SCS5623 - DATA MINING AND WAREHOUSING

<u>UNIT 2</u>

CONCEPT DESCRIPTION AND ASSOCIATION RULES

Attribute Oriented Induction

- Data focusing: task-relevant data, including dimensions, and the result is the *initial relation*
- Attribute-removal: remove attribute A if there is a large set of distinct values for A but (1) there is no generalization operator on A, or (2) A's higher level concepts are expressed in terms of other attributes
- Attribute-generalization: If there is a large set of distinct values for *A*, and there exists a set of generalization operators on *A*, then select an operator and generalize *A*
- Attribute-threshold control: typical 2-8, specified/default
- Generalized relation threshold control: control the final relation/rule size

How it is done

- Collect the task-relevant data (*initial relation*) using a relational database query
- Perform generalization by attribute removal or attribute generalization
- Apply aggregation by merging identical, generalized tuples and accumulating their respective counts
- Interaction with users for knowledge presentation

Example: Describe general characteristics of graduate students in the University database

Step 1. Fetch relevant set of data using an SQL statement, e.g.,

- Select * (i.e., name, gender, major, birth_place, birth_date, residence, phone#, gpa)
- from student
- where student_status in {"Msc", "MBA", "PhD" }

Step 2. Perform attribute-oriented induction

Step 3. Present results in generalized relation, cross-tab, or rule forms

Basic Algorithm for Attribute-Oriented Induction

- <u>InitialRel</u>: Query processing of task-relevant data, deriving the *initial relation*.
- <u>PreGen:</u> Based on the analysis of the number of distinct values in each attribute, determine generalization plan for each attribute: removal? or how high to generalize?
- <u>PrimeGen</u>: Based on the PreGen plan, perform generalization to the right level to derive a "prime generalized relation", accumulating the counts.
- <u>Presentation</u>: User interaction: (1) adjust levels by drilling, (2) pivoting, (3) mapping into rules, cross tabs, visualization presentations.

Class Characterization: An Example

	Name	Gen	der	Major	Birth-Pl	ace	Birt	h_date	Res	idence	Phone #	GPA
Initial Relation	Jim Woodmar Scott Lachance	M M		cs cs	Vancouv Canada Montrea Canada	er,BC, l, Que,	8-1 28-7	2-76 -75	351 Ric 345 Ric	1 Main St., hmond 1st Ave., hmond	687-4598 253-9106	3.67 3.70
	Laura Le	e F	1	Physics	Seattle, W	A, USA	25-8-70		125 Au Burnah	Austin Ave., naby	420-5232 	3.83
	Removed	Retai	ned :	Sci,Eng, Bus	Country		Age	range	City	·	Removed	Excl, VG,
	[Gender	Majo	r Birt	th_region	Age_range		Residence		GPA	Count	
Prime Generalized		M F	Scien Scien	ce Canada ce Foreign		20- 25-	25 30	Richmond Burnaby		Very-good Excellent	16 22	
Relatio	Relation			8			•	1.11				
				Bir Gender	th_Region Canac		da Foreign 14		n Total			
					M 16	30						
					F	10		22		32		
				Т	otal	26		36		62		

Analytical Characterization

1. Data collection

target class: graduate student

contrasting class: undergraduate student

- 2. Analytical generalization using U_i
 - attribute removal

remove *name* and *phone#* attribute generalization generalize *major*, *birth_place*, *birth_date* and *gpa* accumulate counts

candidate relation: gender, major, birth_country, age_range and gpa

Mining ClassComparison

- Comparison: Comparing two or more classes
- Method:
 - Partition the set of relevant data into the target class and the contrasting class(es)
 - Generalize both classes to the same high level concepts
 - Compare tuples with the same high level descriptions
 - Present for every tuple its description and two measures
 - support distribution within single class
 - comparison distribution between classes
 - Highlight the tuples with strong discriminant features
- Relevance Analysis:
 - Find attributes (features) which best distinguish different classes

Presentation of Generalized Results

- Generalized relation:
 - Relations where some or all attributes are generalized, with counts or other aggregation values accumulated.
- Cross tabulation:
 - Mapping results into cross tabulation form (similar to contingency tables).
 - Visualization techniques:
 - Pie charts, bar charts, curves, cubes, and other visual forms.
- Quantitative characteristic rules:
 - Mapping generalized result into characteristic rules with quantitative information associated with it, e.g.,
- <u>t-weight</u>:
 - Interesting measure that describes the typicality of
 - each disjunct in the rule
 - each tuple in the corresponding generalized relation
 - n number of tuples for target class for generalized relation
 - $q_i \dots q_n$ tuples for target class in generalized relation
 - q_a is in $q_i \ldots q_n$

t_weight = $count(q_a) / \sum_{i=1}^{n} count(q_i)$

 $grad(x) \land male(x) \Rightarrow birth_region(x) = "Canadd[t:53\%] \lor birth_region(x) = "foreign[t:47\%]$

Association Rules

"An association algorithm creates rules that describe how often events have occurred together."

Example: When a customer buys a hammer, then 90% of the time they will buy nails.

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set.
- First proposed by Agrawal, Imielinski, and Swami in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications: Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

<u>Support</u>: "is a measure of what fraction of the population satisfies both the antecedent and the consequent of the rule".

- Example:
 - People who buy hotdog buns also buy hotdog sausages in 99% of cases. = High Support
 - \circ People who buy hotdog buns buy hangers in 0.005% of cases. = Low support
- Situations where there is high support for the antecedent are worth careful attention
 - E.g. Hotdog sausages should be placed in near hotdog buns in supermarkets if there is also high confidence.

<u>Confidence</u>: "is a measure of how often the consequent is true when the antecedent is true."

- Example:
 - \circ 90% of Hotdog bun purchases are accompanied by hotdog sausages.
 - High confidence is meaningful as we can derive rules.
- Hotdog sausage, Hotdog bun
- 2 rules may have different confidence levels and have the same support.
- E.g. Hotdog bun may have a much lower confidence than Hotdog sausage, yet they both can have the same support, Hotdog bun.

Apriori Algorithm

It is a frequent pattern mining algorithm, and finds the frequent item sets by generating the candidates.

• How to generate candidates?

Step 1: self-joining L_k

Step 2: pruning

- How to count supports of candidates?
 - By counting how many times it hasoccured.

Example of Candidate-generation $L_3 = \{abc, abd, acd, ace, bcd\}$ Self-joining: $L_3 * L_3$ abcd from abc and abd acde from acd and ace Pruning: acde is removed because ade is not in L_3 $C_4=\{abcd\}$

Pseudo-code:
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_I = {frequent items};
for (k = 1; L_k!=Ø; k++) do begin
C_{k+I} = candidates generated from L_k;
for each transaction t in database do
increment the count of all candidates in C_{k+I}
that are contained in t
L_{k+I} = candidates in C_{k+I} with min_support
end
return ∪_k L_k;

Example:

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

Itemset $X = \{x_1, ..., x_k\}$

Find all the rules $X \rightarrow Y$ with minimum support and confidence

- support, s, probability that a transaction contains X ∪ Y
- confidence, c, conditional probability that a transaction having X also contains Y

Let sup_{min} = 50%, conf_{min} = 50% Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules:

 $\begin{array}{c} A \rightarrow D \ (60\%, 100\%) \\ D \rightarrow A \ (60\%, 75\%) \end{array}$

The Apriori Algorithm—An Example

Frequent Pattern Growth Tree Algorithm

(Mining Frequent Patterns Without Candidate Generation)

It grows long patterns from short ones using local frequent items

- "abc" is a frequent pattern
- Get all transactions having "abc": DBlabc
- "d" is a local frequent item in DB | abc \rightarrow abcd is a frequent pattern

Construct FP-tree from a Transaction Database

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of *transformed prefix paths* of item *p* to form *p*'s conditional pattern base

Conditional pattern bases

item cond. pattern base

- c f:3
- a fc:3
- b fca:1, f:1, c:1
- m fca:2, fcab:1
- p fcam:2, cb:1

Mining Multi-Level Associations

- A top_down, progressive deepening approach:
 - First find high-level strong rules:
 - milk -> bread [20%, 60%].
 - Then find their lower-level "weaker" rules:
 - 2% milk -> wheat bread [6%, 50%].
- Variations at mining multiple-level association rules.
 - Level-crossed association rules:
 - 2% milk -> Wonder wheat bread
 - Association rules with multiple, alternative hierarchies:
 - 2% milk -> Wonder bread

0

Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
 - + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - \circ Lower level items do not occur as frequently. If support threshold
 - too high \Rightarrow miss low level associations
 - too low \Rightarrow generate too many high level associations
- Reduced Support: reduced minimum support at lower levels
 - There are 4 search strategies:
 - Level-by-level independent
 - Level-cross filtering by k-itemset
 - Level-cross filtering by single item
 - Controlled level-cross filtering by single item

Mining Quantitative Association Rules

- Determine the number of partitions for each quantitative attribute
- Map values/ranges to consecutive integer values such that the order is preserved
- Find the support of each value of the attributes, and combine when support is less than MaxSup. Find frequent itemsets, whose support is larger than MinSup
- Use frequent set to generate association rules
- Pruning out uninteresting rules

Partial Completeness

- R : rules obtained before partition
- R': rules obtained after partition
- Partial Completeness measures the maximum distance between a rule in R and its closest generalization in R'
- \hat{X} is a generalization of itemset X: if $\forall x \in attributes (X)[\langle x, l, u \rangle \in X \land \langle x, l', u' \rangle \in \hat{X} \Rightarrow l' \leq l \leq u \leq u']$

• The distance is defined by the ratio of support

<u>K-Complete</u>

- *C* : the set of frequent itemsets
- For any $K \ge 1$, *P* is K-complete w.r.t *C* if:
 - 1. *P C*
 - 2. For any itemset X (or its subset) in C, there exists a generalization whose support is no more than K times that of X (or its subset)
- The smaller K is, the less the information lost

Constraint based Association Mining

- Interactive, exploratory mining giga-bytes of data?
 - Could it be real? Making good use of constraints!
- What kinds of constraints can be used in mining?
 - Knowledge type constraint: classification, association, etc.
 - Data constraint: SQL-like queries
 - Find product pairs sold together in Vancouver in Dec.'98.
 - Dimension/level constraints:
 - in relevance to region, price, brand, customer category.
 - Rule constraints
 - small sales (price < \$10) triggers big sales (sum > \$200).
 - Interestingness constraints:
 - strong rules (min_support $\geq 3\%$, min_confidence $\geq 60\%$).
- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: c must be satisfied, so one can start with the data sets satisfying c
 - Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered
- Data space pruning constraint
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its further mining