
UNIT 4

Loop Transformations

The compiler performs several loop restructuring transformations to help improve the
parallelization of a loop in programs. Some of these transformations can also improve the single
processor execution of loops as well. The transformations performed by the compiler are
described below.

 Loop Distribution

Often,loops contain a few statements that cannot be executed in parallel and many statements
that can be executed in parallel. Loop Distribution attempts to remove the sequential statements
in a separate loop and gather the parallelizable statements in a different loop. This is illustrated in
the following example:

Example Candidate for Loop Distribution

for (i=0; i < n; i++) {
 x[i] = y[i] + z[i]*w[i]; /* S1 */
 a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */
 y[i] = z[i] - x[i]; /* S3 */
}

Assuming that arrays x, y, w, a, and z do not overlap, statements S1 and S3 can be parallelized
but statement S2 cannot be. Here is how the loop looks after it is split or distributed into two
different loops:

Example The Distributed Loop

/* L1: parallel loop */
for (i=0; i < n; i++) {
 x[i] = y[i] + z[i]*w[i]; /* S1 */
 y[i] = z[i] - x[i]; /* S3 */
}
/* L2: sequential loop */
for (i=0; i < n; i++) {
 a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */
}

After this transformation, loop L1 does not contain any statements that prevent the parallelization
of the loop and may be executed in parallel. Loop L2, however, still has a non-parallelizable
statement of the original loop.

Loop distribution is not always profitable or safe to perform. The compiler performs analysis to
determine the safety and profitability of distribution.

Loop Fusion

If the granularity of a loop, or the work performed by a loop, is small, the performance gain from
distribution may be insignificant. This is because the overhead of parallel loop start-up is too
high compared to the loop workload. In such situations, the compiler uses loop fusion to
combine several loops into a single parallel loop, and thus increase the granularity of the loop.
Loop fusion is easy and safe when loops with identical trip counts are adjacent to each other.
Consider the following example:

Example Loops With Small Work Loads

/* L1: short parallel loop */
for (i=0; i < 100; i++) {
 a[i] = a[i] + b[i]; /* S1 */
}
/* L2: another short parallel loop */
for (i=0; i < 100; i++) {
 b[i] = a[i] * d[i]; /* S2 */
}

The two short parallel loops are next to each other, and can be safely combined as follows:

Example The Two Loops Fused

/* L3: a larger parallel loop */
for (i=0; i < 100; i++) {
 a[i] = a[i] + b[i]; /* S1 */
 b[i] = a[i] * d[i]; /* S2 */
}

The new loop generates half the parallel loop execution overhead. Loop fusion can also help in
other ways. For example, if the same data is referenced in two loops, then combining them can
improve the locality of reference.

However, loop fusion is not always safe to perform. If loop fusion creates a data dependence that
did not exist before then the fusion may result in incorrect execution. Consider the following
example:

Example Unsafe Fusion Candidates

/* L1: short parallel loop */
for (i=0; i < 100; i++) {
 a[i] = a[i] + b[i]; /* S1 */
}
/* L2: a short loop with data dependence */
for (i=0; i < 100; i++) {

 a[i+1] = a[i] * d[i]; /* S2 */
}

If the loops in 1.2 Loop fusion are fused, a data dependence is created from statement S2 to S1.
In effect, the value of a[i] in the right hand side of statement S1 is computed in statement S2. If
the loops are not fused, this would not happen. The compiler performs safety and profitability
analysis to determine if loop fusion should be done. Often, the compiler can fuse an arbitrary
number of loops. Increasing the granularity in this manner can sometimes push a loop far enough
up for it to be profitable for parallelization.

Loop Interchange

It is generally more profitable to parallelize the outermost loop in a nest of loops, since the
overheads incurred are small. However, it is not always safe to parallelize the outermost loops
due to dependences that might be carried by such loops. This is illustrated in the following:

Example Nested Loop That Cannot Be Parallelized

for (i=0; i <n; i++) {
 for (j=0; j <n; j++) {
 a[j][i+1] = 2.0*a[j][i-1];
 }
}

In this example, the loop with the index variable i cannot be parallelized, because of a
dependency between two successive iterations of the loop. The two loops can be interchanged
and the parallel loop (the j-loop) becomes the outer loop:

Example The Loops Interchanged

for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 a[j][i+1] = 2.0*a[j][i-1];
 }
}

The resulting loop incurs an overhead of parallel work distribution only once, while previously,
the overhead was incurred n times. The compiler performs safety and profitability analysis to
determine whether to perform the loop interchange.

Loop parallelization

 Exploiting multi-processors

 Allocate individual loop iterations to different processors

 Additional synchronization is required depending on data dependences

Example:

for i:=1 to n do

S1: A[i]:= C[i];

S2: B[i]:= A[i];

end;

 Data dependency: S1 δ(=) S2 (due to A[i])

 Synchronization required: NO

doacross i:=1 to n do

S1: A[i]:= C[i];

S2: B[i]:= A[i];

enddoacross;

 The inner loop is to be parallelized:

for i:=1 to n do

 for j:=1 to m do

 S1: A[i,j]:= C[i,j];

 S2: B[i,j]:= A[i-1,j-1];

 end;

end;

 Data dependency: S1 δ(<,<) S2 (due to A[i,j])

 Synchronization required: NO

for i:=1 to n do

doacross j:=1 to m do

S1: A[i,j]:= C[i,j];

S2: B[i,j]:= A[i-1,j-1];

enddoacross;

end;

for i:= 1 to n do

S1: A[i] := B[i] + C[i];

S2: D[i] := A[i] + E[i-1];

S3: E[i] := E[i] + 2 * B[i];

S4: F[i] := E[i] + 1;

end;

 Data Dependences:

 S1 δ(=) S2 (due to A[i]) ← no synch. required

 S3 δ(=) S4 (due to E[i]) ← no synch. required

 S3 δ(<) S2 (due to E[i]) ← synch. Required

 After re-ordering and adding sync code

Data Parallel Model

 Programming Model

 Operations are performed on each element of a large (regular) data structure

(array, vector, matrix)

 Program is logically a single thread of control, carrying out a sequence of either

sequential or parallel steps

 The Simple Problem Strikes Back

 A = (A + B) * C

 sum = global_sum (A)

 Language supports array assignment

 Early architectures directly mirrored programming model

 Single control processor (broadcast each instruction to an array/grid of processing

elements)

 Consolidates control

 Many processing elements controlled by the master

 Examples: Connection Machine, MPP

 Batcher, “Architecture of a massively parallel processor,” ISCA 1980.

 16K bit-serial processing elements

 Tucker and Robertson, “Architecture and Applications of the Connection
Machine,” IEEE Computer 1988.

64K bit-serial processing elements

 Later data parallel architectures

 Higher integration SIMD units on chip along with caches

 More generic multiple cooperating multiprocessors with vector units

 Specialized hardware support for global synchronization

 E.g. barrier synchronization

 Example: Connection Machine 5

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable supercomputer,”
CACM 1993.

 Consists of 32-bit SPARC processors

 Supports Message Passing and Data Parallel models

 Special control network for global synchronization

 Connection Machine CM5

 Shared Memory

 Single shared address space

 Communicate, synchronize using load / store

 Can support message passing

 Message Passing

 Send / Receive

 Communication + synchronization

 Can support shared memory

 Data Parallel

 Lock-step execution on regular data structures

 Often requires global operations (sum, max, min...)

 Can be supported on either SM or MP

Data Flow Models

 A program consists of data flow nodes

 A data flow node fires (fetched and executed) when all its inputs are ready

 i.e. when all inputs have tokens

 No artificial constraints, like sequencing instructions

 How do we know when operands are ready?

 Matching store for operands (remember OoO execution?)

 large associative search

 Later machines moved to coarser grained dataflow (threads + dataflow across

threads)

 allowed registers and cache for local computation

 introduced messages (with operations and operands)

Dependence:

A data dependency in computer science is a situation in which a program statement
(instruction) refers to the data of a preceding statement. In compiler theory, the technique
used to discover data dependencies among statements (or instructions) is called dependence
analysis.

There are three types of dependencies: data, name, and control.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Program_statement
https://en.wikipedia.org/wiki/Compiler_theory
https://en.wikipedia.org/wiki/Dependence_analysis
https://en.wikipedia.org/wiki/Dependence_analysis

Three cases exist:

 Flow (data) dependence: O(S1) ∩ I (S2), S1 → S2 and S1 writes after something read by
S2

 Anti-dependence: I(S1) ∩ O(S2), S1 → S2 and S1 reads something before S2 overwrites
it

 Output dependence: O(S1) ∩ O(S2), S1 → S2 and both write the same memory location.

A Flow dependency, also known as a data dependency or true dependency or read-after-write
(RAW), occurs when an instruction depends on the result of a previous instruction:

An anti-dependency, also known as write-after-read (WAR), occurs when an instruction
requires a value that is later updated.

An output dependency, also known as write-after-write (WAW), occurs when the ordering of
instructions will affect the final output value of a variable.

Goal: Identify loops whose iterations can be executed in parallel on different processors of a

shared-memory multiprocessor system.

 Matrix Multiplication

for I = 1 to n do -- parallel

 for J = 1 to n do -- parallel

for K = 1 to n do –- not parallel

 C[I,J] = C[I,J] + A[I,K]*B[K,J]

Flow Dependence:

 S1: X = …. S1 δf S2

 S1 δa S2

 S1 δo S2

 S2: … = X

Anti Dependence:

 S1: … = X

 S2: X = …

Output Dependence:

 S1: X = …

 S2: X = …

Example data dependences:

do I = 1, 40

 S1: A(I+1) = ….

 S2: … = A(I-1)

enddo

do I = 1, 40

 S1: A(I-1) = …

 S2: … = A(I+1)

enddo

do I = 1, 40

 S1: A(I+1) = …

 S2: A(I-1) = …

enddo

Data Profiling

The use of analytical techniques about data for the purpose of developing a thorough

knowledge of its content, structure and quality.

 Data profiling is the process of examining the data available in an existing data source

(e.g. a database or a file) and collecting statistics and information about that data. The

purpose of these statistics may be to:

 find out whether existing data can easily be used for other purposes

 give metrics on data quality including whether the data conforms to company

standards

 assess the risk involved in integrating data for new applications, including the

challenges of joins

 track data quality

 assess whether metadata accurately describes the actual values in the source

database

 understanding data challenges early in any data intensive project, so that late

project surprises are avoided. Finding data problems late in the project can incur

time delays and project cost overruns.

 have an enterprise view of all data, for uses such as Master Data Management

where key data is needed, or Data governance for improving data quality

Process Profiling

 The practice of tracking information about processes by monitoring their execution. This

can be done by analyzing the case perspective, process perspective and resource

perspective, to assess their behavior, predict certain characteristics and to configure

optimum runtime parameters.

Applications

 Analyzing rendering behavior. A user could be provided with a set of options that allow

one to analyze very specific rendering behavior in parts of a process.

 Profiling process outcomes- the use of some techniques to analyze the outcome of

processes in order to determine what may be causing the observed behavior.

 Event Tracing and Prediction. Based on an event log, real-time event logs can be traced

to troubleshoot, determine where the performance issues are occurring and predict the

likely execution pattern.

DFD for Profiling Process

Where is Data Profiling used?

• Enterprise Data Quality Improvement Program

– Traditional Six Sigma Like Program

– Recursive application of data quality assessment

– Based on the historical success of companies who have used it

• Support Consolidation of Databases after mergers and acquisitions

– Dramatically reduce cost and time to complete projects

– Improve quality of data in resulting system

– Support application renovation projects

– Dramatically reduce time and cost to complete

– Improve quality of data in resulting system

• Support data integration functions for data warehousing/ business intelligence data

stores

– Develop processes to cleanse data in transit

– Improve quality of data in information intelligence stores

Scheduling of parallel programs

Parallel Scheduling Categories

 Job Scheduling

 A set of jobs arriving at a parallel system

 Choosing an order of jobs for execution to minimize total turnaround time

 Application Scheduling

 Mapping a single application’s tasks, to resources to reduce the total response

time

 In general, difficult to achieve for communication-intensive applications

 For applications with independent tasks (pleasingly parallel applications), some

methods have been proposed

Job Scheduling

 A parallel job is mapped to a subset of processors

 The set of processors dedicated to a certain job is called a partition of the machine

 To increase utilization, parallel machines are typically partitioned into several non-

overlapping partitions, allocated to different jobs running concurrently – space slicing or

space partitioning

 Users submit their jobs to a machine’s scheduler

 Jobs are queued

 Jobs in queue considered for the allocation whenever the state of a machine changes

(submission of a new job, exit of a running job)

 Allocation – which job in the queue?, which machine?

 Packing jobs to the processors

 Goal – to increase processor utilization

 Lack of knowledge of future jobs and job execution times. Hence simple heuristics to

perform packing at each scheduled event

Scheduling policies

 FCFS

 If the machine’s free capacity cannot accommodate the first job, it will not attempt to
start any subsequent job

 No starvation; But poor utilization

 Processing power is wasted if the first job cannot run

Backfilling

 Allows small jobs from the back of the queue to execute before larger jobs that arrived

earlier

 Requires job runtimes to be known in advance – often specified as runtime upper-bound

 Identifies holes in the 2D chart and moves smaller jobs to fill those holes

 2 types – conservative and aggressive (EASY)

EASY backfilling

 Aggressive version of backfilling

 Any job can be backfilled provided it does not delay the first job in the queue

 Starvation cannot occur for the first job since queuing delay for the first job depends only

on the running jobs

 But jobs other than the first may be repeatedly delayed by newly arriving jobs

Conservative backfilling

 Makes reservations for all queued jobs

 Backfilling is done subject to checking that it does not delay any previous job in the

queue

Starvation cannot occur at all

LOS (Look ahead Optimized Scheduler)

 Examines all jobs in the queue to maximize utilization

 Instead of scanning the queue in any order and starting any job that is small enough not to

violate prior reservations

 LOS tries to find combination of jobs

 Using dynamic programming

 Results in local optimum; not global optimum

 Global optimum may leave processors idle in anticipation of future arrivals

What is important in a scheduling algorithm?

• Minimize Response Time

– Elapsed time to do an operation (job)

– Response time is what the user sees

• Time to echo keystroke in editor

• Time to compile a program

• Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput

– Jobs per second

– Throughput related to response time, but not identical

• Minimizing response time will lead to more context switching than if you

maximized only throughput

– Minimize overhead (context switch time) as well as efficient use of resources

(CPU, disk, memory, etc.)

• Fairness

– Share CPU among users in some equitable way

– Not just minimizing average response time

Optimal Scheduling Algorithms

• FCFS scheduling, FIFO Run Until Done:

– Simple, but short jobs get stuck behind long ones

• RR scheduling:

– Give each thread a small amount of CPU time when it executes, and cycle

between all ready threads

– Better for short jobs, but poor when jobs are the same length

• SJF/SRTF:

– Run whatever job has the least amount of computation to do / least amount of

remaining computation to do

– Optimal (average response time), but unfair; hard to predict the future

• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities

– Automatic promotion/demotion of process priority to approximate SJF/SRTF

• Lottery Scheduling:

– Give each thread a number of tickets (short tasks get more)

– Every thread gets tickets to ensure forward progress / fairness

• Priority Scheduing:

– Preemptive or Nonpreemptive

– Priority Inversion

Data path design: Parallel and Pipeline design

Parallelizing Serial Programs

Parallelizing Compiler

• Most common type of tool used to automatically parallelize a serial program into parallel

programs

• Parallelizing Compiler works in 2 different ways:

– Fully Automatic

– Programmer Directed

• The compiler analyzes the source code and identifies opportunities for parallelism

• The analysis includes:

– Identifying inhibitors to parallelism

– Possibly a cost weighting on whether or not the parallelism would actually

improve performance

– Loops (do, for) loops are the most frequent target for automatic parallelization

• Using “compiler directives” or possibly compiler flags, the programmer explicitly tell the
compiler how to parallelize the code

• May be able to be used in conjunction with some degree of automatic parallelization also

Automatic Parallelization

• Wrong results may be produced

• Performance may actually degrade

• Much less flexible than manual parallelization

• Limited to a subset (mostly loops) of code

• May actually not parallelize code if the analysis suggest there are inhibitors or the code is

too complex

Parallelization Techniques

Parallelizing Mandelbrot Set Computation

Static Task Assignment

Simply divide the region into fixed number of parts, each computed by a separate processor.

Disadvantage:

Different regions may require different numbers of iterations and time.

Dynamic Task Assignment

Monte Carlo Methods

• Another embarrassingly parallel computation

Example:

calculate π using the ratio:

• Randomly choose points within the square

422

. 2

square of Area

circle of Area

r

• Count the points that lie within the circle

• Given a sufficient number of randomly selected samples fraction of points within the

circle will be: π /4

A Parallel Formulation of Random Number Generation

xi+1 = (axi + c) mod m

xi+k = (Axi+ C) mod m

A and C above can be derived by computing

 xi+1=f(xi) , xi+2=f(f(xi)), ... xi+k=f(f(f(…f(xi))))

and using the following properties:

 (A+B) mod M = [(A mod M) + (B mod M)] mod M

 [X(A mod M)] mod M = (X.A mod M)

 X(A + B) mod M = (X.A + X.B) mod M

 = [(X.A mod M) + (X.B mod M)] mod M

 [X((A+B) mod M)] mod M = (X.A + X.B) mod M

Instruction Level Parallelism

► ILP is a measure of the number of instructions that can be performed during a single

clock cycle.

Parallel instructions are a set of instructions that do not depend on each other to be executed.

► Hierarchy

 Bit level Parallelism

► 16 bit add on 8 bit processor

 Instruction level Parallelism

 Loop level Parallelism

► for (i=1; i<=1000; i= i+1)

 x[i] = x[i] + y[i];

 Thread level Parallelism (SMT, multi-core computers)

Implementations of ILP

► Pipelining

► Superscalar Architecture

 Dependency checking on chip.

 Multiple Processing Elements eg. ALU, Shift

► VLIW (Very Long Instruction Word Architecture)

 Simple hardware, Complex Compiler

► Multi processor computers

Pipelining

Superscalar

IF - Instruction Fetch

ID - Instruction Decode

EX – Execute

MEM – Store in Memory

WB – Write Back

► Identifying parallel instructions

► Hardware Techniques

 Out of order execution

► Window Size

 Speculative execution

► Branch Prediction

► Branch Fanout

► Compiler Techniques

 Register Renaming

 ADD $t0,$s1,$2

 SW $t0, 0($s3)

 ADD $t0,s$4,$s5

 SW $t0, 0($s6)

 Unrolling loops

► Takes advantage of loop level parallelism

Data Dependency Test

DependenceTests: extreme value test; GCD test; Generalized GCD test; Lambda test; Delta test;

Power test; Omega test etc…

Example: (Extreme Value Test)

DO I = 1, 10

 DO J = 1, 10

 A[10*I+J-5] = ….A[10*I+J-10]….

10*I1+J1-5 = 10*I2+J2-10

10*I1-10*I2+J1-J2 = -5

f: R4 R; f(I1,I2,J1,J2) = 10*I1-10*I2+J1-J2

 1<=I1,I2,J1,J2<=10;

 lower bound, b=-99; upper bound, B=+99

 since -99 <= -5 <= +99 there is a dependence

GCD Test

It is difficult to analyze array references in compile time to determine data dependency (whether
they point to same address or not). A simple and sufficient test for the absence of a dependence
is the greatest common divisor (GCD) test. It is based on the observation that if a loop carried
dependency exists between X[a*i + b] and X[c*i + d] (where X is the array; a, b, c and d are
integers, and i is the loop variable), then GCD (c, a) must divide (d – b). The assumption is that
the loop must be normalized – written so that the loop index/variable starts at 1 and gets
incremented by 1 in every iteration. For example, in the following loop, a=2, b=3, c=2, d=0 and
GCD(a,c)=2 and (d-b) is -3. Since 2 does not divide -3, no dependence is possible.

https://en.wikipedia.org/wiki/Normalized_loop

for(i=1; i<=100; i++)
{
 X[2*i+3] = X[2*i] + 50;
}

	UNIT 4
	Loop Transformations
	Loop Distribution
	Loop Fusion
	Loop Interchange

