

1) Start the program by loading HL register pair with address of memory location.
2) Move the data to a register(B register).
3) Get the second data and load into Accumulator.
4) Compare the two numbers to check for carry.
5) Subtract the two numbers.
6) Increment the value of carry .
7) Check whether repeated subtraction is over and store the value of product and carry

in memory location.
8) Terminate the program.

PROGRAM:

 LXI H, 4150

 MOV B, M Get the dividend in B – reg.

 MVI C, 00 Clear C – reg for qoutient

 INX H

 MOV A, M Get the divisor in A – reg.

NEXT: CMP B

Compare A - reg with register

B.

 JC LOOP Jump on carry to LOOP

 SUB B Subtract A – reg from B- reg.

 INR C
Increment content of register
C.

 JMP NEXT Jump to NEXT

LOOP: STA 4152
Store the remainder in
Memory

 MOV A, C

 STA 4153 Store the quotient in memory

 HLT Terminate the program.

OBSERVATION:

 Input: FF (4150)

 FF (4251)

 Output: 01 (4152) ---- Remainder

 FE (4153) ---- Quotient

RESULT:

Thus the program to divide two 8-bit numbers was executed.

LARGEST NUMBER IN AN ARRAY OF DATA

AIM:

To find the largest number in an array of data using 8085 instruction set.

ALGORITHM:

1) Load the address of the first element of the array in HL pair
2) Move the count to B – reg.
3) Increment the pointer
4) Get the first data in A – reg.
5) Decrement the count.
6) Increment the pointer
7) Compare the content of memory addressed by HL pair with that of A - reg.
8) If Carry = 0, go to step 10 or if Carry = 1 go to step 9
9) Move the content of memory addressed by HL to A – reg.
10) Decrement the count
11) Check for Zero of the count. If ZF = 0, go to step 6, or if ZF = 1 go to next step.
12) Store the largest data in memory.
13) Terminate the program.

PROGRAM:

 LXI H,4200 Set pointer for array

 MOV B,M Load the Count

 INX H

 MOV A,M Set 1st element as largest data

 DCR B Decrement the count

LOOP: INX H

 CMP M If A- reg > M go to AHEAD

 JNC AHEAD

 MOV A,M Set the new value as largest

AHEAD: DCR B

 JNZ LOOP

Repeat comparisons till count =

0

 STA 4300 Store the largest value at 4300

 HLT

OBSERVATION:

 Input: 05 (4200) ----- Array Size

 0A (4201)

 F1 (4202)

1F (4203)
26 (4204) FE

(4205)

Output:
FE
(4300)

RESULT:

Thus the program to find the largest number in an array of data was executed

SMALLEST NUMBER IN AN ARRAY OF DATA

AIM:

To find the smallest number in an array of data using 8085 instruction set.

ALGORITHM:

1) Load the address of the first element of the array in HL pair
2) Move the count to B – reg.
3) Increment the pointer
4) Get the first data in A – reg.
5) Decrement the count.
6) Increment the pointer
7) Compare the content of memory addressed by HL pair with that of A - reg.
8) If carry = 1, go to step 10 or if Carry = 0 go to step 9
9) Move the content of memory addressed by HL to A – reg.
10) Decrement the count
11) Check for Zero of the count. If ZF = 0, go to step 6, or if ZF = 1 go to next step.

12) Store the smallest data in memory.
13) Terminate the program.

PROGRAM:

LXI H,4200
Set pointer for
array

MOV B,M Load the Count

INX H

 MOV A,M Set 1st element as largest data

 DCR B Decrement the count

LOOP: INX H

 CMP M If A- reg < M go to AHEAD

 JC AHEAD

 MOV A,M Set the new value as smallest

AHEAD: DCR B

 JNZ LOOP

Repeat comparisons till count =

0

 STA 4300 Store the largest value at 4300

 HLT

OBSERVATION:

 Input: 05 (4200) ----- Array Size

 0A (4201)

 F1 (4202)

 1F (4203)

 26 (4204)

 FE (4205)

 Output: 0A (4300)

RESULT:

Thus the program to find the smallest number in an array of data was executed

ARRANGE AN ARRAY OF DATA IN ASCENDING ORDER

AIM:

To write a program to arrange an array of data in ascending order

ALGORITHM:

1. Initialize HL pair as memory pointer
2. Get the count at 4200 into C – register
3. Copy it in D – register (for bubble sort (N-1) times required)
4. Get the first value in A – register
5. Compare it with the value at next location.
6. If they are out of order, exchange the contents of A –register and Memory
7. Decrement D –register content by 1
8. Repeat steps 5 and 7 till the value in D- register become zero
9. Decrement C –register content by 1
10. Repeat steps 3 to 9 till the value in C – register becomes zero

PROGRAM:

 LXI H,4200

 MOV C,M

 DCR C

REPEAT: MOV D,C

 LXI H,4201

LOOP: MOV A,M

 INX H

 CMP M

 JC SKIP

 MOV B,M

 MOV M,A

 DCX H

 MOV M,B

 INX H

SKIP: DCR D

 JNZ LOOP

 DCR C

 JNZ REPEAT

 HLT

OBSERVATION:

Input: 4200
05 (Array
Size)

 4201 05

 4202 04

 4203 03

 4204 02

 4205 01

Output: 4200
05(Array
Size)

 4201 01

 4202 02

 4203 03

 4204 04

 4205 05

RESULT:

Thus the given array of data was arranged in ascending order.

ARRANGE AN ARRAY OF DATA IN DESCENDING ORDER

AIM:

To write a program to arrange an array of data in descending order

ALGORITHM:

1. Initialize HL pair as memory pointer
2. Get the count at 4200 into C – register
3. Copy it in D – register (for bubble sort (N-1) times required)
4. Get the first value in A – register
5. Compare it with the value at next location.
6. If they are out of order, exchange the contents of A –register and Memory
7. Decrement D –register content by 1
8. Repeat steps 5 and 7 till the value in D- register become zero
9. Decrement C –register content by 1
10. Repeat steps 3 to 9 till the value in C – register becomes zero

PROGRAM:

 LXI
H,420
0

 MOV C,M

 DCR C

REPEAT: MOV D,C

 LXI

H,420

1

LOOP: MOV A,M

 INX H

 CMP M

 JNC SKIP

 MOV B,M

 MOV M,A

 DCX H

 MOV M,B

 INX H

SKIP: DCR D

 JNZ LOOP

 DCR C

 JNZ REPEAT

 HLT

OBSERVATION:

Input: 4200
05 (Array
Size)

 4201 01

 4202 02

 4203 03

 4204 04

 4205 05

Output: 4200
05(Array
Size)

 4201 05

 4202 04

 4203 03

 4204 02

 4205 01

RESULT:

Thus the given array of data was arranged in descending order.

UNIT 3 PERIPHERALS AND INTERFACING 9 Hrs.
Introduction, memory and I/O interfacing, data transfer schemes, Interface ICs’- USART (8251),

programmable peripheral interface (8255), programmable interrupt controller (8259),

programmable counter/interval timer (8254), Analog to Digital Converter (ADC), and Digital to

Analog Converter (DAC).

8255 - PROGRAMMABLE PERIPHERAL INTERFACE (PPI)

The Intel 8255 (or i8255) Programmable PeripheralInterface (PPI) chip is a peripheral

chip, is used to give the CPU access to programmable parallel I/O. It can be programmable to
transfer data under various conditions from simple I/O to interrupt I/O. it is flexible versatile and
economical (when multiple I/O ports are required) but some what complex. It is an important
general purpose I/O device that can be used with almost any microprocessor.

Fig1: Pin diagram of 8255

I. Functional block of 8255 – Programmable Peripheral Interface (PPI)

The 8255A has 24 I/O pins that can be grouped primarily in two 8-bit parallel ports: A

and B with the remaining eight bits as port C. The eight bits of port C can be used as individual

bits or be grouped in to 4-bit ports: CUpper (Cu) and CLower (CL) as in Figure 2. The function

of these ports is defined by writing a control word in the control register as shown in Figure 3

Fig 3. Control word Register format

Data Bus Buffer

This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data bus.

Data is transmitted or received by the buffer upon execution of input or output instructions by

the CPU. Control words and status information are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data and

Control or Status words. It accepts inputs from the CPU Address and Control busses and in

turn, issues commands to both of the Control Groups.

(CS) Chip Select. A "low" on this input pin enables the communication between the 8255 and

the CPU.

(RD) Read. A "low" on this input pin enables 8255 to send the data or status information to the

CPU on the data bus. In essence, it allows the CPU to "read from" the 8255.

(WR) Write. A "low" on this input pin enables the CPU to write data or control words into the

8255.

(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD

and WR inputs, control the selection of one of the three ports or the control word register. They

are normally connected to the least significant bits of the address bus (A0 and A1).

(RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports (A, B,

C) are set to the input mode.

 A1 A0 SELECTION

 0 0 PORT A

 0 1 PORT B

 1 0 PORT C

 1 1 CONTROL

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence,

the CPU "outputs" a control word to the 8255. The control word contains information such as

"mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 8255. Each of

the Control blocks (Group A and Group B) accepts "commands" from the Read/Write Control

logic, receives "control words" from the internal data bus and issues the proper commands to its

associated ports.

Ports A, B, and C

The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety of

functional characteristics by the system software but each has its own special features or

"personality" to further enhance the power and flexibility of the 8255.

Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and "pull-

down" bus-hold devices are present on Port A.

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This

port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit

latch and it can be used for the control signal output and status signal inputs in conjunction with

ports A and B.

II. Operational modes of 8255

There are two basic operational modes of 8255:

1. Bit set/reset Mode (BSR Mode).
2. Input/Output Mode (I/O Mode).

The two modes are selected on the basis of the value present at the D7 bit of the Control Word
Register. When D7 = 1, 8255 operates in I/O mode and when D7 = 0, it operates in the BSR
mode.

1. Bit set/reset (BSR) mode

The Bit Set/Reset (BSR) mode is applicable to port C only. Each line of port C (PC0 - PC7) can

be set/reset by suitably loading the control word register as shown in Figure 4. BSR mode and

I/O mode are independent and selection of BSR mode does not affect the operation of other

ports in I/O mode.

Fig 4: 8255 Control register format for BSR mode

 D7 bit is always 0 for BSR mode.
 Bits D6, D5 and D4 are don't care bits.
 Bits D3, D2 and D1 are used to select the pin of Port C.
 Bit D0 is used to set/reset the selected pin of Port C.

Selection of port C pin is determined as follows:

B3 B2 B1 Bit/pin of port C selected

0 0 0 PC0

0 0 1 PC1

0 1 0 PC2

0 1 1 PC3

1 0 0 PC4

1 0 1 PC5

1 1 0 PC6

1 1 1 PC7

As an example, if it is needed that PC5 be set, then in the control word,

1. Since it is BSR mode, D7 = '0'.
2. Since D4, D5, D6 are not used, assume them to be '0'.
3. PC5 has to be selected, hence, D3 = '1', D2 = '0', D1 = '1'.
4. PC5 has to be set, hence, D0 = '1'.

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).

D7D6D5D4D3D2D1D0

0 0 0 0 1 0 1 1

2. Input/Output mode

This mode is selected when D7 bit of the Control Word Register is 1. There are three I/O modes:

1. Mode 0 - Simple I/O
2. Mode 1 - Strobed I/O
3. Mode 2 - Strobed Bi-directional I/O

Figure 5: 8255 Control word for I/O mode

 D0, D1, D3, D4 are assigned for lower port C, port B, upper port C and port A
respectively. When these bits are 1, the corresponding port acts as an input port. For
e.g., if D0 = D4 = 1, then lower port C and port A act as input ports. If these bits are 0,
then the corresponding port acts as an output port. For e.g., if D1 = D3 = 0, then port B
and upper port C act as output ports as shown in Figure 5.

 D2 is used for mode selection of Group B (port B and lower port C). When D2 = 0, mode
0 is selected and when D2 = 1, mode 1 is selected.

 D5& D6 are used for mode selection of Group A (port A and upper port C). The selection
is done as follows:

D6 D5 Mode

0 0 0

0 1 1

1 X 2

 As it is I/O mode, D7 = 1.

For example, if port B and upper port C have to be initialized as input ports and lower port C

and port A as output ports (all in mode 0):

1. Since it is an I/O mode, D7 = 1.
2. Mode selection bits, D2, D5, D6 are all 0 for mode 0 operation.

3. Port B and upper port C should operate as Input ports, hence, D1 = D3 = 1.
4. Port A and lower port C should operate as Output ports, hence, D4 = D0 = 0.

Hence, for the desired operation, the control word register will have to be loaded with
"10001010" = 8A (hex).

 Mode 0 - simple I/O

In this mode, the ports can be used for simple I/O operations without handshaking signals.

Port A, port B provide simple I/O operation. The two halves of port C can be either used

together as an additional 8-bit port, or they can be used as individual 4-bit ports. Since the

two halves of port C are independent, they may be used such that one-half is initialized as

an input port while the other half is initialized as an output port.

The input/output features in mode 0 are as follows:

1. Output ports are latched.
2. Input ports are buffered, not latched.
3. Ports do not have handshake or interrupt capability.
4. With 4 ports, 16 different combinations of I/O are possible.

 Mode 0 – input mode

 In the input mode, the 8255 gets data from the external peripheral ports and the CPU

reads the received data via its data bus.
 The CPU first selects the 8255 chip by making CS low. Then it selects the desired

port using A0 and A1 lines.
 The CPU then issues an RD signal to read the data from the external peripheral

device via the system data bus.

 Mode 0 - output mode

 In the output mode, the CPU sends data to 8255 via system data bus and then the

external peripheral ports receive this data via 8255 port.
 CPU first selects the 8255 chip by making CS low. It then selects the desired port

using A0 and A1 lines.
 CPU then issues a WR signal to write data to the selected port via the system data

bus. This data is then received by the external peripheral device connected to the

selected port.

 Mode 1

When we wish to use port A or port B for handshake (strobed) input or output operation, we

initialise that port in mode 1 (port A and port B can be initilalised to operate in different

modes, i.e., for e.g., port A can operate in mode 0 and port B in mode 1). Some of the pins

of port C function as handshake lines.

For port B in this mode (irrespective of whether is acting as an input port or output port),

PC0, PC1 and PC2 pins function as handshake lines.

If port A is initialised as mode 1 input port, then, PC3, PC4 and PC5 function as handshake

signals. Pins PC6 and PC7 are available for use as input/output lines.

The mode 1 which supports handshaking has following features:

1. Two ports i.e. port A and B can be used as 8-bit i/o ports.
2. Each port uses three lines of port c as handshake signal and remaining two signals

can be used as i/o ports.
3. Interrupt logic is supported.
4. Input and Output data are latched.

Input Handshaking signals

1. IBF (Input Buffer Full) - It is an output indicating that the input latch contains

information.

2. STB (Strobed Input) - The strobe input loads data into the port latch, which holds

the information until it is input to the microprocessor via the IN instruction.

3. INTR (Interrupt request) - It is an output that requests an interrupt. The INTR pin

becomes a logic 1 when the STB input returns to a logic 1, and is cleared when the

data are input from the port by the microprocessor.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit

programmed via the port PC4(port A) or PC2(port B) bit position.

Output Handshaking signals

1. OBF (Output Buffer Full) - It is an output that goes low whenever data are

output(OUT) to the port A or port B latch. This signal is set to a logic 1 whenever the

ACK pulse returns from the external device.

2. ACK (Acknowledge)-It causes the OBF pin to return to a logic 1 level. The ACK

signal is a response from an external device, indicating that it has received the data

from the 82C55 port.

3. INTR (Interrupt request) - It is a signal that often interrupts the microprocessor

when the external device receives the data via the signal. this pin is qualified by the

internal INTE(interrupt enable) bit.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit

programmed to enable or disable the INTR pin. The INTE A bit is programmed using

the PC6 bit and INTE B is programmed using the PC2 bit.

 Mode 2

Only group A can be initialized in this mode. Port A can be used for bidirectional handshake

data transfer. This means that data can be input or output on the same eight lines (PA0 -

PA7). Pins PC3 - PC7 are used as handshake lines for port A. The remaining pins of port C

(PC0 - PC2) can be used as input/output lines if group B is initialized in mode 0 or as

handshaking for port B if group B is initialized in mode 1. In this mode, the 8255 may be

used to extend the system bus to a slave microprocessor or to transfer data bytes to and

from a floppy disk controller. Acknowledgement and handshaking signals are provided to

maintain proper data flow and synchronisation between the data transmitter and receiver.

III. Interfacing 8255 with 8085 processor

Fig 6. Interfacing 8255 with 8085 processor

https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Floppy_disk

 The 8255 can be either memory mapped or I/O mapped in the system. In the

schematic shown in above is I/O mapped in the system.

 Using a 3-to-8 decoder generates the chip select signals for I/O mapped devices.

 The address lines A4, A5 and A6 are decoded to generate eight chip select signals

(IOCS-0 to IOCS-7) and in this, the chip select IOCS- 1 is used to select 8255 as

shown in Figure 6.

 The address line A7 and the control signal IO/M (low) are used as enable for the

decoder.
 The address line A0 of 8085 is connected to A0 of 8255 and A1 of 8085 is connected to

A1 of 8255 to provide the internal addresses.

 The data lines D0-D7 are connected to D0-D7 of the processor to achieve parallel data

transfer.

 The I/O addresses allotted to the internal devices of 8255 are listed in table.

USART 8251 (Universal Synchronous/ Asynchronous Receiver Transmitter)

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial

data communication. As a peripheral device of a microcomputer system, the 8251 receives

parallel data from the CPU and transmits serial data after conversion. This device also receives

serial data from the outside and transmits parallel data to the CPU after conversion as shown in

Figure 10.

Figure 10 : Architecture of 8251

Transmitter Section

The transmitter section consists of three blocks—transmitter buffer register, output register and

the transmitter control logic block. The CPU deposits (when TXRDY = 1, meaning that the

transmitter buffer register is empty) data into the transmitter buffer register, which is

subsequently put into the output register (when TXE = 1, meaning that the output buffer is

empty). In the output register, the eight bit data is converted into serial form and comes out via

TXD pin. The serial data bits are preceded by START bit and succeeded by STOP bit, which

are known as framing bits. But this happens only if transmitter is enabled and the CTS is low.

TXC signal is the transmitter clock signal which controls the bit rate on the TXD line (output

line). This clock frequency can be 1, 16 or 64 times the baud.

Receiver Section

The receiver section consists of three blocks — receiver buffer register, input register and the

receiver control logic block. Serial data from outside world is delivered to the input register via

RXD line, which is subsequently put into parallel form and placed in the receiver buffer register.

When this register is full, the RXRDY (receiver ready) line becomes high. This line is then used

either to interrupt the MPU or to indicate its own status. MPU then accepts the data from the

register. RXC line stands for receiver clock. This clock signal controls the rate at which bits are

received by the input register. The clock can be set to 1, 16 or 64 times the baud in the

asynchronous mode.

Fig 11 : Pin Configuration of 8251

Pin Configuration of 8251 is shown in figure 11.

D 0 to D 7 (l/O terminal)

This is bidirectional data bus which receive control words and transmits data from the CPU and

sends status words and received data to CPU.

RESET (Input terminal)

A "High" on this input forces the 8251 into "reset status." The device waits for the writing of

"mode instruction." The min. reset width is six clock inputs during the operating status of CLK.

CLK (Input terminal)

CLK signal is used to generate internal device timing. CLK signal is independent of RXC or

TXC. However, the frequency of CLK must be greater than 30 times the RXC and TXC at

Synchronous mode and Asynchronous "x1" mode, and must be greater than 5 times at

Asynchronous "x16" and "x64" mode.

WR (Input terminal)

This is the "active low" input terminal which receives a signal for writing transmit data and

control words from the CPU into the 8251.

RD (Input terminal)

This is the "active low" input terminal which receives a signal for reading receive data and status

words from the 8251.

C/D (Input terminal)

This is an input terminal which receives a signal for selecting data or command words and

status words when the 8251 is accessed by the CPU. If C/D = low, data will be accessed. If C/D

= high, command word or status word will be accessed.

CS (Input terminal)

This is the "active low" input terminal which selects the 8251 at low level when the CPU

accesses. Note: The device won’t be in "standby status"; only setting CS = High.

TXD (output terminal)

This is an output terminal for transmitting data from which serial-converted data is sent out. The

device is in "mark status" (high level) after resetting or during a status when transmit is disabled.

It is also possible to set the device in "break status" (low level) by a command.

TXRDY (output terminal)

This is an output terminal which indicates that the 8251is ready to accept a transmitted data

character. But the terminal is always at low level if CTS = high or the device was set in "TX

disable status" by a command. Note: TXRDY status word indicates that transmit data character

is receivable, regardless of CTS or command. If the CPU writes a data character, TXRDY will

be reset by the leading edge or WR signal.

TXEMPTY (Output terminal)

This is an output terminal which indicates that the 8251 has transmitted all the characters and

had no data character. In "synchronous mode," the terminal is at high level, if transmit data

characters are no longer remaining and sync characters are automatically transmitted. If the

CPU writes a data character, TXEMPTY will be reset by the leading edge of WR signal. Note :

As the transmitter is disabled by setting CTS "High" or command, data written before disable will

be sent out. Then TXD and TXEMPTY will be "High". Even if a data is written after disable, that

data is not sent out and TXE will be "High".After the transmitter is enabled, it sent out. (Refer to

Timing Chart of Transmitter Control and Flag Timing)

TXC (Input terminal)

This is a clock input signal which determines the transfer speed of transmitted data. In

"synchronous mode," the baud rate will be the same as the frequency of TXC. In "asynchronous

mode", it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16 or 1/64

the TXC. The falling edge of TXC sifts the serial data out of the 8251.

RXD (input terminal)

This is a terminal which receives serial data.

RXRDY (Output terminal)

This is a terminal which indicates that the 8251 contains a character that is ready to READ. If

the CPU reads a data character, RXRDY will be reset by the leading edge of RD signal. Unless

the CPU reads a data character before the next one is received completely, the preceding data

will be lost. In such a case, an overrun error flag status word will be set.

RXC (Input terminal)

This is a clock input signal which determines the transfer speed of received data. In

"synchronous mode," the baud rate is the same as the frequency of RXC. In "asynchronous

mode," it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16, 1/64

the RXC.

SYNDET/BD (Input or output terminal)

This is a terminal whose function changes according to mode. In "internal synchronous mode."

this terminal is at high level, if sync characters are received and synchronized. If a status word

is read, the terminal will be reset. In "external synchronous mode, "this is an input terminal. A

"High" on this input forces the 8251 to start receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high level"output upon the

detection of a "break" character if receiver data contains a "low-level" space between the stop

bits of two continuous characters. The terminal will be reset, if RXD is at high level. After Reset

is active, the terminal will be output at low level.

DSR (Input terminal)

This is an input port for MODEM interface. The input status of the terminal can be recognized by

the CPU reading status words.

DTR (Output terminal)

This is an output port for MODEM interface. It is possible to set the status of DTR by a

command.

CTS (Input terminal)

This is an input terminal for MODEM interface which is used for controlling a transmit circuit.

The terminal controls data transmission if the device is set in "TX Enable" status by a command.

Data is transmitable if the terminal is at low level.

RTS (Output terminal)

This is an output port for MODEM interface. It is possible to set the status RTS by a command.

The 8251 functional configuration is programmed by software. Operation between the 8251 and

a CPU is executed by program control. Table 1 shows the operation between a CPU and the

device.

Summary of Control Signals for 8251

Control Words

There are two types of control word.

1. Mode instruction (setting of function)

2. Command (setting of operation)

1) Mode Instruction

Mode instruction is used for setting the function of the 8251. Mode instruction will be in "wait for

write" at either internal reset or external reset. That is, the writing of a control word after

resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

• Synchronous/asynchronous mode

• Stop bit length (asynchronous mode)

• Character length

• Parity bit

• Baud rate factor (asynchronous mode)

• Internal/external synchronization (synchronous mode)

• Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction is shown in Figures 12 and 13. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

Fig 12: Bit configuration of mode instruction(asynchronous)

Fig 13: Bit configuration of mode instruction(synchronous)

2) Command

Command is used for setting the operation of the 8251. It is possible to write a command

whenever necessary after writing a mode instruction and sync characters as shown in figure 14.

Items to be set by command are as follows:

• Transmit Enable/Disable

• Receive Enable/Disable

• DTR, RTS Output of data.

• Resetting of error flag.

• Sending to break characters

• Internal resetting

• Hunt mode (synchronous mode)

Fig 14: Bit configuration of command

Status Word

It is possible to see the internal status of the 8251 by reading a status word. The bit

configuration of status word is shown in Fig.15.

Fig 15: Bit configuration of Status Word

8253(8254) PROGRAMMABLE INTERVAL TIMER:

The 8254 programmable Interval timer consists of three independent 16-bit programmable

counters (timers). Each counter is capable of counting in binary or binary coded decimal. The

maximum allowable frequency to any counter is 10MHz. This device is useful whenever the

microprocessor must control real-time events. The timer in a personal computer is an 8253. To

operate a counter a 16-bit count is loaded in its register and on command, it begins to

decrement the count until it reaches 0. At the end of the count it generates a pulse, which

interrupts the processor. The count can count either in binary or BCD Each counter in the block

diagram has 3 logical lines connected to it. Two of these lines, clock and gate, are inputs. The

third, labeled OUT is an output.

Fig : 16 Block Diagram of 8253 programmable interval timer

Data bus buffer- It is a communication path between the timer and the microprocessor. The

buffer is 8-bit and bidirectional. It is connected to the data bus of the microprocessor. Read

/write logic controls the reading and the writing of the counter registers. Control word register,

specifies the counter to be used and either a Read or a write operation. Data is transmitted or

received by the buffer upon execution of INPUT instruction from CPU as shown in figure 16.

The data bus buffer has three basic functions,

(i). Programming the modes of 8253.

(ii). Loading the count value in times

(iii).Reading the count value from timers.

Pin Diagram of 8253

The data bus buffer is connected to microprocessor using D7 – D0 pins which are also

bidirectional. The data transfer is through these pins. These pins will be in high-

impedance (or this state) condition until the 8253 is selected by a LOW or CS and

either the read operation requested by a LOW RD on the input or a write operation WR

requested by the input going LOW.

Read/ Write Logic:

It accepts inputs for the system control bus and in turn generation the control signals for

overall device operation. It is enabled or disabled by CS so that no operation can occur to

change the function unless the device has been selected as the system logic.

CS :

The chip select input is used to enable the communicate between 8253 and the

microprocessor by means of data bus. A low an CS enables the data bus buffers, while

a high disables the buffer. The CS input does not have any affect on the operation of three

times once they have been initialized. The normal configuration of a system

employs an decode logic which actives CS line, whenever a specific set of addresses that

correspond to 8253 appear on the address bus.

RD & WR :

The read (RD) and write WR pins central the direction of data transfer on the 8-bit bus. When

the input RD pin is low. Then CPU is inputting data from 8253 in the form of

counter value. When WR pins is low, then CPU is sending data to 8253 in the form of

mode information or loading counters. The RD & WR should not both be low

simultaneously. When RD & WR pins are HIGH, the data bus buffer is disabled.

A0 & A1:

These two input lines allow the microprocessor to specify which one of the internal register in

the 8253 is going to be used for the data transfer. Fig shows how these two lines are used to

select either the control word register or one of the 16-bit counters.

Control word register:

It is selected when A0 and A1 . It the accepts information from the data bus buffer and stores it

in a register. The information stored in then register controls the operation mode of each

counter, selection of binary or BCD counting and the loading of each counting and the loading of

each count register. This register can be written into, no read operation of this content is

available.

Counters:

Each of the times has three pins associated with it. These are CLK (CLK) the gate (GATE) and

the output (OUT).

CLK:

This clock input pin provides 16-bit times with the signal to causes the times to decrement maxm

clock input is 2.6MHz. Note that the counters operate at the negative edge (H1 to L0) of this

clock input. If the signal on this pin is generated by a fixed oscillator then the user has

implemented a standard timer. If the input signal is a string of randomly occurring pulses, then it

is called implementation of a counter.

GATE:

The gate input pin is used to initiate or enable counting. The exact

effect of the gate signal depends on which of the six modes of

operation is chosen.

OUTPUT:

The output pin provides an output from the timer. It actual use depends on the mode of

operation of the timer. The counter can be read ―in the fly‖ without inhibiting gate pulse or

clock input.

CONTROL WORD OF 8253

 D7 D6 D5 D4 D3 D2 D1 D0

 RL

 SC1 SC0 RL1 0 M2 M1 M0 BCD

0
 Binary counter (16-

 bit)

 1 BCD (4 decades)

 0 0 0 Mode 0

 0 0 1 Mode 1

 × 1 0 Mode 2

 × 1 1 Mode 3

 1 0 0 Mode 4

 1 0 1 Mode 5

 0 0 Counter latching operation

 0 1 Road/load LSB only

 1 0 Road/load MSB only

 Road/load LSB first, then

 1 1 MSB

0

0

 Select
 counter 0

0

1

 Select
 counter 1

1

0

 Select
 counter 2

1

1

Illeg

 al

Control Register
MODES OF OPERATION
Mode 0 Interrupt on terminal count
Mode 1 Programmable one shot
Mode 2 Rate Generator
Mode 3 Square wave rate Generator
Mode 4 Software triggered strobe
Mode 5 Hardware triggered strobe

Mode 0: The output goes high after the terminal count is reached. The counter stops if the Gate

is low.. The timer count register is loaded with a count (say 6) when the WR line is made low by

the processor. The counter unit starts counting down with each clock pulse. The output goes

high when the register value reaches zero. In the mean time if the GATE is made low the count

is suspended at the value(3) till the GATE is enabled again .

CLK

WR

6 5 4 3 2 1

OUT

GATE

Mode 0 count when Gate is high (enabled)

CLK

WR

6 5 4 3 3 3 2 1

OUT

GATE

Mode 0 count when Gate is low temporarily (disabled)

Mode 1 Programmable mono-shot

The output goes low with the Gate pulse for a predetermined period depending on the

counter. The counter is disabled if the GATE pulse goes momentarily low.The counter register is

loaded with a count value as in the previous case (say 5). The output responds to the GATE

input and goes low for period that equals the count down period of the register (5 clock pulses in

this period). By changing the value of this count the duration of the output pulse can be

changed. If the GATE becomes low before the count down is completed then the counter will be

suspended at that state as long as GATE is low. Thus it works as a mono-shot.
CLK

WR

GATE (trigger)

5 4 3 2 1
OUT

Mode 1 The Gate goes high. The output goes low for the period

depending on the count

CLK

WR

GATE (trigger)

OUT 4 3 3 4 3 2 1

Mode 1 The Gate pulse is disabled momentarily causing the counter to stop.

Mode 2 Programmable Rate Generator

In this mode it operates as a rate generator. The output goes high for a period that equals the
time of count down of the count register (3 in this case). The output goes low exactly for one

clock period before it becomes high again. This is a periodic operation.

CLK

WR

GATE

3 2 1 3 2 1

OUT

Mode 2 Operation when the GATE is kept high

CLK

WR

GATE

OUT 3 2 1 3 3 2 1 Mode 2 operation when the GATE is disabled

momentarily.

Mode 3 Programmable Square Wave Rate Generator

It is similar to Mode 2 but the output high and low period is symmetrical. The output

goes high after the count is loaded and it remains high for period which equals the count down

period of the counter register. The output subsequently goes low for an equal period and hence

generates a symmetrical square wave unlike Mode 2. The GATE has no role here.

CLK

WR

n=

4 OUT (n=4)

OUT (n=5)

Mode3 Operation: Square Wave generator

Mode 4 Software Triggered Strobe

In this mode after the count is loaded by the processor the count down starts. The output goes

low for one clock period after the count down is complete. The count down can be suspended

by making the GATE low . This is also called a software triggered strobe as the count down is

initiated by a program.

CLK

WR

OUT

4 3 2 1

Mode 4 Software Triggered Strobe when GATE is high

LK

WR

GATE

OUT

4 3 3 2 1

Mode 4 Software Triggered Strobe when GATE is momentarily low

Mode 5 Hardware Triggered Strobe

The count is loaded by the processor but the count down is initiated by the GATE pulse. The

transition from low to high of the GATE pulse enables count down. The output goes low for one

clock period after the count down is complete.

CLK

WR

GATE

OUT

5 4 3 2 1

Mode 5 Hardware Triggered Strobe

PROGRAMMABLE INTERRUPT CONTROLLER-8259

FEAUTURES OF 8259

 8086, 8088 Compatible

 MCS-80, MCS-85 Compatible

Eight-Level Priority Controller

Expandable to 64 Levels

Programmable Interrupt Modes

Individual Request Mask Capability

Single +5V Supply (No Clocks)

Available in 28-Pin DIP and 28-Lead PLCC Package

Available in EXPRESS

oStandard Temperature Range

oExtended Temperature Range

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority

interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without additional

circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a single a5V

supply. Circuitry is static, requiring no clock input. The 8259A is designed to minimize the

software and real time overhead in handling multi-level priority interrupts. It has several modes,

permitting optimization for a variety of system requirements. The 8259A is fully upward

compatible with the Intel 8259. Software originally written for the 8259 will operate the 8259A in

all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge Triggered). Pin Diagram of 8259 is

shown in figure 17.

Fig.17 Pin Diagram of 8259

Pin Description of 8259

Fig. 18 Block Diagram of 8259

A more desirable method would be one that would allow the microprocessor to be

executing its main program and only stop to service peripheral devices when it is told to do so

by the device itself. In effect, the method would provide an external asynchronous input that

would inform the processor that it should complete whatever instruction that is currently being

executed and fetch a new routine that will service the requesting device. Once this servicing is

complete, however, the processor would resume exactly where it left off. This method is called

Interrupt. It is easy to see that system throughput would drastically increase, and thus more

tasks could be assumed by the micro-computer to further enhance its cost effectiveness. Block

Diagram of 8259 is shown in figure 18.

The Programmable Interrupt Controller (PIC) functions as an overall manager in an

Interrupt-Driven system environment. It accepts requests from the peripheral equipment,

determines which of the in-coming requests is of the highest importance (priori-ty), ascertains

whether the incoming request has a higher priority value than the

level currently being serviced, and issues an interrupt to the CPU based on this determination.

The 8259A is a device specifically designed for use in real time, interrupt driven microcomputer

systems. It manages eight levels or requests and has built-in features for expandability to other

8259A's (up to 64 levels). It is programmed by the system's software as an I/O peripheral. A

selection of priority modes is available to the programmer so that the manner in which the

requests are processed by the 8259A can be configured to match his system requirements. The

priority modes can be changed or reconfigured dynamically at any time during the main

program. This means that the complete interrupt structure can be defined as required, based on

the total system environment.

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt

Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the interrupt levels

which are requesting service; and the ISR is used to store all the interrupt levels which are

being serviced.

PRIORITY RESOLVER

This logic block determines the priorites of the bits set in the IRR. The highest priority is

selected and strobed into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on the

IRR. Masking of a higher priority input will not affect the interrupt request lines of lower quality.

INT (INTERRUPT)

This output goes directly to the CPU interrupt input. The VOH level on this line is designed to be

fully compatible with the 8080A, 8085A and 8086 input levels.

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The format

of this data depends on the system mode (mPM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to inter-face the 8259A to the system Data Bus.

Control words and status information are transferred through the Data Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept Output commands from the CPU. It contains the

Initialization Command Word (ICW) registers and Operation Command Word (OCW) registers

which store the various control formats for device operation. This function block also allows the

status of the 8259A to be transferred onto the Data Bus.

CS (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or writing of the chip will occur

unless the device is selected.

WR (WRITE)

A LOW on this input enables the CPU to write con-trol words (ICWs and OCWs) to the 8259A.

RD (READ)

A LOW on this input enables the 8259A to send the status of the Interrupt Request

Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the Interrupt

level onto the Data Bus.

A0

This input signal is used in conjunction with WR and RD signals to write commands into

the various command registers, as well as reading the various status registers of the chip. This

line can be tied directly to one of the address lines.

INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer system are its programmability and the

interrupt routine addressing capability. The latter allows direct or indirect jumping to the specific

interrupt routine requested without any polling of the interrupting devices. The normal sequence

of events during an interrupt depends on the type of CPU being used.

The events occur as follows in an MCS-80/85 sys-tem:

1. One or more of the INTERRUPT REQUEST lines (IR7±0) are raised high, setting the

correspond-ing IRR bit(s).

2. The 8259A evaluates these requests, and sends an INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds with an INTA pulse.

4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set, and the

correspond-ing IRR bit is reset. The 8259A will also release a CALL instruction code

(11001101) onto the 8-bit Data Bus through its D7±0 pins.

5. This CALL instruction will initiate two more INTA pulses to be sent to the 8259A from the

CPU group.

6. These two INTA pulses allow the 8259A to re-lease its preprogrammed subroutine

address onto the Data Bus. The lower 8-bit address is released at the first INTA pulse

and the higher 8-bit address is released at the second INTA pulse.

7. This completes the 3-byte CALL instruction re-leased by the 8259A. In the AEOI mode

the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR

bit remains set until an appropriate EOI command is issued at the end of the interrupt

sequence.

8. The events occurring in an 8086 system are the same until step 4.

9. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set and the

corresponding IRR bit is reset. The 8259A does not drive the Data Bus during this cycle.

10. The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases an 8-

bit pointer onto the Data Bus where it is read by the CPU.

11. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end of

the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI

command is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence (i.e., the request was too

short in duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and the CAS

lines will look like an interrupt level 7 was requested.

When the 8259A PIC receives an interrupt, INT be-comes active and an interrupt

acknowledge cycle is started. If a higher priority interrupt occurs between the two INTA pulses,

the INT line goes inactive immediately after the second INTA pulse. After an un-specified

amount of time the INT line is activated again to signify the higher priority interrupt waiting for

service. This inactive time is not specified and can vary between parts. The designer should be

aware of this consideration when designing a sys-tem which uses the 8259A. It is

recommended that proper asynchronous design techniques be followed.

INITIALIZATION COMMAND WORDS

Whenever a command is issued with A0 e 0 and D4 e 1, this is interpreted as Initialization

Command Word 1 (ICW1). ICW1 starts the initialization sequence during which the following

automatically occur.

a. The edge sense circuit is reset, which means that following initialization, an interrupt

request (IR) input must make a low-to-high transition to generate an interrupt.

b. The Interrupt Mask Register is cleared.

c. IR7 input is assigned priority 7.

d. The slave mode address is set to 7.

e. Special Mask Mode is cleared and Status Read isset to IRR.

f. If IC4 e 0, then all functions selected in ICW4are set to zero. (Non-Buffered mode*, no

Auto-EOI, MCS-80, 85 system).

Initialization Command Word Format is as shown in figure 19.

Fig 19 . Initialization Command Word Format

OPERATION COMMAND WORDS

After the Initialization Command Words (ICWs) are programmed into the 8259A, the chip is

ready to accept interrupt requests at its input lines. However, during the 8259A operation, a

selection of algorithms can command the 8259A to operate in various modes through the

Operation Command Words (OCWs). Operation Command Word format is as shown in figure

20

Fig . Operational Control Words

Fig 20 Operation Command Word Format

INTERFACING MEMORY CHIPS WITH 8085

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) of memory

locations can be interfaced with it. The memory address space of the 8085 takes values

from 0000H to FFFFH.

The 8085 initiates set of signals such as IO/M , RD and WR when it wants to read from and

write into memory. Similarly, each memory chip has signals such as CE or CS (chip enable

or chip select), OE or RD (output enable or read) and WE or WR (write enable or write)

associated with it.

Generation of Control Signals for Memory:

When the 8085 wants to read from and write into memory, it activates IO/M , RD and WR

signals as shown in Table 8.

Table 8 Status of IO/M , RD and WR signals during memory read and write operations

 Operation IO/M RD WR

 0 0 1 8085 reads data from memory

 0 1 0 8085 writes data into memory

and

signals, two control signals

(memory read) and Using IO/M , RD WR MEMR

MEMW (memory write) are generated. Fig. 16 shows the circuit used to generate these

signals.

Fig. 16 Circuit used to generate MEMR and MEMW signals

When is IO/M high, both memory control signals are deactivated irrespective of the status

of RD and WR signals.

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such that the

address range allocated to the chip is 0000H – 1FFFH.

Specification of IC 2764:

 8 KB (8 x 210 byte) EPROM chip
13 address lines (213 bytes = 8 KB)

Interfacing:

 13 address lines of IC are connected to the corresponding address lines of 8085.
 Remaining address lines of 8085 are connected to address decoder formed using

logic gates, the output of which is connected to the CE pin of IC.

 Address range allocated to the chip is shown in Table 9.

 Chip is enabled whenever the 8085 places an address allocated to EPROM chip in

the address bus. This is shown in Fig. 17.

Fig. 17 Interfacing IC 2764 with the 8085

Table 9 Address allocated to IC 2764

Ex: Interface a 6264 IC (8K x 8 RAM) with the 8085 using NAND gate decoder such that

the starting address assigned to the chip is 4000H.

Specification of IC 6264:

 8K x 8 RAM
 8 KB = 213 bytes
 13 address lines

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When the

address 4000H to 5FFFH are written in binary form, the values in the lines A15, A14, A13

are 0, 1 and 0 respectively. The NAND gate is designed such that when the lines A15 and

A13 carry 0 and A14 carries 1, the output of the NAND gate is 0. The NAND gate output is

in turn connected to the CE1 pin of the RAM chip. A NAND output of 0 selects the RAM

chip for read or write operation, since CE2 is already 1 because of its connection to +5V.

Fig. 18 shows the interfacing of IC 6264 with the 8085.

Fig. 18 Interfacing 6264 IC with the 8085

Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the starting

addresses assigned to them are 8000H and 9000H, respectively.

Specification of IC 6116:

 2 K x 8 RAM
 2 KB = 211 bytes
 11 address lines

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip 1 is

and chip 2 are 87FFH and 97FFH, respectively. Table 10 shows the address range of the

two chips.

Table 10 Address range for IC 6116

Interfacing:

• Fig. 19 shows the interfacing.
• A0 – A10 lines of 8085 are connected to 11 address lines of the RAM chips.
• Three address lines of 8085 having specific value for a particular RAM are

connected to the three select inputs (C, B and A) of 74LS138 decoder.

• Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1 and

A13=0, A12=1 and A11=0 for the address assigned to RAM 2.

• Remaining lines of 8085 which are constant for the address range assigned to the

two RAM are connected to the enable inputs of decoder.

• When 8085 places any address between 8000H and 87FFH in the address bus, the

select inputs C, B and A of the decoder are all 0. The Y0 output of the decoder is

also 0, selecting RAM 1.

• When 8085 places any address between 9000H and 97FFH in the address bus, the

select inputs C, B and A of the decoder are 0, 1 and 0. The Y2 output of the

decoder is also 0, selecting RAM 2.

Fig. 19 Interfacing two 6116 RAM chips using 74LS138 decoder

3. PERIPHERAL MAPPED I/O INTERFACING

In this method, the I/O devices are treated differently from memory chips. The control

signals I/O read (IOR) and I/O write (IOW), which are derived from the IO/M , RD and

WR signals of the 8085, are used to activate input and output devices,
respectively.

Generation of these control signals is shown in Fig. 20. Table 11 shows the status of IO/M ,

RD and WR signals during I/O read and I/O write operation.

Fig. 20 Generation of IOR and IOW signals

IN instruction is used to access input device and OUT instruction is used to access output

device. Each I/O device is identified by a unique 8-bit address assigned to it. Since the

control signals used to access input and output devices are different, and all I/O device use

8-bit address, a maximum of 256 (28) input devices and 256 output devices can be

interfaced with 8085.

Table 11 Status of IOR and IOW signals in 8085.

Operation IO/M RD WR IOR IOW

1 0 1 0 1 I/O read operation

1 1 0 1 0 I/O write operation

0 X X 1 1 Memory read or write operation

Ex: Interface an 8-bit DIP switch with the 8085 such that the address assigned to the DIP

switch if F0H.

IN instruction is used to get data from DIP switch and store it in accumulator. Steps

involved in the execution of this instruction are:

• Address F0H is placed in the lines A0 – A7 and a copy of it in lines A8 – A15.

ii. The IOR signal is activated (IOR = 0), which makes the selected input device to

 place its data in the data bus.

iii. The data in the data bus is read and store in the accumulator.

Fig. 21 shows the interfacing of DIP switch.

A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 = F0H

A0 – A7 lines are connected to a NAND gate decoder such that the output of NAND gate is

0. The output of NAND gate is ORed with the IOR signal and the output of OR gate is

connected to 1G and 2G of the 74LS244. When 74LS244 is enabled, data from the DIP

switch is placed on the data bus of the 8085. The 8085 read data and store in the

accumulator. Thus data from DIP switch is transferred to the accumulator.

Fig. 21 interfacing of 8-bit DIP switch with 8085

4. MEMORY MAPPED I/O INTERFACING

In memory-mapped I/O, each input or output device is treated as if it is a memory location.

The MEMR and MEMW control signals are used to activate the devices. Each input or

output device is identified by unique 16-bit address, similar to 16-bit address assigned to

memory location. All memory related instruction like LDA 2000H, LDAX B, MOV A, M can

be used.

Since the I/O devices use some of the memory address space of 8085, the

maximum memory capacity is lesser than 64 KB in this method.

Ex: Interface an 8-bit DIP switch with the 8085 using logic gates such that the

address assigned to it is F0F0H.

Since a 16-bit address has to be assigned to a DIP switch, the memory-

mapped I/O technique must be used. Using LDA F0F0H instruction, the data

from the 8-bit DIP switch can be transferred to the accumulator. The steps

involved are:

 The address F0F0H is placed in the address bus A0 – A15.

 The MEMR signal is made low for some time.
 The data in the data bus is read and stored in the accumulator.

Fig. 22 shows the interfacing diagram.

Fig. 22 Interfacing 8-bit DIP switch with 8085

When 8085 executes the instruction LDA F0F0H, it places the address F0F0H

in the address lines A0 – A15 as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0= F0F0H

The address lines are connected to AND gates. The output of these gates

along with MEMR signal are connected to a NAND gate, so that when the

address F0F0H is placed in the

address bus and MEMR = 0 its output becomes 0, thereby enabling the buffer

74LS244. The data from the DIP switch is placed in the 8085 data bus. The

8085 reads the data from the data bus and stores it in the accumulator.

UNIT 4 INTRODUCTION TO MICROCONTROLLER 9 Hrs.
Introduction to microcontrollers, Difference between microprocessors and

microcontrollers, Architectural features of 8051, I/O Ports, Interrupts, Addressing Modes

and Instruction set of 8051, Programming examples.

INTEL 8051 MICROCONTROLLER

 WHAT IS A MICROCONTROLLER?

• All of the components needed for a controller were built right onto one

chip.

• A one chip computer, or microcontroller was born.

• A microcontroller is a highly integrated chip which includes, on one

chip, all or most of the parts needed for a controller.

• The microcontroller could be called a "one-chip solution".

 8051 Family

 The 8051 is just one of the MCS-51 family of microcontrollers developed by Intel.

The design of each of the MCS-51 microcontrollers are more or less the same. The

differences between each member of the family is the amount of on-chip memory and

the number of timers, as detailed in the table below.

Microcontroller
On-chip Code

Memory

On-chip Data

Memory
Timers

8051 4K ROM 128 bytes 2

8031 0 128 bytes 2

8751 4K EPROM 128 bytes 2

8052 8K ROM 256 bytes 3

8032 0 256 bytes 3

8752 8K EPROM 256 bytes 3

 Each chip also contains:

 four 8-bit input/output (I/0) ports

 serial interface

 64K external code memory space

 64K external data memory space

 Boolean processor

 210 bit-addressable locations

 4us multiply/divide

1.2 MICROPROCESSOR vs MICRO CONTROLLER

Disadvantages of microprocessor

• The overall system cost is high

• A large sized PCB is required for assembling all the components

• Overall product design requires more time

• Physical size of the product is big

• A discrete components are used, the system is not reliable

Advantages of Microcontroller based System

• As the peripherals are integrated into a single chip, the overall system cost is very

less

• The product is of small size compared to microprocessor based system

• The system design now requires very little efforts

• As the peripherals are integrated with a microprocessor the system is more

reliable

• Though microcontroller may have on chip ROM,RAM and I/O ports, addition

ROM, RAM I/O ports may be interfaced externally if required

• On chip ROM provide a software security

1.3 8051 Block Diagram

8051 Internal Architecture

8051 CPU Registers

• ACCUMULATOR (ACC)

• Operandregister

• Implicit or specified in the instruction

• Has an address in on chip SFR bank

• B REGISTER

• to store one of the operands for multiplication and division

• otherwise, scratch pad

• considered as a SFR

• PROGRAM STATUS WORD (PSW)

• Set of flags contain status information

• One of the SFR

• STACK POINTER (SP)

• 8 bit wide register

• Incremented before data is stored on to the stack using PUSH or

CALL instructions

• Stack defined anywhere on the 128 byte RAM

• RESET initiated to 0007H

• Not a top to down structure

• Allotted an address in SFR

• DATA POINTER (DPTR)

• 16 bit register

• contains DPH and DPL

• Pointer to external RAM address

• DPH and DPL allotted separate addresses in SFR bank

• PORT 0 TO 3 LATCHES & DRIVERS

• Each i/o port allotted a latch and a driver

• Latches allotted address in SFR

• User can communicate via these ports

• P0, P1, P2,P3

• SERIAL DATA BUFFER

• internally had TWO independent registers

• TRANSMIT buffer parallel in serial out (PISO)

• RECEIVE buffer serial in parallel out (SIPO)

• identified by SBUF and allotted an address in SFR

• byte written to SBUF initiates serial TX

• byte read from SBUF reads serially received data

• TIMER REGISTERS

• for Timer0 (16 bit register – TL0 & TH0)

• for Timer1 (16 bit register – TL1 & TH1)

• four addresses allotted in SFR

• CONTROL REGISTERS

• IP

• IE

• TMOD

• TCON

• SCON

• PCON

• contain control and status information for interrupts,

timers/counters and serial port

• Allotted separate address in SFR

• TIMING AND CONTROL UNIT

• derives necessary timing and control signals

For internal circuit and external system bus

• OSCILLATOR

• generates basic timing clock signal using crystal oscillator

• INSTRUCTION REGISTER

• decodes the opcode and gives information to timing and control

unit

• EPROM & PROGRAM ADDRESS REGISTER

• provide on chip EPROM and mechanism to address it

• All versions don’t have EPROM

• RAM & RAM ADDRESS REGISTER

• provide internal 128 bytes RAM and a mechanism to address

internally

• ALU

• Performs 8 bit arithmetic and logical operations over the operands

held by TEMP1 and TEMP 2

• User cannot access temporary registers

• SFR REGISTER BANK

• set of special function registers

• address range : 80 H to FF H

– Interrupt, serial port and timer units control and perform specific

functions under the control of timing and control unit

1.4 Addressing Modes

The five addressing modes are:

 Immediate

 Register

 Direct

 Indirect

 Indexed

 Immediate Addressing

 If the operand is a constant then it can be stored in memory immediately after the

opcode. Remember, values in code memory (ROM) do not change once the system has

been programmed and is in use in the everyday world. Therefore, immediate addressing

is only of use when the data to be read is a constant.

 For example, if your program needed to perform some calculations based on the

number of weeks in the year, you could use immediate addressing to load the number 52

(34H) into a register and then perform arithmetic operations upon this data.

MOV R0, #34

 The above instruction is an example of immediate addressing. It moves the data

34H into R0. The assembler must be able to tell the difference between an address and

a piece of data. The has symbol (#) is used for this purpose (whenever the assembler

sees # before a number it knows this is immediate addressing). This is a two-byte

instruction.

Register Addressing

 Often we need to move data from a register into the accumulator so that we can

perform arithmetic operations upon it. For example, we may wish to move the contents of

R5 into the accumulator.

MOV A, R5

 This is an example of register addressing. It moves data from R5 (in the currently

selected register bank) into the accumulator.

ADD A, R6

 The above is another example of register addressing. It adds the contents of R6 to the

accumulator, storing the result in the accumulator. Note that in both examples the

destination comes first. This is true of all instructions.

Direct Addressing

 Direct addressing is used for accessing data in the on-chip RAM. Since there are

256 bytes of RAM (128 bytes general storage for the programmer and another 128 bytes

for the SFRs). That means the addresses go from 00H to FFH, any of which can be

stored in an 8-bit location.

MOV A, 67

 The above instruction moves the data in location 67H into the accumulator. Note the

difference between this and immediate addressing. Immediate addressing uses the data,

which is immediately after the instruction. With direct addressing, the operand is an

address. The data to be operated upon is stored in that address. The assembler realises

this is an address and not data because there is no hash symbol before it.

ADD A, 06

 The above instruction adds the contents of location 06H to the accumulator and stores

the result in the accumulator. If the selected register bank is bank 0 then this instruction

is the same as ADD A, R6.

 Indirect Addressing

 Register addressing and direct addressing both restrict the programmer to

manipulation of data in fixed addresses. The address the instruction reads from (MOV A,

30H) or writes to (MOV 30H, A) cannot be altered while the program is running. There

are times when it is necessary to read and write to a number of contiguous memory

locations. For example, if you had an array of 8-bit numbers stored in memory, starting at

address 30H, you may wish to examine the contents of each number in the array

(perhaps to find the smallest number). To do so, you would need to read location 30H,

then 31H, then 32H and so on. This can be achieved using indirect addressing. R0 and

R1 may be used as pointer registers. We can use either one to store the current memory

location and then use the indirect addressing instruction shown below.

MOV A, @Ri

 whereRi is either R0 or R1. Now, we can read the contents of location 30H through

indirect addressing:

MOV R0, #30H

MOV A, @R0

The first instruction is an example of immediate addressing whereby the data 30H is

placed in R0. The second instruction is indirect addressing. It moves the contents of

location 30H into the accumulator.

 If we now wish to get the data in location 31H we use the following:

INC R0

MOV A, @R0

 Once we see how to write a loop in assembly language, we will be able to read the

entire contents of the array.

Index Addressing Mode & On-chip ROM Access

• Limitation of register indirect addressing:

• 8-bit addresses (internal RAM)

• DPTR: 16 bits

• MOVC A, @A+DPTR ; “C” means program (code) space ROM

1.5 Special Function Registers (SFRs)

 Locations 80H to FFH contain the special function registers. As you can see from

the diagram above, not all locations are used by the 8051 (eleven locations are blank).

These extra locations are used by other family members (8052, etc.) for the extra

features these microcontrollers possess. Also note that not all SFRs are bit-

addressable. Those that are have a unique address for each bit. We will deal with each

of the SFRs as we progress through the course, but for the moment you should take note

of the accumulator (ACC) at address E0H and the four port registers at addresses 80H

for P0, 90h for P1, A0 for P2 and B0 for P3. We will later see how easy this makes

ready from and writing to any of the four ports. Program Status Word (PSW)

The PSW is at location D0H and is bit addressable. The table below describes the

function of each bit.

Bit Symbol Address Description

PSW.7 CY D7H Carry flag

PSW.6 AC D6H Auxiliary carry flag

PSW.5 F0 D5H Flag 0

PSW.4 RS1 D4H Register bank select 1

PSW.3 RS0 D3H Register bank select 0

PSW.2 OV D2H Overflow flag

PSW.1 -- D1H Reserved

PSW.0 P D0H Even parity flag

Carry Flag The carry flag has two functions.

 Firstly, it is used as the carry-out in 8-bit addition/subtraction. For example, if the

accumulator contains FDH and we add 3 to the contents of the accumulator (ADD

A, #3), the accumulator will then contain zero and the carry flag will be set. It is

also set if a subtraction causes a borrow into bit 7. In other words, if a number is

subtracted from another number smaller than it, the carry flag will be set. For

example, if A contains 3DH and R3 contains 4BH, the instruction SUBB A, R3 will

result in the carry bit being set (4BH is greater than 3DH).

 The carry flag is also used during Boolean operations. For example, we could

AND the contents of bit 3DH with the carry flag, the result being placed in the

carry flag - ANL C, 3DH

 Register Bank Select Bits Bits 3 and 4 of the PSW are used for selecting the register

bank. Since there are four register banks, two bits are required for selecting a bank, as

detailed below.

PSW.4 PSW.3
Register

Bank

Address of

Register Bank

0 0 0 00H to 07H

0 1 1 08H to 0FH

1 0 2 10H to 17H

1 1 3 18H to 1FH

For example, if we wished to activate register bank 3 we would use the following

instructions -

SETB RS1

SETB RS0

If we then moved the contents of R4 to the accumulator (MOV A, R4) we would be

moving the data from location

1CH to A.

Flag 0

 Flag 0 is a general-purpose flag available to the programmer.

Parity Bit

 The parity bit is automatically set or cleared every machine cycle to ensure even parity

with the accumulator. The number of 1-bits in the accumulator plus the parity bit is

always even. In other words, if the number of 1s in the accumulator is odd then the parity

bit is set to make the overall number of bits even. If the number of 1s in the accumulator

is even then the parity bit is cleared to make the overall number of bits even. For

example, if the accumulator holds the number 05H, this is 0000 0101 in binary => the

accumulator has an even number of 1s, therefore the parity bit is cleared. If the

accumulator holds the number F2H, this is 1111 0010 => the accumulator has an odd

number of 1s, therefore the parity bit is set to make the overall number of 1s even. As

we shall see later in the course, the parity bit is most often used for detecting errors in

transmitted data.

B Register

The B register is used together with the accumulator for multiply and divide operations.

 The MUL AB instruction multiplies the values in A and B and stores the low-byte

of the result in A and the high-byte in B.

o For example, if the accumulator contains F5H and the B register contains

02H, the result of MUL AB will be A = EAH and B = 01H.

 The DIV AB instruction divides A by B leaving the integer result in A and the

remainder by B.

o For example, if the accumulator contains 07H and the B register contains

02H, the result of DIV AB will be A = 03H and B = 01H.

The B register is also bit-addressable.

Stack Pointer

 The stack pointer (SP) is an 8-bit register at location 81H. A stack is used for

temporarily storing data. It operates on the basis of last in first out (LIFO). Putting data

onto the stack is called "pushing onto the stack" while taking data off the stack is called

"popping the stack." The stack pointer contains the address of the item currently on top

of the stack. On power-up or reset the SP is set to 07H. When pushing data onto the

stack, the SP is first increased by one and the data is then placed in the location pointed

to by the SP. When popping the stack, the data is taken off the stack and the SP is then

decreased by one. Since reset initialises the SP to 07H, the first item pushed onto the

stack is stored at 08H (remember, the SP is incremented first, then the item is placed on

the stack). However, if the programmer wishes to use the register banks 1 to 3, which

start at address 08H, he/she must move the stack to another part of memory. The

general purpose RAM starting at address 30H is a good spot to place the stack. To do so

we need to change the contents of the SP.

MOV SP, #2FH.

 Now, the first item to be pushed onto the stack will be stored at 30H.

Subroutines and the Stack

 We have already looked at calling a subroutine in the previous section. Now we will

look at the actual call instructions and the effect they have on the stack.

ACALL and LCALL

 ACALL stands for absolute call while LCALL stands for long call. These two

instructions allow the programmer to call a subroutine. There is a slight difference

between the two instructions, the same as the difference between AJMP and LJMP.

ACALL allows you to jump to a subroutine within the same 2K page while LCALL allows

you to jump to a subroutine anywhere in the 64K code space. The advantage of ACALL

over LCALL is that it is a 2-byte instruction while LCALL is a 3-byte instruction.

Help from the Assembler

 In the same way that you, the programmer, may use the assembler instruction

JMP anytime you need an unconditional jump and the assembler will replace this with

the appropriate 8051 jump instruction (SJMP, AJMP or LJMP), you may use the

assembler CALL instruction and it will be replaced by the appropriate 8051 subroutine

call instruction (ACALL or LCALL - note there is no SCALL instruction).

LCALL Operation

 Since the ACALL and LCALL instructions perform almost the same functions we

will look at the operation of the LCALL instruction only.

LCALL add16 - long call to subroutine

Encoding - 0001 0010 aaaaaaaaaaaaaaaa (3-byte instruction)

Operation -

(PC) <- (PC) + 3

(SP) <- (SP) + 1

((SP)) <- (PC7-PC0)

(SP) <- (SP) + 1

((SP)) <- (PC15 - PC8)

(PC) <- add15 - add0

 The operation is as follows. The PC is increased by 3 (because this is a 3-byte

instruction). The stack pointer is incremented so that it points to the next empty space on

the stack. The third line reads: the contents of the contents of the SP get the low byte of

the PC. On system reset the SP is initialised with the value 07H. Therefore, the first item

pushed onto the stack will be stored in location 08H. Therefore:

((SP)) is equivalent to (08) - meaning location 08H in memory gets the low bye of the PC

- ((SP)) <- (PC7 - PC0)

After the low byte of the PC has been stored on the stack the SP is incremented to point

to the next empty space on the stack (ie; the SP now contains 09H).

SP)) is now equivalent to (09) - meaning location 09H in memory gets the high bye of the

PC - ((SP)) <- (PC15 - PC8)

 Now that the PC has been stored on the stack the PC is loaded with the 16-bit

address (add15 - add0). Subroutines are generally sections of code that will be used

many times by the system. A subroutine might be used for taking information from a

keyboard or writing data to a serial link. A particular subroutine will be stored at some

point in code memory, but it can be called from any location in the program. Therefore,

the system needs some way of knowing where to jump back to once execution of the

subroutine is complete. The first diagram below shows the contents of the PC and

the SP as the instruction LCALL sub (at location 103BH in code memory) is about to be

executed. Notice the SP is at its reset value of 07H and the PC contains the address of

the next instruction to be executed

RET

 A subroutine must end with the RET instruction, which simply means return from

subroutine. Since a subroutine can be called from anywhere in code memory, the RET

instruction does not specify where to return to. The return address may be different each

time the subroutine is called. If you take the flashing LED program from the last section,

we called twoLoopDelay in the main program after we had turned on the LED. But we

also called twoLoopDelay from within threeLoopDelay. In these two calls the return

address is different; in the first call we are returning to the main program once

twoLoopDelay has completed, but on the second call we are returning to

threeLoopDelay.

 The system knows where to return to because, as we have seen above, the return

address (ie; the address of the next instruction after the LCALL) is stored on the stack.

Therefore, the operation of the RET instruction is:

RET - return from subroutine

Encoding - 0010 0010

Operation -

(PC15 - PC8) <- ((SP))

(SP) <- (SP) - 1

(PC7 - PC0) <- ((SP))

(SP) <- (SP) - 1

If you look at the diagram above, note the SP contains 09H - it's pointing at the high-byte

of the return address. Therefore, the contents of location 09H are placed in the high-byte

of the PC (PC15 - PC8).

The SP is then decremented (it now contains 08H) so that it points at the low-byte of the

return address. So, the contents of location 08H are placed in the low-byte of the PC

(PC7 - PC0).

 In our example above, the PC will now contain 103EH, and execution takes up

immediately after the LCALL sub instruction. Also note that the stack is now empty - SP

contains 07H.

II INSTRUCTION SET (8051)

2.1. Introduction

The process of writing program for the microcontroller mainly consists of giving

instructions (commands) in the specific order in which they should be executed in order

to carry out a specific task. As electronics cannot “understand” what for example an

instruction “if the push button is pressed- turn the light on” means, then a certain number

of simpler and precisely defined orders that decoder can recognise must be used. All

commands are known as INSTRUCTION SET.

All microcontrollers compatibile with the 8051 have in total of 255 instructions, i.e.

255 different words available for program writing. At first sight, it is imposing number of

odd signs that must be known by heart. However, It is not so complicated as it looks like.

Many instructions are considered to be “different”, even though they perform the same

operation, so there are only 111 truly different commands.

For example: ADD A,R0, ADD A,R1, ... ADD A,R7 are instructions that perform

the same operation (additon of the accumulator and register). Since there are 8 such

registers, each instruction is counted separately. Taking into account that all instructions

perform only 53 operations (addition, subtraction, copy etc.) and most of them are rarely

used in practice, there are actually 20-30 abbreviations to be learned, which is

acceptable.

2.2 Types of instructions

Depending on operation they perform, all instructions are divided in several groups:

• Arithmetic Instructions

• Branch Instructions

• Data Transfer Instructions

• Logic Instructions

• Bit-oriented Instructions

The first part of each instruction, called MNEMONIC refers to the operation an

instruction performs (copy, addition, logic operation etc.). Mnemonics are abbreviations

of the name of operation being executed. For example:

• INC R1 - Means: Increment register R1 (increment register R1);

• JNZ LOOP - Means: Jump if Not Zero LOOP (if the number in the accumulator is not 0,

jump to the address marked as LOOP);

The other part of instruction, called OPERAND is separated from mnemonic by at

least one whitespace and defines data being processed by instructions. Some of the

instructions have no operand, while some of them have one, two or three. If there is

more than one operand in an instruction, they are separated by a comma. For example:

• RET - return from a subroutine;

• JZ TEMP - if the number in the accumulator is not 0, jump to the address marked as

TEMP;

• ADD A, R3 - add R3 and accumulator;

• CJNE A, #20,LOOP - compare accumulator with 20. If they are not equal, jump to the

address marked as LOOP;

2.2.1 Arithmetic instructions

Arithmetic instructions perform several basic operations such as addition, subtraction,

division, multiplication etc. After execution, the result is stored in the first operand.

For example:

ADD A,R1 - The result of addition (A+R1) will be stored in the accumulator.

ADD A,Rn Adds the register to the accumulator

ADD A,direct Adds the direct byte to the accumulator

ADD A,@Ri Adds the indirect RAM to the accumulator

ADD A,#data Adds the immediate data to the accumulator

ADDC A,Rn Adds the register to the accumulator with a carry flag

ADDC A,direct Adds the direct byte to the accumulator with a carry flag

ADDC A,@Ri Adds the indirect RAM to the accumulator with a carry flag

ADDC A,#data Adds the immediate data to the accumulator with a carry flag

SUBB A,Rn Subtracts the register from the accumulator with a borrow

SUBB A,direct Subtracts the direct byte from the accumulator with a borrow

SUBB A,@Ri Subtracts the indirect RAM from the accumulator with a borrow

SUBB A,#data Subtracts the immediate data from the accumulator with a borrow

INC A Increments the accumulator by 1

INC Rn Increments the register by 1

INC Rx Increments the direct byte by 1

INC @Ri Increments the indirect RAM by 1

DEC A Decrements the accumulator by 1

DEC Rn Decrements the register by 1

DEC Rx Decrements the direct byte by 1

DEC @Ri Decrements the indirect RAM by 1

INC DPTR Increments the Data Pointer by 1

MUL AB Multiplies A and B 1

DIV AB Divides A by B 1

DA A Decimal adjustment of the accumulator according to BCD code

2.2.2 Branch Instructions

There are two kinds of branch instructions:

 Unconditional jump instructions: upon their execution a jump to a new location

from where the program continues execution is executed.

 Conditional jump instructions: a jump to a new program location is executed only

if a specified condition is met.

Otherwise, the program normally proceeds with the next instruction.

ACALL addr11 Absolute subroutine call

LCALL addr16 Long subroutine call

RET Returns from subroutine

RETI Returns from interrupt subroutine

AJMP addr11 Absolute jump

LJMP addr16 Long jump

SJMP rel Short jump (from –128 to +127 locations relative to the following

instruction)

JC rel Jump if carry flag is set. Short jump.

JNC rel Jump if carry flag is not set. Short jump.

JB bit,rel Jump if direct bit is set. Short jump.

JBC bit,rel Jump if direct bit is set and clears bit. Short jump.

JMP @A+DPTR Jump indirect relative to the DPTR

JZ rel Jump if the accumulator is zero. Short jump.

JNZ rel Jump if the accumulator is not zero. Short jump.

CJNE A,direct,rel Compares direct byte to the accumulator and jumps if not

equal. Short jump.

CJNE A,#data,rel Compares immediate data to the accumulator and jumps if not

equal. Short jump.

CJNE Rn,#data,rel Compares immediate data to the register and jumps if not

equal. Short jump.

CJNE @Ri,#data,rel Compares immediate data to indirect register and jumps if

not equal. Short jump.

DJNZ Rn,rel Decrements register and jumps if not 0. Short jump.

DJNZ Rx,rel Decrements direct byte and jump if not 0. Short jump.

NOP No operation

2.2.3 Data Transfer Instructions

Data transfer instructions move the content of one register to another. The register

the content of which is moved remains unchanged. If they have the suffix “X” (MOVX),

the data is exchanged with external memory.

MOV A,Rn Moves the register to the accumulator

MOV A,direct Moves the direct byte to the accumulator

MOV A,@Ri Moves the indirect RAM to the accumulator

MOV A,#data Moves the immediate data to the accumulator

MOV Rn,A Moves the accumulator to the register

MOV Rn,direct Moves the direct byte to the register

MOV Rn,#data Moves the immediate data to the register

MOV direct,A Moves the accumulator to the direct byte

MOV direct,Rn Moves the register to the direct byte

MOV direct,direct Moves the direct byte to the direct byte

MOV direct,@Ri Moves the indirect RAM to the direct byte

MOV direct,#data Moves the immediate data to the direct byte

MOV @Ri,A Moves the accumulator to the indirect RAM

MOV @Ri,direct Moves the direct byte to the indirect RAM

MOV @Ri,#data Moves the immediate data to the indirect RAM

MOV DPTR,#data Moves a 16-bit data to the data pointer

MOVC A,@A+DPTR Moves the code byte relative to the DPTR to the accumulator

(address=A+DPTR)

MOVC A,@A+PC Moves the code byte relative to the PC to the accumulator

(address=A+PC)

MOVX A,@Ri Moves the external RAM (8-bit address) to the accumulator

MOVX A,@DPTR Moves the external RAM (16-bit address) to the accumulator

MOVX @Ri,A Moves the accumulator to the external RAM (8-bit address)

MOVX @DPTR,A Moves the accumulator to the external RAM (16-bit address)

PUSH direct Pushes the direct byte onto the stack

POP direct Pops the direct byte from the stack

XCH A,Rn Exchanges the register with the accumulator

XCH A,direct Exchanges the direct byte with the accumulator

XCH A,@Ri Exchanges the indirect RAM with the accumulator

XCHD A,@Ri Exchanges the low-order nibble indirect RAM with the accumulator

2.2.4 Logic Instructions

Logic instructions perform logic operations upon corresponding bits of two registers.

After execution, the result is stored

in the first operand.

ANL A,Rn AND register to accumulator

ANL A,direct AND direct byte to accumulator

ANL A,@Ri AND indirect RAM to accumulator

ANL A,#data AND immediate data to accumulator

ANL direct,A AND accumulator to direct byte

ANL direct,#data AND immediae data to direct register

ORL A,Rn OR register to accumulator

ORL A,direct OR direct byte to accumulator

ORL A,@Ri OR indirect RAM to accumulator

ORL direct,A OR accumulator to direct byte

ORL direct,#data OR immediate data to direct byte

XRL A,Rn Exclusive OR register to accumulator

XRL A,direct Exclusive OR direct byte to accumulator

XRL A,@Ri Exclusive OR indirect RAM to accumulator

XRL A,#data Exclusive OR immediate data to accumulator

XRL direct,A Exclusive OR accumulator to direct byte

XORL direct,#data Exclusive OR immediate data to direct byte

CLR A Clears the accumulator

CPL A Complements the accumulator (1=0, 0=1)

SWAP A Swaps nibbles within the accumulator

RL A Rotates bits in the accumulator left

RLC A Rotates bits in the accumulator left through carry

RR A Rotates bits in the accumulator right

RRC A Rotates bits in the accumulator right through carry

2.2.5 Bit-oriented Instructions

Similar to logic instructions, bit-oriented instructions perform logic operations. The

difference is that these are performed

upon single bits.

CLR C Clears the carry flag

CLR bit Clears the direct bit

SETB C Sets the carry flag

SETB bit Sets the direct bit

CPL C Complements the carry flag

CPL bit Complements the direct bit

ANL C,bit AND direct bit to the carry flag

ANL C,/bit AND complements of direct bit to the carry flag

ORL C,bit OR direct bit to the carry flag

ORL C,/bit OR complements of direct bit to the carry flag

MOV C,bit Moves the direct bit to the carry flag

MOV bit,C Moves the carry flag to the direct bit

 Description of all 8051 instructions

Here is a list of the operands and their meanings:

A - accumulator;

Rn - is one of working registers (R0-R7) in the currently active RAM memory bank;

Direct - is any 8-bit address register of RAM. It can be any general-purpose register or a

SFR (I/O port, control register etc.);

@Ri - is indirect internal or external RAM location addressed by register R0 or R1;

#data - is an 8-bit constant included in instruction (0-255);

#data16 - is a 16-bit constant included as bytes 2 and 3 in instruction (0-65535);

addr16 - is a 16-bit address. May be anywhere within 64KB of program memory;

addr11 - is an 11-bit address. May be within the same 2KB page of program memory as

the first byte of the following instruction;

rel - is the address of a close memory location (from -128 to +127 relative to the first byte

of the following instruction). On the basis of it, assembler computes the value to add or

subtract from the number currently stored in the program counter;

bit - is any bit-addressable I/O pin, control or status bit; and

C - is carry flag of the status register (register PSW).

8051 Addressing Modes
8051 has four addressing modes.
1. Immediate Addressing :
Data is immediately available in the instruction.
For example -

ADD A, #77; Adds 77 (decimal) to A and stores in A

ADD A, #4DH; Adds 4D (hexadecimal) to A and stores in A

MOV DPTR, #1000H; Moves 1000 (hexadecimal) to data pointer

2. Bank Addressing or Register Addressing :
This way of addressing accesses the bytes in the current register bank. Data is available
in the register specified in the instruction. The register bank is decided by 2 bits of
Processor Status Word (PSW).
For example-

ADD A, R0; Adds content of R0 to A and stores in A

3.. Direct Addressing :
The address of the data is available in the
instruction. For example -

MOV A, 088H; Moves content of SFR TCON (address 088H)to A
4. Register Indirect Addressing :
The address of data is available in the R0 or R1 registers as specified in the
instruction. For example -

MOV A, @R0 moves content of address pointed by R0 to A
External Data Addressing :
Pointer used for external data addressing can be either R0/R1 (256 byte access) or
DPTR (64kbyte access).
For example -

MOVX A, @R0; Moves content of 8-bit address pointed by R0 to A

MOVX A, @DPTR; Moves content of 16-bit address pointed by DPTR to A
External Code Addressing :
Sometimes we may want to store non-volatile data into the ROM e.g. look-up tables.
Such data may require reading the code memory. This may be done as follows -

MOVC A, @A+DPTR; Moves content of address pointed by A+DPTR to A

MOVC A, @A+PC; Moves content of address pointed by A+PC to A

I/O Port Configuration
Each port of 8051 has bidirectional capability. Port 0 is called 'true bidirectional port' as it
floats (tristated) when configured as input. Port-1, 2, 3 are called 'quasi bidirectional
port'. Port-0 Pin Structure
Port -0 has 8 pins (P0.0-P0.7).
The structure of a Port-0 pin is shown in fig 4.10.

Fig 4.10: Port-0 Structure

Port-0 can be configured as a normal bidirectional I/O port or it can be used for
address/data interfacing for accessing external memory. When control is '1', the port is
used for address/data interfacing. When the control is '0', the port can be used as a
normal bidirectional I/O port.

Let us assume that control is '0'. When the port is used as an input port, '1' is written to
the latch. In this situation both the output MOSFETs are 'off'. Hence the output pin floats.
This high impedance pin can be pulled up or low by an external source. When the port is
used as an output port, a '1' written to the latch again turns 'off' both the output
MOSFETs and causes the output pin to float. An external pull-up is required to output a
'1'. But when '0' is written to the latch, the pin is pulled down by the lower MOSFET.
Hence the output becomes zero.

When the control is '1', address/data bus controls the output driver MOSFETs. If the
address/data bus (internal) is '0', the upper MOSFET is 'off' and the lower MOSFET is
'on'. The output becomes '0'. If the address/data bus is '1', the upper transistor is 'on'
and the lower transistor is 'off'. Hence the output is '1'. Hence for normal address/data
interfacing (for external memory access) no pull-up resistors are required.

Port-0 latch is written to with 1's when used for external memory
access. Port-1 Pin Structure
Port-1 has 8 pins (P1.1-P1.7) .The structure of a port-1 pin is shown in fig 4.11.

Fig 4.11 Port 1 Structure
Port-1 does not have any alternate function i.e. it is dedicated solely for I/O interfacing.
When used as output port, the pin is pulled up or down through internal pull-up. To use
port-1 as input port, '1' has to be written to the latch. In this input mode when '1' is written
to the pin by the external device then it read fine. But when '0' is written to the pin by the
external device then the external source must sink current due to internal pull-up. If the
external device is not able to sink the current the pin voltage may rise, leading to a
possible wrong reading.

PORT 2 Pin Structure
Port-2 has 8-pins (P2.0-P2.7) . The structure of a port-2 pin is shown in fig 4.12.

Fig 4.12 Port 2 Structure
Port-2 is used for higher external address byte or a normal input/output port. The I/O
operation is similar to Port-1. Port-2 latch remains stable when Port-2 pin are used for
external memory access. Here again due to internal pull-up there is limited current
driving capability.
PORT 3 Pin Structure
Port-3 has 8 pin (P3.0-P3.7) . Port-3 pins have alternate functions. The structure of a
port-3 pin is shown in fig 4.13.

Fig 4.13 Port 3 Structure
Each pin of Port-3 can be individually programmed for I/O operation or for alternate

function. The alternate function can be activated only if the corresponding latch has

been

written to '1'. To use the port as input port, '1' should be written to the latch. This port also has
internal pull-up and limited current driving capability.
Alternate functions of Port-3 pins are -

P3.0 RxD

P3.1 TxD

P3.2

P3.3

P3.4 T0

P3.5 T1

P3.6

P3.7
Note:

1) Port 1, 2, 3 each can drive 4 LS TTL inputs.
2) Port-0 can drive 8 LS TTL inputs in address /data mode. For digital output port, it needs

external pull-up resistors.
3) Ports-1,2and 3 pins can also be driven by open-collector or open-drain outputs.
4) Each Port 3 bit can be configured either as a normal I/O or as a special function bit.

8051 MICROCONTROLLER PROGRAMS
1.8 BIT ADDITION USING INTERNAL MEMORY

2. 8 BIT ADDITION USING EXTERNAL MEMORY

Memory
Address

Hex code Label
Mnemonics

Comments Opcode Operand

8000 E5,40 MOV A,40 Move the content of 40 to accumulator

8002 A8,41 MOV R0,41 Move the content of 41 to ‘R0’ register

8004 28 ADD A,R0 Add the content of ‘R0’ and ‘A’

8005 F5,42 MOV 42,A Move the content of accumulator to 42

8007 74,00 MOV A,#00 Initialize the accumulator

8009 34,00 ADDC A,#00 Add the content of A and 00 with carry

800B F5,43 MOV 43,A Move the content of accumulator to 43

800D 12,00,BB LCALL 00BB Halt the program

Memory
Address

Hex code Label
Mnemonics

Comments Opcode Operand

8000 90,91,00 MOV DPTR,#9100 Initialize the data pointer

8003 E0 MOVX A,@DPTR Move the content of DPTR to Acc.

3. 8 BIT SUBTRACTION USING INTERNAL MEMORY

4. 8 BIT SUBTRACTION USING EXTERNAL MEMORY

5. 8 BIT MULTIPLICATION USING INTERNAL MEMORY

8004 F8 MOV R0,A Move the content of A to R0

8005 A3 INC DPTR Increment the data pointer

8006 E0 MOVX A,@DPTR Move the content of DPTR to Acc.

8007 28 ADD A,R0 Add the content of ‘R0’ and ‘A’

8008 A3 INC DPTR Increment the data pointer

8009 F0 MOVX @DPTR,A Move the content of A to DPTR

800A 74,00 MOV A,#00 Initialize the accumulator

800C 34,00 ADDC A,#00 Add the content of A and 00 with carry

800E A3 INC DPTR Increment the data pointer

800F F0 MOVX @DPTR,A Move the content of A to DPTR

8010 12,00,BB LCALL 00BB Halt the program

Memory
Address

Hex code Label
Mnemonics

Comments Opcode Operand

8000 C3 CLR C Clear the Carry flag

8001 E5,40 MOV A,40 Move the content of 40 to accumulator

8003 A8,41 MOV R0,41 Move the content of 41 to ‘R0’ register

8005 98 SUBB A,R0 Subtract the content of ‘R0’ from ‘A’

8006 F5,42 MOV 42,A Move the content of accumulator to 42

8008 12,00,BB LCALL 00BB Halt the program

Memory
Address

Hex code Label
Mnemonics

Comments Opcode Operand

8000 C3 CLR C Clear the Carry flag

8001 90,91,00 MOV DPTR,#9100 Initialize the data pointer

8004 E0 MOVX A,@DPTR Move the content of DPTR to Acc.

8005 F8 MOV R0,A Move the content of A to R0

8006 A3 INC DPTR Increment the data pointer

8007 E0 MOVX A,@DPTR Move the content of DPTR to Acc.

8008 98 SUBB A,R0 Subtract the content of ‘R0’ from ‘A’

8009 A3 INC DPTR Increment the data pointer

800A F0 MOVX @DPTR,A Move the content of A to DPTR

801B 12,00,BB LCALL 00BB Halt the program

Memory
Address

Hex code Label
Mnemonics

Comments Opcode Operand

8000 E5,40 MOV A,40 Move the content of 40 to accumulator

8002 85,41,F0 MOV 0F0,41 Move the content of 41 to ‘B’ register

6. 8 BIT MULTIPLICATION USING EXTERNAL MEMORY

7. 8 BIT DIVISION USING INTERNAL MEMORY

8005 A4 MUL AB Multiply the content of ‘A’ and ‘B’

8006 F5,42 MOV 42,A Move the content of accumulator to 42

8008 E5,F0 MOV A,0F0 Move the content of ‘B’ to accumulator

800A F5,43 MOV 43,A Move the content of accumulator to 43

800C 12,00,BB LCALL 00BB Halt the program

Memory
Address

Hex code Label
Mnemonics

Comments Opcode Operand

8000 90,91,00 MOV DPTR,#9100 Initialize the data pointer

8003 E0 MOVX A,@DPTR Move the content of DPTR to Acc.

8004 F5,F0 MOV 0F0,A Move the content of ‘A’ to ‘B’ register

8006 A3 INC DPTR Increment the data pointer

8007 E0 MOVX A,@DPTR Move the content of DPTR to Acc.

8008 A4 MUL AB Multiply the content of ‘A’ and ‘B’

8009 A3 INC DPTR Increment the data pointer

800A F0 MOVX @DPTR,A Move the content of ‘A’ to DPTR

800B E5,F0 MOV A,0F0 Move the content of ‘B’ to accumulator

800D A3 INC DPTR Increment the data pointer

800E F0 MOVX @DPTR,A Move the content of A to DPTR

800F 12,00,BB LCALL 00BB Halt the program

Memory
Address

Hex code Label
Mnemonics

Comments Opcode Operand

8000 E5,40 MOV A,40 Move the content of 40 to accumulator

8002 85,41,F0 MOV 0F0,41 Move the content of 41 to ‘B’ register

8005 84 DIV AB Divide the content of ‘A’ and ‘B’

8006 F5,42 MOV 42,A Move the content of accumulator to 42

8008 E5,F0 MOV A,0F0 Move the content of ‘B’ to accumulator

800A F5,43 MOV 43,A Move the content of accumulator to 43

800C 12,00,BB LCALL 00BB Halt the program

UNIT 5 APPLICATIONS BASED ON 8085 AND 8051 9 Hrs.
Interfacing Basic concepts, interfacing LED, 7 segment LED, Stepper motor control system,

Temperature control system, Traffic light control system, Motor speed control system,

Waveform generation, Interfacing LCD.

Traffic light control system using 8085

The traffic lights placed at the road crossings can be automatically switched ON/OFF in

the desired sequence using the microprocessor system. The system can also have a manual

control option, so that during heavy traffic (or during4raffic jam) the duration of ON/OFF time

can be varied by the operator.

A typical traffic light control system (demonstration type) is shown in fig 1. The systems

have been developed using 8085 as CPU. The system has EPROM memory for system

program storage and RAM memory for stack operation. For manual control a keyboard have

been provided. It will be helpful for the operator if the direction 6ftraffic flow is displayed during

manual control. Hence 7-segment LEDs are interfaced to display the direction of traffic flow both

during manual and automatic mode.

The primary function of the microprocessor in the system is to switch ON/OFF the

Red/Yellow/Green lights is the specified sequence. In the demonstration system of fig,

Red/Yellow/Green LEDs are provided instead of lights (lamps). The LEDs are interfaced to the

system through buffer (74LS245) and ports of 8255.

In the practical implementation scheme the lights can be turned ON/OFF using driver

transistors and relays. In practical implementation the output of buffer (74LS245) can be

connected to the driver transistor. A reverse biased diode is connected across relay coil to

prevent relay chattering (for free-wheeling action).

The microprocessor send High through a port line to switch ON the light and LOW to

switch OFF the light. A switching schedule (or sequence) can be developed as shown in Table.

In this switching sequence it is assumed that the traffic is allowed only in one direction at time.

In table, "1" represents ON condition and "0" represents OFF condition. These 1's and O's

Can be directly output to 8255 ports to switch ON/OFF the light. A flowchart for traffic light

control program is shown in fig 3.

Fig.1: 8085 Microprocessor based Traffic light control
system.

Fig. 2: Switching schedule for Traffic
light

The processor can output the codes for switching the lights for schedulel and then waits.

After a specified time delay the processor output the codes for schedule-II and so on. For each

schedule the processor can wait for a specified time. After schedule-XII, the processor can

again return to schedule-I. On observing the schedules we can conclude that three different

delay routines are sufficient for implementing the twelve switching schedules.

 Fig.3: Flow chart for Traffic light control system.

Temperature controller using 8085

The microprocessor based temperature control system can be used for automatic

control of the temperature of a body. A simplified block diagram of 8085 microprocessor based

temperature control system is shown in fig 4 . The system consist of 8085 microprocessor as

CPU, ERROM&RAM memory for program & data storage, INTEL 8279 for keyboard and display

Interface, ADC, DAC, INTEL 8255 for I/O' ports, Amplifiers, Signal conditioning circuit,

Temperature sensor and Supply control circuit. In this system the temperature is controlled by

controlling the power input to the heating element.

The temperature of the body is measured using a temperature sensor. The different

types of temperature sensor that can be used for temperature measurement are Thermo-

couple, Thermistors , PN-junctions, IC sensors. This sensor will convert the input temperature to

Proportional analog voltage or current. The output signal of the sensor will be a weak signal and

so has to be amplified by using high input impedance op-amp. Then the analog signal is scaled

to suitable level by the signal conditioning circuit.

The microprocessor can process only digital signals and so the analog signal from signal

conditioning circuit cannot be read by the processor directly. The system has an analog-to-

digital converter (ADC) to convert the analog signal to proportional digital data. In this system

the ADC is interfaced to 8085 processor through port-A of 8255. The 8085 processor send

signal to ADC to start conversion and at the end of conversion it read the digital data from the

port-A of 8255.

Fig.4 : 8085 Microprocessor based Temperature control system.

The 8085 processor calculate the actual temperature using the input data and display it on the

7-segment LED. Also, the processor compare the desired temperature with actual temperature

(The operator can enter the desired temperature through keyboard) and calculate the error (the

difference between actual temperature and desired temperature).

Fig.5: Flow chart for Temperature control system.

The error is used to compute a digital control signal, which is converted to analog control signal

by DAC. The DAC is interfaced to the system through port-B of 8255. The analog control signal

produced by DAC is used to control the power supply of the heating element of the body.

The digital control signal can be computed by the 8085 processor using different digital

control algorithms (PIPI/PID/FUZZY logic control algorithms).

The control circuit for power supply can be either thyristor based circuit or relay. In case of

thyristor control circuits the firing angle can be varied by the control signal to control the power

input to the heater.

Stepper motor controller system using 8085

The stepper motors are popularly used in computer peripherals, plotters, robots and machine

tools for 'precise incremental rotation. In stepper motor, the stator windings are excited by

electrical pulses and for each pulse the motor shaft advances by one angular step. (Single the

stepper motor can be driven by digital pulses; it is also called digital motor). The step size in the

motor is determined by the number of poles in the rotor and the number 'of pairs of stator

windings (one pair of stator winding is called one 'phase). The stator windings are also called

control windings.

The motor is controlled by switching ON/OFF the control winding. The popular stepper

motor used for demonstration in laboratories has a step size of 1.8° (i.e, 200 steps per

revolution). This motor consist of four stator winding and require four switching sequence as

shown in table 1. The basic step size of the motor is called full-step. By altering the switching

sequence, the motor can be made to run with incremental motion of half the full-step value.

A typical stepper motor control system is shown in fig 6. a two-phase or four winding stepper

motor is show in fig 6. The system consists of 8085 microprocessor as CPU, EPROM and RAM

memory for program &data storage and for stack. Using INTEL 8279, a keyboard and six

number of 7-segment LED display has been interfaced in the system. Through the keyboard the

operator can issue commands to control the system. The LED display has been provided to

display messages to the operator. The windings of stepper motor connected to the collector of

Darlington pair transistors. The transistors are switched ON/OFF by the microprocessor through

the ports of 8255 and buffer (74LS245). A free wheeling diode is connected across each

winding for fast switching. The flowchart for the operational flow of the stepper motor control

system is shown in fig 7. The processor has to output a switching sequence and wait for l to 5

msec before Sending next switching sequence. (The delay is necessary to allow be motor

transients to die-out).

Fig.6 : 8085 Microprocessor based StepperMotor
control system.

TABLE 1: Switching sequence for Full Step
Rotation

Fig.7: Flow chart for Stepper motor control system.

INTERFACING STEPPER MOTOR with 8051

The Stepper Motor to microcontroller. As you can see the stepper motor is connected with

Microcontroller output port pins through a ULN2803A array. So when the microcontroller is

giving pulses with particular frequency to ls293A, the motor is rotated in clockwise or

anticlockwise. Fig. 1 Interfacing Stepper Motor to Microcontroller

We now want to control a stepper motor in 8051 trainer kit. It works by turning ON & OFF a four

I/O port lines generating at a particular frequency. The 8051 trainer kit has three numbers of I/O

port connectors, connected with I/O Port lines (P1.0 – P1.7),(p3.0 – p3.7) to rotate the stepper

motor. Ls293d

is used as a driver for port I/O lines, drivers output connected to stepper motor, connector
provided for external power supply if needed.

 Interfacing 16×2 LCD with 8051

 We use LCD display for the messages for more interactive way to operate the system or
displaying error messages etc. interfacing LCD to microcontroller is very easy if you
understanding the working of LCD, in this session I will not only give the information of LCD and
also provide the code in C language which is working fine without any errors.

 LCD: 16×2 Liquid Crystal Display which will display the 32 characters at a time in two rows (16
characters in one row). Each character in the display of size 5×7 pixel matrix, Although this
matrix differs for different 16×2 LCD modules if you take JHD162A this matrix goes to 5×8. This
matrix will not be same for all the 16×2 LCD modules. There are 16 pins in the LCD module, the
pin configuration us given below

Follow these simple steps for displaying a character or data

To send a command to the LCD just follows these steps:

The crystal oscillator is connected to XTAL1 and XTAL2 which will provide the system clock to
the microcontroller the data pins and remaining pins are connected to the microcontroller as
shown in the circuit. The potentiometer is used to adjust the contrast of the LCD. You can
connect data pins to any port. If you are connecting to port0 then you have to use pull up
registers. The enable, R/W and RS pins are should be connected to the 10, 11 and 16 (P3.3,
P3.4 and P3.5).

