
SCS5108 Parallel Systems Unit I

The changing roles of parallelism

Parallel computing is a type of computation in which many calculations are carried out

simultaneously, operating on the principle that large problems can often be divided into smaller

ones, which are then solved at the same time. There are several different forms of parallel

computing: bit-level, instruction-level, data, and task parallelism. Parallelism has been employed

for many years, mainly in high-performance computing, but interest in it has grown lately due to

the physical constraints preventing frequency scaling. As power consumption (and consequently

heat generation) by computers has become a concern in recent years, parallel computing has

become the dominant paradigm in computer architecture, mainly in the form of multi-core

processors.

Parallel computing is closely related to concurrent computing—they are frequently used

together, and often conflated, though the two are distinct: it is possible to have parallelism

without concurrency (such as bit-level parallelism), and concurrency without parallelism (such as

multitasking by time-sharing on a single-core CPU). In parallel computing, a computational task

is typically broken down in several, often many, very similar subtasks that can be processed

independently and whose results are combined afterwards, upon completion. In contrast, in

concurrent computing, the various processes often do not address related tasks; when they do, as

is typical in distributed computing, the separate tasks may have a varied nature and often require

some inter-process communication during execution.

Parallel computers can be roughly classified according to the level at which the hardware

supports parallelism, with multi-core and multi-processor computers having multiple processing

elements within a single machine, while clusters, MPPs, and grids use multiple computers to

work on the same task. Specialized parallel computer architectures are sometimes used alongside

traditional processors, for accelerating specific tasks.

In some cases parallelism is transparent to the programmer, such as in bit-level or instruction-

level parallelism, but explicitly parallel algorithms, particularly those that use concurrency, are

more difficult to write than sequential ones, because concurrency introduces several new classes

of potential software bugs, of which race conditions are the most common. Communication and

synchronization between the different subtasks are typically some of the greatest obstacles to

getting good parallel program performance.

A theoretical upper bound on the speed-up of a single program as a result of parallelization is

given by Amdahl's law.

Metrics:

In computer architecture, speedup is a metric for improvement in performance between two

systems processing the same problem. More technically, is it the improvement in speed of

execution of a task executed on two similar architectures with different resources. The notion of

speedup was established by Amdahl's law, which was particularly focused on parallel

processing. However, speedup can be used more generally to show the effect on performance

after any resource enhancement.

Speedup can be defined for two different types of quantities:

Latency of an architecture is the reciprocal of the execution speed of a task:

where

• v is the execution speed of the task;

• T is the execution time of the

• W is the execution workload of the task.

Throughput of an architecture is the execution rate of a task:

where

• ρ is the execution density (e.g., the number of stages in an

pipelined architecture);

• A is the execution capacity (e.g., the number of

Latency is often measured in seconds per unit of execution workload. Throughput is often

measured in units of execution workload per second. Another frequent unit of throughput is

instruction per cycle (IPC). Its reciprocal, the

of latency.

Speedup is dimensionless and defined differently for each type of quantity so that it is a

consistent metric.

Speedup in latency

Speedup in latency is defined by the following formula:

where

• Slatency is the speedup in latency of the architecture 2 with respect to the architecture 1;

speedup can be used more generally to show the effect on performance

Speedup can be defined for two different types of quantities: latency and throughput

of an architecture is the reciprocal of the execution speed of a task:

is the execution speed of the task;

is the execution time of the task;

is the execution workload of the task.

of an architecture is the execution rate of a task:

is the execution density (e.g., the number of stages in an instruction pipeline

is the execution capacity (e.g., the number of processors for a parallel architecture).

Latency is often measured in seconds per unit of execution workload. Throughput is often

measured in units of execution workload per second. Another frequent unit of throughput is

(IPC). Its reciprocal, the cycle per instruction (CPI), is another frequent unit

Speedup is dimensionless and defined differently for each type of quantity so that it is a

is defined by the following formula:

is the speedup in latency of the architecture 2 with respect to the architecture 1;

speedup can be used more generally to show the effect on performance

throughput.

instruction pipeline for a

for a parallel architecture).

Latency is often measured in seconds per unit of execution workload. Throughput is often

measured in units of execution workload per second. Another frequent unit of throughput is the

(CPI), is another frequent unit

Speedup is dimensionless and defined differently for each type of quantity so that it is a

is the speedup in latency of the architecture 2 with respect to the architecture 1;

• L1 is the latency of the architecture 1;

• L2 is the latency of the architecture 2.

Speedup in latency can be predicted from

Speedup in throughput

Speedup in throughput is defined by the following formula:

where

• Sthroughput is the speedup in throughput of the architecture 2 with respect to the architecture

1;

• Q1 is the throughput of the architecture 1;

• Q2 is the throughput of the architecture 2.

Amdahl’s law

In computer architecture, Amdahl's law

in latency of the execution of a task

resources are improved. It is named afte

the AFIPS Spring Joint Computer Conference in 1967.

Amdahl's law can be formulated the following way:

where

• Slatency is the theoretical speedup in latency of the execution of the whole task;

• s is the speedup in latency of the execution of the part of the task that benefits from the

improvement of the resources of the system;

• p is the percentage of the execution time of the whole task concerning the part that benefits

from the improvement of the

Furthermore,

is the latency of the architecture 1;

is the latency of the architecture 2.

Speedup in latency can be predicted from Amdahl's law or Gustafson's law.

is defined by the following formula:

eedup in throughput of the architecture 2 with respect to the architecture

is the throughput of the architecture 1;

is the throughput of the architecture 2.

Amdahl's law (or Amdahl's argument) gives the theoretical

of the execution of a task at fixed workload that can be expected of a system whose

resources are improved. It is named after computer scientist Gene Amdahl, and was presented at

Spring Joint Computer Conference in 1967.

Amdahl's law can be formulated the following way:

is the theoretical speedup in latency of the execution of the whole task;

is the speedup in latency of the execution of the part of the task that benefits from the

improvement of the resources of the system;

is the percentage of the execution time of the whole task concerning the part that benefits

from the improvement of the resources of the system before the improvement

eedup in throughput of the architecture 2 with respect to the architecture

) gives the theoretical speedup

that can be expected of a system whose

, and was presented at

is the speedup in latency of the execution of the part of the task that benefits from the

is the percentage of the execution time of the whole task concerning the part that benefits

before the improvement.

show that the theoretical speedup of the execution of the whole task increases with the

improvement of the resources of the system and that regardless the magnitude of the

improvement, the theoretical speedup is always limited by the part of the task that cannot benefit

from the improvement.

Amdahl's law is often used in parallel computing

multiple processors. For example, if a program needs 20 hours using a single processor core, and

a particular part of the program which takes one hour to execute cannot be parallelized, while the

remaining 19 hours (p = 0.95) of

many processors are devoted to a parallelized execution of this program, the minimum execution

time cannot be less than that critical one hour. Hence, the theoretical speedup is limited to at

most 20 times (1/(1 − p) = 20). For this reason parallel computing is relevant only for a low

number of processors and very parallelizable programs.

Gustafson’s law

In computer architecture, Gustafson's law

speedup in latency of the execution of a task

system whose resources are improved. It is named after computer scientist

his colleague Edwin H. Barsis, and was presented in the article

1988.

Gustafson's law can be formulated the following way:

where

• Slatency is the theoretical speedup in latency of the execution of the whole task;

• s is the speedup in latency of the execution of the part of the task that benefits from the

improvement of the resources of the system;

• p is the percentage of the execution

benefits from the improvement of the resources of the system

Gustafson's law addresses the shortcomings of

of a fixed problem size, that is of an execution workload that does not change with respect to the

improvement of the resources. Gustafson's law instead proposes that programmers tend to set the

size of problems to fully exploit the computing power that becom

improve. Therefore, if faster equipment is available, larger problems can be solved within the

same time.

The impact of Gustafson's law was to shift research goals to select or reformulate problems so

that solving a larger problem in the same amount of time would be possible. In a way the law

redefines efficiency, due to the possibility that limitations imposed by the sequential part of a

program may be countered by increasing the total amount of computation.

show that the theoretical speedup of the execution of the whole task increases with the

improvement of the resources of the system and that regardless the magnitude of the

oretical speedup is always limited by the part of the task that cannot benefit

parallel computing to predict the theoretical speedup when using

multiple processors. For example, if a program needs 20 hours using a single processor core, and

a particular part of the program which takes one hour to execute cannot be parallelized, while the

) of execution time can be parallelized, then regardless of how

many processors are devoted to a parallelized execution of this program, the minimum execution

time cannot be less than that critical one hour. Hence, the theoretical speedup is limited to at

). For this reason parallel computing is relevant only for a low

number of processors and very parallelizable programs.

Gustafson's law (or Gustafson–Barsis's law) gives the theoretical

of the execution of a task at fixed execution time that can be expected of a

system whose resources are improved. It is named after computer scientist John

, and was presented in the article Reevaluating Amdahl's Law

ustafson's law can be formulated the following way:

is the theoretical speedup in latency of the execution of the whole task;

is the speedup in latency of the execution of the part of the task that benefits from the

sources of the system;

is the percentage of the execution workload of the whole task concerning the part that

benefits from the improvement of the resources of the system before the impro

Gustafson's law addresses the shortcomings of Amdahl's law, which is based on the assumption

that is of an execution workload that does not change with respect to the

improvement of the resources. Gustafson's law instead proposes that programmers tend to set the

size of problems to fully exploit the computing power that becomes available as the resources

improve. Therefore, if faster equipment is available, larger problems can be solved within the

The impact of Gustafson's law was to shift research goals to select or reformulate problems so

blem in the same amount of time would be possible. In a way the law

redefines efficiency, due to the possibility that limitations imposed by the sequential part of a

program may be countered by increasing the total amount of computation.

show that the theoretical speedup of the execution of the whole task increases with the

improvement of the resources of the system and that regardless the magnitude of the

oretical speedup is always limited by the part of the task that cannot benefit

retical speedup when using

multiple processors. For example, if a program needs 20 hours using a single processor core, and

a particular part of the program which takes one hour to execute cannot be parallelized, while the

execution time can be parallelized, then regardless of how

many processors are devoted to a parallelized execution of this program, the minimum execution

time cannot be less than that critical one hour. Hence, the theoretical speedup is limited to at

). For this reason parallel computing is relevant only for a low

) gives the theoretical

that can be expected of a

John L. Gustafson and

Reevaluating Amdahl's Law in

is the speedup in latency of the execution of the part of the task that benefits from the

of the whole task concerning the part that

before the improvement.

, which is based on the assumption

that is of an execution workload that does not change with respect to the

improvement of the resources. Gustafson's law instead proposes that programmers tend to set the

es available as the resources

improve. Therefore, if faster equipment is available, larger problems can be solved within the

The impact of Gustafson's law was to shift research goals to select or reformulate problems so

blem in the same amount of time would be possible. In a way the law

redefines efficiency, due to the possibility that limitations imposed by the sequential part of a

Scalability :

Scalability is the capability of a system, network, or process to handle a growing amount of

work, or its potential to be enlarged in order to accommodate that growth. For example, it can

refer to the capability of a system to increase its total output under an increased load when

resources (typically hardware) are added. An analogous meaning is implied when the word is

used in an economic context, where scalability of a company implies that the underlying

business model offers the potential for economic growth within the company.

Scalability, as a property of systems, is generally difficult to define and in any particular case it

is necessary to define the specific requirements for scalability on those dimensions that are

deemed important. It is a highly significant issue in electronics systems, databases, routers, and

networking. A system whose performance improves after adding hardware, proportionally to the

capacity added, is said to be a scalable system.

An algorithm, design, networking protocol, program, or other system is said to scale if it is

suitably efficient and practical when applied to large situations (e.g. a large input data set, a large

number of outputs or users, or a large number of participating nodes in the case of a distributed

system). If the design or system fails when a quantity increases, it does not scale. In practice, if

there are a large number of things (n) that affect scaling, then resource requirements (for

example, algorithmic time-complexity) must grow less than n
2
 as n increases. An example is a

search engine, which scales not only for the number of users, but also for the number of objects it

indexes. Scalability refers to the ability of a site to increase in size as demand warrants.

The concept of scalability is desirable in technology as well as business settings. The base

concept is consistent – the ability for a business or technology to accept increased volume

without impacting the contribution margin (= revenue − variable costs). For example, a given

piece of equipment may have a capacity for 1–1000 users, while beyond 1000 users additional

equipment is needed or performance will decline (variable costs will increase and reduce

contribution margin).

Scalable Computing Towards Massive Parallelism

� Levels of Parallelism

� Bit-level parallelism (BLP)

� instruction-level parallelism (ILP)

� Data-level parallelism (DLP)

� task-level parallelism (TLP)

� job-level parallelism (JLP)

� Key issues of the age of Internet computing

� Efficiency measured in building blocks and execution model to exploit massive

parallelism as in HPC. This may include data access and storage model for HTC

and energy efficiency.

� Dependability in terms of reliability and self-management from the chip to system

and application levels. The purpose is to provide high-throughput service with

QoS assurance even under failure conditions.

� Adaptation in programming model which can support billions of job requests over

massive datasets, virtualized cloud resources, and flexible application service

model.

Parallel Architecture

A parallel computer is a collection of processing elements that cooperate to solve large problems

fast

Some broad issues:

• Resource Allocation:

– how large a collection?

– how powerful are the elements?

– how much memory?

• Data access, Communication and Synchronization

– how do the elements cooperate and communicate?

– how are data transmitted between processors?

– what are the abstractions and primitives for cooperation?

• Performance and Scalability

– how does it all translate into performance?

- how does it scale?

GPU and Grid

GPU-accelerated computing is the use of a graphics processing unit (GPU) together with a CPU

to accelerate scientific, analytics, engineering, consumer, and enterprise applications. Pioneered

in 2007 by NVIDIA, GPU accelerators now power energy-efficient datacenters in government

labs, universities, enterprises, and small-and-medium businesses around the world. GPUs are

accelerating applications in platforms ranging from cars, to mobile phones and tablets, to drones

and robots.

HOW GPUS ACCELERATE APPLICATIONS

GPU-accelerated computing offers unprecedented application performance by offloading

compute-intensive portions of the application to the GPU, while the remainder of the code still

runs on the CPU. From a user's perspective, applications simply run significantly faster.

CPU VERSUS GPU

A simple way to understand the difference between a CPU and GPU is to compare how they

process tasks. A CPU consists of a few cores optimized for sequential serial processing while a

GPU has a massively parallel architecture consisting of thousands of smaller, more efficient

cores designed for handling multiple tasks simultaneously.

GPUs have thousands of cores to process parallel workloads efficiently

