
 SCS5623 - DATA MINING AND WAREHOUSING

UNIT 2

CONCEPT DESCRIPTION AND ASSOCIATION RULES

Attribute Oriented Induction

• Data focusing: task-relevant data, including dimensions, and the result is the initial

relation
• Attribute-removal: remove attribute A if there is a large set of distinct values for A but (1)

there is no generalization operator on A, or (2) A’s higher level concepts are expressed in
terms of other attributes

• Attribute-generalization: If there is a large set of distinct values for A, and there exists a
set of generalization operators on A, then select an operator and generalize A

• Attribute-threshold control: typical 2-8, specified/default
• Generalized relation threshold control: control the final relation/rule size

How it is done

• Collect the task-relevant data (initial relation) using a relational database query
• Perform generalization by attribute removal or attribute generalization
• Apply aggregation by merging identical, generalized tuples and accumulating their

respective counts
• Interaction with users for knowledge presentation

Example: Describe general characteristics of graduate students in the University
database

Step 1. Fetch relevant set of data using an SQL statement, e.g.,

� Select * (i.e., name, gender, major, birth_place, birth_date, residence,
phone#, gpa)

� from student
� where student_status in {“Msc”, “MBA”, “PhD” }

Step 2. Perform attribute-oriented induction

Step 3. Present results in generalized relation, cross-tab, or rule forms

Basic Algorithm for Attribute-Oriented Induction

• InitialRel: Query processing of task-relevant data, deriving the initial relation.

• PreGen: Based on the analysis of the number of distinct values in each attribute,
determine generalization plan for each attribute: removal? or how high to generalize?

• PrimeGen: Based on the PreGen plan, perform generalization to the right level to derive a
“prime generalized relation”, accumulating the counts.

• Presentation: User interaction: (1) adjust levels by drilling, (2) pivoting, (3) mapping into
rules, cross tabs, visualization presentations.

Class Characterization: An Example

Analytical Characterization

1. Data collection
target class: graduate student
contrasting class: undergraduate student

2. Analytical generalization using Ui
attribute removal

remove name and phone#
attribute generalization

 generalize major, birth_place, birth_date and gpa
accumulate counts

candidate relation: gender, major, birth_country, age_range and gpa

Mining ClassComparison

• Comparison: Comparing two or more classes
• Method:

o Partition the set of relevant data into the target class and the contrasting class(es)
o Generalize both classes to the same high level concepts
o Compare tuples with the same high level descriptions
o Present for every tuple its description and two measures

� support - distribution within single class
� comparison - distribution between classes

o Highlight the tuples with strong discriminant features
• Relevance Analysis:

o Find attributes (features) which best distinguish different classes

Presentation of Generalized Results

• Generalized relation:
o Relations where some or all attributes are generalized, with counts or other

aggregation values accumulated.
• Cross tabulation:

o Mapping results into cross tabulation form (similar to contingency tables).
o Visualization techniques:
o Pie charts, bar charts, curves, cubes, and other visual forms.

• Quantitative characteristic rules:
o Mapping generalized result into characteristic rules with quantitative information

associated with it, e.g.,
• t-weight:

o Interesting measure that describes the typicality of
� each disjunct in the rule
� each tuple in the corresponding generalized relation
� n – number of tuples for target class for generalized relation
� qi … qn – tuples for target class in generalized relation
� qa is in qi … qn

grad(x) Λ male(x) ⇒ birth_region(x) = “Canadd[t:53%] ∨ birth_region(x) = “foreign[t:47%]

Association Rules

“An association algorithm creates rules that describe how often events have occurred together.”

Example: When a customer buys a hammer, then 90% of the time they will buy nails.

• Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs
frequently in a data set.

• First proposed by Agrawal, Imielinski, and Swami in the context of frequent itemsets and
association rule mining

• Motivation: Finding inherent regularities in data
o What products were often purchased together?— Beer and diapers?!
o What are the subsequent purchases after buying a PC?
o What kinds of DNA are sensitive to this new drug?
o Can we automatically classify web documents?

• Applications: Basket data analysis, cross-marketing, catalog design, sale campaign
analysis, Web log (click stream) analysis, and DNA sequence analysis.

Support: “is a measure of what fraction of the population satisfies both the antecedent and the
consequent of the rule”.

• Example:
o People who buy hotdog buns also buy hotdog sausages in 99% of cases. = High

Support
o People who buy hotdog buns buy hangers in 0.005% of cases. = Low support

• Situations where there is high support for the antecedent are worth careful attention
o E.g. Hotdog sausages should be placed in near hotdog buns in supermarkets if

there is also high confidence.

Confidence: “is a measure of how often the consequent is true when the antecedent is true.”
• Example:

o 90% of Hotdog bun purchases are accompanied by hotdog sausages.
o High confidence is meaningful as we can derive rules.

• Hotdog sausage, Hotdog bun
• 2 rules may have different confidence levels and have the same support.
• E.g. Hotdog bun may have a much lower confidence than Hotdog sausage, yet they both

can have the same support, Hotdog bun.

Apriori Algorithm

It is a frequent pattern mining algorithm, and findsthe frequent item sets by generating the
candidates.

• How to generate candidates?

Step 1: self-joining Lk

Step 2: pruning

• How to count supports of candidates?

- By counting how many times it hasoccured.

Example of Candidate-generation

L3={abc, abd, acd, ace, bcd}

Self-joining: L3*L3

abcd from abc and abd

acde from acd and ace

Pruning:

acde is removed because ade is not in L3

C4={abcd}

Example:

Frequent Pattern Growth Tree Algorithm

(Mining Frequent Patterns Without Candidate Generation)

It grows long patterns from short ones using local frequent items

• “abc” is a frequent pattern

• Get all transactions having “abc”: DB|abc

• “d” is a local frequent item in DB | abc � abcd is a frequent pattern

Mining Multi-Level Associations

• A top_down, progressive deepening approach:
o First find high-level strong rules:

• milk -> bread [20%, 60%].
o Then find their lower-level “weaker” rules:

� 2% milk -> wheat bread [6%, 50%].

• Variations at mining multiple-level association rules.
o Level-crossed association rules:
o 2% milk -> Wonder wheat bread
o Association rules with multiple, alternative hierarchies:
o 2% milk -> Wonder bread

Multi-level Association: Uniform Support vs. Reduced Support

• Uniform Support: the same minimum support for all levels
o + One minimum support threshold. No need to examine itemsets containing any

item whose ancestors do not have minimum support.
o – Lower level items do not occur as frequently. If support threshold

� too high ⇒ miss low level associations

� too low ⇒ generate too many high level associations

• Reduced Support: reduced minimum support at lower levels
o There are 4 search strategies:

� Level-by-level independent
� Level-cross filtering by k-itemset
� Level-cross filtering by single item
� Controlled level-cross filtering by single item

Mining Quantitative Association Rules

• Determine the number of partitions for each quantitative attribute

• Map values/ranges to consecutive integer values such that the order is preserved

• Find the support of each value of the attributes, and combine when support is less than

MaxSup. Find frequent itemsets, whose support is larger than MinSup

• Use frequent set to generate association rules

• Pruning out uninteresting rules

Partial Completeness

• R : rules obtained before partition

• R’: rules obtained after partition

• Partial Completeness measures the maximum distance between a rule in R and its closest

generalization in R’

• is a generalization of itemset X: if

• The distance is defined by the ratio of support

K-Complete

• C : the set of frequent itemsets

• For any K ≥ 1, P is K-complete w.r.t C if:

1. P C

2. For any itemset X (or its subset) in C, there exists a generalization whose support

is no more than K times that of X (or its subset)

• The smaller K is, the less the information lost

Constraint based Association Mining

• Interactive, exploratory mining giga-bytes of data?
o Could it be real? — Making good use of constraints!

• What kinds of constraints can be used in mining?
o Knowledge type constraint: classification, association, etc.
o Data constraint: SQL-like queries

� Find product pairs sold together in Vancouver in Dec.’98.
o Dimension/level constraints:

� in relevance to region, price, brand, customer category.
o Rule constraints

� small sales (price < $10) triggers big sales (sum > $200).
o Interestingness constraints:

� strong rules (min_support ≥ 3%, min_confidence ≥ 60%).
• Pattern space pruning constraints

o Anti-monotonic: If constraint c is violated, its further mining can be terminated
o Monotonic: If c is satisfied, no need to check c again
o Succinct: c must be satisfied, so one can start with the data sets satisfying c
o Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it

if items in the transaction can be properly ordered
• Data space pruning constraint

o Data succinct: Data space can be pruned at the initial pattern mining process
o Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its

further mining

