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Unit II 

Parallel Programming 

Programming parallel machines is notoriously difficult. Factors contributing to this 

difficulty include the complexity of concurrency, the effect of resource allocation on 

performance and the current diversity of parallel machine models. The net result is that 

effective portability, which depends crucially on the predictability of performance, has been 

lost. Functional programming languages have been put forward as solutions to these 

problems, because of the availability of implicit parallelism. However, performance will be 

generally poor unless the issue of resource allocation is addressed explicitly, diminishing the 

advantage of using a functional language in the first place. 

We present a methodology which is a compromise between the extremes of explicit 

imperative programming and implicit functional programming. We use a repertoire of higher-

order parallel forms, skeletons, as the basic building blocks for parallel implementations and 

provide program transformations which can convert between skeletons, giving portability 

between differing machines. Resource allocation issues are documented for each 

skeleton/machine pair and are addressed explicitly during implementation in an interactive, 

selective manner, rather than by explicit programming. 

Threads 

A thread of execution is the smallest sequence of programmed instructions that can 

be managed independently by a scheduler, which is typically a part of the operating system.[1] 

The implementation of threads and processes differs between operating systems, but in most 

cases a thread is a component of a process. Multiple threads can exist within the same 

process, executing concurrently (one starting before others finish) and share resources such as 

memory, while different processes do not share these resources. In particular, the threads of a 

process share its instructions (executable code) and its context (the values of its variables at 

any given moment). 

On a single processor, multithreading is generally implemented by time slicing (as in 

multitasking), and the central processing unit (CPU) switches between different software 

threads. This context switching generally happens frequently enough that the user perceives 

the threads or tasks as running at the same time (in parallel). On a multiprocessor or multi-

core system, multiple threads can be executed in parallel (at the same instant), with every 

processor or core executing a separate thread simultaneously; on a processor or core with 

hardware threads, separate software threads can also be executed concurrently by separate 

hardware threads. 

Threads made an early appearance in OS/360 Multiprogramming with a Variable Number of 

Tasks (MVT) in 1967, in which they were called "tasks". Process schedulers of many modern 

operating systems directly support both time-sliced and multiprocessor threading, and the 

operating system kernel allows programmers to manipulate threads by exposing required 

functionality through the system call interface. Some threading implementations are called 

kernel threads, whereas lightweight processes (LWP) are a specific type of kernel thread that 

share the same state and information. Furthermore, programs can have user-space threads 



when threading with timers, signals, or other methods to interrupt their own execution, 

performing a sort of ad hoc time-slicing. 

Message passing 

Message passing is a form of communication used in parallel programming and object-
oriented programming. Communications are completed by the sending of messages (functions, 
signals and data packets) to recipients. Message Passing Interface (MPI) is a standardized and 
portable message-passing system designed by a group of researchers from academia and 
industry to function on a wide variety of parallel computers 

MPI 

1)Developed by MPI forum (made up of Industry, Academia and Govt.) 

2)They established a standardised Message-Passing Interface (MPI-1) in 1994 

3)It was intended as an interface to both C and FORTRAN. 

4)C++ bindings were deprecated in MPI-2. Some Java bindings exist but are not standard yet. 

5) Aim was to provide a specification which can be implemented on any parallel computer or 

cluster; hence portability of code was a big aim. 

 

Advantages of MPI 

1)Portable, hence protection of software investment 

2)A standard, agreed by everybody 

3)Designed using optimal features of existing message-passing libraries 

4)“Kitchen-sink” functionality, very rich environment (129 functions) 

5)Implementations for F77, C and C++ are freely downloadable 

 

Disadvantages of MPI 

 

1)“Kitchen-sink” functionality, makes it hard to learn all (unnecessary: a bare dozen are 

needed in most cases) 

2) Implementations on shared-memory machines is often quite poor, and does not suit the 

programming model 

3) Has rivals in other message-passing libraries (e.g. PVM) 

Features of MPI 

MPI provides support for: 

 

1) Point-to-point & collective (i.e. group) communications 

2) Inquiry routines to query the environment (how many nodes are there, which node 

number am I, etc.) 

3) Constants and data-types 

4) All MPI identifiers are prefixed by ‘MPI_’.  

5) C routines contain lower case (i.e. ‘MPI_Init’),  

6) Constants are all in upper case (e.g. ‘MPI_FLOAT ’ is an MPI C data-type).  

7) C routines are actually integer functions which return a status  

8) code (you are strongly advised to check these for errors!). 

9) Number of processors used is specified in the command line,  

10) when running the MPI loader that loads the MPI program onto the processors, to 

avoid hard-coding this into the program e.g. mpirun -np N exec 



 

 

Scalability and Portability 

In heterogeneous computing systems, computing nodes might be different whereas each 

computing node contains different system resources such as processors, graphics processing 

units, memories, networks, storage units, etc. These computing nodes and their internal 

resources have to collaborate well to provide required computing capacity.  

Portability is always an issue in heterogeneous computing systems. Data generated on one 

machine might not be able to be used by others directly because of the incompatibility issues. 

Data type, endianness, size and padding situation are different in heterogeneous and even in 

homogeneous computing systems. Data marshaling procedure is indispensable, especially in 

open systems. In this thesis, a portable data exchange toolkit is proposed.  

Meanwhile, scalability is another major issue for Grand-Challenge applications. How to 

utilize system resources efficiently is critical when problem size increases. Based on system 

resources' different features, workload should be scheduled properly among them. In this 

thesis, a novel GPU-based MD5-Blowfish encryption algorithm is designed and implemented 

to handle scaled data with some optimization features of NVIDIA Fermi architecture.  

Transactional Memory 

Transactional memory attempts to simplify concurrent programming by allowing a group of 
load and store instructions to execute in an atomic way. It is a concurrency 
control mechanism analogous to database transactions for controlling access to shared 
memory in concurrent computing. 

The motivation of transactional memory lies in the programming interface of parallel 

programs. The goal of a transactional memory system is to transparently support the 

definition of regions of code that are considered a transaction, that is, that 

have atomicity, consistency and isolation requirements. Transactional memory allows writing 

code like this example: 

def transfer_money(from_account, to_account, amount): 

    with transaction(): 

        from_account -= amount 

        to_account += amount 

In the code, the block defined by "transaction" has the atomicity, consistency and isolation 

guarantees and the underlying transactional memory implementation must assure those 

guarantees transparently. 

 

 



Hardware transactional memory systems may comprise modifications in processors, cache 

and bus protocol to support transactions.Load-link/store-conditional (LL/SC) offered by 

many RISC processors can be viewed as the most basic transactional memory support; 

however, LL/SC usually operates on data that is the size of a native machine word, so only 

single-word transactions are supported. 

Software transactional memory provides transactional memory semantics in a 

software runtime library or the programming language,[6] and requires minimal hardware 

support (typically an atomic compare and swap operation, or equivalent). As the downside, 

software implementations usually come with a performance penalty, when compared to 

hardware solutions. 

Owing to the more limited nature of hardware transactional memory (in current 

implementations), software using it may require fairly extensive tuning to fully benefit from it. 

For example, the dynamic memory allocator may have a significant influence on 

performance and likewise structure padding may affect performance (owing to cache 

alignment and false sharing issues); in the context of a virtual machine, various background 

threads may cause unexpected transaction aborts 

ZPL 

ZPL (short for Z-level Programming Language) is an array programming language designed 

to replace C and C++ programming languages in engineering and scientific 

applications. Because its design goal was to obtain cross-platform high performance, ZPL 

programs run fast on both sequential and parallel computers. Highly-parallel ZPL programs 

are simple and easy to write because it exclusively uses implicit parallelism. 

Originally called Orca C, ZPL was designed and implemented during 1993-1995 by the Orca 

Project of the Computer Science and Engineering Department at the University of 

Washington. 

ZPL uses the array abstraction to implement a data parallel programming model. This is the 

reason why ZPL achieves such good performance: having no parallel directives or other 

forms of explicit parallelism, ZPL exploits the operational trait that when aggregate 

computations are described in terms of arrays, many scalar operations must be (implicitly) 

performed to implement the array operations. This implied computation can be automatically 

allotted to different processors to achieve concurrency: Parallelism arises from the semantics 

of the array operations. 

ZPL is translated into a conventional abstract syntax tree representation on which program 

analysis and program optimizations are performed. ANSI C code is generated as the object 

code. This C program (which is machine independent because it implements certain 

operations in abstract form) is then compiled using the native C compiler on the target 

machine with custom libraries optimized to the specific platform. 



The creators of ZPL were: Brad Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin 

Lin, Jason Secosky, Larry Snyder, and W. Derrick Weathersby with assistance from Ruth 

Anderson, A.J. Bernheim, Marios Dikaiakos, George Forman, and Kurt Partridge. 

 

Automatic parallelization, also auto parallelization, autoparallelization, 

or parallelization, the last one of which implies automation when used in context, refers to 

converting sequential code into multi-threaded or vectorized (or even both) code in order to 

utilize multiple processors simultaneously in a shared-memory multiprocessor (SMP) 

machine. The goal of automatic parallelization is to relieve programmers from the tedious 

and error-prone manual parallelization process. Though the quality of automatic 

parallelization has improved in the past several decades, fully automatic parallelization of 

sequential programs by compilers remains a grand challenge due to its need for 

complex program analysis and the unknown factors (such as input data range) during 

compilation.  

The programming control structures on which autoparallelization places the most focus 

are loops, because, in general, most of the execution time of a program takes place inside 

some form of loop. There are two main approaches to parallelization of loops: pipelined 

multi-threading and cyclic multi-threading.  

For example, consider a loop that on each iteration applies a hundred operations, runs for a 

thousand iterations. This can be thought of as a grid of 100 columns by 1000 rows, a total of 

100,000 operations. Cyclic multi-threading assigns each row to a different thread. Pipelined 

multi-threading assigns each column to a different thread. 

 

Chapel 

Parallel computing has resulted in numerous significant advances in science and technology 

over the past several decades.  However, in spite of these successes, the fact remains that only 

a small fraction of the world’s programmers are capable of effectively using the parallel 

languages and programming models employed within HPC and mainstream computing.  

Chapel is an emerging parallel language being developed at Cray Inc. with the goal of 

addressing this issue and making parallel programming far more productive and generally 

accessible. 

Chapel originated from the DARPA High Productivity Computing Systems (HPCS) program, 

which challenged vendors like Cray to improve the productivity of high-end computing 

systems.  Engineers at Cray noted that the HPC community was hungry for alternative 

parallel programming languages and developed Chapel as part of our response.  The reaction 



from HPC users so far has been very encouraging—most would be excited to have the 

opportunity to use Chapel once it becomes production-grade. 

Chapel Overview  

Though it would be impossible to give a thorough introduction to Chapel in the space of this 

article, the following characterizations of the language should serve to give an idea of what 

we are pursuing: 

• General Parallelism: Chapel has the goal of supporting any parallel algorithm you 

can conceive of on any parallel hardware you want to target.  In particular, you should 

never hit a point where you think “Well, that was fun while it lasted, but now that I 

want to do x, I’d better go back to MPI.” 

• Separation of Parallelism and Locality: Chapel supports distinct concepts for 

describing parallelism (“These things should run concurrently”) from locality (“This 

should be placed here; that should be placed over there”).  This is in sharp contrast to 

conventional approaches that either conflate the two concepts or ignore locality 

altogether. 

• Multiresolution Design: Chapel is designed to support programming at higher or 

lower levels, as required by the programmer.   Moreover, higher-level features—like 

data distributions or parallel loop schedules—may be specified by advanced 

programmers within the language. 

• Productivity Features: In addition to all of its features designed for supercomputers, 

Chapel also includes a number of sequential language features designed for productive 

programming.  Examples include type inference, iterator functions, object-oriented 

programming, and a rich set of array types.  The result combines productivity features 

as in Python™, Matlab®, or Java™ software with optimization opportunities as in 

Fortran or C. 

Chapel’s implementation is also worth characterizing: 

• Open Source: Since its outset, Chapel has been developed in an open-source manner, 

with collaboration from academics, computing labs, and industry.  Chapel is released 

under a BSD license in order to minimize barriers to its use. 

• Portable: While Cray machines are an obvious target for Chapel, the language was 

designed to be very portable.  Today, Chapel runs on virtually any architecture 

supporting a C compiler, UNIX-like environment, POSIX threads, and MPI or UDP. 

• Optimized for Crays: Though designed for portability, the Chapel implementation 

has also been optimized to take advantage of Cray-specific features. 

Chapel: Today and Tomorrow  

While the HPCS project that spawned Chapel concluded successfully at the end of 2012, the 

Chapel project remains active and ongoing.  The Chapel prototype and demonstrations 

developed under HPCS were considered compelling enough to users that Cray plans to 

continue the project over the next several years.  Current priorities include: 



• Performance Optimizations: To date, the implementation effort has focused 

primarily on correctness over performance.  Improving performance is typically 

considered the number one priority for growing the Chapel community. 

• Support for Accelerators: Emerging compute nodes are increasingly likely to contain 

accelerators like GPUs or Intel® MIC chips.  We are currently working on extending 

our locality abstractions to better handle such architectures. 

• Interoperability: Beefing up Chapel’s current interoperability features is a priority, to 

permit users to reuse existing libraries or gradually transition applications to Chapel. 

• Feature Improvements: Having completed HPCS, we now have the opportunity to go 

back and refine features that have not received sufficient attention to date.  In many 

cases, these improvements have been motivated by feedback from early users. 

• Outreach and Evangelism: While improving Chapel, we are seeking out ways to 

grow Chapel’s user base, particularly outside of the traditional HPC sphere. 

• Research Efforts: In addition to hardening the implementation, a number of 

interesting research directions remain for Chapel, including resilience mechanisms, 

applicability to “big data” computations, energy-aware computing, and support for 

domain specific languages. 

Map Reduce 

MapReduce is a programming model and an associated implementation for processing and 

generating large data sets with a parallel, distributed algorithm on a cluster. Conceptually 

similar approaches have been very well known since 1995 with the Message Passing 

Interface  standard having reduce  and scatter operations.  

A MapReduce program is composed of a Map() procedure (method) that performs filtering 

and sorting (such as sorting students by first name into queues, one queue for each name) and 

a Reduce() method that performs a summary operation (such as counting the number of 

students in each queue, yielding name frequencies). The "MapReduce System" (also  called 

"infrastructure" or "framework") orchestrates the processing by marshalling the distributed 

servers, running the various tasks in parallel, managing all communications and data transfers 

between the various parts of the system, and providing for redundancy and fault tolerance. 

The model is inspired by the map and reduce functions commonly used in functional 

programming, although their purpose in the MapReduce framework is not the same as in their 

original forms. The key contributions of the MapReduce framework are not the actual map 

and reduce functions, but the scalability and fault-tolerance achieved for a variety of 

applications by optimizing the execution engine once. As such, a single-

threaded implementation of MapReduce will usually not be faster than a traditional (non-

MapReduce) implementation, any gains are usually only seen with multi-

threaded implementations. The use of this model is beneficial only when the optimized 

distributed shuffle operation (which reduces network communication cost) and fault tolerance 

features of the MapReduce framework come into play. Optimizing the communication cost is 

essential to a good MapReduce algorithm.
               

  



MapReduce libraries have been written in many programming languages, with different 

levels of optimization. A popular open-source implementation that has support for distributed 

shuffles is part of Apache Hadoop. The name MapReduce originally referred to the 

proprietary Google technology, but has since been genericized. By 2014, Google were no 

longer using MapReduce as a Big Data processing model, and development on Apache 

Mahout had moved on to more capable and less disk-oriented mechanisms that incorporated 

full map and reduce capabilities 

 MapReduce is a framework for parallel computing. Programmers get a simple API 

and do not have to deal with issues of parallelization, remote execution, data distribution, 

load balancing, or fault tolerance. The framework makes it easy for one to use thousands of 

processors to process huge amounts of data (e.g., terabytes and petabytes).  

From a user's perspective, there are two basic operations in MapReduce: Map and Reduce.  

The Map function reads a stream of data and parses it into intermediate (key, value) pairs. 

When that is complete, the Reduce function is called once for each unique key that was 

generated by Map and is given the key and a list of all values that were generated for that key 

as a parameter. The keys are presented in sorted order.  

As an example of using MapReduce, consider the task of counting the number of occurrences 

of each word in a large collection of documents. The user-written Map function reads the 

document data and parses out the words. For each word, it writes the (key, value) pair of 

(word, 1). That is, the word is treated as the key and the associated value of 1 means that we 

saw the word once. This intermediate data is then sorted by MapReduce by keys and the 

user's Reduce function is called for each unique key. Since the only values are the count of 1, 

Reduce is called with a list of a "1" for each occurence of the word that was parsed from the 

document. The function simply adds them up to generate a total word count for that word. 

Here's what the code looks like:  

map(String key, String value):  

// key: document name, value:  

document contents for each word w in value:  

EmitIntermediate(w, "1");  

reduce(String key, Iterator values): 

 // key: a word;  

values: a list of counts  

int result = 0; 

 for each v in values: result += ParseInt(v); 

 Emit(AsString(result));  

 

 

 

 

 

Detailed Explanation of Map Reduce: 

 



MapReduce is largely seen as an API: communication with the various machines that play a 

part in execution is hidden. MapReduce is implemented in a master/worker configuration, 

with one master serving as the coordinator of many workers. A worker may be ass

role of either a map worker or a reduce worker

Step 1. Split input  

 

Figure 1. Split input into shards  

The first step, and the key to massive parallelization in the next step, is to split the input into 

multiple pieces. Each piece is called a 

shards, so that each worker will have something to work on. The number of workers is mostly 

a function of the amount of machines we have at our disposal. 

The MapReduce library of the user program perfo

may be specific to the location and form of the data. MapReduce allows the use of custom 

readers to split a collection of inputs into shards, based on specific format of the files.

Step 2. Fork processes  

Figure 2. Remotely execute worker processes 

The next step is to create the master and the workers. The 

dispatching jobs to workers, keeping track of progress, and returning results. The master 

picks idle workers and assigns them either a 

a single shard of the original data. A reduce task works on intermediate data generated by the 

map tasks. In all, there will be M

is the number of partitions defined by the user

identifying the program (map or reduce) it has to load and the data it has to read. 

Step 3. Map  

 
Figure 3. Map task  

Each map task reads from the input shard that is assigned to it. It parses the data and 

generates (key, value) pairs for data of interest. In parsing the input, the 

likely to get rid of a lot of data that is of no interest. By having many map workers do this in 

parallel, we can linearly scale the performance of the task of extracti

MapReduce is largely seen as an API: communication with the various machines that play a 

part in execution is hidden. MapReduce is implemented in a master/worker configuration, 

with one master serving as the coordinator of many workers. A worker may be ass

reduce worker.  

 
 

The first step, and the key to massive parallelization in the next step, is to split the input into 

multiple pieces. Each piece is called a split, or shard. For M map workers, we want to have 

shards, so that each worker will have something to work on. The number of workers is mostly 

a function of the amount of machines we have at our disposal.  

The MapReduce library of the user program performs this split. The actual form of the split 

may be specific to the location and form of the data. MapReduce allows the use of custom 

readers to split a collection of inputs into shards, based on specific format of the files.

 
re 2. Remotely execute worker processes  

The next step is to create the master and the workers. The master is responsible for 

dispatching jobs to workers, keeping track of progress, and returning results. The master 

picks idle workers and assigns them either a map task or a reduce task. A map task works on 

a single shard of the original data. A reduce task works on intermediate data generated by the 

M map tasks and R reduce tasks. The number of reduce tasks 

is the number of partitions defined by the user. A worker is sent a message by the master 

identifying the program (map or reduce) it has to load and the data it has to read. 

task reads from the input shard that is assigned to it. It parses the data and 
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Step 4: Map worker: Partition  

Figure 4. Create intermediate files 

The stream of (key, value) pairs that each worker generates is buffered in memory and 

periodically stored on the local disk of the map worker. This data is partitioned into 

by a partitioning function.  

The partitioning function is responsible for deciding which of the 

on a specific key. The default partitioning function is simply a hash of 

user can replace this with a custo

processed by a specific reduce worker. 

Step 5: Reduce: Sort (Shuffle)  

Figure 5. Sort and merge partitioned data 

When all the map workers have completed their work, the master notifies the 

to start working. The first thing a reduce worker needs to is to get the data that it needs to 

present to the user's reduce function. The reduce worker contacts every map worker via 

remote procedure calls to get the 

is then sorted by the keys. Sorting is needed since it will usually be the case that there are 

many occurrences of the same key and many keys will map to the same reduce worker (same 

partition). After sorting, all occurrences of the same key are grouped together so that it is easy 

to grab all the data that is associated with a single key. 

This phase is sometimes called the 

Step 6: Reduce function  

 
Figure 4. Create intermediate files  
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is responsible for deciding which of the R reduce workers will work 
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user can replace this with a custom partition function if there is a need to have certain keys 

processed by a specific reduce worker.  

 
Figure 5. Sort and merge partitioned data  

When all the map workers have completed their work, the master notifies the reduce workers

to start working. The first thing a reduce worker needs to is to get the data that it needs to 

function. The reduce worker contacts every map worker via 

remote procedure calls to get the (key, value) data that was targeted for its partition. This data 

is then sorted by the keys. Sorting is needed since it will usually be the case that there are 

many occurrences of the same key and many keys will map to the same reduce worker (same 

currences of the same key are grouped together so that it is easy 

to grab all the data that is associated with a single key.  

This phase is sometimes called the shuffle phase.  
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Figure 6. Reduce function writes output 

With data sorted by keys, the user's 

calls the Reduce function once for each unique key. The function is passed two parameters: 

the key and the list of intermediate values that are associated with the key. 

The Reduce function writes output sent to file. 

Step 7: Done!  

When all the reduce workers have completed execution, the master passes control back to the 

user program. Output of MapReduce is stored in the 

created.  

The big picture  

Figure 7 illustrates the entire MapReduce process. The client library initializes the shards and 

creates map workers, reduce workers, and a master. Map workers are assigned a shard to 

process. If there are more shards than map workers, a map worker will be

shard when it is done. Map workers invoke the user's 

write intermediate (key, value)

partitioned into R partitions according to a partioning func

contacts all of the map workers and gets the set of 

targeted to its partition. It then calls the user's 

gives it a list of all values that w

final output to a file that the user's program can access once MapReduce has completed. 

 
Figure 6. Reduce function writes output  

orted by keys, the user's Reduce function can now be called. The reduce worker 

function once for each unique key. The function is passed two parameters: 

the key and the list of intermediate values that are associated with the key.  

function writes output sent to file.  

When all the reduce workers have completed execution, the master passes control back to the 

user program. Output of MapReduce is stored in the R output files that the R reduce workers 

Figure 7 illustrates the entire MapReduce process. The client library initializes the shards and 

creates map workers, reduce workers, and a master. Map workers are assigned a shard to 

process. If there are more shards than map workers, a map worker will be assigned another 

shard when it is done. Map workers invoke the user's Map function to parse the data and 

(key, value) results onto their local disks. This intermediate data is 

partitions according to a partioning function. Each of R reduce workers 

contacts all of the map workers and gets the set of (key, value) intermediate data that was 

targeted to its partition. It then calls the user's Reduce function once for each unique key and 

gives it a list of all values that were generated for that key. The Reduce function writes its 

final output to a file that the user's program can access once MapReduce has completed. 
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Figure 7 illustrates the entire MapReduce process. The client library initializes the shards and 
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Figure 7. MapReduce  
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