
UNIT 5

Task partitioning (TP)

TP is the division of a task into 2 or more sub-tasks e.g. nectar collection & storage

versus collection, storage

Division of Labour = Workers / Tasks

Task Partitioning = Task / Workers

Honey bees and stingless bees have task partitioning as above. Bumble bees so not. A nectar

forager bumble bee also stores the nectar.

Task partitioning is the division of a task into two or more sub-tasks. If a load of forage is

passed from one worker to another this is task partitioning. In honey bees and stingless bees, a

nectar forager transfers her nectar to one or more nectar receiver bees in the nest. This is similar

to a “bucket brigade” or assembly line. All known examples of TP involve the handling of

material. The two sub-tasks are connected by the flow of material between them.

Data sharing

The ability to share the same data resource with multiple applications or users. It implies

that the data are stored in one or more servers in the network and that there is some software

locking mechanism that prevents the same set of data from being changed by two people at the

same time. Data sharing is a primary feature of a database management system (DBMS).

Task Distribution

A search algorithm implemented on a parallel system requires a balanced division of work

between contributing processors to reduce idle time and minimize redundant or wasted effort.

One method of dividing up the work is with a parallel window search (PWS), introduced by

Powley and Korf. Using PWS, each processor is given a copy of the entire search tree and a

unique cost threshold. The processors search the same tree to different thresholds

simultaneously. If a processor completes an iteration without finding a solution, it is given a new

unique threshold (deeper than any threshold yet searched) and begins a new search pass with the

new threshold. When an optimal solution is desired, processors that find a goal node must remain

idle until all processors with lower cost thresholds have completed their current iteration. A

typical division of work using PWS is illustrated in Figure 1.

Figure 1: Division of work in parallel window

search

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume9/cook98a-html/node3.html#fig:pws

One advantage of parallel window search is that the redundant search inherent in IDA* (Iterative

Deepening A search) is not performed serially. During each non-initial iteration of IDA*, all of

the nodes expanded in the previous iteration are expanded again. Using multiple processors, this

redundant work is performed concurrently. A second advantage of parallel window search is the

improved time in finding a first solution. If a search space holds many goal nodes, IDA* may

find a deep solution much more quickly than an optimal solution. Parallel window search can

take advantage of this type of search space. Processors that are searching beyond the optimal

threshold may find a solution down the first branch they explore, and can return that solution

long before other processors finish their iteration. This may result in superlinear speedup because

the serial algorithm conservatively increments the cost threshold and does not look beyond the

current threshold.

On the other hand, parallel window search can face a decline in efficiency when the number of

processors is significantly greater than the number of iterations required to find an optimal (or a

first) solution, causing all remaining processors to sit idle. This situation will occur when many

processors are available, yet few iterations are required because the heuristic estimate is fairly

accurate.

Figure 2: Division of work in distributed tree search

An alternative parallel search approach relies on distributing the tree among the processors. With

this approach, the root node of the search space is given to the first processor and other

processors are assigned subtrees of that root node as they request work. As an alternative, the

distributed tree search algorithm (DTS) employs breadth-first expansion until there are at least as

many expanded leaf nodes as available processors. Processors receive unique nodes from the

expanding process and are responsible for the entire subtree rooted at the received node.

Communication-free versions of this distribution scheme have also been reported. In all of these

tree distribution approaches, the processors perform IDA* on their unique subtrees

simultaneously. All processors search to the same threshold. After all processors have finished a

single iteration, they begin a new search pass through the same set of subtrees using a larger

threshold. A sample distribution of the search space is shown in Figure 2.

One advantage of this distribution scheme is that no processor is performing wasted work

beyond the goal depth. Because the algorithm searches the space completely to one threshold

before starting the search to a new threshold, none of the processors is ever searching at a level

beyond the level of the optimal solution. It is possible, however, for DTS to perform wasted

work at the goal depth. For example, in Figure 2 processor 3 searches nodes at the goal level that

would not be searched in a serial search algorithm moving left-to-right through the tree.

A disadvantage of this approach is the fact that processors are often idle. To ensure optimality, a

processor that quickly finishes one iteration must wait for all other processors to finish before

starting the next iteration. This idle time can make the system very inefficient and reduce the

performance of the search application. The efficiency of this approach can be improved by

performing load balancing between neighboring processors working on the same iteration.

Figure 3: Space searched by two clusters, each with 3 processors

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume9/cook98a-html/node3.html#fig:dts
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume9/cook98a-html/node3.html#fig:dts

These described approaches offer unique benefits. Parallel window search is effective

when many iterations of IDA* are required, when the tree is so imbalanced that DTS will require

excessive load balancing, or when a deep, non-optimal solution is acceptable. On the other hand,

dividing the search space among processors can be more effective when the branching factor is

very large and the number of IDA* iterations is relatively small. A compromise between these

approaches divides the set of processors into clusters. Each cluster is given a unique cost

threshold, and the search space is divided between processors within each cluster, as shown in

Figure 3. Setting the number of clusters to one simulates distributed tree search, and setting the

number of clusters to the number of available processors simulates parallel window search.

Shared memory

Shared memory is memory that may be simultaneously accessed by multiple programs

with an intent to provide communication among them or avoid redundant copies. Shared memory

is an efficient means of passing data between programs.

Race

A race condition is a programming fault producing undetermined program state and

behavior due to un-synchronized parallel program executions. Race condition is the most

worried programming fault by experienced programmers in parallel programming space.

However there are many subtle aspects of race condition issues. A race condition problem is

often caused by common data accessing, but it can also occur in a sequence of operations which

require a protection such as atomic transaction to ensure the overall state integrity. Not every

data race case is a programming bug. There is a compromised aspect of allowing race condition

in a parallel program for performance reason.

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume9/cook98a-html/node3.html#fig:clusters

Dependence

A data dependency is a situation in which a program statement (instruction) refers to the data of

a preceding statement. In compiler theory, the technique used to discover data dependencies

among statements (or instructions) is called dependence analysis.

There are three types of dependencies: data, name, and control.

Bernstein’s conditions for parallelism

 Define:

 Ii as the input set of a process Pi

 Oi as the output set of a process Pi

 P1 and P2 can execute in parallel (denoted as P1 || P2) under the condition:

 I1 ∩ O2 = 0

 I2 ∩ O1 = 0

 O1 ∩ O2 = 0

 Note that I1 ∩ I2 <> 0 does not prevent parallelism

 Input set: also called read set or domain of a process

 Output set: also called write set or range of a process

 A set of processes can execute in parallel if Bernstein’s conditions are satisfied on a

pairwise basis; that is, P1||P2|| … ||PK if and only if Pi||Pj for all i<>j

 The parallelism relation is commutative: Pi || Pj implies that Pj || Pi

 The relation is not transitive: Pi || Pj and Pj || Pk do not necessarily mean Pi || Pk

 Associativity: Pi || Pj || Pk implies that (Pi || Pj) || Pk = Pi || (Pj || Pk)

 For n processes, there are 3n(n-1)/2 conditions; violation of any of them prohibits

parallelism collectively or partially

 Statements or processes which depend on run-time conditions are not transformed to

parallelism. (IF or conditional branches)

 The analysis of dependences can be conducted at code, subroutine, process, task, and

program levels; higher-level dependence can be inferred from that of subordinate levels

Example of parallelism using Bernstein’s conditions

 P1: C = D * E

 P2: M = G + C

 P3: A = B + G

 P4: C = L + M

 P5: F = G / E

 Assume no pipeline is used, five steps are needed in sequential execution

https://en.wikipedia.org/wiki/Program_statement
https://en.wikipedia.org/wiki/Compiler_theory
https://en.wikipedia.org/wiki/Dependence_analysis

 There are 10 pairs of statements to check against Bernstein’s conditions

 Only P2 || P3 || P5 is possible because P2 || P3, P3 || P5 and P2 || P5 are all possible

 If two adders are available simultaneously, the parallel execution requires only three

steps

Progress – lock and wait freedom

An algorithm is called non-blocking if failure or suspension of any thread cannot cause

failure or suspension of another thread; for some operations, these algorithms provide a useful

alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if

there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread

progress.

Wait-freedom is the strongest non-blocking guarantee of progress, combining guaranteed

system-wide throughput with starvation-freedom. An algorithm is wait-free if every operation

has a bound on the number of steps the algorithm will take before the operation completes. This

property is critical for real-time systems and is always nice to have as long as the performance

cost is not too high. It was shown in the 1980s that all algorithms can be implemented wait-free,

and many transformations from serial code, called universal constructions, have been

demonstrated. However, the resulting performance does not in general match even naïve

blocking designs. Several papers have since improved the performance of universal

constructions, but still, their performance is far below blocking designs.

Lock-freedom allows individual threads to starve but guarantees system-wide throughput.

An algorithm is lock-free if it satisfies that when the program threads are run sufficiently long at

least one of the threads makes progress (for some sensible definition of progress). All wait-free

algorithms are lock-free. An algorithm is lock free if infinitely often operation from some

processors will succeed in finite number of steps. For instance, if N number of processors are

trying to make an operation, some processes in N number of processes will succeed to finish the

operation in finite number of steps and other might fail and retry on failure. The difference

between wait-free and lock-free is, wait-free operations by every process is guaranteed to

succeeds in finite number of steps regardless of other processors.

In general, a lock-free algorithm can run in four phases: completing one's own operation,

assisting an obstructing operation, aborting an obstructing operation, and waiting. Completing

one's own operation is complicated by the possibility of concurrent assistance and abortion, but

is invariably the fastest path to completion. The decision about when to assist, abort or wait

when an obstruction is met is the responsibility of a contention manager. This may be very

simple (assist higher priority operations, abort lower priority ones), or may be more optimized to

achieve better throughput, or lower the latency of prioritized operations. Correct concurrent

assistance is typically the most complex part of a lock-free algorithm, and often very costly to

execute: not only does the assisting thread slow down, but thanks to the mechanics of shared

memory, the thread being assisted will be slowed, too, if it is still running.

Dynamic Vs Static Scheduling

• Dynamic (On-line) Scheduling

– Only considers

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://en.wikipedia.org/wiki/Thread_%28computing%29
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Resource_starvation

• Actual requests

• Execution time parameters

– Costly to find a schedule

• Static Scheduling (Off-line)

– Complete knowledge

• Maximum execution time

• Precedence constraints

• Mutual exclusion constraints

• Deadlines

Optimal Dynamic Scheduling

• Consider a dynamic scheduler with full past knowledge only

– Exact schedulability is impossible

– New definition of optimal dynamic scheduler

• Optimal if it can find a schedule whenever a clairvoyant scheduler can find a

schedule

• Dynamic scheduling algorithm

– Determines task after occurrence of a significant event

Based on current task requests

Dynamic Scheduling In Distributed Systems

• Hard to guarantee deadlines in single processor systems

• Even harder in distributed systems or multiprocessor systems due to communication

• Applications required to tolerate transient faults like message losses as well as detect

permanent faults

• Positive Acknowldgement or Retransmission (PAR)

• Large temporal uncertainty between shortest and longest execution time

• Worse case – assume longest time.

• Poor responsiveness of system

• Masking Protocols

• Send message k + 1 in case the tolerance of k is required.

No temporal problem but can’t detect permanent faults due to unidirectional communication

Static Scheduling

• Static schedules guarantees all deadlines, based on known resources, precedence, and

synchronization requirements, is calculated off-line

• Strong regularity assumptions

• Known times when external events will be serviced

• System design

• Maximum delay time until request is recognized + maximum transaction response time

< service deadline

• Time

• Generally a periodic time-triggered schedule

• Time line divided into a sequence of granules (cycle time)

• Only one interrupt, a periodic clock interrupt for the start of a new granule

• In distributed systems, synchronized to a precision of less than a granule

• Periodic with pi being a multiple of the basic granule

• Schedule period = least common multiple of all pi

• All scheduling decisions made at compile-time and executed at run-time

• Optimal schedule in a distributed system => NP complete

Comparisons

• Predictability

• Static Scheduling

• Accurate planning of schedule, so precise predictability

• Dynamic Scheduling

• No schedulability tests exist for distributed system with mutual exclusion and

precedence relations

• Dynamic nature can not guarantee timeliness

• Testability

• Static Scheduling

• Performance tests of every task can be compared with established plans

• Systematic and constructive since all input cases can be observed

• Dynamic Scheduling

• Confidence of timeliness based on simulations

• Real loads not enough since rare events don’t occur often

• Are the simulated loads representative of real loads?

• Resource Utilization

• Static Scheduling

• Planned for peak load with time for each task at least the maximum execution

time

• If many operating modes, can lead to “combinatorial explosion” of static

schedules

• Dynamic Scheduling

• Processor available more quickly

• Resources needed to do dynamic scheduling

• Resource Utilization

• Dynamic Scheduling (Cont’d)

• If loads low, better utilization than static schedule

• If loads high, more resources used for dynamic scheduling and less for execution

of tasks

• Extensibility

• Static Scheduling

• If a new task is added or the maximum execution time is modified, the schedule

needs to be recalculated

• If the new node sends information into the system, the communications

schedule needs to be recalculated

• Impossible to calculate static schedule if the number of tasks changes

dynamically during run-time

• Dynamic Scheduling

• Easy to add/modify tasks

• Change can ripple through system

• Probability of change and system test-time are proportional to tasks.

• Assessing the consequences increase more than linearly with the number of

tasks

• Scales poorly for large applications

Speculative task

• Speculative execution is an optimization technique where a computer system performs

some task that may not be actually needed. The main idea is to do work before it is

known whether that work will be needed at all, so as to prevent a delay that would have

to be incurred by doing the work after it is known whether it is needed. If it turns out the

work was not needed after all, any changes made by the work are reverted and the results

are ignored.

• The objective is to provide more concurrency if extra resources are available. This

approach is employed in a variety of areas, including branch prediction in pipelined

processors, prefetching memory and files, and optimistic concurrency control in database

systems.

• Modern pipelined microprocessors use speculative execution to reduce the cost of

conditional branch instructions using schemes that predict the execution path of a

program based on the history of branch executions. In order to improve performance and

utilization of computer resources, instructions can be scheduled at a time when it has not

yet been determined that the instructions will need to be executed, ahead of a branch.

• In compiler optimization for multiprocessing systems, speculative execution involves an

idle processor executing code in the next processor block, in case there is no dependency

on code that could be running on other processors. The benefit of this scheme is reducing

response time for individual processors and the overall system. However, there is a net

penalty for the average case, since in the case of a bad bet, the pipelines should be

flushed. The compiler is limited in issuing speculative execution instruction, since it

https://en.wikipedia.org/wiki/Optimization_%28computer_science%29
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Concurrency_%28computer_science%29
https://en.wikipedia.org/wiki/Resource_%28computer_science%29
https://en.wikipedia.org/wiki/Branch_predictor
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Instruction_prefetch
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Conditional_branch
https://en.wikipedia.org/wiki/Branch_predictor
https://en.wikipedia.org/wiki/Compiler_optimization
https://en.wikipedia.org/wiki/Multiprocessing

requires hardware assistance to buffer the effects of speculatively-executed instructions.

Without hardware support, the compiler could only issue speculative instructions which

have no side effects in case of wrong speculation.

Collaborative Real Time Editing

What is it?

Collaborative editing is the practice of a group of individuals simultaneously

editing a document. Using collaborative editing tools, authorized users can edit a

document, see who else is working on it, and watch—in real time—as others make

changes. Unlike simple version control, in which a single working copy of a file is

managed among editors one at a time, collaborative editing allows multiple users to make

changes at the same time. A group of individuals—in the same location or geographically

separated—can use collaborative editing tools to create a document that reflects the

contributions of the group, without having to track and coordinate edits. Collaborative

documents are similar to wikis in that multiple users can change, add to, and delete

content. They also resemble instant messaging in that users can see the input of all other

users immediately. Some collaborative editing tools include instant messaging features so

users can communicate in a chat session parallel to the document they are editing.

Who’s doing it?

Collaborative editing was conceived as a tool for software developers, providing a

way for two or more programmers to write code together, cross-checking each other’s

work and brainstorming how the application should work. Today, collaborative editing

tools are being used more broadly. Authors co-writing a text can use collaborative editing

to streamline the process of creating and revising content. A group of attendees at a

workshop can write a single set of notes that are more complete than an individual could

write alone. Similarly, some meeting organizers have come to rely on collaborative

editing tools. Prior to a meeting, the leader writes an agenda. During the meeting,

attendees use collaborative editing tools to access the agenda, update it with information

they will present, and take notes on topics as they are covered. Some educators are using

collaborative editing as a demonstration tool. For example, an instructor can put a

document online where the students in a class can access it. The instructor assigns read-

only rights to the students, who watch as the instructor edits or updates the document,

demonstrating a method of proper revision. The instructor then allows each member of

the class to edit the document in turn, while the other members

of the group watch.

How does it work?

With collaborative editing, a user creates a document and announces to other

eligible users—who are often on the same subnet—that it is available for editing.

Depending on how each document is set up, some users can see but not edit it, while

others have full access. Many applications are built with “zero-configuration”

https://en.wikipedia.org/wiki/Side_effect_%28computer_science%29

technology, which automatically locates users on a local area network and connects them

without any input from the users; with other tools, users must manually add themselves.

A window identifies users who are connected to the open document and assigns each a

unique color. Each user’s cursor and all of his or her edits are highlighted with that color,

and all edits are displayed immediately, allowing everyone participating to see who does

what, as it happens. The real-time nature of collaborative editing prevents simultaneous

edits from overwriting one another, which, though uncommon, is possible with wikis. It

is possible to change another author’s text, but because editors can see changes instantly,

the revision process is truly collaborative.

Why is it significant?

Collaborative editing is a more efficient method of creating and revising

documents. Before collaborative editing, a group of users who all needed to participate in

a document had to coordinate their editorial steps, maintaining control of several versions

of the document to ensure the integrity of the changes. In addition, such processes

typically require a project leader to coordinate different rounds of editing and resolve

conflicts. With collaborative editing, all of these steps happen simultaneously.

Contributors can see edits as they are made, saving time and eliminating the possibility

that edits could be inadvertently overwritten or that conflicting edits will be resolved

improperly. As a functional hybrid of wikis and instant messaging, collaborative editing

creates a new dynamic for group work, whether for a formal paper or a set of lecture

notes. Working simultaneously on a document can build a sense of community among the

editors that is not possible if the document were simply passed from one individual to the

next.

What are the downsides?

Effective collaborative editing depends on a conscientious document owner and a

trusted group of editors. Although collaboratively edited files are stored on the document

owner’s computer, participating editors can make local copies of the file, which can

result in the document’s “splintering” into several versions. If the original of a document

is closed during an editing session, the “master” can be handed off to any of the other

users. Further editing of the document could result in lost edits and versioning problems.

Editing tools also do not store a history of changes. Although each editor’s changes are

color-coded during editing, no record of the changes is stored—just the text is saved. The

only way to preserve a snapshot of a document showing current edits is to take a screen

shot or, with some applications, to export the document to a PDF.

Most collaborative editing applications are platform-specific, limiting their

usefulness to people on different kinds of systems. The tools most commonly used by

those with Macintosh operating systems are not compatible with either Linux- or

Windows-based computers. Similarly, Windows-based tools generally do not work with

Apple computers. These platform compatibility issues represent perhaps the biggest

obstacle to broader adoption of collaborative editing. Because collaborative editing puts

substantial control into the hands of the editors, any one of whom could sabotage an

entire document very easily, the practice requires high levels of respect and trust among

the editors. In addition, some users may be uncomfortable moving editing and revision

into a quasi-public,

shared space.

Where is it going?

Makers of collaborative editing applications are beginning to address cross-

platform compatibility. Some tools in development are Web-based, requiring only a

browser and Internet access. As tools become increasingly platform-independent, the

opportunities for collaborative editing among wider-ranging groups of people will expand

significantly. Collaborative editing tools are simple to use and are particularly well suited

for students working on a variety of projects. Other developments are likely to include

versioning, which allows users to see a history of changes and who made them, and

further refining of protocols, both explicit and implied, that establish expectations for

appropriate and acceptable editing.

What are the implications for teaching and learning?

Group work and multitasking are fast becoming two of the hall marks of today’s

learners, and collaborative editing is a natural fit for environments that support learning

activities with technology. As students are increasingly asked to complete group

assignments, collaborative editing tools offer an efficient way to accomplish them while

taking part in an activity that many see as fun and that encourages them to engage with

the material. Students in a large lecture or a small class can benefit from using

collaborative editing tools to take “community notes”—reinforcing the material covered,

seeing what other students identify as valuable, and developing a shared sense of respect

among participants. Collaborative editing has special applicability for distance learning,

where students may be separated by time and space but are still expected to work

together on projects and to develop a sense of community.

Version Control Systems

• A component of software configuration management, version control, also known as

revision control or source control, is the management of changes to documents,

computer programs, large web sites, and other collections of information. Changes are

usually identified by a number or letter code, termed the "revision number", "revision

level", or simply "revision". For example, an initial set of files is "revision 1". When the

first change is made, the resulting set is "revision 2", and so on. Each revision is

associated with a timestamp and the person making the change. Revisions can be

compared, restored, and with some types of files, merged.

• The need for a logical way to organize and control revisions has existed for almost as

long as writing has existed, but revision control became much more important, and

https://en.wikipedia.org/wiki/Software_configuration_management
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Timestamp
https://en.wikipedia.org/wiki/Writing

complicated, when the era of computing began. The numbering of book editions and of

specification revisions are examples that date back to the print-only era. Today, the most

capable (as well as complex) revision control systems are those used in software

development, where a team of people may change the same files.

• Version control systems (VCS) most commonly run as stand-alone applications, but

revision control is also embedded in various types of software such as word processors

and spreadsheets, e.g., Google Docs and Sheets and in various content management

systems. Revision control allows for the ability to revert a document to a previous

revision, which is critical for allowing editors to track each other's edits, correct mistakes,

and defend against vandalism and spamming.

• Software tools for revision control are essential for the organization of multi-developer

projects.

Structure

Revision control manages changes to a set of data over time. These changes can be

structured in various ways.

Often the data is thought of as a collection of many individual items, such as files or

documents, and changes to individual files are tracked. This accords with intuitions about

separate files, but causes problems when identity changes, such as during renaming,

splitting, or merging of files. Accordingly, some systems, such as git, instead consider

changes to the data as a whole, which is less intuitive for simple changes, but simplifies

more complex changes.

When data that is under revision control is modified, after being retrieved by checking

out, this is not in general immediately reflected in the revision control system (in the

repository), but must instead be checked in or committed. A copy outside revision control

is known as a "working copy". As a simple example, when editing a computer file, the

data stored in memory by the editing program is the working copy, which is committed

by saving. Concretely, one may print out a document, edit it by hand, and only later

manually input the changes into a computer and save it. For source code control, the

working copy is instead a copy of all files in a particular revision, generally stored locally

on the developer's computer; in this case saving the file only changes the working copy,

and checking into the repository is a separate step.

If multiple people are working on a single data set or document, they are implicitly

creating branches of the data (in their working copies), and thus issues of merging arise,

as discussed below. For simple collaborative document editing, this can be prevented by

using file locking or simply avoiding working on the same document that someone else is

working on.

Revision control systems are often centralized, with a single authoritative data store, the

repository, and check-outs and check-ins done with reference to this central repository.

Alternatively, in distributed revision control, no single repository is authoritative, and

https://en.wikipedia.org/wiki/Edition_%28book%29
https://en.wikipedia.org/wiki/Specification_%28technical_standard%29
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Spamming
https://en.wikipedia.org/wiki/List_of_revision_control_software
https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Distributed_revision_control

data can be checked out and checked into any repository. When checking into a different

repository, this is interpreted as a merge or patch.

Source-management models

Traditional revision control systems use a centralized model where all the revision

control functions take place on a shared server. If two developers try to change the same

file at the same time, without some method of managing access the developers may end

up overwriting each other's work. Centralized revision control systems solve this problem

in one of two different "source management models": file locking and version merging.

Atomic operations

An operation is atomic if the system is left in a consistent state even if the operation is

interrupted. The commit operation is usually the most critical in this sense. Commits tell

the revision control system to make a group of changes final, and available to all users.

Not all revision control systems have atomic commits; notably, CVS lacks this feature.

File locking

The simplest method of preventing "concurrent access" problems involves locking files

so that only one developer at a time has write access to the central "repository" copies of

those files. Once one developer "checks out" a file, others can read that file, but no one

else may change that file until that developer "checks in" the updated version (or cancels

the checkout).

File locking has both merits and drawbacks. It can provide some protection against

difficult merge conflicts when a user is making radical changes to many sections of a

large file (or group of files). However, if the files are left exclusively locked for too long,

other developers may be tempted to bypass the revision control software and change the

files locally, leading to more serious problems.

Version merging

Most version control systems allow multiple developers to edit the same file at the same

time. The first developer to "check in" changes to the central repository always succeeds.

The system may provide facilities to merge further changes into the central repository,

and preserve the changes from the first developer when other developers check in.

Merging two files can be a very delicate operation, and usually possible only if the data

structure is simple, as in text files. The result of a merge of two image files might not

result in an image file at all. The second developer checking in code will need to take

care with the merge, to make sure that the changes are compatible and that the merge

operation does not introduce its own logic errors within the files. These problems limit

the availability of automatic or semi-automatic merge operations mainly to simple text

based documents, unless a specific merge plugin is available for the file types.

https://en.wikipedia.org/wiki/Server_%28computing%29
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Concurrent_access
https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Merge_%28revision_control%29
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Image_file
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Plug-in_%28computing%29

The concept of a reserved edit can provide an optional means to explicitly lock a file for

exclusive write access, even when a merging capability exists.

Baselines, labels and tags

Most revision control tools will use only one of these similar terms (baseline, label, tag)

to refer to the action of identifying a snapshot or the record of the snapshot. Typically

only one of the terms baseline, label, or tag is used in documentation or discussion]; they

can be considered synonyms.

In most projects some snapshots are more significant than others, such as those used to

indicate published releases, branches, or milestones.

When both the term baseline and either of label or tag are used together in the same

context, label and tag usually refer to the mechanism within the tool of identifying or

making the record of the snapshot, and baseline indicates the increased significance of

any given label or tag.

Communication

• Who needs Communications :

– You don’t need :

• Some types of problems can be decomposed and execute in parallel.

Embarrassingly parallel.

• Very little inter-task communication is required

• Eg. Image processing operation, every pixel in a black and white image

needs to have its color reversed

– You do need

• Most parallel applications do require to share data with each other. (Eg.

Ecosystem)

• There are a number of important factors to consider when designing program’s inter-task

communications:

– Cost of communications

– Latency vs. Bandwidth

– Visibility of communications

– Synchronous vs. Asynchronous communication

– Scope of communications

– Efficiency of communications

• Inter-task communication virtually always implies overhead

• Machine cycles and resources that could be used for computation are instead used to

package and transmit data.

• Communications frequently require some type of synchronization between tasks, which

can result in tasks spending time "waiting" instead of doing work.

• Competing communication traffic can saturate the available network bandwidth, further

aggravating performance problems

• latency is the time it takes to send a minimal (0 byte) message from point A to point B.

Commonly expressed as microseconds.

• bandwidth is the amount of data that can be communicated per unit of time. Commonly

expressed as megabytes/sec or gigabytes/sec.

• Sending many small messages can cause latency to dominate communication overheads.

Often it is more efficient to package small messages into a larger message, thus

increasing the effective communications bandwidth.

• Message passing Model: communications are explicit (under control of the programmer)

• Data Parallel Model: communications occur transparently to the programmer, usually on

distributed memory architectures.

 Communications (Synchronous vs. Asynchronous)

• Synchronous requires some type of “handshaking” between task that are sharing data.

• Synchronous : Blocking communications

• Asynchronous allow tasks to transfer data independently from one another.

• Asynchronous: Non-Blocking communications

• Interleaving computation with communication is the greatest benefit.

Communications (Scope-Collective)

Efficiency of communications

• Very often, the programmer will have a choice with regard to factors that can affect

communications performance.

• Which implementation for a given model should be used? (Eg.MPI implementation may

be faster on a given hardware platform than another)

• What type of communication operations should be used? (Eg. asynchronous

communication operations can improve overall program performance)

• Network media - some platforms may offer more than one network for communications.

Synchronization (Types)

• Barrier

– All tasks are involved

– Each task perform its work. When the last task reaches the barrier, all task are

synchronized

• Lock / semaphore

– Typically used to serialize access to global data or section of code. Task must

wait to use the code

• Synchronous communication operations

– Involves only those tasks executing a communication operations (handshaking)

Message Passing

Non blocking Communication

• Advantages:

--

allows the separation between the initialization of the

communication and the completion.

--

can avoid deadlock

--

can reduce latency by posting receive calls early

• Disadvantages:

--

complex to develop, maintain and debug code

Non block Send/ Recv Syntax

• int MPI_Isend (void* message /* in */, int count /* in */, MPI_Datatype datatype /* in */, int

dest /* in */, int tag /* in */, MPI_Comm comm /* in */, MPI_Request * request /* out */)

• int MPI_Irecv(void * message /* out */, int count /* in */, MPI_Datatype datatype /* in */, int

source /* in */, int tag /* in */, MPI_Comm comm /* in */,

MPI_Request * request /* out */)

Non blocking Send/ Recv Details

• Non blocking operation requires a minimum of two function calls: a call to start the operation

and a call to complete the operation.

• The “request” is used to query the status of the communicator or to wait for its completion.

• The user must NOT overwrite the send buffer until the send (data transfer) is complete.

• The user can not use the receiving buffer before the receive is complete.

Non blocking Send/ Recv Communication Completion

• int MPI_Wait (MPI_Request * request /* in - out */, MPI_Status * status /* out */)

• int MPI_Test (MPI_Request * request /* out */, int * flag /* out*/, MPI_Status * status /* out

*/)

• Completion of a non blocking send operation means that the sender is now free to update the

send buffer “message”.

• Completion of a non - blocking receive operation means that the receive buffer “message”

contains the received data.

Details of Wait/Test

• “ request ” is used to identify a previously posted send/receive

• MPI_Wait() returns when the operation is complete, and the status is updated for a receive.

• MPI_Test() returns immediately, with “flag” = true if posted operation corresponding to the

“request” handle is complete.

Non - blocking Send/ Recv Example

#include <stdio.h>

#include "mpi.h"

int main(int argc, char** argv)

{

int my_rank , nprocs ,recv_count;

MPI_Request request;

MPI_Status status;

double s_buf [100], r_buf [100];

MPI_Init(&argc , & argv);

MPI_Comm_rank(MPI_COMM_WORLD, & my_rank);

MPI_Comm_size (MPI_COMM_WORLD, &nprocs);

if (my_rank ==0)

{

MPI_Irecv (r_buf , 1oo, MPI_DOUBLE, 1, 22, MPI_COMM_WORLD, &request);

MPI_Send(s_buf, 100, MPI_DOUBLE, 1,10, MPI_COMM_WORLD);

MPI_Wait(&request, &status);

}

else if(my_rank== 1)

{

MPI_Irecv(r_buf,1oo, MPI_DOUBLE,0, 10,MPI_COMM_WORLD, &request);

MPI_Send(s_buf, 100, MPI_DOUBLE,0,22,MPI_COMM_WORLD);

MPI_Wait(&request, &status);

}

MPI_Get_count((&status,MPI_DOUBLE,&recv_count);

printf(“proc%d, source %d, tag %d, count %d\n”, my_rank,status.MPI_SOURCE,

status.MPI_TAG, recv_count);

MPI_Finalize();

}

MPI collective Communications

•Routines that allow groups of processes to communicate.

• Classification by Operation:

– One – To - All Mode

One process contributes to the results. All processes receive the result.

MPI_Bcast()

MPI_Scatter(),

MPI_Scatterv()

–All-To-One Mode

All processes contribute to the result. One process receive the result.

•MPI_Gather(),

MPI_Gatherv()

•MPI_Reduce()

–All-To - All Mode

All processes contribute to the result. All processes receive the result.

•MPI_Alltoall(),

MPI_Alltoallv()

•MPI_Allgather(),

MPI_Allgatherv()

•MPI_Allreduce(),

MPI_Reduce_scatter()

Other Collective operations that do not fit into above categories

• MPI_Scan()

•MPI_Barrier()

Synchronous and Asynchronous Scheduling

Data transfers can be synchronous or asynchronous. The determining factor is whether the

entry point that schedules the transfer returns immediately or waits until the I/O has been

completed.

The read and write entry points are synchronous entry points. The transfer must not return until

the I/O is complete. Upon return from the routines, the process knows whether the transfer has

succeeded.

The aread and awrite entry points are asynchronous entry points. Asynchronous entry points

schedule the I/O and return immediately. Upon return, the process that issues the request knows

that the I/O is scheduled and that the status of the I/O must be determined later. In the meantime,

the process can perform other operations.

With an asynchronous I/O request to the kernel, the process is not required to wait while the I/O

is in process. A process can perform multiple I/O requests and allow the kernel to handle the data

transfer details. Asynchronous I/O requests enable applications such as transaction processing to

http://docs.oracle.com/docs/cd/E19253-01/816-5179/read-9e/index.html
http://docs.oracle.com/docs/cd/E19253-01/816-5179/write-9e/index.html
http://docs.oracle.com/docs/cd/E19253-01/816-5179/aread-9e/index.html
http://docs.oracle.com/docs/cd/E19253-01/816-5179/awrite-9e/index.html

use concurrent programming methods to increase performance or response time. Any

performance boost for applications that use asynchronous I/O, however, comes at the expense of

greater programming complexity.

Resource Management

Resource management is the efficient and effective deployment and allocation of an system’s

resources when and where they are needed. Such resources may include CPU, memory, etc.

Resource Requirements

 The primary intent of parallel programming is to decrease execution wall clock time,

however in order to accomplish this, more CPU time is required. For example, a parallel

code that runs in 1 hour on 8 processors actually uses 8 hours of CPU time.

 The amount of memory required can be greater for parallel codes than serial codes, due to

the need to replicate data and for overheads associated with parallel support libraries and

subsystems.

 For short running parallel programs, there can actually be a decrease in performance

compared to a similar serial implementation. The overhead costs associated with setting

up the parallel environment, task creation, communications and task termination can

comprise a significant portion of the total execution time for short runs.

Availability

The ratio of the total time a functional unit is capable of being used during a given

interval to (b) the length of the interval.

The most simple representation for availability is as a ratio of the expected value of the uptime

of a system to the aggregate of the expected values of up and down time, or

Reliability

• Generally defined as the ability of a product to perform as expected over time

• Formally defined as the probability that a product, piece of equipment, or system

performs its intended function for a stated period of time under specified operating

conditions

• Reliability failure – failure after some period of use

• Reliability Measurement

Failure rate (l) – number of failures per unit time

Scalability

https://en.wikipedia.org/wiki/Functional_unit

 The ability of a parallel program's performance to scale is a result of a number of

interrelated factors. Simply adding more machines is rarely the answer.

 The algorithm may have inherent limits to scalability. At some point, adding more

resources causes performance to decrease. Most parallel solutions demonstrate this

characteristic at some point.

 Hardware factors play a significant role in scalability. Examples:

– Memory-cpu bus bandwidth on an SMP machine

– Communications network bandwidth

– Amount of memory available on any given machine or set of machines

– Processor clock speed

 Parallel support libraries and subsystems software can limit scalability independent of

your application.

Fault Tolerance

This provides redundancy in case one component should fail, and also allows automatic

error detection and error correction if the results differ. These methods can be used to

help prevent single event upsets caused by transient errors. Although additional measures

may be required in embedded or specialized systems, this method can provide a cost

effective approach to achieve n-modular redundancy in commercial off-the-shelf systems.

Recovery

Data recovery is a process of salvaging inaccessible data from corrupted or

damaged secondary storage, removable media or files, when the data they store cannot be

accessed in a normal way. The data is most often salvaged from storage media such as

internal or external hard disk drives (HDDs), solid-state drives (SSDs), USB flash drives,

magnetic tapes, CDs, DVDs, RAID subsystems, and other electronic devices. Recovery

may be required due to physical damage to the storage device or logical damage to the

file system that prevents it from being mounted by the host operating system (OS).

The most common data recovery scenario involves an operating system failure,

malfunction of a storage device, accidental damage or deletion, etc. (typically, on a

single-drive, single-partition, single-OS system), in which case the goal is simply to copy

all wanted files to another drive. This can be easily accomplished using a Live CD, many

of which provide a means to mount the system drive and backup drives or removable

media, and to move the files from the system drive to the backup media with a file

manager or optical disc authoring software. Such cases can often be mitigated by disk

partitioning and consistently storing valuable data files (or copies of them) on a different

partition from the replaceable OS system files.

Protection – Using Locks and semaphores

All the methods for synchronization and serialization use the same underlying idea. They

use variables in shared state as signals that all the processes understand and respect. This

is the same philosophy that allows computers in a distributed system to work together --

https://en.wikipedia.org/wiki/Redundancy_%28engineering%29
https://en.wikipedia.org/wiki/Error_detection
https://en.wikipedia.org/wiki/Error_correction
https://en.wikipedia.org/wiki/Secondary_storage
https://en.wikipedia.org/wiki/Removable_media
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/CD
https://en.wikipedia.org/wiki/DVD
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Mount_%28computing%29
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Disk_partition
https://en.wikipedia.org/wiki/Live_CD
https://en.wikipedia.org/wiki/Mount_%28computing%29
https://en.wikipedia.org/wiki/File_manager
https://en.wikipedia.org/wiki/File_manager
https://en.wikipedia.org/wiki/Optical_disc_authoring_software
https://en.wikipedia.org/wiki/Disk_partition
https://en.wikipedia.org/wiki/Disk_partition

they coordinate with each other by passing messages according to a protocol that every

participant understands and respects. Locks, also known as mutexes (short for mutual

exclusions), are shared objects that are commonly used to signal that shared state is being

read or modified. For a lock to protect a particular set of variables, all the processes need

to be programmed to follow a rule: no process will access any of the shared variables

unless it owns that particular lock. In effect, all the processes need to "wrap" their

manipulation of the shared variables in acquire() and release() statements for that lock.

	Source-management models
	Atomic operations
	File locking
	Version merging
	Baselines, labels and tags

