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CONCEPT DESCRIPTION AND ASSOCIATION RULES 

 

Attribute Oriented Induction 

• Data focusing: task-relevant data, including dimensions, and the result is the initial 

relation 
• Attribute-removal: remove attribute A if there is a large set of distinct values for A but (1) 

there is no generalization operator on A, or (2) A’s higher level concepts are expressed in 
terms of other attributes 

• Attribute-generalization: If there is a large set of distinct values for A, and there exists a 
set of generalization operators on A, then select an operator and generalize A  

• Attribute-threshold control: typical 2-8, specified/default 
• Generalized relation threshold control: control the final relation/rule size 

How it is done 

• Collect the task-relevant data (initial relation) using a relational database query 
• Perform generalization by attribute removal or attribute generalization 
• Apply aggregation by merging identical, generalized tuples and accumulating their 

respective counts 
• Interaction with users for knowledge presentation 

Example:  Describe general characteristics of graduate students in the University 
database 

Step 1. Fetch relevant set of data using an SQL statement, e.g., 

� Select * (i.e., name, gender, major, birth_place, birth_date, residence, 
phone#, gpa) 

� from student 
� where student_status in {“Msc”, “MBA”, “PhD” } 

Step 2. Perform attribute-oriented induction 

Step 3. Present results in generalized relation, cross-tab, or rule forms 

Basic Algorithm for Attribute-Oriented Induction 



 
• InitialRel: Query processing of task-relevant data, deriving the initial relation. 

• PreGen:  Based on the analysis of the number of distinct values in each attribute, 
determine generalization plan for each attribute: removal? or how high to generalize? 

• PrimeGen: Based on the PreGen plan, perform generalization to the right level to derive a 
“prime generalized relation”, accumulating the counts. 

• Presentation: User interaction: (1) adjust levels by drilling, (2) pivoting, (3) mapping into 
rules, cross tabs, visualization presentations. 

Class Characterization: An Example  

Analytical Characterization 

 

1. Data collection 
target class: graduate student 
contrasting class: undergraduate student 

2. Analytical generalization using Ui  
attribute removal 

remove name and phone#  
attribute generalization 

 generalize major, birth_place, birth_date and gpa  
accumulate counts 

candidate relation: gender, major, birth_country, age_range and gpa  

Mining ClassComparison 



• Comparison: Comparing two or more classes 
• Method:  

o Partition the set of relevant data into the target class and the contrasting class(es)  
o Generalize both classes to the same high level concepts 
o Compare tuples with the same high level descriptions 
o Present for every tuple its description and two measures 

� support - distribution within single class 
� comparison - distribution between classes 

o Highlight the tuples with strong discriminant features  
• Relevance Analysis: 

o Find attributes (features) which best distinguish different classes 

Presentation of Generalized Results  

• Generalized relation:  
o Relations where some or all attributes are generalized, with counts or other 

aggregation values accumulated. 
• Cross tabulation: 

o Mapping results into cross tabulation form (similar to contingency tables).  
o Visualization techniques: 
o Pie charts, bar charts, curves, cubes, and other visual forms. 

• Quantitative characteristic rules: 
o Mapping generalized result into characteristic rules with quantitative information 

associated with it, e.g., 
• t-weight:  

o Interesting measure that describes the typicality of 
�  each disjunct in the rule 
� each tuple in the corresponding generalized relation 
� n – number of tuples for target class for generalized relation 
� qi … qn – tuples for target class in generalized relation 
� qa is in qi … qn  

 

grad(x) Λ male(x) ⇒ birth_region(x) = “Canadd[t:53%] ∨ birth_region(x) = “foreign[t:47%] 

Association Rules 

“An association algorithm creates rules that describe how often events have occurred together.”  

Example: When a customer buys a hammer, then 90% of the time they will buy nails. 



• Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs 
frequently in a data set. 

• First proposed by Agrawal, Imielinski, and Swami in the context of frequent itemsets and 
association rule mining 

• Motivation: Finding inherent regularities in data 
o What products were often purchased together?— Beer and diapers?! 
o What are the subsequent purchases after buying a PC? 
o What kinds of DNA are sensitive to this new drug? 
o Can we automatically classify web documents? 

• Applications:  Basket data analysis, cross-marketing, catalog design, sale campaign 
analysis, Web log (click stream) analysis, and DNA sequence analysis. 

Support: “is a measure of what fraction of the population satisfies both the antecedent and the 
consequent of the rule”. 

• Example: 
o People who buy hotdog buns also buy hotdog sausages in 99% of cases. = High 

Support 
o People who buy hotdog buns buy hangers in 0.005% of cases. = Low support 

• Situations where there is high support for the antecedent are worth careful attention 
o E.g. Hotdog sausages should be placed in near hotdog buns in supermarkets if 

there is also high confidence. 

Confidence: “is a measure of how often the consequent is true when the antecedent is true.” 
• Example: 

o 90% of Hotdog bun purchases are accompanied by hotdog sausages. 
o High confidence is meaningful as we can derive rules. 

•  Hotdog sausage, Hotdog bun 
• 2 rules may have different confidence levels and have the same support. 
• E.g.  Hotdog bun may have a much lower confidence than Hotdog  sausage, yet they both 

can have the same support, Hotdog bun. 

Apriori Algorithm 

It is a frequent pattern mining algorithm, and findsthe frequent item sets by generating the 
candidates. 

• How to generate candidates? 

Step 1: self-joining Lk  

Step 2: pruning 

• How to count supports of candidates? 

- By counting how many times it hasoccured. 

 

Example of Candidate-generation 

L3={abc, abd, acd, ace, bcd} 

Self-joining: L3*L3  



abcd from abc and abd  

acde from acd and ace 

Pruning: 

acde is removed because ade is not in L3 

C4={abcd} 

 

Example: 

 



 

 

Frequent Pattern Growth Tree Algorithm 

(Mining Frequent Patterns Without Candidate Generation ) 

It grows long patterns from short ones using local frequent items 

• “abc” is a frequent pattern 

• Get all transactions having “abc”: DB|abc  

• “d” is a local frequent item in DB | abc � abcd is a frequent pattern  

 



 

 

 



Mining Multi-Level Associations 

• A top_down, progressive deepening approach: 
o  First find high-level strong rules: 

• milk ->  bread  [20%, 60%]. 
o  Then find their lower-level “weaker” rules: 

� 2% milk ->   wheat bread [6%, 50%]. 

• Variations at mining multiple-level association rules. 
o Level-crossed association rules: 
o 2% milk ->  Wonder wheat bread 
o Association rules with multiple, alternative hierarchies: 
o 2% milk ->  Wonder bread 

Multi-level Association: Uniform Support vs. Reduced Support 

• Uniform Support: the same minimum support for all levels 
o + One minimum support threshold.   No need to examine itemsets containing any 

item whose ancestors do not have minimum support. 
o – Lower level items do not occur as frequently. If support threshold  

� too high ⇒ miss low level associations 

� too low ⇒ generate too many high level associations 

• Reduced Support: reduced minimum support at lower levels 
o There are 4 search strategies: 

� Level-by-level independent 
� Level-cross filtering by k-itemset  
� Level-cross filtering by single item 
� Controlled level-cross filtering by single item 

Mining Quantitative Association Rules 

• Determine the number of partitions for each quantitative attribute 

• Map values/ranges to consecutive integer values such that the order is preserved 

• Find the support of each value of the attributes, and combine when support is less than 

MaxSup. Find frequent itemsets, whose support is larger than MinSup  

• Use frequent set to generate association rules 

• Pruning out uninteresting rules 

Partial Completeness 

• R : rules obtained before partition 

• R’: rules obtained after partition 

• Partial Completeness measures the maximum distance between a rule in R and its closest 

generalization in R’ 

•    is a generalization of itemset X: if  

 



• The distance is defined by the ratio of support 

K-Complete 

• C : the set of frequent itemsets  

• For any K ≥ 1, P is K-complete w.r.t C if: 

1. P    C 

2. For any itemset X (or its subset) in C, there exists a generalization whose support 

is no more than K times that of X (or its subset) 

• The smaller K is, the less the information lost 

Constraint based Association Mining 

• Interactive, exploratory mining giga-bytes of data?   
o Could it be real? — Making good use of constraints! 

• What kinds of constraints can be used in mining? 
o Knowledge type constraint: classification, association, etc. 
o Data constraint: SQL-like queries  

� Find product pairs sold together in Vancouver in Dec.’98. 
o Dimension/level constraints: 

� in relevance to region, price, brand, customer category. 
o Rule constraints 

� small sales (price  < $10) triggers big sales (sum > $200). 
o Interestingness constraints: 

� strong rules (min_support  ≥ 3%, min_confidence ≥  60%).  
• Pattern space pruning constraints 

o Anti-monotonic: If constraint c is violated, its further mining can be terminated 
o Monotonic: If c is satisfied, no need to check c again 
o Succinct: c must be satisfied, so one can start with the data sets satisfying c 
o Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it 

if items in the transaction can be properly ordered 
• Data space pruning constraint 

o Data succinct: Data space can be pruned at the initial pattern mining process 
o Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its 

further mining 

 

 


