SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL
 COURSE NAME: ENGINEERING MATHEMATICS IV
 COURSE CODE: SMT1204
 UNIT I

INTRODUCTION

The Fourier series is named in honour of Jean-Baptiste Joseph Fourier (1768-1830), who made important contributions to the study of trigonometric series, after preliminary investigations by Leonhard Euler, Jean le Rond d'Alembert, and Daniel Bernoulli.Fourier introduced the series for the purpose of solving the heat equation in a metal plate. Although the original motivation was to solve the heat equation, it later became obvious that the same techniques could be applied to a wide array of mathematical and physical problems, and especially those involving linear differential equations with constant coefficients, for which the eigen solutions are sinusoids.Fourier series has many such applications in electrical engineering, vibration analysis, acoustics, optics, signal processing, image processing, quantum mechanics, econometrics.

PRELIMINARIES

Definitions :

A function $y=f(x)$ is said to be even, if $f(-x)=f(x)$. The graph of the even function is always symmetrical about the y-axis.

A function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is said to be odd, if $\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})$. The graph of the odd function is always symmetrical about the origin.

For example, the function $\mathrm{f}(\mathrm{x})=x$ in $[-1,1]$ is even as $\mathrm{f}(-\mathrm{x})=-x=x=\mathrm{f}(\mathrm{x})$ and the function $f(x)=x$ in $[-1,1]$ is odd as $f(-x)=-x=-f(x)$. The graphs of these functions are shown below.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Graph of $\mathrm{f}(\mathrm{x})=x$

Graph of $f(x)=x$

Note that the graph of $\mathrm{f}(\mathrm{x})=x$ is symmetrical about the y -axis and the graph of $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is symmetrical about the origin.

1. If $f(x)$ is even and $g(x)$ is odd, then

- $h(x)=f(x) \cdot g(x)$ is odd
- $h(x)=f(x)$. $f(x)$ is even
- $h(x)=g(x) \cdot g(x)$ is even

For example,

1. $h(x)=x^{2} \cos x$ is even, since both x^{2} and $\cos x$ are even functions
2. $h(x)=x \sin x$ is even, since x and $\sin x$ are odd functions
3. $h(x)=x^{2} \sin x$ is odd, since x^{2} is even and sin x is odd.
4. If $f(x)$ is even, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

3. If $f(x)$ is odd, then

$$
\int_{-a}^{a} f(x) d x=0
$$

PERIODIC FUNCTIONS

A periodic function has a basic shape which is repeated over and over again. The fundamental range is the time (or sometimes distance) over which the basic shape is defined.
The length of the fundamental range is called the period.
A general periodic function $f(x)$ of period T satisfies the condition $f(x+T)=f(x)$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Here $f(x)$ is a real-valued function and T is a positive real number.
As a consequence, it follows that
$\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{T})=\mathrm{f}(\mathrm{x}+2 \mathrm{~T})=\mathrm{f}(\mathrm{x}+3 \mathrm{~T})=>. .=\mathrm{f}(\mathrm{x}+\mathrm{nT})$
Thus, $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{nT}), \mathrm{n}=1,2,3,>$.
The function $f(x)=\sin x$ is periodic of period 2π since
$\operatorname{Sin}(\mathrm{x}+2 \mathrm{n} \pi)=\sin \mathrm{x}, \mathrm{n}=1,2,3, \ldots$
The graph of the function is shown below:

FOURIER SERIES

A Fourier series of a periodic function consists of a sum of sine and cosine terms. Sines and cosines are the most fundamental periodic functions. The Fourier series is named after the French Mathematician and Physicist Jacques Fourier (1768-1830). Fourier series has its application in problems pertaining to Heat conduction, acoustics, etc. The subject matter may be divided into the following sub topics.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

FORMULA FOR FOURIER SERIES

Dirichlet conditions

Dirichlet conditions are sufficient conditions for a real-valued, periodic function $f(x)$ to be equal to the sum of its Fourier series at each point where f is continuous. Moreover, the behaviour of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity). These conditions are named after Peter Gustav Lejeune Dirichlet.
The conditions are:
$\bullet f(x)$ must be absolutely integrable over a period.

- $f(x)$ must have a finite number of extrema in any given bounded interval, i.e. there must be a finite number of maxima and minima in the interval.
- $f(x)$ must have a finite number of discontinuities in any given bounded interval, however the discontinuity cannot be infinite.

Let

$$
\begin{align*}
a_{0} & =\frac{1}{l} \int_{a}^{a+2 l} f(x) d x \tag{1}\\
a_{n} & =\frac{1}{l} \int_{a}^{a+2 l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x, \quad n=1,2,3, \ldots \ldots \tag{2}\\
b_{n} & =\frac{1}{l} \int_{a}^{a+2 l} f(x) \sin \left(\frac{n \pi}{l}\right) x d x, \quad n=1,2,3, \ldots \ldots \tag{3}
\end{align*}
$$

Then, the infinite series

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{l}\right) x+b_{n} \sin \left(\frac{n \pi}{l}\right) x \tag{4}
\end{equation*}
$$

is called the Fourier series of $f(x)$ in the interval $(a, a+2 l)$. Also, the real numbers $a_{0}, a_{1}, a_{2}, \ldots$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
.a_{n}, and $b_{1}, b_{2}, \ldots, b_{n}$ are called the Fourier coefficients of $f(x)$. The formulae (1), (2) and (3) are called Euler's formulae. It can be proved that the sum of the series (4) is $f(x)$ if $f(x)$ is continuous at x . Thus we have

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{l}\right) x+b_{n} \sin \left(\frac{n \pi}{l}\right) x \ldots \ldots \tag{5}
\end{equation*}
$$

Suppose $f(x)$ is discontinuous at x, then the sum of the series (4) would be

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]
$$

where $f\left(x^{+}\right)$and $f\left(x^{-}\right)$are the values of $f(x)$ immediately to the right and to the left of $f(x)$ respectively.

Some useful Results

1. The following rule called Bernoulli's generalized rule of integration by parts is useful in evaluating the Fourier coefficients.

$$
\begin{aligned}
& \int u v d x=u v_{1}-u^{\prime} v_{2}+u^{\prime \prime} v_{3}+\ldots \ldots \\
& v_{1}=\int v d x, v_{2}=\int v_{1} d x, \ldots \ldots
\end{aligned}
$$

$$
\text { Here } u^{\prime}, u^{\prime \prime},>. . \text { are the successive derivatives of } u \text { and }
$$

We illustrate the rule, through the following examples :

$$
\begin{aligned}
& \int x^{2} \sin n x d x=x^{2}\left(\frac{-\cos n x}{n}\right)-2 x\left(\frac{-\sin n x}{n^{2}}\right)+2\left(\frac{\cos n x}{n^{3}}\right) \\
& \int x^{3} e^{2 x} d x=x^{3}\left(\frac{e^{2 x}}{2}\right)-3 x^{2}\left(\frac{e^{2 x}}{4}\right)+6 x\left(\frac{e^{2 x}}{8}\right)-6\left(\frac{e^{2 x}}{16}\right)
\end{aligned}
$$

2. The following integrals are also useful :

$$
\begin{aligned}
& \int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cos b x+b \sin b x] \\
& \int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \sin b x-b \cos b x]
\end{aligned}
$$

3. If ' n ' is integer, then $\sin n \pi=0, \cos n \pi=(-1)^{n}, \sin 2 n \pi=0, \cos 2 n \pi=1$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Examples for the interval $(0,2 \pi)$ and $(-\pi, \pi)$

1. Expand the following in a Fourier series

$$
f(x)=\left\{\begin{array}{cc}
0 & (-\pi<x<0) \\
\pi-x & (0 \leq x<+\pi)
\end{array}\right.
$$

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 d x+\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) d x
$$

$$
=0+\frac{1}{\pi}\left[\frac{(\pi-x)^{2}}{-2}\right]_{0}^{\pi}=\frac{\pi}{2}
$$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=0+\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \cos n x d x \\
& =\frac{1}{\pi}\left[\frac{n(\pi-x) \sin n x-\cos n x}{n^{2}}\right]_{0}^{\pi}=\frac{1-(-1)^{n}}{n^{2} \pi}
\end{aligned}
$$

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0+\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \sin n x d x
$$

$$
=\frac{1}{\pi}\left[\frac{n(\pi-x) \cos n x+\sin n x}{-n^{2}}\right]_{0}^{\pi}=\frac{1}{n}
$$

Therefore the Fourier series for $f(x)$ is

$$
f(x)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left(\frac{1-(-1)^{n}}{n^{2} \pi} \cos n x+\frac{1}{n} \sin n x\right) \quad(-\pi<x<+\pi)
$$

$D \quad I$
$\pi-x \quad n x$

2. Obtain the Fourier expansion of $f(x)=1 / 2(\pi-x)$ in $-\pi<x<\pi$.

We have

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) d x \\
& =\frac{1}{2 \pi}\left[\pi x-\frac{x^{2}}{2}\right]_{-\pi}^{\pi}=\pi \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) \cos n x d x
\end{aligned}
$$

Here we use integration by parts, so that

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi}\left[(\pi-x) \frac{\sin n x}{n}-(-1)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{1}{2 \pi}[0]=0 \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) \sin n x d x \\
& =\frac{1}{2 \pi}\left[(\pi-x) \frac{-\cos n x}{n}-(-1)\left(\frac{-\sin n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{(-1)^{n}}{n}
\end{aligned}
$$

Using the values of a 0 , an and bn in the Fourier expansion

We get

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x \\
& f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x
\end{aligned}
$$

This is the required Fourier expansion of the given function.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
3. Obtain the Fourier expansion of $f(x)=x^{2}$ in $(-\pi, \pi)$. Deduce that

$$
\frac{\pi^{2}}{6}=\frac{1}{1^{1}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\infty
$$

Solution

The function $\mathrm{f}(\mathrm{x})$ is even, Hence

$$
\begin{aligned}
& \mathbf{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi} \\
& a_{0}=\frac{2 \pi^{2}}{3} \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x, \text { since } \mathrm{f}(\mathrm{x}) \cos n \mathrm{x} \text { is even } \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x
\end{aligned}
$$

Integrating by parts, we get

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi}\left[x^{2}\left(\frac{\sin n x}{n}\right)-2 x\left(\frac{-\cos n x}{n^{2}}\right)+2\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{4(-1)^{n}}{n^{2}}
\end{aligned}
$$

Also, $\quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0 \quad$ since $\mathrm{f}(\mathrm{x}) \cdot \sin n \mathrm{x}$ is odd.
Thus

$$
\begin{aligned}
& f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n x}{n^{2}} \\
& \pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& \sum_{1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
\end{aligned}
$$

$$
\text { Hence, } \quad \frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots . .
$$

4. Obtain the Fourier expansion of $f(x)=\left\{\begin{array}{cc}x & 0 \leq x \leq \pi \\ 2 \pi-x & \pi \leq x \leq 2 \pi\end{array}\right.$

Deduce that $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots$

Solution
The graph of $f(x)$ is shown below.

Here OA represents the line $f(x)=x, A B$ represents the line $f(x)=(2 \pi-x)$ and $A C$ represents the line $x=\pi$. Note that the graph is symmetrical about the line AC, which in turn is parallel to y -

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\mathrm{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x
$$

axis. Hence the function $f(x)$ is an even function. Here,

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi \\
& \begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
&=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
&=\frac{2}{\pi}\left[x\left(\frac{\sin n x}{n}\right)-1\left(\frac{-\cos n x}{n^{2}}\right)\right]_{0}^{\pi} \\
&=\frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right]
\end{aligned}
\end{aligned}
$$

Also,

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0, \text { since } \mathrm{f}(\mathrm{x}) \operatorname{sinn} \mathrm{x} \text { is odd }
$$

Thus the Fourier series of $f(x)$ is

$$
f(x)=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[(-1)^{n}-1\right] \cos n x
$$

For $\mathrm{x}=\pi$, we get

$$
\begin{aligned}
& f(\pi)=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[(-1)^{n}-1\right] \cos n \pi \\
& \pi=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{-2 \cos (2 n-1) \pi}{(2 n-1)^{2}}
\end{aligned}
$$

or

$$
\text { Thus, } \frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

or

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
5. Find the Fourier series expansion for the standard square wave,

$$
f(x)=\left\{\begin{array}{cc}
-1 & -1<x<0 \\
1 & 0 \leq x<1
\end{array}\right.
$$

Solution $l=1$.
The function is odd $(f(-x)=-f(x)$ for all $x)$.
Therefore $a_{n}=0$ for all n. We will have a Fourier sine series only.

$$
\begin{aligned}
b_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \sin n \pi x d x=\int_{-1}^{0}-\sin n \pi x d x+\int_{0}^{1} \sin n \pi x d x \\
& =\left[\frac{\cos n \pi x}{n \pi}\right]_{-1}^{0}+\left[\frac{-\cos n \pi x}{n \pi}\right]_{0}^{1}=\frac{2\left(1-(-1)^{n}\right)}{n \pi}
\end{aligned}
$$

HALF-RANGE FOURIER SERIES

The Fourier expansion of the periodic function $f(x)$ of period $2 l$ may contain both sine and cosine terms. Many a time it is required to obtain the Fourier expansion of $f(x)$ in the interval $(0, l)$ which is regarded as half interval. The definition can be extended to the other half in such a manner that the function becomes even or odd. This will result in cosine series or sine series only.

Half Range Sine series

Suppose $f(x)$ is given in the interval $(0, l)$. Then Half range sine series of $f(x)$ over $(0, l)$ is given by
where

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right)
$$

$$
b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x
$$

The half-range sine series of $f(x)$ over $(0, \pi)$ given by

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

where $\quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Half Range cosine series :

The half-range cosine series of $f(x)$ over $(0,1)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right)
$$

where,

$$
\begin{aligned}
& a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x \\
& a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x
\end{aligned}
$$

The half-range cosine series over $(0, \pi)$ I given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

where
$a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \quad \mathrm{n}=1,2,3, \ldots \ldots$
6. The Fourier series of $f(x)=|x|$ in $[-1,1]$.

Solution

$$
\begin{aligned}
a_{n} & =\frac{2}{1} \int_{0}^{1} x \cos \left(\frac{n \pi x}{1}\right) d x, \quad(n=1,2,3, \ldots) \\
\Rightarrow & a_{n}=2\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{(n \pi)^{2}} \cos (n \pi x)\right]_{0}^{1} \\
& =\frac{2\left((-1)^{n}-1\right)}{(n \pi)^{2}}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
and $\quad a_{0}=\frac{2}{1} \int_{0}^{1} x d x=\left[x^{2}\right]_{0}^{1}=1$

Evaluating the first few terms,

$$
\begin{aligned}
& a_{0}=1, \quad a_{1}=\frac{-4}{\pi^{2}}, \quad a_{2}=0, \quad a_{3}=\frac{-4}{9 \pi^{2}}, \quad a_{4}=0, \quad a_{5}=\frac{-4}{25 \pi^{2}}, \quad a_{6}=0, \ldots \\
& \text { or } \quad a_{n}=\left\{\begin{array}{cl}
1 & (n=0) \\
\frac{-4}{(n \pi)^{2}} & (n=1,3,5, \ldots) \\
0 & (n=2,4,6, \ldots)
\end{array}\right.
\end{aligned}
$$

Therefore the Fourier cosine series for $f(x)=x$ on $[0,1]$ (which is also the Fourier series for f $(x)=|x|$ on $[-1,1])$ is

$$
f(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) \pi x)}{(2 k-1)^{2}}
$$

or

$$
f(x)=\frac{1}{2}-\frac{4}{\pi^{2}}\left(\cos \pi x+\frac{\cos 3 \pi x}{9}+\frac{\cos 5 \pi x}{25}+\frac{\cos 7 \pi x}{49}+\ldots\right)
$$

7. Expand $f(x)=x(\pi-x)$ as half-range sine series over the interval $(0, \pi)$.

Solution
We have

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) \sin n x d x
\end{aligned}
$$

Integrating by parts, we get

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi}\left[\left(\pi x-x^{2}\right)\left(\frac{-\cos n x}{n}\right)-(\pi-2 x)\left(\frac{-\sin n x}{n^{2}}\right)+(-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{4}{n^{3} \pi}\left[1-(-1)^{n}\right]
\end{aligned}
$$

The sine series of $f(x)$ is

$$
f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[1-(-1)^{n}\right] \sin n x
$$

8. Expand $f(x)=\cos x, 0<x<\pi$ in a Fourier sine series.

Solution

Fourier sine series is $f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$

$$
\left.\left.\begin{array}{rl}
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x & =\frac{2}{\pi} \int_{0}^{\pi} \cos x \sin n x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} 2 \sin n x \cos x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}[\sin (n+1) x+\sin (n-1) x] d x, \quad n \neq 1 \\
& =\frac{1}{\pi}\left[\left(\frac{-\cos (n+1) x}{n+1}\right)+\left(\frac{-\cos (n-1) x}{n-1}\right)\right]_{0}^{\pi} \\
& =-\frac{1}{\pi}\left[\left\{\frac{(-1)^{n+1}}{n+1}+\frac{(-1)^{n-1}}{n-1}\right\}-\left\{\frac{1}{n+1}+\frac{1}{n-1}\right\}\right] 2 \sin A \operatorname{CosB}=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B}) \\
& =-\frac{1}{\pi}\left[(-1)^{n}\left\{\frac{-1}{n+1}+\frac{-1}{n-1}\right\}-\left\{\frac{1}{n+1}+\frac{1}{n-1}\right\}\right] \\
& =\frac{1}{\pi}\left[(-1)^{n}\left\{\frac{1}{n+1}+\frac{1}{n-1}\right\}+\left\{\frac{1}{n+1}+\frac{1}{n-1}\right\}\right] \\
& =\frac{1}{\pi}\left[(-1)^{n}\left\{\frac{2 n}{n^{2}-1}\right\}+\left\{\frac{2 n}{n^{2}-1}\right\}\right] \\
b_{n} & =\frac{2 n}{\pi\left(n^{2}-1\right)}\left[(-1)^{n}+1\right], n \neq 1
\end{array} \quad \cos (n+1) \pi=(-1)^{n+1}\right) \quad \cos (n-1) \pi=(-1)^{n-1}\right)
$$

When $\mathrm{n}=1$, we have

SATHYABAMA

 INSTITUTE OF SCIENCE AND TECHNOLOGY

 INSTITUTE OF SCIENCE AND TECHNOLOGY}

DEPARTMENT OF MATHEMATICS

COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
b_{1}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin x d x & =\frac{2}{\pi} \int_{0}^{\pi} \cos x \sin x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} \sin 2 x d x \\
& =\frac{1}{\pi}\left[\frac{-\cos 2 x}{2}\right]_{0}^{\pi}=-\frac{1}{2 \pi}(1-1)=0
\end{aligned}
$$

$$
\begin{aligned}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x & =b_{1} \sin x+\sum_{n=2}^{\infty} b_{n} \sin n x \\
& =0+\sum_{n=2}^{\infty} \frac{2 n\left[(-1)^{n}+1\right]}{\pi\left(n^{2}-1\right)} \sin n x
\end{aligned}
$$

Interv al	Fourier series of $f(x)=$	a_{0}	a_{n}	b_{n}
$(0,2 /)$	$\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{l}\right) x+b_{n} \sin \left(\frac{n \pi}{l}\right) x$	$a_{0}=\frac{1}{l} \int_{0}^{2 l} f(x) d x$	$a_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x, b_{n}$	$b_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \sin \left(\frac{n \pi}{l}\right) x d x$
$(-1, I)$		$a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x$	$\left.a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x \right\rvert\, b_{n}$	$b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \left(\frac{n \pi}{l}\right) x d x$
$(0,2 \pi)$	$\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$	$a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x$	$a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x$	$b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x$
$(-\pi, \pi)$		$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x$	$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$	$b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x$
	Half Range sine series			
(0, /)	$f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right)$	-	-	$b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x$
$(0, \pi)$	$f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n x)$	-	-	$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x$
	Half Range cosine series			
(0,l)	$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right)$	$a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x$	$a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x$	\square
$(0, \pi)$	$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)$	$a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$	$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x$	

Root Mean Square Value(RMS value)

The RMS value of a function $f(x)$ in (a, b) is defined by

$$
\begin{aligned}
\bar{y} & =\sqrt{\frac{1}{b-a} \int_{a}^{b}[f(x)]^{2} d x} \\
\bar{y}^{2} & =\frac{1}{b-a} \int_{a}^{b}[f(x)]^{2} d x
\end{aligned}
$$

Parseval's Identity For Fourier Series

The Parseval's identity for Fourier series in the interval ($\mathrm{c}, \mathrm{c}+2 l$) is

$$
\frac{1}{l} \int_{c}^{c+2 l}[f(x)]^{2} d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

The Parseval's identity for Fourier series in the interval $(c, c+2 \pi)$ is

$$
\frac{1}{\pi} \int_{c}^{c+2 \pi}[f(x)]^{2} d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

9. Expand $f(x)=x-x^{2}$ as a Fourier series in $-l<x<l$ and using this series find the root square mean value of $f(x)$ in the interval.

Solution
Fourier series is

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \\
& \begin{aligned}
a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x & =\frac{1}{l} \int_{-l}^{l}\left(x-x^{2}\right) d x \\
& =\frac{1}{l}\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-l}^{l} \\
& =\frac{1}{l}\left[\left\{\frac{l^{2}}{2}-\frac{l^{3}}{3}\right\}-\left\{\frac{l^{2}}{2}+\frac{l^{3}}{3}\right\}\right] \\
& =\frac{1}{l}\left(\frac{-2 l^{3}}{3}\right)=\frac{-2 l^{2}}{3}
\end{aligned}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x=\frac{1}{l} \int_{-l}^{l}\left(x-x^{2}\right) \cos \frac{n \pi x}{l} d x \\
& =\frac{1}{l}\left[\left(x-x^{2}\right)\left(\frac{\sin \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right)-(1-2 x)\left(\frac{-\cos \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)+(-2)\left(\frac{-\sin \frac{n \pi x}{l}}{\frac{n^{3} \pi^{3}}{l^{3}}}\right)\right]_{-l}^{l} \\
& =\frac{1}{l}\left[\left\{0+(1-2 l)\left(\frac{(-1)^{n} l^{2}}{n^{2} \pi^{2}}\right)+0\right\}-\left\{0+(1+2 l)\left(\frac{(-1)^{n} l^{2}}{n^{2} \pi^{2}}\right)+0\right\}\right] \\
& =\frac{(-1)^{n} l^{2}}{l n^{2} \pi^{2}}[1-2 l-1-2 l] \\
& =\frac{(-1)^{n} l}{n^{2} \pi^{2}}[-4 l]=\frac{4 l^{2}(-1)^{n+1}}{n^{2} \pi^{2}} \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x=\frac{1}{l} \int_{-l}^{l}\left(x-x^{2}\right) \sin \frac{n \pi x}{l} d x \\
& =\frac{1}{l}\left[\left(x-x^{2}\right)\left(\frac{-\cos \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right)-(1-2 x)\left(\frac{-\sin \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)+(-2)\left(\frac{\cos \frac{n \pi x}{l}}{\frac{n^{3} \pi^{3}}{l^{3}}}\right)\right]_{-l}^{l}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& =\frac{1}{l}\left[\left\{-\left(l-l^{2}\right)\left(\frac{(-1)^{n} l}{n \pi}\right)+0-\frac{2(-1)^{n} l^{3}}{n^{3} \pi^{3}}\right\}-\left\{-\left(-l-l^{2}\right)\left(\frac{(-1)^{n} l}{n \pi}\right)+0-\frac{2(-1)^{n} l^{3}}{n^{3} \pi^{3}}\right\}\right] \\
& =\frac{-(-1)^{n} l}{l n \pi}\left[l-l^{2}+l+l^{2}\right] \\
& =\frac{(-1)^{n+1}}{n \pi}[2 l]=\frac{2 l(-1)^{n+1}}{n \pi} \\
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \\
& =\frac{1}{2}\left(\frac{-2 l^{2}}{3}\right)+\sum_{n=1}^{\infty}\left(\frac{4 l^{2}(-1)^{n+1}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{l}+\frac{2 l(-1)^{n+1}}{n \pi} \sin \frac{n \pi x}{l}\right)
\end{aligned}
$$

(i.e.) $f(x)=\frac{-l^{2}}{3}+\frac{4 l^{2}}{\pi^{2}}\left[\frac{1}{1^{2}} \cos \frac{\pi x}{l}-\frac{1}{2^{2}} \cos \frac{2 \pi x}{l}+\frac{1}{3^{2}} \cos \frac{3 \pi x}{l}-\frac{1}{4^{2}} \cos \frac{4 \pi x}{l}+\right.$

$$
+\frac{2 l}{\pi}\left[\frac{1}{1} \sin \frac{\pi x}{l}-\frac{1}{2} \sin \frac{2 \pi x}{l}+\frac{1}{3} \sin \frac{3 \pi x}{l}-\frac{1}{4} \sin \frac{4 \pi x}{l}+\ldots \ldots \ldots \ldots \ldots \ldots . .\right]
$$

RMS value of $f(x)$ in $(-I, I)$ is

$$
\begin{aligned}
\bar{y}^{2} & =\frac{a_{0}{ }^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \\
& =\frac{1}{4}\left(\frac{-2 l^{2}}{3}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left[\frac{16 l^{4}(-1)^{2 n+2}}{n^{4} \pi^{4}}+\frac{4 l^{2}(-1)^{2 n+2}}{n^{2} \pi^{2}}\right] \\
\text { (i.e.) } \bar{y}^{2} & =\frac{l^{4}}{9}+\sum_{n=1}^{\infty}\left[\frac{8 l^{4}}{n^{4} \pi^{4}}+\frac{2 l^{2}}{n^{2} \pi^{2}}\right]
\end{aligned}
$$

10. Find the half range cosine series for $f(x)=x(\pi-x)$ in $0<x<\pi$.

Deduce that $\frac{\pi^{2}}{90}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots$
Solution

Half range fourier cosine series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) d x \\
& =\frac{2}{\pi}\left[\frac{\pi x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[\left(\frac{\pi^{3}}{2}-\frac{\pi^{3}}{3}\right)-(0-0)\right] \\
& =\frac{2}{\pi}\left[\frac{\pi^{3}}{6}\right] \\
& =\frac{\pi^{2}}{3} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \cos n x d x \\
& =\frac{2}{\pi}\left[\left(\pi x-x^{2}\right)\left(\frac{\sin n x}{n}\right)-(\pi-2 x)\left(\frac{-\cos n x}{n^{2}}\right)+(-2)\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[\left\{0+\frac{(-\pi)(-1)^{n}}{n^{2}}+0\right\}-\left\{0+\frac{(\pi)(1)}{n^{2}}+0\right\}\right] \\
& =\frac{2 \pi}{\pi n^{2}}\left[-(-1)^{n}-1\right] \\
& =-\frac{2}{n^{2}}\left[(-1)^{n}+1\right] \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \\
& =\frac{1}{2}\left(\frac{\pi^{2}}{3}\right)+\sum_{n=1}^{\infty}-\frac{2}{n^{2}}\left[(-1)^{n}+1\right] \cos n x \\
& =\frac{\pi^{2}}{6}-2\left[0+\frac{2 \cos 2 x}{2^{2}}+0+\frac{2 \cos 4 x}{4^{2}}+0+\frac{2 \cos 6 x}{6^{2}}+0+\ldots \ldots \ldots \ldots \ldots . .\right] \\
& =\frac{\pi^{2}}{6}-4\left[\frac{\cos 2 x}{2^{2}}+\frac{\cos 4 x}{4^{2}}+\frac{\cos 6 x}{6^{2}}+\ldots \ldots \ldots \ldots \ldots . .\right]
\end{aligned}
$$

Parseval's identity for half range fourier cosine series is

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{\pi}[f(x)]^{2} d x=\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty} a_{n}{ }^{2} \\
& \frac{2}{\pi} \int_{0}^{\pi}\left[\pi x-x^{2}\right]^{2} d x=\frac{1}{2}\left(\frac{\pi^{2}}{3}\right)^{2}+\sum_{n=1}^{\infty} \frac{4}{n^{4}}\left[(-1)^{n}+1\right]^{2} \\
& \frac{2}{\pi} \int_{0}^{\pi}\left(\pi^{2} x^{2}+x^{4}-2 \pi x^{3}\right) d x=\frac{\pi^{4}}{18}+4\left[0+\frac{4}{2^{4}}+0+\frac{4}{4^{4}}+0+\frac{4}{6^{4}}+0+\ldots \ldots \ldots \ldots \ldots\right] \\
& \frac{2}{\pi}\left[\frac{\pi^{2} x^{3}}{3}+\frac{x^{5}}{5}-\frac{2 \pi x^{4}}{4}\right]_{0}^{\pi}=\frac{\pi^{4}}{18}+\frac{16}{2^{4}}\left[\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots \ldots \ldots . .\right] \\
& \frac{2}{\pi}\left[\left(\frac{\pi^{5}}{3}+\frac{\pi^{5}}{5}-\frac{\pi^{5}}{2}\right)-0\right]=\frac{\pi^{4}}{18}+\left[\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots \ldots \ldots . .\right] \\
& \frac{2}{\pi}\left[\frac{\pi^{5}}{30}\right]-\frac{\pi^{4}}{18}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+ \\
& \frac{\pi^{4}}{15}-\frac{\pi^{4}}{18}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+ \\
& \text { (i.e.) } \frac{\pi^{4}}{90}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+
\end{aligned}
$$

11. Find the half range cosine series for the function $f(x)=x$ in $0<\mathrm{x}<l$.

Hence deduce the value of the series $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}$
Solution
Half range Fourier cosine series is

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l} \\
& a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x=\frac{2}{l} \int_{0}^{l} x d x=\frac{2}{l}\left[\frac{x^{2}}{2}\right]_{0}^{l}=\frac{2}{l}\left[\frac{l^{2}}{2}-0\right]=l
\end{aligned}
$$

$$
\begin{aligned}
a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} d x & =\frac{2}{l} \int_{0}^{l} x \cos \frac{n \pi x}{l} d x \\
& =\frac{2}{l}\left[(x)\left(\frac{\sin \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right)-(1)\left(\frac{-\cos \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)\right]_{0}^{l} \\
& =\frac{2}{l}\left[\left\{0+\frac{(-1)^{n} l^{2}}{n^{2} \pi^{2}}\right\}-\left\{0+\frac{l^{2}}{n^{2} \pi^{2}}\right\}\right] \\
& =\frac{2 l}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l} \\
& =\frac{l}{2}+\sum_{n=1}^{\infty} \frac{2 l\left[(-1)^{n}-1\right]}{n^{2} \pi^{2}} \cos \frac{n \pi x}{l} \\
& =\frac{l}{2}+\frac{2 l}{\pi^{2}}\left[-\frac{2}{1^{2}} \cos \frac{\pi x}{l}+0-\frac{2}{3^{2}} \cos \frac{3 \pi x}{l}+0-\frac{2}{5^{2}} \cos \frac{5 \pi x}{l}+0-.\right.
\end{aligned}
$$

(i.e.) $f(x)=\frac{l}{2}-\frac{4 l}{\pi^{2}}\left[\frac{1}{1^{2}} \cos \frac{\pi x}{l}+\frac{1}{3^{2}} \cos \frac{3 \pi x}{l}+\frac{1}{5^{2}} \cos \frac{5 \pi x}{l}+\ldots \ldots \ldots \ldots \ldots\right]$

Using Parseval's identity for half range Fourier cosine series we have

$$
\begin{aligned}
& \frac{2}{l} \int_{0}^{l}[f(x)]^{2} d x=\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty} a_{n}{ }^{2} \\
& \frac{2}{l} \int_{0}^{l}(x)^{2} d x=\frac{l^{2}}{2}+\sum_{n=1}^{\infty}\left[\frac{4 l^{2}\left\{(-1)^{n}-1\right\}^{2}}{n^{4} \pi^{4}}\right] \\
& \frac{2}{l}\left[\frac{x^{3}}{3}\right]_{0}^{l}=\frac{l^{2}}{2}+\frac{4 l^{2}}{\pi^{4}}\left[\frac{4}{1^{4}}+0+\frac{4}{3^{4}}+0+\frac{4}{5^{4}}+0+\ldots \ldots \ldots \ldots \ldots . . .\right] \\
& \frac{2}{l}\left[\frac{l^{3}}{3}-0\right]=\frac{l^{2}}{2}+\frac{16 l^{2}}{\pi^{4}}\left[\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \ldots \ldots \ldots \ldots . . .\right] \\
& \frac{2 l^{2}}{3}-\frac{l^{2}}{2}=\frac{16 l^{2}}{\pi^{4}}\left[\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\right. \\
& \frac{l^{2}}{6}=\frac{16 l^{2}}{\pi^{4}}\left[\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\right. \\
& \frac{\pi^{4}}{96}=\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+ \\
& \text { (i.e.) } \frac{\pi^{4}}{96}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

COMPLEX FORM OF FOURIER SERIES

Complex form of Fourier Series of $f(x)$ is given by

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi x / l}
$$

Where

$$
c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i n \pi x / L} d x
$$

12. Find the complex form of the Fourier series of $f(x)=e^{-x}$ in $-1<\mathrm{x}<1$.

Solution
The complex form of Fourier series of $f(x)$ is given by

$$
\begin{aligned}
& f(x)=\sum_{n=-\infty}^{\infty} C_{n} e^{i n \pi x} \\
& C_{n}=\frac{1}{2(1)} \int_{-1}^{1} f(x) e^{-i n \pi x} d x \quad \begin{array}{r}
2 l=2 \\
l=1
\end{array} \\
&=\frac{1}{2} \int_{-1}^{1} e^{-x} e^{-i n \pi x} d x \\
&=\frac{1}{2} \int_{-1}^{1} e^{-(1+i n \pi) x} d x \\
&=\frac{1}{2}\left[\frac{e^{-(1+i n \pi) x}}{-(1+i n \pi)}\right]_{-1}^{1} \\
&=\frac{-1}{2(1+i n \pi)}\left[e^{-(1+i n \pi)}-e^{(1+i n \pi)}\right] \\
&=\frac{-(1-i n \pi)}{2\left(1+n^{2} \pi^{2}\right)}\left[e^{-1} e^{-i n \pi}-e^{1} e^{i n \pi}\right] \\
&=\frac{-(1-i n \pi)}{2\left(1+n^{2} \pi^{2}\right)}\left[e^{-1}(\cos n \pi-i \sin n \pi)-e^{1}(\cos n \pi-i \sin n \pi)\right] \\
& C_{n}=\frac{-(1-i n \pi)}{2\left(1+n^{2} \pi^{2}\right)}\left[e^{-1}(-1)^{n}-e^{1}(-1)^{n}\right]
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& =\frac{(1-i n \pi)(-1)^{n}}{2\left(1+n^{2} \pi^{2}\right)}\left[e^{1}-e^{-1}\right] \\
& =\frac{(1-i n \pi)(-1)^{n}}{2\left(1+n^{2} \pi^{2}\right)} 2 \sinh 1 \\
C_{n} & =\frac{(-1)^{n} \sinh 1(1-i n \pi)}{1+n^{2} \pi^{2}} \\
\therefore f(x)=\sum_{n=-\infty}^{\infty} & \frac{(-1)^{n} \sinh 1(1-i n \pi)}{1+n^{2} \pi^{2}} e^{i n \pi x}
\end{aligned}
$$

HARMONIC ANALYSIS

The Fourier series of a known function $f(x)$ in a given interval may be found by finding the Fourier coefficients. The method described cannot be employed when $f(x)$ is not known explicitly, but defined through the values of the function at some equidistant points. In such a case, the integrals in Euler's formulae cannot be evaluated. Harmonic analysis is the process of finding the Fourier coefficients numerically.

To derive the relevant formulae for Fourier coefficients in Harmonic analysis, we employ the following result :
The mean value of a continuous function $f(x)$ over the interval (a,b) denoted by $[f(x)]$ is
defined as

$$
[f(x)]=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

The Fourier coefficients defined through Euler's formulae, (1), (2), (3) may be redefined as

$$
\begin{aligned}
& a_{0}=2\left[\frac{1}{2 l} \int_{a}^{a+2 l} f(x) d x\right]=2[f(x)] \\
& a_{n}=2\left[\frac{1}{2 l} \int_{a}^{a+2 l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x\right]=2\left[f(x) \cos \left(\frac{n \pi x}{l}\right)\right] \\
& b_{n}=2\left[\frac{1}{2 l} \int_{a}^{a+2 l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x\right]=2\left[f(x) \sin \left(\frac{n \pi x}{l}\right)\right]
\end{aligned}
$$

Using these in (5), we obtain the Fourier series of $f(x)$. The term a1cos $x+b 1 \sin x$ is called the first harmonic or fundamental harmonic, the term $\mathrm{a} 2 \cos 2 \mathrm{x}+\mathrm{b} 2 \sin 2 \mathrm{x}$ is called the second harmonic and so on. The amplitude of the first harmonic is $\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}$ and that of second harmonic is $\sqrt{a_{2}{ }^{2}+{b_{2}}^{2}}$ and so on.

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS

COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
13. Find the first two harmonics of the Fourier series of $f(x)$ given the following table

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$\mathrm{f}(\mathrm{x})$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Note that the values of $y=f(x)$ are spread over the interval $0 \leq x \leq 2 \pi$ and $f(0)=f(2 \pi)=1.0$.
Hence the function is periodic and so we omit the last value $f(2 \pi)=0$. We prepare the following table to compute the first two harmonics.

Solution

x^{0}	$y=f(x)$	$\cos x$	$\cos 2 x$	$\sin x$	$\sin 2 x$	$y \cos x$	$y \cos 2$ x	$y \sin x$	$y \sin 2 x$

0	1.0	1	1	0	0	1	1	0	0
60	1.4	0.5	-0.5	0.866	0.866	0.7	-0.7	1.2124	1.2124
120	1.9	-0.5	-0.5	0.866	-0.866	-0.95	-0.95	1.6454	-1.6454
180	1.7	-1	1	0	0	-1.7	1.7	0	0
240	1.5	-0.5	-0.5	-0.866	0.866	-0.75	-0.75	1.299	1.299
300	1.2	0.5	-0.5	-0.866	-0.866	0.6	-0.6	-1.0392	-1.0392
Total						-1.1	-0.3	3.1176	-0.1732

We have

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& a_{n}=2\left[f(x) \cos \left(\frac{n \pi x}{l}\right)\right]=2[y \cos n x] \\
& b_{n}=2\left[f(x) \sin \left(\frac{n \pi x}{l}\right)\right]=2[y \sin n x]
\end{aligned} \text { as the length of interval }=2 l=2 \pi \text { or } l=\pi
$$

Putting, $\mathrm{n}=1,2$, we get

$$
\begin{aligned}
& a_{1}=2[y \cos x]=\frac{2 \sum y \cos x}{6}=\frac{2(1.1)}{6}=-0.367 \\
& a_{2}=2[y \cos 2 x]=\frac{2 \sum y \cos 2 x}{6}=\frac{2(-0.3)}{6}=-0.1 \\
& b_{1}=[y \sin x]=\frac{2 \sum y \sin x}{6}=1.0392 \\
& b_{2}=[y \sin 2 x]=\frac{2 \sum y \sin 2 x}{6}=-0.0577
\end{aligned}
$$

The first two harmonics are $\mathrm{a} 1 \cos \mathrm{x}+\mathrm{b} 1 \sin \mathrm{x}$ and $\mathrm{a} 2 \cos 2 \mathrm{x}+\mathrm{b} 2 \sin 2 \mathrm{x}$. That is $(-0.367 \cos \mathrm{x}+$ $1.0392 \sin x)$ and $(-0.1 \cos 2 x-0.0577 \sin 2 x)$.
14. Express y as a Fourier series upto the third harmonic given the following values:

x	0	1	2	3	4	5
y	4	8	15	7	6	2

The values of y at $\mathrm{x}=0,1,2,3,4,5$ are given and hence the interval of x should be $0 \leq \mathrm{x}<6$. The length of the interval $=6-0=6$, so that $2 l=6$ or $l=3$.

Solution

The Fourier series upto the third harmonic is

$$
y=\frac{a_{0}}{2}+\left(a_{1} \cos \frac{\pi x}{l}+b_{1} \sin \frac{\pi x}{l}\right)+\left(a_{2} \cos \frac{2 \pi x}{l}+b_{2} \sin \frac{2 \pi x}{l}\right)+\left(a_{3} \cos \frac{3 \pi x}{l}+b_{3} \sin \frac{3 \pi x}{l}\right)
$$

or

$$
y=\frac{a_{0}}{2}+\left(a_{1} \cos \frac{\pi x}{3}+b_{1} \sin \frac{\pi x}{3}\right)+\left(a_{2} \cos \frac{2 \pi x}{3}+b_{2} \sin \frac{2 \pi x}{3}\right)+\left(a_{3} \cos \frac{3 \pi x}{3}+b_{3} \sin \frac{3 \pi x}{3}\right)
$$

Put $\theta=\frac{\pi x}{3}$, then

$$
\begin{equation*}
y=\frac{a_{0}}{2}+\left(a_{1} \cos \theta+b_{1} \sin \theta\right)+\left(a_{2} \cos 2 \theta+b_{2} \sin 2 \theta\right)+\left(a_{3} \cos 3 \theta+b_{3} \sin 3 \theta\right) \tag{1}
\end{equation*}
$$

We prepare the following table using the given values :

x	$\theta=\frac{\pi x}{3}$	y	$y \cos \theta$	$y \cos 2 \theta$	$y \cos 3 \theta$	$y \sin \theta$	$y \sin 2 \theta$	$y \sin 3 \theta$
0	0	04	4	4	4	0	0	0
1	60°	08	4	-4	-8	6.928	6.928	0
2	120°	15	-7.5	-7.5	15	12.99	-12.99	0
3	180°	07	-7	7	-7	0	0	0
4	240°	06	-3	-3	6	-5.196	5.196	0
5	300°	02	1	-1	-2	-1.732	-1.732	0

Total		42	-8.5	-4.5	8	12.99	-2.598	0

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& a_{0}=2[f(x)]=2[y]=\frac{2 \sum y}{6}=\frac{1}{3}(42)=14 \\
& a_{1}=2[y \cos \theta]=\frac{2}{6}(-8.5)=-2.833 \\
& b_{1}=2[y \sin \theta]=\frac{2}{6}(12.99)=4.33 \\
& a_{2}=2[y \cos 2 \theta]=\frac{2}{6}(-4.5)=-1.5 \\
& b_{2}=2[y \sin 2 \theta]=\frac{2}{6}(-2.598)=-0.866 \\
& a_{3}=2[y \cos 3 \theta]=\frac{2}{6}(8)=2.667 \\
& b_{3}=2[y \sin 3 \theta]=0
\end{aligned}
$$

Using these in (1), we get

$$
y=7-2,833 \cos \left(\frac{\pi x}{3}\right)+(4.33) \sin \left(\frac{\pi x}{3}\right)-1.5 \cos \left(\frac{2 \pi x}{3}\right)-0.866 \sin \left(\frac{2 \pi x}{3}\right)+2.667 \cos \pi x
$$

This is the required Fourier series upto the third harmonic.
15. The following table gives the variations of a periodic current A over a period T :

t (secs)	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
A (amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Show that there is a constant part of 0.75 amp . in the current A and obtain the amplitude of the first harmonic.

Note that the values of A at $t=0$ and $t=T$ are the same. Hence $A(t)$ is a periodic function of period T. Let us denote $\theta=\left(\frac{2 \pi}{T}\right) t$

We have

$$
\begin{align*}
& a_{0}=2[A] \\
& a_{1}=2\left[A \cos \left(\frac{2 \pi}{T}\right) t\right]=2[A \cos \theta] \tag{1}\\
& b_{1}=2\left[A \sin \left(\frac{2 \pi}{T}\right) t\right]=2[A \sin \theta]
\end{align*}
$$

Using the values of the table in (1), we get

$$
\begin{aligned}
& a_{0}=\frac{2 \sum A}{6}=\frac{4.5}{3}=1.5 \\
& a_{1}=\frac{2 \sum A \cos \theta}{6}=\frac{1.12}{3}=0.3733 \\
& b_{1}=\frac{2 \sum A \sin \theta}{6}=\frac{3.0137}{3}=1.0046
\end{aligned}
$$

t	$\theta=\frac{2 \pi t}{T}$	A	$\cos \theta$	$\sin \theta$	$\mathrm{~A} \cos \theta$	$\mathrm{~A} \sin \theta$
0	0	1.98	1	0	1.98	0
$\mathrm{~T} / 6$	60°	1.30	0.5	0.866	0.65	1.1258
$\mathrm{~T} / 3$	120°	1.05	-0.5	0.866	-0.525	0.9093
$\mathrm{~T} / 2$	180°	1.30	-1	0	-1.30	0
$2 \mathrm{~T} / 3$	240°	-0.88	-0.5	-0.866	0.44	0.7621
$5 \mathrm{~T} / 6$	300°	-0.25	0.5	-0.866	-0.125	0.2165
Total		4.5				

The Fourier expansion upto the first harmonic is

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& A=\frac{a_{0}}{2}+a_{1} \cos \left(\frac{2 \pi t}{T}\right)+b_{1} \sin \left(\frac{2 \pi t}{T}\right) \\
& =0.75+0.3733 \cos \left(\frac{2 \pi t}{T}\right)+1.0046 \sin \left(\frac{2 \pi t}{T}\right)
\end{aligned}
$$

The expression shows that A has a constant part 0.75 in it. Also the amplitude of the first harmonic is $\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}=1.0717$.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL
 COURSE NAME: ENGINEERING MATHEMATICS IV
 COURSE CODE: SMT1204
 UNIT II

INTRODUCTION

The problems related to fluid mechanics, solid mechanics, heat transfer, wave equation and other areas of physics are designed as Initial Boundary Value Problems consisting of partial differential equations and initial conditions. These problems can be solved by "Method of separation of variables," in this unit we derive and solve one dimensional heat equation, wave equation, Laplace's equation in two dimensions etc. by separation of variables method. The general solution of partial differential equation consists arbitrary functions which can be obtained by Fourier Series.

METHOD OF SEPARATION OF VARIABLES

In this method, we assume that the required solution is the product of two functions i.e.,

$$
\begin{equation*}
u(x, y)=X(x) Y(y) \tag{i}
\end{equation*}
$$

Then we substitute the value of $u(x, y)$ from (i) and its derivatives reduces the P.D.E. to the form

$$
\begin{equation*}
f_{1}\left(X, X^{\prime}, \cdots \cdots\right)=f_{2}\left(Y, Y^{\prime}, \ldots \ldots\right) \tag{ii}
\end{equation*}
$$

which is separable in X and Y. Since $f_{2}\left(Y, Y^{\prime}, \cdots\right)$ is function Y only and $f_{1}\left(X, X^{\prime}, \cdots\right)$ is function of X only, then equation (ii) must be equal to a common constant say k. Thus (ii) reduces to

$$
f_{1}\left(X, X^{\prime}, \cdots\right)=f_{2}\left(X, X^{\prime}, \cdots\right)=k
$$

ONE DIMENSIONAL WAVE EQUATION

The one dimensional wave equation arises in the study of transverse vibrations of an elastic string. Consider an elastic string, stretched to its length ' l ' between two points O and A fixed. Let the function $y(x, t)$ denote the displacement of string at any point x and at any time $t>0$ from the equilibrium position (x-axis). When the string released after stretching then it vibrates and therefore the transverse vibrations formed a one dimensional wave equation.

Let the string is perfectly flexible and does not offer resistance to bending. Let T_{1} and T_{2} betensions at the end points P and Q of the portion of the string. Since there is no motion in the horizontal direction. Thus the sum of the forces in the horizontal direction must be zero

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
i.e.,

$$
\begin{array}{rlrl}
-T_{1} \cos \alpha+T_{2} \cos \beta & =0 \\
\Rightarrow \quad & & T_{1} \cos \alpha & =T_{2} \cos \beta=T \quad \text { (constant) } \tag{i}
\end{array}
$$

Let m be the mass of the string per unit length then the mass of portion $P Q=m \delta s$.
Now by Newton's second law of motion, the equation of motion in the vertical direction is mass \times acceleration $=$ resultant of forces

$$
\begin{equation*}
m \delta s \frac{\partial^{2} y}{\partial t^{2}}=T_{2} \sin \beta-T_{1} \sin \alpha \tag{ii}
\end{equation*}
$$

Dividing (ii) by (i), we have

$\Rightarrow \quad \frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{m} \frac{\partial^{2} y}{\partial x^{2}}$

Thus

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

Where $c^{2}=\frac{T}{m}$. Equation (iii) is known as one dimensional wave equation.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Solution of One dimensional wave equation

The wave equation is

$$
\text { Let } \quad \begin{align*}
\frac{\partial^{2} y}{\partial t^{2}} & =c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{i}\\
y & =X(x) T(t) .
\end{align*}
$$

where X is the function of x only and T is the function of t only.

Then

$$
\frac{\partial^{2} y}{\partial t^{2}}=X \frac{d^{2} T}{d t^{2}} \quad \text { and } \quad \frac{\partial^{2} y}{\partial x^{2}}=T \frac{d^{2} X}{d x^{2}}
$$

Putting these values in equation (i) we get

$$
\begin{aligned}
X \frac{d^{2} T}{d t^{2}} & =c^{2} T \frac{d^{2} X}{d x^{2}} \\
\Rightarrow \quad & \frac{1}{X} \frac{d^{2} X}{d x^{2}}
\end{aligned}=\frac{1}{c^{2} T} \frac{d^{2} T}{d t^{2}}=k .
$$

The A.E. is $m^{2}-k=0$

$$
\begin{array}{ll}
& m= \pm \sqrt{k} \\
\therefore & X=c_{1} e^{\sqrt{k} x}+c_{2} e^{-\sqrt{k} x}
\end{array}
$$

and, again from (iii), we get

$$
\begin{array}{ll}
& \frac{d^{2} T}{d t^{2}}=k c^{2} T \Rightarrow\left(D^{2}-k c^{2}\right) T=0 ; \quad D=\frac{d}{d t} \\
\Rightarrow & \text { The A.E. is } m^{2}-k c^{2}=0 \Rightarrow m= \pm c \sqrt{k} \\
\therefore \quad & T=c_{3} e^{c \sqrt{k} t}+c_{4} e^{-c \sqrt{k t}}
\end{array}
$$

Thus, from equation (ii), we get

$$
y=\left(c_{1} e^{\sqrt{k} x}+c_{2} e^{-\sqrt{k x}}\right)\left(c_{3} e^{a \sqrt{k} t}+c_{4} e^{-c \sqrt{k} t}\right)
$$

There are arise following cases:

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Case I: If $k>0$ let $k=p^{2}$	
then	$y=\left(q e^{p x}+c_{2} e^{-p x}\right)\left(c_{3} e^{q t}+c_{4} e^{-c p t}\right)$.
Case II: If $k<0$, let $k=-p^{2}$	
then	$m^{2}=-p^{2} \Rightarrow m= \pm p i$
	$X=c_{1} \cos p x+c_{2} \sin p x$
and	$m^{2}=-p^{2} c^{2} \Rightarrow m= \pm i p c$
	$T=c_{3} \cos c p t+c_{4} \sin c p t$
then	$y=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right.$.

Case III: If $k=0$
then

$$
\begin{align*}
D^{2} X & =0 \Rightarrow m=0,0 \\
X & =\left(c_{1}+c_{2} x\right) \tag{C}\\
D^{2} T & =0 \Rightarrow m=0,0 \\
T & =\left(c_{3}+c_{4} t\right) \\
y & =\left(c_{1}+c_{2} x\right)\left(c_{3}+c_{4} t\right) .
\end{align*}
$$

$$
\therefore \quad X=\left(c_{1}+c_{2} x\right)
$$

$$
\text { And } \quad D^{2} T=0 \Rightarrow m=0,0
$$

$$
\therefore \quad T=\left(c_{3}+c_{4} t\right)
$$

Then

Of these three solutions, we have choose the solution which is consistent with the physical nature of the problem.

Since the physical nature of the one dimensional wave equation is periodic so we consider the solution which is periodic in nature.

Here the solution (B) is periodic (as both sine and cosine are periodic)
Thus the desired solution for one dimensional periodic equation is

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{iv}
\end{equation*}
$$

Now using the boundary conditions
At $x=0$ (origin), $y=0$ from (iv), we get

$$
0=c_{1}\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \Rightarrow c_{1}=0
$$

using the value of c_{1} in (iv), we get

$$
y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right)
$$

At $x=l($ at $A), \quad y=0$ from (v), we get

$$
0=c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right)
$$

$$
\begin{array}{ll}
\Rightarrow & \sin p l=0=\sin n \pi \Rightarrow p l=n \pi \\
\Rightarrow & p=\frac{n \pi}{l}, \text { where } n=1,2,3, \ldots \ldots
\end{array}
$$

Hence, the solution of wave equation satisfying the boundary conditions is, from (v)

$$
\left.\begin{array}{rl|l}
y(x, t) & =c_{2} \sin \frac{n \pi x}{l}\left(c_{3} \cos \frac{n \pi c t}{l}+c_{4} \sin \frac{n \pi c t}{l}\right) &
\end{array} \right\rvert\, p=\frac{n \pi}{l}, ~\left(\begin{array}{ll}
\left.a_{n} \cos \frac{n \pi c t}{l}+b_{n} \sin \frac{n \pi c t}{l}\right) \sin \frac{n \pi x}{l} & \begin{array}{l}
c_{2} c_{3}=a_{n} \\
c_{2} c_{4}=b_{n}
\end{array}
\end{array}\right.
$$

\therefore The general solution of wave equation is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi c t}{l}+b_{n} \sin \frac{n \pi c t}{l}\right) \sin \frac{n \pi x}{l} \tag{vi}
\end{equation*}
$$

Remark: We can apply initial conditions on above equation (vi) in time domain i.e., at $t=0$.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Example 1: A string of length I is fastened at both ends A and C. At a distance ' b ' from the end A, the string is transversely displaced to a distance ' d ' and is released from rest when it is in this position. Find the equation of the subsequent motion.

Solution: Let $y(x, t)$ is the displacement of the string.
Now, by the one dimensional wave equation, we have

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{2}
\end{equation*}
$$

Now using the boundary conditions as follows:
The boundary conditions are
(i) At $x=0($ at $A), \quad y=0 \Rightarrow y(0, t)=0$
and
(ii) At $x=l$ (at $C), y=0 \Rightarrow \mathrm{y}(l, t)=0$

From (2), we have

$$
0=c_{1}\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \Rightarrow c_{1}=0
$$

Using $c_{1}=0$, in equation (2), we get

$$
\begin{equation*}
y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{3}
\end{equation*}
$$

Using (ii) boundary condition, from (3), we have

$$
\begin{aligned}
0 & =c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \\
\Rightarrow \quad \sin p l & =0 \Rightarrow \sin p l=\sin n \pi \Rightarrow p=\frac{n \pi}{l} .
\end{aligned}
$$

Using the value of p in (3), we obtain

$$
\begin{equation*}
y(x, t)=c_{2} \sin \frac{n \pi x}{l}\left(c_{3} \cos \frac{n \pi c t}{l}+c_{4} \sin \frac{n \pi c t}{l}\right) \tag{4}
\end{equation*}
$$

Next, the initial conditions are as follows:
(iii) velocity $\frac{\partial y}{\partial t}=0$ at $t=0$
and displacement at $t=0$ is
(iv) $y(x, 0)=\left\{\begin{array}{ll|l}\frac{d \cdot x}{b}, & 0 \leq x \leq b & y=\frac{d \cdot x}{b} \text { and equation of } B C \text { is } \\ \frac{d(x-l)}{(b-l)}, b \leq x \leq l & y=\frac{d(x-l)}{(b-l)}\end{array}\right.$ From (4),

$$
\frac{\partial y}{\partial t}=c_{2} \sin \frac{n \pi x}{l}\left(-\frac{n \pi c c_{3}}{l} \sin \frac{n \pi c t}{l}+\frac{n \pi c c_{4}}{l} \cos \frac{n \pi c t}{l}\right)
$$

Using (iii) in above equation, we get

$$
0=c_{2} c_{4} \frac{n \pi c}{l} \cdot \sin \frac{n \pi x}{l} \Rightarrow c_{4}=0
$$

Using $c_{4}=0$ in equation (4), we get

$$
y(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi c t}{l}
$$

$\therefore \quad$ The general solution of given problem is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi c t}{l} \tag{5}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Using initial condition (iv) in equation (5), we get

$$
y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

which is half range Fourier sine series, so we have

$$
\begin{aligned}
& b_{n}= \frac{2}{l} \int_{0}^{l} y(x, 0) \cdot \sin \frac{n \pi x}{l} d x \\
&= \frac{2}{l} \int_{0}^{b} \frac{d}{b} x \cdot \sin \left(\frac{n \pi x}{l}\right) d x+\frac{2}{l} \frac{d}{(b-l)} \int_{b}^{l}(x-l) \sin \frac{n \pi x}{l} d x \\
&= \frac{2 d}{b l}\left[x\left(\frac{-l}{n \pi}\right) \cdot \cos \frac{n \pi x}{l}-\left(\frac{-l^{2}}{n^{2} \pi^{2}}\right) \sin \frac{n \pi x}{l}\right]_{0}^{b} \\
& \Rightarrow \quad+\frac{2 d}{l(b-l)}\left[(x-l)\left(\frac{-l}{n \pi}\right) \cos \frac{n \pi x}{l}-\left(\frac{-l^{2}}{n^{2} \pi^{2}}\right) \cdot \sin \frac{n \pi x}{l}\right]_{b}^{l} \\
& b_{n}=-\frac{2 d}{n \pi} \cos \frac{n \pi b}{l}+\frac{2 d l^{2}}{b l n^{2} \pi^{2}} \cdot \sin \frac{n \pi b}{l}+\frac{2 d}{n \pi} \cdot \cos \frac{n \pi b}{l} \\
&-\frac{2 d l^{2}}{l(b-l) n^{2} \pi^{2}} \sin \frac{n \pi b}{l} \\
& \Rightarrow \quad b_{n}=\frac{2 d l^{2}}{b(l-b) n^{2} \pi^{2}} \sin \frac{n \pi b}{l}
\end{aligned}
$$

\therefore From (5), we get

$$
y(x, t)=\frac{2 d l^{2}}{b(l-b) \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \frac{n \pi b}{l} \times \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi c t}{l} .
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Example 2:

A string is stretched and fastened to two points / apart. Motion is started by displacing the string in the form $y=a \sin \frac{\pi x}{l}$ from which it is released at a time $t=0$. Show that the displacement of any point at a distance x from one end at time t is given by

$$
y(x, t)=a \sin \left(\frac{\pi x}{l}\right) \cos \left(\frac{\pi c t}{l}\right) .
$$

Solution: Let $y(x, t)$ be the displacement at any point $P(x, y)$ at any time.

Then by the wave equation, we have

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

The solution of equation (1) is of the form

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{2}
\end{equation*}
$$

Now using the boundary conditions
(i) At $x=0$, the displacement $y=0 \Rightarrow y(0, t)=0$
(ii) At $x=l$, the displacement $y=0 \Rightarrow \mathrm{y}(l, t)=0$

Using (i) boundary condition in (2), we get

$$
y(0, t)=0=c_{1}\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \Rightarrow c_{1}=0
$$

\therefore From (2), we get

$$
\begin{equation*}
y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{3}
\end{equation*}
$$

Using (ii) boundary condition in equation (3), we get

$$
\begin{aligned}
& y(l, t)=0=c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \\
& y(l, t)=0=c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \\
& \Rightarrow \quad \sin p l=0=\sin n \pi \Rightarrow p=\frac{n \pi}{l .}
\end{aligned}
$$

Now using the initial conditions

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
(iii) At $t=0$, the velocity $\frac{\partial y}{\partial t}=0 \Rightarrow\left(\frac{\partial y}{\partial t}\right)_{t=0}=0$
(iv) At $t=0$, the displacement $y=a \sin \frac{\pi x}{l} \Rightarrow y(x, 0)=a \sin \frac{\pi x}{l}$
\therefore From (3), we have

$$
\frac{\partial y}{\partial t}=c_{2} \sin p x\left[c_{3}(-c p) \sin c p t+c_{4}(c p) \cos c p t\right]
$$

Using (iii) initial condition in above equation, we get

$$
\begin{aligned}
0=c_{2} c_{4} c p \sin p x & \Rightarrow c_{2} c_{4} c p=0 \\
& \Rightarrow c_{4}=0 .
\end{aligned} \begin{aligned}
& c_{2} \neq 0, \text { otherwise there } \\
& \text { is trivial solution }
\end{aligned}
$$

Using $p=\frac{n \pi}{l}$ and $c_{4}=0$, in equation (3), we get

$$
y(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}
$$

\therefore The general solution is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \quad\left(b_{n}=c_{2} c_{3}\right) \tag{4}
\end{equation*}
$$

Finally using (iv) initial condition in equation (4), we get
or

$$
\begin{aligned}
& y(x, 0)=a \sin \frac{\pi x}{l}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \\
& a \sin \frac{\pi x}{l}=b_{1} \sin \frac{\pi x}{l}+b_{2} \sin \frac{2 \pi x}{l}+\cdots \cdots
\end{aligned}
$$

Equating the coefficient of $\sin \frac{\pi x}{l}$, we get

$$
b_{1}=a, \quad b_{2}=b_{3}=\cdots=0
$$

Hence the required solution of given problem is

$$
y(x, t)=a \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l} ; \quad n=1 . \quad \text { Proved. }
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Example 3: Find the displacement of a string stretched between two fixed points at a distance $2 l$ apart when the string is initially at rest in equilibrium position and points of the string are given initial velocity v where

$$
v= \begin{cases}\frac{x}{l}, & \text { when } 0<x<l \\ \frac{2 l-x}{l}, & \text { when } l<x<2 l\end{cases}
$$

x being the distance measured from one end.
Solution: The displacement $y(x, t)$ is given by wave equation

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

The solution of equation is given by

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{2}
\end{equation*}
$$

Now, the boundry conditions are
(i) At $x=0, \quad y=0 \Rightarrow y(0, t)=0$
(ii) At $x=2 l, \quad y=0 \Rightarrow y(2 l, t)=0$

Using (i) boundary condition in (2), we get

$$
0=c_{1}\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \Rightarrow c_{1}=0
$$

$\therefore \quad$ From (2), we get

$$
\begin{equation*}
y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{3}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV

Using (ii) condition in (3), we get

$$
\begin{aligned}
0 & =c_{2} \sin 2 p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \\
\Rightarrow \quad \sin 2 p l & =0=\sin n \pi \Rightarrow p=\frac{n \pi}{2 l}
\end{aligned}
$$

Now, the initial conditions are
(iii) At $t=0$ the displacement $y(x, 0)=0$.
(iv) At $t=0, \frac{\partial y}{\partial t}=v$.

Making use of initial condition (iii) in (3), we get

$$
y(x, 0)=0=c_{2} \sin p x\left(c_{3}\right) \Rightarrow c_{3}=0
$$

\therefore From (3), we get

$$
\left.y(x, t)=c_{2} c_{4} \sin \frac{n \pi x}{2 l} \sin \frac{n \pi c}{2 l} t \quad \right\rvert\, p=\frac{n \pi}{2 l}
$$

The general solution is

$$
\begin{align*}
y(x, t) & =\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{2 l} \cdot \sin \frac{n \pi c}{2 l} t \tag{4}\\
\Rightarrow \quad \frac{\partial y}{\partial t} & =\frac{\pi c}{2 l} \sum_{n=1}^{\infty} n b_{n} \sin \frac{n \pi x}{2 l} \cos \frac{n \pi c}{2 l} t
\end{align*}
$$

Using initial condition (iv) in above equation, we get

$$
v=\frac{\pi c}{2 l} \sum_{n=1}^{\infty} n b_{n} \sin \frac{n \pi x}{2 l}
$$

which represents half range Fourier sine series

$$
\begin{aligned}
\therefore \quad \frac{\pi c}{2 l} n b_{n}= & \frac{2}{2 l} \int_{0}^{2 l} v \sin \frac{n \pi x}{2 l} d x \\
= & \frac{1}{l} \int_{0}^{l} \frac{x}{l} \sin \frac{n \pi x}{2 l} d x+\frac{1}{l} \int_{l}^{2 l}\left(\frac{2 l-x}{l}\right) \sin \frac{n \pi x}{2 l} d x \\
= & \frac{1}{l}\left[\frac{x}{l}(-1)\left(\frac{2 l}{n \pi}\right) \cos \frac{n \pi x}{2 l}-\frac{1}{l}(-1) \frac{4 l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{2 l}\right]_{0}^{l} \\
& +\frac{1}{l}\left[\left(\frac{2 l-x}{l}\right)\left(\frac{-2 l}{n \pi}\right) \cdot \cos \frac{n \pi x}{2 l}-\left(\frac{-1}{l}\right)\left(\frac{-4 l^{2}}{n^{2} \pi^{2}}\right) \sin \frac{n \pi x}{2 l}\right]_{l}^{2 l}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& =-\frac{2}{n \pi} \cos \frac{n \pi}{2}+\frac{4}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}+\frac{2}{n \pi} \cos \frac{n \pi}{2}+\frac{4}{n^{2} \pi^{2}} \sin \frac{n \pi}{2} \\
\Rightarrow \quad b_{n} & =\frac{2 l}{n \pi c}\left[\frac{8}{n^{2} \pi^{2}} \cdot \sin \frac{n \pi}{2}\right] \\
\Rightarrow \quad b_{n} & =\frac{16 l}{n^{3} \pi^{3} c} \cdot \sin \frac{n \pi}{2}
\end{aligned}
$$

Hence the displacement function is given by, from equation (4), we get

$$
y(x, t)=\frac{16 l}{\pi^{3} c} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \sin \frac{n \pi}{2} \times \sin \frac{n \pi x}{2 l} \cdot \sin \frac{n \pi c t}{2 l} \quad \text { Ans. }
$$

Example 4: :A string is stretched and fastened to two points $/$ apart. Motion is started by displacing the string into the form $y=k\left(L x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at time t.

Solution: Let the displacement $y(x, t)$ given by the wave equation

$$
\begin{align*}
\frac{\partial^{2} y}{\partial t^{2}} & =c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}\\
\therefore \quad y(x, t) & =\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{2}
\end{align*}
$$

Using the boundary conditions (i) $y(0, t)=0 \quad$ (ii) $y(l, t)=0$
Using (i) in equation (2), we get

$$
\begin{equation*}
y=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{3}
\end{equation*}
$$

Using (ii), in equation (3), we get

$$
\begin{aligned}
& 0=c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \Rightarrow \sin p l=0 \\
\Rightarrow \quad & \sin p l=\sin n \pi \Rightarrow p=\frac{n \pi}{l} .
\end{aligned}
$$

and the initial conditions are
(iii) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0 \quad$ (iv) $y(x, 0)=k\left(l x-x^{2}\right)$
\therefore From (3), we get

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\frac{\partial y}{\partial t}=c_{2} \sin p x\left\{-c_{3} c \sin c p t+c_{4} c \cos c p t\right\}
$$

Using (iii) in above relation, we get

$$
0=c_{2}\left(c_{4} c\right) \sin p x \Rightarrow c_{4}=0
$$

Using the values of c and p in equation (3), we get

$$
y=c_{2} c_{3} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}
$$

\therefore The general solution is

$$
\begin{equation*}
y=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \tag{4}
\end{equation*}
$$

Making use of (iv) in (4), we get

$$
k\left(l x-x^{2}\right)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

which represents half range Fourier sine series

$$
\begin{aligned}
& \therefore \quad b_{n}=\frac{2 k}{l} \int_{0}^{l}\left(l x-x^{2}\right) \sin \frac{n \pi x}{l} d x \\
& \Rightarrow \quad b_{n}=\frac{2 k}{l}\left[\left(l x-x^{2}\right)\left(-\cos \frac{n \pi x}{l}\right) \frac{l}{\pi x}-(l-2 x)\left(-\sin \frac{n \pi x}{l}\right) \frac{l^{2}}{n^{2} \pi^{2}}\right. \\
& \left.+(-2)\left(\cos \frac{n \pi x}{l}\right) \frac{l^{3}}{n^{3} \pi^{3}}\right]_{0}^{l} \\
& \Rightarrow \quad b_{n}=\frac{2 k}{l}\left[(-1)^{n+1} \frac{2 l^{3}}{n^{3} \pi^{3}}+\frac{2 l^{3}}{n^{3} \pi^{3}}\right]=\frac{8 k l^{2}}{n^{3} \pi^{3}} \text { when } n \text { is odd. } \\
& =0 \quad \text { when } n \text { is even. }
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Hence the required displacement is, from (4), we get

$$
y=\sum_{n=1}^{\infty} \frac{8 k l^{2}}{n^{3} \pi^{3}} \sin \frac{n \pi x}{l} \cos \frac{n \pi c}{l} t, \quad \text { when } n \text { is odd. Ans. }
$$

Example 5: A string of length l is fastened at both ends A and C. At a distance ' b ' from the end A, the string is transversely displaced to a distance ' d ' and is released from rest when it is in this position. Find the equation of the subsequent motion.

Solution: We know that the solution of one dimensional wave equation with boundary conditions

$$
\begin{align*}
& y(0, t)=y(l, t)=0 \text { is } \\
& y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{1}
\end{align*}
$$

where $p=\frac{n \pi}{l}$.

Now the initial conditions are
(a) $y(x, 0)=0$
(b) $\left(\frac{\partial y}{\partial t}\right)_{t-0}=\lambda x(l-x)$

Making use of (a) in (1), we get

$$
0=c_{3} c_{2} \sin p x \Rightarrow c_{3}=0
$$

\therefore From (1), we get

$$
y(x, t)=c_{2} c_{4} \sin \frac{n \pi x}{l} \sin \frac{n \pi c t}{l}
$$

The general solution of wave equation is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \sin \frac{n \pi c t}{l} \tag{2}
\end{equation*}
$$

From (2),

$$
\frac{\partial y}{\partial t}=\sum_{n=1}^{\infty}(n \pi c l) \cdot b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}
$$

$$
\Rightarrow \quad\left(\frac{\partial y}{\partial t}\right)_{t=0}=\lambda x(l-x)=\sum_{n=1}^{\infty}\left(\frac{n \pi c}{l}\right) b_{n} \sin \frac{n \pi x}{l}
$$

$$
\therefore \quad \frac{n \pi c}{l} b_{n}=\frac{2}{l} \int_{0}^{l} \lambda x(l-x) \sin \frac{n \pi x}{l} d x
$$

$$
=\frac{2 \lambda}{l}\left[x(l-x)\left(-\frac{l}{n \pi} \cos \frac{n \pi x}{l}\right)-(l-2 x)\right.
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& \left.\left(-\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right)+(-2)\left(\frac{l^{3}}{n^{3} \pi^{3}} \cos \frac{n \pi x}{l}\right)\right]_{0}^{l} \\
= & \frac{4 \lambda l^{2}}{n^{3} \pi^{3}}(1-\cos n \pi)=\frac{4 \lambda l^{2}}{n^{3} \pi^{3}}\left[1-(-1)^{n}\right] \\
\Rightarrow \quad b_{n} & =\left\{\begin{array}{l}
\frac{8 \lambda l^{3}}{c n^{4} \pi^{4}}, \text { when } n \text { is odd } \\
0, \text { when } n \text { is even }
\end{array}\right.
\end{aligned}
$$

\therefore From (2) the required solution is

$$
y(x, t)=\frac{8 \lambda l^{3}}{c \pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}} \sin \frac{n \pi x}{l} \sin \frac{n \pi c t}{l}, \quad n \text { is odd. Ans. }
$$

Example 6

The points of trisection of a string are pulled aside through the same distance on opposite sides of the position of equilibrium and the string is released from rest. Derive an expression for the displacement of the string at subsequent time and show that the mid-point of the string always remains at rest.

Solution: Let the string $O A$ be trisected at B and C.
Let the equation of vibrating string is

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
$\therefore \quad$ The solution of equation (1) is

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{2}
\end{equation*}
$$

Now using the boundary conditions
(i) $y(0, t)=0$
(ii) $y(l, t)=0$

Making use of (i) and (ii) in equation (2), we get

$$
\begin{equation*}
y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{3}
\end{equation*}
$$

where $p=\frac{n \pi}{l}$.
Next equation of $O B^{\prime}$ is $y=\frac{a x}{l / 3} \Rightarrow y=\frac{3 a}{l} x$
Equation of $B^{\prime} C^{\prime}$ is $\left.\quad y-a=\frac{a+a}{\frac{l}{3}-\frac{2 l}{3}}\left(x-\frac{l}{3}\right) \quad \right\rvert\, y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
$\Rightarrow \quad y=\frac{3 a}{l}(l-2 x)$
and equation of $C^{\prime} A$ is $y-0=\frac{-a-0}{\frac{2 l}{3}-l}(x-l)$
$\Rightarrow \quad y=\frac{3 a}{l}(x-l)$
\therefore The initial conditions of given problem are
(iii) $\left(\frac{\partial y}{\partial t}\right)_{t-0}=0$
(iv) $y(x, 0)= \begin{cases}\frac{3 a}{l} x, & 0 \leq x \leq l / 3 \\ \frac{3 a}{l}(l-2 x), & \frac{l}{3} \leq x \leq \frac{2 l}{3} \\ \frac{3 a}{l}(x-l), & \frac{2 l}{3} \leq x \leq l\end{cases}$

From equation (3), we get

$$
\frac{\partial y}{\partial t}=c_{2} \sin p x\left(-c_{3} c p \sin c p t+c_{4} c p \cos c p t\right)
$$

Using (iii) initial condition in above, we obtain

$$
0=c_{2} \sin p x\left(c_{4} c p\right) \Rightarrow c_{4}=0
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Again from (3), we have

$$
y(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi c t}{l}
$$

\therefore The general solution of equation (1) is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \tag{4}
\end{equation*}
$$

Using (iv) condition in equation (4), we get

$$
\begin{aligned}
& y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \\
& b_{n}=\frac{2}{l} \int_{0}^{l} y(x, 0) \cdot \sin \frac{n \pi x}{l} d x \\
& =\frac{2}{l}\left[\int_{0}^{\frac{l}{3}} \frac{3 a x}{l} \sin \frac{n \pi x}{l} d x+\int_{\frac{l}{3}}^{\frac{l}{3}} \frac{3 a}{l}(l-2 x) \sin \frac{n \pi x}{l} d x+\int_{\frac{2 l}{3} l}^{l}(x-l) \sin \frac{n \pi x}{l} d x\right] \\
& = \\
& \frac{6 a}{l^{2}}\left[x\left(-\frac{l}{n \pi} \cos \frac{n \pi x}{l}\right)-(1)\left(-\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right)\right]_{0}^{\frac{l}{3}}+\frac{6 a}{l^{2}}\left[(l-2 x)\left(\frac{-l}{n \pi} \cos \frac{n \pi x}{l}\right)\right. \\
& -\left.(-2)\left(\frac{-l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right)\right|_{\frac{l}{3}} ^{\frac{2 l}{3}}+\frac{6 a}{l^{2}}\left[(x-l)\left(\frac{-l^{2}}{n \pi} \cos \frac{n \pi x}{l}\right)-(1)\left(\frac{-l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right)\right]_{\frac{2 l}{3}}^{3} \\
& = \\
& \frac{6 a}{l^{2}}\left[\left(-\frac{l^{2}}{3 n \pi} \cos \frac{n \pi}{3}+\frac{l^{2}}{n^{2} \pi^{2}} \sin n \pi\right)+\frac{l^{2}}{3 n \pi} \cos \frac{2 n \pi}{3}-\frac{2^{2}}{n^{2} \pi^{2}} \sin \frac{2 n \pi}{3}\right. \\
& \left.\quad+\frac{l^{2}}{3 n \pi} \cos \frac{n \pi}{3}+\frac{2^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{3}-\left(\frac{l^{2}}{3 n \pi} \cos \frac{2 n \pi}{3}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{2 n \pi}{3}\right)\right] \\
& = \\
& =\frac{6 a}{l^{2}} \cdot \frac{3 l^{2}}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{3}-\sin \frac{2 n \pi}{3}\right) \\
& = \\
& n^{2} \pi^{2} \\
& \sin \frac{n \pi}{3}\left[1+(-1)^{n}\right] \\
& \sin \frac{2 n \pi}{3}=\sin \left(n \pi-\frac{n \pi}{3}\right)=-(-1)^{n} \sin \frac{n \pi}{3}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\Rightarrow \quad b_{n}=\left\{\begin{array}{l}
0, \text { when } n \text { is odd } \\
\frac{36 a}{n^{2} \pi^{2}} \sin \frac{n \pi}{3}, \text { when } n \text { is even }
\end{array}\right.
$$

Putting the value of b_{n} in equation (4), we get

$$
y(x, t)=\sum_{n=2(\mathrm{even})}^{\infty} \frac{36 a}{n^{2} \pi^{2}} \sin \frac{n \pi}{3} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} . \quad \text { Ans. }
$$

Example
If the string of length l is initially at rest in equilibrium position and each of its points is given the velocity.
$v_{0} \sin \left(\frac{3 \pi x}{l}\right) \cos \left(\frac{2 \pi x}{l}\right)$ where $0<x<l$ at $t=0$ determine the displacement function $y(x, t)$.

Solution: The displacement $y(x, t)$ given by wave equation

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

we know that the solution of (1) is

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{2}
\end{equation*}
$$

Using the boundary conditions
(i) $y(0, t)=0 \quad$ (ii) $y(l, t)=0$

We get from (2)

$$
\begin{equation*}
y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \tag{3}
\end{equation*}
$$

where $p=\frac{n \pi}{l}$.
and the initial conditions are
(iii) $y(x, 0)=0$
(iv) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=v_{0} \sin \left(\frac{3 \pi x}{l}\right) \cos \left(\frac{2 \pi x}{l}\right)$

Using (iii) in equation (3), we get

$$
0=c_{2} c_{3} \sin p x \cos c p t \Rightarrow c_{3}=0 .
$$

Making use $c_{3}=0$ in equation (3), we get

$$
y(x, t)=c_{2} c_{4} \sin p x \sin c p t
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
where $p=\frac{n \pi}{l}$.
or the general form of solution is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \sin \frac{n \pi c t}{l} \tag{4}
\end{equation*}
$$

Differentiating partially w.r.t. ' t ' equation (4), we get

$$
\begin{aligned}
& \frac{\partial y}{\partial t}=\sum_{n=1}^{\infty} b_{n}\left(\frac{n \pi c}{l}\right) \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi c t}{l} \\
& \therefore \quad\left(\frac{\partial y}{\partial t}\right)_{t=0}=v_{0} \sin \frac{3 \pi x}{l} \cos \frac{2 \pi x}{l}=\sum_{n=1}^{\infty} b_{n}\left(\frac{n \pi c}{l}\right) \sin \frac{n \pi x}{l} \\
& \Rightarrow \quad \frac{v_{0}}{2}\left[\sin \frac{5 \pi x}{l}+\sin \frac{\pi x}{l}\right]=\sum_{n=1}^{\infty} b_{n}\left(\frac{n \pi c}{l}\right) \sin \frac{n \pi x}{l}
\end{aligned}
$$

Equating the coefficient of like terms, we have

$$
\begin{aligned}
& \frac{v_{0}}{2}=b_{1}\left(\frac{\pi c}{l}\right) \Rightarrow b_{1}=\frac{l v_{0}}{2 c \pi} \\
& \frac{v_{0}}{2}=b_{5}\left(\frac{5 \pi c}{l}\right) \Rightarrow b_{5}=\frac{l v_{0}}{5 c \pi}
\end{aligned}
$$

and

$$
b_{2}=b_{3}=b_{4}=b_{5}=b_{6}=\cdots=0
$$

Using these values in equation (4), we get the required solution

$$
y(x, t)=\left(\frac{l v_{0}}{2 c \pi}\right) \sin \left(\frac{\pi x}{l}\right) \sin \frac{\pi c t}{l}+\left(\frac{l v_{0}}{5 c \pi}\right) \sin \left(\frac{5 \pi x}{l}\right) \sin \frac{5 \pi c t}{l} .
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

ONE DIMENSIONAL FLOW

In this section we set up the mathematical model for one dimensional heat flow and derive the corresponding partial differential equation.

Consider a bar or a rod of equal thickness at every point.

Let the area of cross-sectional $=A \mathrm{~cm}^{2}$.
and \quad density of material of rod $=\rho g r / \mathrm{cm}^{3}$
Here we consider a small element $P Q$ of length δx.
\therefore The mass of the element $P Q=A \rho \delta x$
Let $u(x, t)$ is the temperature of the rod at a distance x at time t.
We know that the amount of heat in a body is always proportional to the mass of the body and to the temperature change.

Thus the rate of increase of heat in element

$$
\begin{equation*}
=s \operatorname{sip} \delta x \frac{\partial u}{\partial t} \quad(s \text { is specific heat }) \tag{i}
\end{equation*}
$$

Since the direction of heat flow in a body becomes always toward decreasing temperature. Physical experiment shows that the rate of flow is proportional to the area and to the temperature gradient normal to the area. If we suppose Q_{1} and Q_{2} are the quantities of heat flowing at the points P and Q respectively,
then

$$
\begin{array}{l|l}
Q_{1}=-k A\left(\frac{\partial u}{\partial x}\right)_{x} \text { per second } & \begin{array}{l}
\text { The negative sign shows } \\
\text { the direction of heat flow }
\end{array} \\
\text { towards lower temperature }
\end{array}
$$

where k is a constant known as thermal conductivity.

$$
\begin{equation*}
\therefore \text { Total amount of heat in the element }=Q_{1}-Q_{2}=k A\left[\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}-\left(\frac{\partial u}{\partial x}\right)_{x}\right] \text { per second } \tag{ii}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
where k is a constant known as thermal conductivity.
\therefore Total amount of heat in the element $=Q_{1}-Q_{2}=k A\left[\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}-\left(\frac{\partial u}{\partial x}\right)_{x}\right]$ per second
From (i) and (ii)

$$
\begin{aligned}
& s A \rho \delta x \frac{\partial u}{\partial t}=k A\left[\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}-\left(\frac{\partial u}{\partial x}\right)_{x}\right] \\
\Rightarrow \quad & \frac{\partial u}{\partial t}
\end{aligned}=\frac{k}{\rho s}\left[\frac{\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}-\left(\frac{\partial u}{\partial x}\right)_{x}}{\delta x}\right]
$$

Taking the limit as $\delta x \rightarrow 0$ i.e., when $x+\delta x \rightarrow x$

$$
\begin{aligned}
\therefore \quad \frac{\partial u}{\partial t} & =\frac{k}{\rho s} \lim _{\delta x \rightarrow 0}\left[\frac{\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}-\left(\frac{\partial u}{\partial x}\right)_{x}}{\delta x}\right] \\
& =\frac{k}{\rho s} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{k}{\rho s} \frac{\partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

Let $\frac{k}{\rho s}=c^{2}$ is called diffusivity of the substance

Thus

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} .
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV

SOLUTION OF ONE DIMENSIONAL HEAT EQUATION

We know that the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

Let

$$
u(x, t)=X(x) T(t)
$$

$$
\Rightarrow \quad \frac{\partial u}{\partial x}=T \frac{d X}{d x} \text { or } \frac{\partial^{2} u}{\partial x^{2}}=T \frac{d^{2} X}{d x^{2}}
$$

and

$$
\frac{\partial u}{\partial t}=X \frac{d T}{d t}
$$

Using these values in equation (1), we get

$$
\begin{gather*}
\quad x \frac{d T}{d t}=c^{2} T \frac{d^{2} X}{d x^{2}} \\
\Rightarrow \quad \tag{3}\\
\frac{1}{c^{2} T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=k
\end{gather*}
$$

Taking 2nd and 3rd terms

$$
\begin{aligned}
& \therefore \\
& \Rightarrow \\
& \frac{1}{X} \frac{d^{2} X}{d x^{2}}=k \Rightarrow \frac{d^{2} X}{d x^{2}}-k X=0 \\
& \left(D^{2}-k\right) X=0
\end{aligned}
$$

Hence

$$
X=c_{1} e^{\sqrt{k} x}+c_{2} e^{-\sqrt{k x}}
$$

and

$$
\frac{1}{c^{2} T} \frac{d T}{d t}=k \Rightarrow \frac{d T}{T}=k c^{2} d t
$$

On integrating, $\quad \log _{e} T=k c^{2} t+\log c_{3}$

$$
\Rightarrow \quad T=c_{3} e^{k c^{2} t}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
\therefore From (2), we get

$$
u(x, t)=\left(c_{1} e^{\sqrt{k x}}+c_{2} e^{-\sqrt{k x}}\right) c_{3} e^{k k^{2} t}
$$

There are arise following cases:
Case I: If $k>0$, let $k=p^{2}$
then

$$
\begin{equation*}
u(x, t)=\left(c_{1} e^{p x}+c_{2} e^{-p x}\right) c_{3} e^{p^{p^{2} c^{2} t}} \tag{A}
\end{equation*}
$$

Case II: If $k<0$, Let $k=-p^{2}$
then A.E. is

$$
m^{2}=-p^{2} \Rightarrow m= \pm p i
$$

$\therefore \quad X=c_{1} \cos p x+c_{2} \sin p x$
then

$$
\begin{equation*}
u(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right) c_{3} e^{-p^{2} c^{2} t} \tag{B}
\end{equation*}
$$

Case III: If $k=0$, then

$$
\begin{equation*}
u(x, t)=\left(c_{1}+c_{2} x\right) c_{3} . \tag{C}
\end{equation*}
$$

Since the physical nature of the problem is periodic so the suitable solution of the heat equation is

$$
\begin{equation*}
u(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right) c_{3} e^{-p^{2} c^{2} t} . \tag{4}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
The boundary conditions are
(i) $u(0, t)=0$ and (ii) $u(l, t)=0$
and initial condition is (iii) $u(x, 0)=f(x)$.
Using (i) boundary condition in (4), we get

$$
0=c_{1} c_{3} e^{-p^{2} c^{2} t} \Rightarrow c_{1}=0
$$

\therefore From (4), we get

$$
\begin{equation*}
u(x, t)=c_{2} c_{3} \sin p x \cdot e^{-p^{2} c^{2} t} \tag{5}
\end{equation*}
$$

Using (ii) boundary condition in (5), we get

$$
\begin{array}{ll}
\quad 0 & =c_{2} c_{3} \sin p l \Rightarrow \sin p l=0=\sin n \pi \Rightarrow p=\frac{n \pi}{l} \\
\therefore & u(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{l} e^{\frac{n^{2} \pi^{2} c^{2} t}{l^{2}}}
\end{array}
$$

The general form of above solution is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} e^{-n^{2} \pi^{2} c^{2} t / l} \quad\left(b_{n}=c_{2} c_{3}\right) \tag{6}
\end{equation*}
$$

Again using initial condition (iii) in equation (6), we get

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

which represents Fourier half range sine series so, we have

$$
b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x
$$

Thus the required solution is

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} e^{-\frac{n^{2} \pi^{2} c^{2} t}{l}} \\
\text { where } \quad b_{n} & =\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x .
\end{aligned}
$$

Remark: In steady state $\frac{\partial u}{\partial t}=0$, so $\frac{\partial^{2} u}{\partial x^{2}}=0$.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Example

8
Determine the solution of one dimension heat equation

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Under the conditions $u(0, t)=u(l, t)=0$ and $u(x, 0)=\left\{\begin{array}{cc}x & \text { if } 0 \leq x \leq l / 2 \\ l-x & \text { if } \frac{l}{2} \leq x \leq l .\end{array}\right.$
Solution: We have

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

$u(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right) c_{3} e^{-p^{2} c^{2} t}$

$$
\begin{equation*}
u(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right) c_{3} e^{-p^{2} c^{2} t} \tag{2}
\end{equation*}
$$

At $x=0$, we get

$$
0=c_{1} c_{3} e^{-p^{2} c^{2} t} \Rightarrow c_{1}=0
$$

\therefore From equation (2), we get

$$
\begin{equation*}
u(x, t)=c_{2} c_{3} \sin p x \cdot e^{-p^{2} c^{2} t} \tag{3}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Again at $x=l$ from (3), we get

$$
\begin{aligned}
& 0=c_{2} c_{3} \sin p l \cdot e^{-p^{2} c^{2} t} \Rightarrow \sin p l=0=\sin n \pi \\
& \Rightarrow \quad p=\frac{n \pi}{l}
\end{aligned}
$$

From (3), we get

$$
u(x, t)=c_{2} c_{3} \sin \frac{m \pi x}{l} e^{\frac{n^{2} \pi^{2} c^{2}}{l^{2}}}
$$

\Rightarrow Therefore the general form of solution can be written as

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot e^{-\frac{n^{2} \pi^{2} c^{2} t}{l^{2}}} \tag{4}
\end{equation*}
$$

At $t=0$, from equation (4), we get

$$
\begin{aligned}
& u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \\
& \therefore \quad b_{n}=\frac{2}{l} \int_{0}^{l} u(x, 0) \sin \frac{n \pi x}{l} d x \\
&=\frac{2}{l}\left[\int_{0}^{l / 2} x \sin \frac{n \pi x}{l} d x+\int_{l / 2}^{l}(l-x) \sin \frac{n \pi x}{l} d x\right] \\
&=\frac{2}{l}\left[\int_{0}^{l / 2} x \sin \frac{n \pi x}{l} d x+\int_{l / 2}^{l}(l-x) \sin \frac{n \pi x}{l} d x\right] \\
&=\frac{2}{l}\left\{\left[-x \frac{l}{n \pi} \cos \frac{n \pi x}{l}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right]_{0}^{l / 2}\right. \\
&\left.+\left[-(l-x) \frac{l}{n \pi} \cos \frac{n \pi x}{l}-\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right]_{l / 2}^{l}\right\}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& =\frac{2}{l}\left[-\frac{l^{2}}{2 n \pi} \cos \frac{n \pi}{2}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}+\frac{l^{2}}{2 n \pi} \cos \frac{n \pi}{2}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}\right] \\
& =\frac{4 l}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right) .
\end{aligned}
$$

\therefore From equation (4), we get

$$
u(x, t)=\frac{4 l}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \frac{n \pi}{2} \cdot \sin \frac{n \pi x}{l} e^{-\frac{n^{2} \pi^{2} c^{2}}{l^{2}} t} . \text { Ans. }
$$

Example 9
An insulated rod of length l has its ends A and B maintained $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$ find the temperature at a distance x from A at time t.

Solution: From one dimensional and equation, we have

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

The boundary conditions are
(i) $u(0, t)=0^{\circ} \mathrm{C}$ and
(ii) $u(l, t)=100^{\circ} \mathrm{C}$

In steady state condition $\frac{\partial u}{\partial t}=0$ here from (1), we get

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=0 \tag{2}
\end{equation*}
$$

On integrating, we get $u(x)=c_{1} x+c_{2}$
where c_{1} and c_{2} are constants to be determined
At $x=0$, from equation (2), we have

$$
0=c_{2} .
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
and

$$
\text { at } x=l, \quad 100=c_{1} l+0 \Rightarrow c_{1}=\frac{100}{l} .
$$

\therefore From (2)

$$
\begin{equation*}
u(x)=\frac{100}{l} x \tag{3}
\end{equation*}
$$

Now the temperature at B is suddenly changed we have again transient state. If $u(x, t)$ is the subsequent temperature function, the boundary conditions are
(iii) $u(0, t)=0^{\circ} \mathrm{C}, \quad$ (iv) $u(l, t)=0^{\circ} \mathrm{C}$ and the initial condition (v) $u(x, 0)=\frac{100}{l} x$

Since the subsequent steady state function $u_{s}(x)$ satisfies the equation
or

$$
\text { at } \quad x=0 \text {, we get }
$$

$$
\text { and at } x=l \text {, we get }
$$

$$
\begin{align*}
\frac{\partial^{2} u_{s}}{\partial x^{2}} & =0 \\
\frac{d^{2} u_{s}}{d x^{2}} & =0 \Rightarrow u_{s}(x)=c_{3} x+c_{4} \\
0 & =c_{4} \\
0 & =c_{3} l+0 \Rightarrow c_{3}=0 \\
u_{s}(x) & =0 \tag{4}
\end{align*}
$$

If $u_{T}(x, t)$ is the temperature in transient state then the temperature distribution in the $\operatorname{rod} u(x, t)$ can be expressed in the form

$$
\begin{align*}
u(x, t) & =u_{s}(x)+u_{T}(x, t) \\
\Rightarrow \quad u(x, t) & =u_{T}(x, t) \quad \mid \operatorname{As} u_{s}(x)=0 \tag{5}
\end{align*}
$$

Again from heat equation, we have

$$
\begin{equation*}
\frac{\partial u_{T}}{\partial t}=c^{2} \frac{\partial^{2} u_{T}}{\partial x^{2}} \tag{6}
\end{equation*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

The solution of equation (6) is

$$
\begin{array}{rlrl}
& & u_{T}(x, t) & =\left(c_{1} \cos p x+c_{2} \sin p x\right) c_{3} e^{-c^{2} p^{2} t} \\
\Rightarrow & u(x, t) & =\left(c_{1} \cos p x+c_{2} \sin p x\right) c_{3} e^{-c^{2} p^{2} t} \tag{7}\\
\text { At } & x & =0, u(0, t)=0 \\
\Rightarrow & & 0 & =c_{1} e^{-c^{2} p^{2} t} \Rightarrow c_{1}=0 .
\end{array}
$$

From (7), we get

$$
\begin{equation*}
u(x, t)=c_{2} \sin p x \cdot c_{3} e^{-c^{2} p^{2} t} \tag{8}
\end{equation*}
$$

Again at

$$
x=l, \quad u(l, t)=0
$$

$$
\Rightarrow \quad 0=c_{2} c_{3} \sin p l \cdot e^{-c^{2} p^{2} t} \Rightarrow \sin p l=0=\sin n \pi
$$

$$
\Rightarrow \quad p=\frac{n \pi}{l}
$$

From (8), we get

$$
\begin{align*}
& u(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{l} \cdot e^{-\frac{n^{2} c^{2} \pi^{2} t}{l^{2}}} \\
& \Rightarrow \quad u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} e^{-\frac{n^{2} \pi^{2} \pi^{2} t}{l^{2}}} \tag{9}\\
& \text { Using initial condition i.e., at } t=0, u=\frac{100}{l} x \text {, we get } \\
& u(x, 0)=\frac{100}{l} x=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \\
& \therefore \quad b_{n}=\frac{2}{l} \int_{0}^{l} \frac{100 x}{l} \cdot \sin \frac{n \pi x}{l} d x \\
& =\frac{200}{l^{2}} \int_{0}^{l} x \sin \frac{n \pi x}{l} d x=\frac{200}{l^{2}}\left[-\frac{x l}{n \pi} \cos \frac{n \pi x}{l}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right]_{0}^{l} \\
& \Rightarrow \quad b_{n}=\frac{200}{l^{2}}\left[\frac{-l^{2}}{n \pi} \cos n \pi\right]=\frac{200}{n \pi}(-1)^{n+1}
\end{align*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Hence from equation (9), we get

$$
u(x, t)=\frac{200}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{l} e^{-\frac{n^{2} \pi^{2} c^{2}}{l^{2}} t} .
$$

Example 10
The temperature of a bar 50 cm long with insulated sides is kept at $0^{\circ} \mathrm{C}$ at one end and $100^{\circ} \mathrm{C}$ at the other end until steady conditions prevail. The two ends are then suddenly insulated so that the temperature gradient is zero at each end thereafter. Find the temperature distribution.

Solution: The temperature function $u(x, t)$ is the solution of the one dimensional heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

When the steady state condition prevails $\frac{\partial u}{\partial t}=0$ and hence from (1), we get

$$
\frac{\partial^{2} u}{\partial x^{2}}=0
$$

On integrating, we get

At $\quad x=0, u=0$
$\therefore \quad 0=c_{2}$
and at $x=50, u=100$, from (2), we get

$$
100=50 c_{1}+0 \Rightarrow c_{1}=2
$$

Hence

$$
\begin{equation*}
u(x)=2 x \quad \Rightarrow \quad u(x, 0)=2 x \tag{3}
\end{equation*}
$$

and the subsequent temperature function $u_{1}(x, t)$ satisfy the boundary conditions

$$
u_{1}(0, t)=0, \quad u_{1}(50, t)=0
$$

Under these conditions, we find the steady state function $u_{s}(x)$ vanishes

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
i.e.,
$u_{s}(x)=0$
$\mid u_{1} \rightarrow u_{s}$
$\Rightarrow \quad u(x, t)=u_{s}(x)+u_{T}(x, t)=0+u_{T}(x, t)$
\Rightarrow
$u(x, t)=u_{T}(x, t)$
where $u_{T}(x, t)$ is the temperature in transient state which satisfied the boundary conditions

$$
u_{T}(0, t)=0=u_{T}(50, t)
$$

\therefore The temperature $u_{T}(x, t)$ can be obtained by the solution of one dimensional heat equation

$$
\begin{array}{ll}
\Rightarrow & u_{T}(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right) c_{3} e^{-c^{2} p^{2} t} \tag{5}\\
\text { At } & x=0, u_{T}=0 \\
\Rightarrow & 0=c_{1} c_{3} e^{-c^{2} p^{2} t} \Rightarrow c_{1}=0\left(\text { otherwise } u_{T}(x, t)=0\right)
\end{array}
$$

From (5), we get

$$
\begin{equation*}
u_{T}(x, t)=c_{2} c_{3} \sin p x \cdot e^{-c^{2} p^{2} t} \tag{6}
\end{equation*}
$$

And at

$$
x=50, \quad u_{T}=0
$$

$\Rightarrow \quad 0=c_{2} c_{3} \sin 50 p \cdot e^{-c^{2} p^{2} t}$
$\Rightarrow \quad \sin 50 p=0=\sin n \pi \Rightarrow p=\frac{n \pi}{50}$
\therefore From (6), we get

$$
u_{T}(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{50} e^{-\frac{n^{2} \pi^{2} c^{2} c^{2} t}{2500}}
$$

The general form of solution is

$$
\begin{align*}
& u_{T}(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{m \pi x}{50} e^{-\frac{n^{2} \pi^{2} c^{2}}{2500}} \tag{7}\\
& \text { At } \\
& t=0, u_{T}=2 x \text { (from equation 3) } \\
& \Rightarrow \quad 2 x=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{50} \\
& \therefore \quad b_{n}=\frac{2}{50} \int_{0}^{50} 2 x \sin \frac{n \pi x}{50} d x=\frac{2}{25}\left[-\frac{50}{n \pi} x \cos \frac{n \pi x}{50}+\frac{2500}{n^{2} \pi^{2}} \sin \frac{n \pi x}{50}\right]_{0}^{50} \\
& b_{n}=\frac{2}{25}\left[-\frac{2500}{n \pi} \cos n \pi+\frac{2500}{n^{2} \pi^{2}} \sin n \pi+0\right]=\frac{200}{n \pi}(-1)^{n+1}
\end{align*}
$$

Putting the value of b_{n} in equation (7), we get

$$
\begin{equation*}
u_{T}(x, t)=\sum_{n=1}^{\infty} \frac{200}{n \pi}(-1)^{n+1} \cdot \sin \frac{n \pi x}{50} \cdot e^{-\frac{n^{2} \pi^{2} c^{2} t}{2500}} \tag{8}
\end{equation*}
$$

Hence from (4) and (8), we get

$$
u(x, t)=\frac{200}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{50} \cdot e^{-\frac{n^{2} \pi^{2} c^{2} t}{2500}} . \quad \text { Ans. }
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL
 COURSE NAME: ENGINEERING MATHEMATICS IV
 COURSE CODE: SMT1204

Example 11

Two ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively until steady state prevails. The temperature at the end are changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively find the temperature distribution in the rod.

Solution: The heat equation in one dimensional is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{\partial^{2}} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

The boundary conditions are
(i) $u(0, t)=30^{\circ} \mathrm{C}$
(ii) $u(20, t)=80^{\circ} \mathrm{C}$

In steady condition $\quad \frac{\partial u}{\partial t}=0$
\therefore From (1), we get $\frac{\partial^{2} u}{\partial x^{2}}=0$, on integrating, we get

$$
\begin{equation*}
u(x)=c_{1} x+c_{2} \tag{2}
\end{equation*}
$$

at $\quad x=0, \quad u=30, \quad$ so $\quad 30=0+c_{2} \quad \Rightarrow \quad c_{2}=30$
and at $x=20 \quad u=80$ so $80=c_{1} \times 20+30 \Rightarrow c_{1}=\frac{5}{2}$
From equation (2), we get

$$
u(x)=\frac{5 x}{2}+30
$$

Now the temperatures at A and B are suddenly changed we have again gain transient state.
If $u_{1}(x, t)$ is subsequent temperature function then the boundary conditions are

$$
u_{1}(0, t)=40^{\circ} \mathrm{C} \text { and } u_{1}(20, t)=60^{\circ} \mathrm{C}
$$

and the initial condition i.e., at $t=0$, is given by equation (3)
Since the subsequent steady state function $u_{s}(x)$ satisfies the equation

$$
\frac{\partial^{2} u_{s}}{\partial x^{2}}=0 \quad \text { or } \quad \frac{d^{2} u_{s}}{d x^{2}}=0
$$

The solution of above equation is

$$
\begin{equation*}
u_{s}(x)=c_{3} x+c_{4} \tag{4}
\end{equation*}
$$

$$
\left\lvert\, \begin{aligned}
& u_{s}(0)=40^{\circ} \mathrm{C} \\
& u_{s}(20)=60^{\circ} \mathrm{C}
\end{aligned}\right.
$$

$$
\begin{equation*}
u_{s}(x)=x+40 \tag{5}
\end{equation*}
$$

Thus the temperature distribution in the rod at time t is given by

$$
\begin{array}{ll}
\quad u(x, t)=u_{s}(x)+u_{T}(x, t) \\
\Rightarrow \quad & u(x, t)=(x+40)+u_{T}(x, t) \tag{6}
\end{array}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
where $u_{T}(x, t)$ is the transient state function which satisfying the conditions
and

$$
\left.\begin{array}{rl}
u_{T}(0, t) & =u_{1}(0, t)-u_{s}(0)=40-40=0 \\
u_{T}(20, t) & =u_{1}(20, t)-u_{s}(20)=60-60=0 \\
u_{T}(x, 0) & =u_{1}(x, 0)-u_{s}(x)=\frac{5 x}{2}+30-x-40=\frac{3 x}{2}-10
\end{array}\right\}
$$

The general solution for $u_{T}(x, t)$ is given by

$$
\begin{equation*}
u_{T}(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{20} e^{-\frac{n^{2} \pi^{2} c^{2} t}{400}} \tag{7}
\end{equation*}
$$

At $t=0$, from (7), we get

$$
\begin{aligned}
& \frac{3 x}{2}-10=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{20} \\
& \therefore \quad b_{n}=\frac{2}{20} \int_{0}^{20}\left(\frac{3 x}{2}-10\right) \sin \frac{n \pi x}{20} d x \\
&=\frac{1}{10}\left[\left(\frac{3 x}{2}-10\right)\left(-\frac{20}{n \pi} \cos \frac{n \pi x}{20}\right)-\frac{3}{2}\left(-\frac{400}{n^{2} \pi^{2}} \sin \frac{n \pi x}{20}\right)\right]_{0}^{20} \\
&=\frac{1}{10}\left[-20\left(\frac{20}{n \pi}\right)(-1)^{n}-(-10)\left(\frac{20}{n \pi}\right)\right]=-\frac{20}{n \pi}\left[2(-1)^{n}+1\right]
\end{aligned}
$$

Putting the value of b_{n} in equation (7), we get

$$
\begin{equation*}
u_{T}(x, t)=-\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{2(-1)^{n}+1}{n} \sin \frac{n \pi x}{20} \cdot e^{-\frac{n^{2} \pi^{2} c^{2} t}{400}} \tag{8}
\end{equation*}
$$

From (6) and (8), we get

$$
u(x, t)=(x+40)-\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{2(-1)^{n}+1}{n} \cdot \sin \frac{n \pi x}{20} \cdot e^{-\frac{n^{2} \pi^{2} c^{2} t}{400}} . \text { Ans. }
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

TWO DIMENSIONAL HEAT EQUATIONS

We have

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2}\left(\nabla^{2} u\right) \tag{i}
\end{equation*}
$$

where $c^{2}=\frac{k}{s \rho}, k$ is the thermal conductivity of the body, s is the specific heat of the material of the body and ρ is the density.

In case of two dimensional, we may suppose that z-coordinate is constant.

$$
\begin{array}{c|l}
\therefore \quad \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+0 & \begin{array}{l}
\text { As } u(z)=\text { constant } \\
\therefore \frac{\partial^{2} u}{\partial z^{2}}=0
\end{array} \\
\Rightarrow \quad \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
\end{array}
$$

From (i) and (ii), we get

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) . \tag{A}
\end{equation*}
$$

In steady state u always independent of t so that $\frac{\partial u}{\partial t}=0$.
Hence from equation (A), we get

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 . \tag{B}
\end{equation*}
$$

The equation (B) is known as Laplace's equation.

Solution of Two dimensional Heat equation

We have

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \tag{i}
\end{equation*}
$$

Let

$$
\begin{equation*}
u(x, y, t)=X Y T \tag{ii}
\end{equation*}
$$

Putting the value of $u(x, y, t)$ from (ii) in equation (i), we get

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
X Y \frac{d T}{d t} & =T c^{2}\left(Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}\right) \\
\Rightarrow \quad & \frac{1}{C^{2} T} \frac{d T}{d t}
\end{aligned}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} . ~ l
$$

There are three possibilities
(a) $\frac{1}{X} \frac{d^{2} X}{d x^{2}}=0, \frac{1}{Y} \frac{d^{2} y}{d y^{2}}=0, \frac{1}{c^{2} T} \frac{d T}{d t}=0$
(b) $\frac{1}{X} \frac{d^{2} X}{d x^{2}}=p_{1}^{2}, \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=p_{2}^{2}, \frac{1}{c^{2} T} \frac{d T}{d t}=p^{2}$.
(c) $\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-p_{1}^{2}, \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-p_{2}^{2}, \frac{1}{c^{2} T} \frac{d T}{d t}=-p^{2}$.
where $p^{2}=p_{1}^{2}+p_{2}^{2}$.
Out of these three possibilities, we have to select that solution which suits the physical nature of the problem and the given boundary conditions.

Here

$$
u(x, y, t)=\left(c_{1} x+c_{2}\right)\left(c_{3} y+c_{4}\right) c_{5} \quad(\text { For } a)
$$

$$
\begin{equation*}
u(x, y, t)=\left(c_{1} e^{p x}+c_{2} e^{-p x}\right)\left(c_{3} e^{p y y}+c_{4} e^{-p y}\right) c_{5} e^{p^{2} c^{2} t} \tag{Forb}
\end{equation*}
$$

and

$$
\left.u(x, y, t)=\left(c_{1} \cos p_{1} x+c_{2} \sin p_{1} x\right)\left(c_{3} \cos p_{2} y+c_{4} \sin p_{2} y\right) c_{5} e^{-p^{2} c^{2} t} \quad \text { (For } c\right)
$$

Example 12
A thin rectangular plate whose surface is impervious to heat flow has $t=0$ an arbitrary distribution of temperature $f(x, y)$. Its four edges $x=0, x=a, y=0$ and $y=b$ are kept at zero temperature. Determine the temperature at a point of the plate as t increases.
Solution: The heat equation in two dimensional is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
u=X Y T \tag{2}
\end{equation*}
$$

From (1)

$$
X Y \frac{d T}{d t}=T c^{2}\left(Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}\right)
$$

$$
\Rightarrow \quad \frac{1}{c^{2} T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Since the physical nature of problem is periodic so we choosen the constant as follows:
From (3), we get

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-p_{1}^{2} \Rightarrow \frac{d^{2} X}{d x^{2}}+p_{1}^{2} X=0 \Rightarrow\left(D^{2}+p_{1}^{2}\right) X=0
$$

\therefore The A.E. is $\quad m^{2}+p_{1}^{2}=0 \Rightarrow m^{2}=i^{2} p_{1}^{2} \Rightarrow m= \pm i p_{1}$

$$
\Rightarrow \quad X=c_{1} \cos p_{1} x+c_{2} \sin p_{1} x
$$

Again from (3), we get
so

$$
\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-p_{2}^{2} \Rightarrow\left(D^{2}+p_{2}^{2}\right) X=0
$$

$$
Y=\left(c_{3} \cos p_{2} y+c_{4} \sin p_{2} y\right)
$$

and

$$
\begin{array}{rlrl}
& & \frac{1}{c^{2} T} \frac{d T}{d t} & =-p^{2}, \text { where } p^{2}=p_{1}^{2}+p_{2}^{2} . \\
\Rightarrow \quad \frac{d T}{T} & =-p^{2} c^{2} d t \Rightarrow \log _{e} T=-p^{2} c^{2} t+\log _{e} c_{5} \\
\Rightarrow \quad T & =c_{5} e^{-p^{2} c^{2} t}
\end{array}
$$

Hence from equation (2), we get

$$
\begin{equation*}
u=\left(c_{1} \cos p_{1} x+c_{2} \sin p_{1} x\right)\left(c_{3} \cos p_{2} y+c_{4} \sin p_{2} y\right) c_{5} e^{-p^{2} c^{2} t} \tag{4}
\end{equation*}
$$

Now the boundary conditions are:
(i) $u(0, y, t)=0$,
(ii) $u(a, y, t)=0$,
(iii) $u(x, 0, t)=0$; and (iv) $u(x, b, t)=0$

Using first boundary condition in (4), we get

$$
\begin{array}{rlrl}
0 & =c_{1}\left(c_{3} \cos p_{2} y+c_{4} \sin p_{2} y\right) c_{5} e^{-p^{2} c^{2} t} \\
\Rightarrow \quad & c_{1} & =0 \quad \text { (otherwise } u(x, y, t)=0)
\end{array}
$$

From (4), we get

$$
\begin{equation*}
u=c_{2} c_{5} \sin p_{1} x\left(c_{3} \cos p_{2} y+c_{4} \sin p_{2} y\right) e^{-p^{2} c^{2} t} \tag{5}
\end{equation*}
$$

Using second boundary condition in (5), we get

$$
\begin{aligned}
0 & =c_{2} c_{5} \sin p_{1} a\left(c_{3} \cos p_{2} y+c_{4} \sin p_{2} y\right) e^{-p^{2} c^{2} t} \\
\Rightarrow \quad \sin p_{1} a & =0=\sin m \pi \Rightarrow p_{1}=\frac{m \pi}{a}
\end{aligned}
$$

Next using 3rd boundary condition in (5), we get

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\left.0=c_{3} c_{2} c_{5} \sin p_{1} x \cdot e^{-p^{2} c^{2} t} \Rightarrow \quad c_{3}=0 \quad \text { (otherwise } u(x, y, t)=0\right)
$$

From (5), we get

$$
\begin{equation*}
u=c_{2} c_{4} c_{5} \sin p_{1} x \cdot \sin p_{2} y \cdot e^{-p^{2} c^{2} t} \tag{6}
\end{equation*}
$$

And using 4th boundary condition in (6), we get

$$
\begin{aligned}
0 & =c_{2} c_{4} c_{5} \sin p_{1} x \cdot \sin p_{2} b \cdot e^{-p^{2} c^{2} t} \\
\Rightarrow \quad \sin p_{2} b & =0=\sin n \pi \Rightarrow p_{2}=\frac{n \pi}{b}
\end{aligned}
$$

Since

$$
p^{2}=p_{1}^{2}+p_{2}^{2}
$$

so

$$
p^{2}=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)
$$

Putting the values of p_{1}, p_{2} and p in equation (6), we get

$$
u(x, y, t)=c_{2} c_{4} c_{5} \sin \frac{m \pi x}{a} \cdot \sin \frac{n \pi y}{b} e^{-\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right) c^{2} t}
$$

The general form of solution is

$$
\begin{equation*}
u(x, y, \mathrm{t})=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{n n} \sin \frac{m \pi x}{a} \cdot \sin \frac{n \pi y}{b} e^{-\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right) c^{2} t} \tag{7}
\end{equation*}
$$

and the initial condition is

$$
u(x, y, 0)=f(x, y)
$$

From (7), we get

$$
f(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{n m} \cdot \sin \frac{m \pi x}{a} \cdot \sin \frac{n \pi x}{b}
$$

which is the double Fourier since series of $f(x, y)$.

$$
\begin{equation*}
\therefore \quad A_{m n}=\frac{2}{a} \cdot \frac{2}{b} \int_{x=0}^{a} \int_{y=0}^{b} f(x, y) \sin \frac{m \pi x}{a} \sin \frac{n \pi x}{b} d x d y \tag{8}
\end{equation*}
$$

Hence the equation (7) is required temperature distribution with the equation (8). Ans.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Example 13
Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ which satisfies the conditions

$$
u(0, y)=u(l, y)=u(x, 0)=0 \text { and } u(x, a)=\sin \left(\frac{n \pi x}{l}\right) .
$$

Solution: We have

$$
\begin{align*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0 \tag{1}\\
u(x, y) & =\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} e^{p y}+c_{4} e^{-p y}\right) \tag{2}\\
x & =0, \quad u=0 \\
0 & =c_{1}\left(c_{3} e^{p y}+c_{4} e^{-p y}\right) \Rightarrow c_{1}=0 \quad[\text { otherwise } u(x, y)=0]
\end{align*}
$$

At

Putting the value of c_{1} in equation (2), we get

$$
\begin{align*}
u(x, y) & =c_{2} \sin p x\left(c_{3} e^{p y}+c_{4} e^{-p y}\right) \tag{3}\\
\text { at } x & =l, \quad u=0 \\
0 & =c_{2} \sin p l\left(c_{3} e^{p y}+c_{4} e^{-p y}\right) \\
\Rightarrow \quad \sin p l & =0=\sin n \pi \Rightarrow p=\frac{n \pi}{l} .
\end{align*}
$$

From equation (3), we get

$$
\begin{equation*}
u(x, y)=c_{2} \sin \frac{n \pi x}{l}\left(c_{3} e^{\frac{n \pi y}{l}}+c_{4} e^{-\frac{n \pi y}{l}}\right) \tag{4}
\end{equation*}
$$

At

$$
\begin{aligned}
& y=0, u=0, \text { we get } \\
& 0=2 c_{2} \sin \frac{n \pi x}{l}\left(c_{3}+c_{4}\right) \quad \Rightarrow \quad c_{3}+c_{4}=0 \quad \Rightarrow \quad c_{4}=-c_{3}
\end{aligned}
$$

Putting the value of c_{4} in equation (4), we get

$$
\left.u(x, y)=c_{2} c_{3} \sin \frac{n \pi x}{l}\left(e^{\frac{n \pi y}{l}}-e^{-\frac{n \pi y}{l}}\right)=2 c_{2} c_{3} \sin \frac{n \pi x}{l} \sin h \frac{n \pi y}{l} \right\rvert\, \sin h \theta=\frac{e^{\theta}-e^{-\theta}}{2}
$$

The general form of above solution is given as

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
u(x, y)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \sin h \frac{n \pi y}{l} \quad\left(2 c_{1} c_{2}=b_{n}\right)
$$

Putting $y=a$ and $u=\sin \frac{n \pi x}{l}$ in equation (5), we get

$$
\sin \frac{n \pi x}{l}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \sin h \frac{n \pi a}{l}
$$

Equating the coefficient of $\sin \frac{n \pi x}{l}$ on both sides, we get

$$
1=b_{n} \sin h \frac{n \pi a}{l} \Rightarrow b_{n}=\frac{1}{\sin h \frac{n \pi a}{l}}
$$

and

$$
b_{1}=b_{2}=b_{3}=\ldots \ldots . .=b_{n-1}=0
$$

Hence, from equation (5), we get

$$
u(x, y)=\frac{\sin (n \pi x / l)}{\sin h\left(\frac{n \pi a}{l}\right)} \cdot \sin h \frac{n \pi y}{l} \quad \text { Ans. }
$$

COURSE NAME: ENGINEERING MATHEMATICS IV
UNIT III

INTRODUCTION

Solution of Algebraic and Transcendental Equations

A polynomial equation of the form

$$
f(x)=p_{\mathrm{n}}(x)=a_{0} x^{\mathrm{n}-1}+a_{1} x^{\mathrm{n}-1}+a_{2} x^{\mathrm{n}-2}+\ldots+a_{\mathrm{n}-1} x+a_{\mathrm{n}}=0
$$

is called an Algebraic equation. For example,

$$
x^{4}-4 x^{2}+5=0,4 x^{2}-5 x+7=0 ; 2 x^{3}-5 x^{2}+7 x+5=0 \text { are algebraic equations. }
$$

An equation which contains polynomials, trigonometric functions, logarithmic functions, exponential functions etc., is called a Transcendental equation. For example,

$$
\tan x-e^{x}=0 ; \sin x-x \mathrm{e}^{2 x}=0 ; \quad x \mathrm{e}^{x}=\cos x
$$

are transcendental equations.
Finding the roots or zeros of an equation of the form $f(x)=0$ is an important problem in science and engineering. We assume that $f(x)$ is continuous in the required interval. A root of an equation $f(x)=0$ is the value of x, say $x=\alpha$ for which $f(\alpha)=0$. Geometrically, a root of an equation $f(x)=0$ is the value of x at which the graph of the equation $y=f(x)$ intersects the x - axis (see Fig. 1)

Fig. 1 Geometrical Interpretation of a root of $f(x)=0$

A number α is a simple root of $f(x)=0$; if $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$. Then, we can write

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS
COURSE MATERIAL
COURSE NAME: ENGINEERING MATHEMATICS IV
$f(x)$ as, $f(x)=(x-\alpha) g(x), g(\alpha) \neq 0$.
A number α is a multiple root of multiplicity m of $f(x)=0$,

> and

$$
f^{m}(\alpha)=0
$$

Then, $f(x)$ can be writhen as,

$$
f(x)=(x-\alpha)^{\mathrm{m}} g(x), g(\alpha) \neq 0
$$

A polynomial equation of degree n will have exactly n roots, real or complex, simple or multiple. A transcendental equation may have one root or no root or infinite number of roots depending on the form of $f(x)$.

The methods of finding the roots of $f(x)=0$ are classified as,

1. Direct Methods
2. Numerical Methods.

Direct methods give the exact values of all the roots in a finite number of steps. Numerical methods are based on the idea of successive approximations. In these methods, we start with one or two initial approximations to the root and obtain a sequence of approximations x_{0}, x_{1}, $\cdots{ }_{x k}$ which in the limit as $\mathrm{k} \rightarrow \infty$ converge to the exact root $x=a$. There are no direct methods for solving higher degree algebraic equations or transcendental equations. Such equations can be solved by Numerical methods. In these methods, we first find an interval in which the root lies. If a and b are two numbers such that $f(\mathrm{a})$ and $f(b)$ have opposite signs, then a root of f $(x)=0$ lies in between a and b. We take a or b or any valve in between a or b as first approximation x_{1}. This is further improved by numerical methods. Here we discuss few important Numerical methods to find a root of $f(x)=0$.

REGULA FALSI METHOD

This is another method to find the roots of $f(x)=0$. This method is also known as Regular False Method. In this method, we choose two points a and b such that $f(a)$ and $f(b)$ are of opposite signs. Hence a root lies in between these points. The equation of the chord joining the two points.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
$(a, f(a))$ and $(b, f(b))$ is given by

$$
\begin{equation*}
\frac{y-f(a)}{x-a}=\frac{f(b)-f(a)}{b-a} \tag{5}
\end{equation*}
$$

We replace the part of the curve between the points $[a, f(a)]$ and $[b, f(b)]$ by means of the chord joining these points and we take the point of intersection of the chord with the x axis as an approximation to the root (see Fig.3). The point of intersection is obtained by putting $y=0$ in (5), as

$$
\begin{equation*}
x=x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)} \tag{6}
\end{equation*}
$$

x_{1} is the first approximation to the root of $f(x)=0$.

Fig. 3 Method of False Position
If $\mathrm{f}\left(x_{1}\right)$ and $\mathrm{f}(a)$ are of opposite signs, then the root lies between a and x_{1} and we replace b by x_{1} in (6) and obtain the next approximation x_{2}. Otherwise, we replace a by x_{1} and generate the next approximation. The procedure is repeated till the root is obtained to the desired accuracy. This method is also called linear interpolation method or chord method.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

1. Find the root of the equation $2 x-\log x=7$ which lies between 3.5 and 4 by Regula-False method.
(JNTU 2006)

Solution

Given $f(x)=2 x-\log x_{10}=7$
Take $x_{0}=3.5, \quad x_{1}=4$
Using Regula Falsi method

$$
\begin{aligned}
& x_{2}=x_{0}-\frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f(x)} \cdot f\left(x_{0}\right) \\
& x_{2}=3.5-\frac{4-3.5}{(0.3979+0.5441)}(-0.5441)
\end{aligned}
$$

$$
x_{2}=3.7888
$$

Now taking $x_{0}=3.7888$ and $x_{1}=4$

$$
\begin{aligned}
& x_{3}=x_{0}-\frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)} \cdot f\left(x_{0}\right) \\
& x_{3}=3.7888-\frac{4-3.7888}{0.3988}(-0.0009) \\
& x_{3}=3.7893
\end{aligned}
$$

The required root is $=3.789$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
2. Find a real root of $x \mathrm{e}^{x}=3$ using Regula-Falsi method.

Solution

$$
\text { Given } f(x)=x \mathrm{e}^{x}-3=0
$$

$f(1)=\mathrm{e}-3=-0.2817<0$
$f(2)=2 \mathrm{e}^{2}-3=11.778>0$
$\therefore \quad$ One root lies between 1 and 2
Now taking $x_{0}=1, x_{1}=2$
Using Regula - Falsi method

$$
\begin{gathered}
x_{2}=x_{0}-\frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)} f\left(x_{0}\right) \\
\therefore \quad x_{2}=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)} \\
\\
x_{2}=\frac{1(11.778)-2(-0.2817)}{11.778+0.2817} \\
x_{2}=1.329
\end{gathered}
$$

Now $f\left(x_{2}\right)=f(1.329)=1.329 \mathrm{e}^{1.329}-3=2.0199>0$

$$
f(1)=-0.2817<0
$$

$\therefore \quad$ The root lies between 1 and 1.329 taking $x_{0}=1$ and $x_{2}=1.329$
$\therefore \quad$ Taking $x_{0}=1$ and $x_{2}=1.329$

$$
\begin{aligned}
\therefore \quad x_{3} & =\frac{x_{0} f\left(x_{2}\right)-x_{2} f\left(x_{0}\right)}{f\left(x_{2}\right)-f\left(x_{0}\right)} \\
& =\frac{1(2.0199)+(1.329)(0.2817)}{(2.0199)+(0.2817)} \\
& =\frac{2.3942}{2.3016}=1.04
\end{aligned}
$$

Now $f\left(x^{3}\right)=1.04 \mathrm{e}^{1.04}-3=-0.05<0$
The root lies between x^{2} and x^{3}

$$
\begin{aligned}
& \text { i.e., } 1.04 \text { and } 1.329 \\
& \therefore \quad\left[\because f\left(x_{2}\right)>0 \text { and } f\left(x_{3}\right)<0\right] \\
& \therefore \quad x_{4}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)}=\frac{(1.04)(-0.05)-(1.329)(2.0199)}{(-0.05)-(2.0199)}
\end{aligned}
$$

$x_{4}=1.08$ is the approximate root

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
3. Find a real root of $\mathrm{e}^{x} \sin x=1$ using Regula - Falsi method

Solution

Given $f(x)=\mathrm{e}^{x} \sin x-1=0$
Consider $x_{0}=2$

$$
\begin{aligned}
& f\left(x_{0}\right)=f(2)=\mathrm{e}^{2} \sin 2-1=-0.7421<0 \\
& f\left(x_{1}\right)=f(3)=\mathrm{e}^{3} \sin 3-1=0.511>0
\end{aligned}
$$

$\therefore \quad$ The root lies between 2 and 3
Using Regula - Falsi method

$$
x_{2}=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}
$$

$$
\begin{gathered}
x_{2}=\frac{2(0.511)+3(0.7421)}{0.511+0.7421} \\
x_{2}=2.93557 \\
f\left(x_{2}\right)=\mathrm{e}^{2.93557} \sin (2.93557)-1 \\
f\left(x_{2}\right)=-0.35538<0
\end{gathered}
$$

$\therefore \quad$ Root lies between x_{2} and x_{1}
i.e., lies between 2.93557 and 3

$$
\begin{aligned}
x_{3} & =\frac{x_{2} f\left(x_{1}\right)-x_{1} f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)} \\
& =\frac{(2.93557)(0.511)-3(-35538)}{0.511+0.35538}
\end{aligned}
$$

$$
x_{3}=2.96199
$$

$$
f\left(x_{3}\right)=\mathrm{e}^{2.90199} \sin (2.96199)-1=-0.000819<0
$$

$\therefore \quad$ root lies between x_{3} and x_{1}

$$
\begin{aligned}
& x_{4}=\frac{x_{3} f\left(x_{1}\right)-x_{1} f\left(x_{3}\right)}{f\left(x_{1}\right)-f\left(x_{3}\right)} \\
& x_{4}=\frac{2.96199(0.511)+3(0.000819)}{0.511+0.000819}=2.9625898
\end{aligned}
$$

$$
f\left(x^{4}\right)=\mathrm{e}^{2.9625898} \sin (2.9625898)-1
$$

$$
f\left(x^{4}\right)=-0.0001898<0
$$

$\therefore \quad$ The root lies between x_{4} and x_{1}

$$
x_{5}=\frac{x_{4} f\left(x_{1}\right)-x_{1} f\left(x_{4}\right)}{f\left(x_{1}\right)-f\left(x_{4}\right)}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& =\frac{2.9625898(0.511)+3(0.0001898)}{0.511+(0.0001898)} \\
x_{5} & =2.9626
\end{aligned}
$$

we have

$$
\begin{aligned}
& x_{4}=2.9625 \\
& x_{5}=2.9626 \\
& \therefore \quad x_{5}=x_{4}=2.962
\end{aligned}
$$

$\therefore \quad$ The root lies between 2 and 3 is 2.962
4. Find a real root of $x \mathrm{e}^{x}=2$ using Regula - Falsi method

Solution

$$
\begin{aligned}
& f(x)=x \mathrm{e}^{x}-2=0 \\
& f(0)=-2<0, \quad f(1)=\text { i.e., }-2=(2.7183)-2 \\
& f(1)=0.7183>0
\end{aligned}
$$

$\therefore \quad$ The root lies between 0 and 1
Considering $x_{0}=0, x_{1}=1$
$f(0)=f\left(x_{0}\right)=-2 ; \quad f(1)=f\left(x_{1}\right)=0.7183$
By Regula - Falsi method

$$
\begin{aligned}
& x_{2}=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)} \\
& x_{2}=\frac{0(0.7183)-1(-2)}{0.7183-(-2)}=\frac{2}{2.7183} \\
& x_{2}=0.73575
\end{aligned}
$$

Now $f\left(x^{2}\right)=f(0.73575)=0.73575 \mathrm{e}^{0.73575}-2$

$$
f\left(x_{2}\right)=-0.46445<0
$$

and $f\left(x_{1}\right)=0.7183>0$
$\therefore \quad$ The root x_{3} lies between x_{1} and x_{2}

$$
x_{3}=\frac{x_{2} f\left(x_{1}\right)-x_{1} f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV

$$
\begin{aligned}
& x_{3}=\frac{(0.73575)(0.7183)}{0.7183+0.46445} \\
& x_{3}=\frac{0.52848+0.46445}{1.18275} \\
& x_{3}=\frac{0.992939}{1.18275} \\
& x_{3}=0.83951 \quad f\left(x^{3}\right)=\frac{(0.83951)}{(0.83951) e^{-2}} \\
& f\left(x_{3}\right)=(0.83951) \mathrm{e}^{0.83951}-2 \\
& f\left(x_{3}\right)=-0.056339<0
\end{aligned}
$$

$\therefore \quad$ One root lies between x_{1} and x_{3}

$$
\begin{aligned}
& x_{4}=\frac{x_{3} f\left(x_{1}\right)-x_{1} f\left(x_{3}\right)}{f\left(x_{1}\right)-f\left(x_{3}\right)}=\frac{(0.83951)(0.7183)-1(-0.056339)}{0.7183+0.056339} \\
& x_{4}=\frac{0.65935}{0.774639}=0.851171
\end{aligned}
$$

$$
f\left(x_{4}\right)=0.851171 \mathrm{e} 0.851171-2=-0.006227<0
$$

Now x_{5} lies between x_{1} and x_{4}

$$
\begin{aligned}
& x_{5}=\frac{x_{4} f\left(x_{1}\right)-x_{1} f\left(x_{4}\right)}{f\left(x_{1}\right)-f\left(x_{4}\right)} \\
& x_{5}=\frac{(0.851171)(0.7183)+(.006227)}{0.7183+0.006227} \\
& x_{5}=\frac{0.617623}{0.724527}=0.85245
\end{aligned}
$$

Now $f\left(x_{5}\right)=0.85245 \mathrm{e}^{0.85245} \mathrm{e}^{0.85245}-2=-0.0006756<0$
$\therefore \quad$ One root lies between x_{1} and x_{5}, (i.e., x_{6} lies between x_{1} and x_{5})
Using Regula - Falsi method

$$
\begin{aligned}
& x_{6}=\frac{(0.85245)(0.7183)+0.0006756}{0.7183+0.0006756} \\
& x_{6}=0.85260
\end{aligned}
$$

Now $f\left(x_{6}\right)=-0.00006736<0$
$\therefore \quad$ One root x_{7} lies between x_{1} and x_{6}
By Regula - Falsi method

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV

$$
\begin{aligned}
& x_{7}=\frac{x_{6} f\left(x_{1}\right)-x_{1} f\left(x_{6}\right)}{f\left(x_{1}\right)-f\left(x_{6}\right)} \\
& x_{7}=\frac{(0.85260)(0.7183)+0.0006736}{0.7183+0.0006736} \\
& x_{7}=0.85260
\end{aligned}
$$

From $x^{6}=0.85260$ and $x_{7}=0.85260$
$\therefore \quad$ A real root of the given equation is 0.85260

NEWTON RAPHSON METHOD

This is another important method. Let x_{0} be approximation for the root of $f(x)=0$. Let $x_{1}=x_{0}+h$ be the correct root so that $f\left(x_{1}\right)=0$. Expanding $f\left(x_{1}\right)=f\left(x_{0}+h\right)$ by Taylor series, we get

$$
\begin{equation*}
f\left(x_{1}\right)=f\left(x_{1}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\ldots \ldots=0 \tag{1}
\end{equation*}
$$

For small valves of h, neglecting the terms with $h^{2}, h^{3} \ldots .$. etc,. We get

$$
\begin{equation*}
\therefore \quad f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
h & =-\frac{f\left(x_{0}\right)}{f^{1}\left(x_{0}\right)} \\
x_{1} & =x_{0}+h \\
& =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

$$
\therefore \quad x_{1}=x_{0}+h
$$

Proceeding like this, successive approximation $x_{2}, x_{3}, \ldots x_{\mathrm{n}+1}$ are given by,

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} . \tag{3}
\end{equation*}
$$

For $\mathrm{n}=0,1,2, \ldots \ldots$.
Note:
(i) The approximation x_{n+1} given by (3) converges, provided that the initial approximation x_{0} is chosen sufficiently close to root of $f(x)=0$.
(ii) Convergence of Newton-Raphson method: Newton-Raphson method is similar to iteration method

$$
\begin{equation*}
\phi(x)=x-\frac{f(x)}{f^{\prime}(x)} \tag{1}
\end{equation*}
$$

differentiating (1) w.r.t to ' x ' and using condition for convergence of iteration method i.e. $\left|\phi^{\prime}(x)\right|<1$,

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

We get

$$
\left|1-\frac{f^{\prime}(x) \cdot f^{\prime}(x)-f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right|<1
$$

Simplifying we get condition for convergence of Newton-Raphson method is

$$
\left|f(x) \cdot f^{\prime \prime}(x)\right|<[f(x)]^{2}
$$

Example 1

Using Newton-Raphson method (a) Find square root of a number (b) Find a reciprocal of a number.

Solution

(a) Let n be the number and $x=\sqrt{n} x^{2}=n$

If $f(x)=x^{2}-n=0$
Then the solution to $f(x)=x^{2}-n=0$ is $x=\sqrt{n}$
$f^{1}(x)=2 x$
by Newton Raphson method

$$
\begin{aligned}
& x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{1}\left(x_{i}\right)}=x_{i}-\left(\frac{x_{i}^{2}-n}{2 x_{i}}\right) \\
& x_{i+1}=\frac{1}{2}\left(x_{i}+\frac{x}{x_{i}}\right)
\end{aligned}
$$

using the above formula the square root of any number ' n ' can be found to required accuracy.
(b) To find the reciprocal of a number ' n '
$f(x)=\frac{1}{x}-n=0$
\therefore solution of (1) is $x=\frac{1}{n}$
$f^{1}(x)=-\frac{1}{x^{2}}$
Now by Newton-Raphson method,

$$
\begin{gathered}
x_{i+1}=x_{i}-\left(\frac{f\left(x_{i}\right)}{f^{1}\left(x_{i}\right)}\right) \\
x_{i+1}=x_{i}-\left(\frac{\frac{1}{x_{i}}-N}{-\frac{1}{x_{1}^{2}}}\right) \\
x_{i+1}=x_{i}\left(2-x_{i} n\right)
\end{gathered}
$$

using the above formula the reciprocal of a number can be found to required accuracy.
Example 2
Find the reciprocal of 18 using Newton-Raphson method
Solution
The Newton-Raphson method
$x_{i+1}=x_{i}\left(2-x_{i} n\right)$
considering the initial approximate value of x as $x_{0}=0.055$ and given $n=18$
$\therefore x_{1}=0.055[2-(0.055)(18)]$
$\therefore x_{1}=0.0555$
$x_{2}=0.0555[2-0.0555 \times 18]$
$x_{2}=(0.0555)(1.001)$
$x_{2}=0.0555$
Hence $x_{1}=x_{2}=0.0555$
\therefore The reciprocal of 18 is 0.0555 .

Example 3

Find a real root for $x \tan x+1=0$ using Newton-Raphson method
Solution
Given $f(x)=x \tan x+1=0$
$f^{1}(x)=x \sec 2 x+\tan x$
$f(2)=2 \tan 2+1=-3.370079<0$
$f(3)=2 \tan 3+1=-0.572370>0$
\therefore The root lies between 2 and 3
Take $x_{0}=\frac{2+3}{2}=2.5 \quad$ (average of 2 and 3), By Newton-Raphson method

$$
\begin{aligned}
& x_{i+1}=x_{i}-\left(\frac{f\left(x_{i}\right)}{f^{1}\left(x_{i}\right)}\right) \\
& x_{1}=x_{0}-\left(\frac{f\left(x_{0}\right)}{f^{1}\left(x_{0}\right)}\right) \\
& x_{1}=2.5-\frac{(-0.86755)}{3.14808} \\
& x_{1}=2.77558
\end{aligned}
$$

$$
x_{2}=x_{1}-\frac{f\left(x_{i}\right)}{f^{1}\left(x_{i}\right)} ;
$$

$$
f\left(x_{1}\right)=-0.06383, \quad f^{1}\left(x_{1}\right)=2.80004
$$

$$
x_{2}=2.77558-\frac{(-0.06383)}{2.80004}
$$

$$
x_{2}=2.798
$$

$$
f\left(x_{2}\right)=-0.001080, \quad f^{1}\left(x_{2}\right)=2.7983
$$

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{1}\left(x_{2}\right)}=2.798-\frac{[-0.001080]}{2.7983}
$$

$$
x_{3}=2.798 .
$$

$$
\therefore \quad x_{2}=x_{3}
$$

\therefore The real root of $x \tan x+1=0$ is 2.798
Example 4
Find a root of $\mathrm{e}^{x} \sin x=1$ using Newton-Raphson method
Solution
Given $f(x)=\mathrm{e}^{x} \sin x-1=0$
$f^{1}(x)=\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Take $x_{1}=0, x_{2}=1$
$f(0)=f\left(x_{1}\right)=\mathrm{e}^{0} \sin 0-1=-1<0$
$f(1)=f\left(x_{2}\right)=\mathrm{e}^{1} \sin (1)-1=1.287>0$
The root of the equation lies between 0 and 1.Using Newton Raphson Method

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{1}\left(x_{i}\right)}
$$

Now consider $x_{0}=$ average of 0 and 1

$$
\begin{aligned}
& x_{0}=\frac{1+0}{2}=0.5 \\
& x_{0}=0.5 \\
& f\left(x_{0}\right)=e^{0.5} \sin (0.5)-1 \\
& f^{1}\left(x_{0}\right)=e^{0.5} \sin (0.5)+e^{0.5} \cos (0.5)=2.2373 \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{1}\left(x_{0}\right)}=0.5-\frac{(-0.20956)}{2.2373}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=0.5936 \\
& f\left(x_{1}\right)=e^{0.5936} \sin (0.5936)-1=0.0128 \\
& f^{1}\left(x_{1}\right)=e^{0.5936} \sin (0.5936)+e^{0.5936} \cos (0.5936)=2.5136 \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{1}\left(x_{1}\right)}=0.5936-\frac{(0.0128)}{2.5136} \\
\therefore \quad & x_{2}=0.58854
\end{aligned}
$$

$$
\text { similarly } \quad x_{3}=x_{2}-\frac{f\left(x_{1}\right)}{f^{1}\left(x_{1}\right)}
$$

$$
f\left(x_{2}\right)=e^{0.58854} \sin (0.58854)-1=0.0000181
$$

$$
f^{1}\left(x_{2}\right)=e^{0.58854} \sin (0.58854)+e^{0.58854} \cos (0.58854)
$$

$$
f\left(x_{2}\right)=2.4983
$$

$$
\therefore \quad x_{3}=0.58854-\frac{0.0000181}{2.4983}
$$

$$
x_{3}=0.5885
$$

$$
\therefore \quad x_{2}-x_{3}=0.5885
$$

0.5885 is the root of the equation $e^{x} \sin x-1=0$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

GAUSS ELIMINATION METHOD

This is the elementary elimination method and it reduces the system of equations to an equivalent upper - triangular system, which can be solved by back substitution.

We consider the system of n linear equations in n unknowns

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots .+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots .+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots .+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

There are two steps in the solution viz., the elimination of unknowns and back substitution.

Example 1

Solve the following system of equations using Gaussian elimination.

$$
\begin{aligned}
& x_{1}+3 x_{2}-5 x_{3}=2 \\
& 3 x_{1}+11 x_{2}-9 x_{3}=4 \\
& -x_{1}+x_{2}+6 x_{3}=5
\end{aligned}
$$

Solution
An augmented matrix is given by

$$
\left[\begin{array}{rrr|r}
1 & 3 & -5 & 2 \\
3 & 11 & -9 & 4 \\
-1 & 1 & 6 & 5
\end{array}\right]
$$

We use the boxed element to eliminate any non-zeros below it.
This involves the following row operations

$$
\left[\begin{array}{rrr|r}
1 & 3 & -5 & 2 \\
3 & 11 & -9 & 4 \\
-1 & 1 & 6 & 5
\end{array}\right] \begin{aligned}
& R 2-3 \times R 1 \\
& R 3+R 1
\end{aligned} \Rightarrow\left[\begin{array}{rrr|r}
1 & 3 & -5 & 2 \\
0 & 2 & 6 & -2 \\
0 & 4 & 1 & 7
\end{array}\right]
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
And the next step is to use the 2 to eliminate the non-zero below it. This requires the final row operation

$$
\left[\begin{array}{rrr|r}
1 & 3 & -5 & 2 \\
0 & 2 & 6 & -2 \\
0 & 4 & 1 & 7
\end{array}\right]{ }_{R 3-2 \times R 2} \Rightarrow\left[\begin{array}{rrr|r}
1 & 3 & -5 & 2 \\
0 & 2 & 6 & -2 \\
0 & 0 & -11 & 11
\end{array}\right] .
$$

This is the augmented form for an upper triangular system, writing the system in extended form we

$$
\begin{aligned}
x_{1}+3 x_{2}-5 x_{3} & =2 \\
2 x_{2}+6 x_{3} & =-2 \\
-11 x_{3} & =11
\end{aligned}
$$

This gives $x_{3}=-1 ; x_{2}=2 ; x_{1}=-9$.

Example 2
Solve the system of equation
$2 x+4 y+6 z=22$
$3 x+8 y+5 x=27$
$-x+y+2 z=2$
Solution
$\left[\begin{array}{cccc}2 & 4 & 6 & 22 \\ 3 & 8 & 5 & 27 \\ -1 & 1 & 2 & 2\end{array}\right]$
$\boldsymbol{R}_{\mathbf{1}}{ }^{\prime}=\mathbf{1} / \mathbf{2} \boldsymbol{R}_{1}$
$\left[\begin{array}{cccc}1 & 2 & 3 & 11 \\ 3 & 8 & 5 & 27 \\ -1 & 1 & 2 & 2\end{array}\right]$
$\boldsymbol{R}_{\mathbf{2}}{ }^{\prime}=\boldsymbol{R}_{\mathbf{2}}-\mathbf{3} \boldsymbol{R}_{1} ; \boldsymbol{R}_{3}{ }^{\prime}=\boldsymbol{R}_{\mathbf{3}}+\boldsymbol{R}_{1}$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
$\left[\begin{array}{cccc}1 & 2 & 3 & 11 \\ 0 & 2 & -4 & -6 \\ 0 & 3 & 5 & 13\end{array}\right]$
$\boldsymbol{R}_{\mathbf{2}}{ }^{\prime}=\mathbf{1} / \mathbf{2} \boldsymbol{R}_{\mathbf{2}} ; \boldsymbol{R}_{\mathbf{1}}{ }^{\prime}=\boldsymbol{R}_{\mathbf{1}}-\mathbf{2} \boldsymbol{R}_{2} ; \boldsymbol{R}_{\mathbf{3}}{ }^{\prime}=\boldsymbol{R}_{\mathbf{3}}-\mathbf{3} \boldsymbol{R}_{\mathbf{2}}$
$\left[\begin{array}{cccc}1 & 0 & 7 & 17 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 11 & 22\end{array}\right]$
$R_{3}{ }^{\prime}=\mathbf{1} / \mathbf{1 1} R_{1} ; R_{1}{ }^{\prime}=R_{1}-\mathbf{7} R_{3} ; R_{1}{ }^{\prime}=R_{1}-\mathbf{7} R_{3} ; R_{\mathbf{2}}{ }^{\prime}=R_{\mathbf{2}}+\mathbf{2} R_{3}$
$\left[\begin{array}{llll}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$
Thus the solution to the system is $\mathrm{x}=3, \mathrm{y}=1, \mathrm{z}=2$.

ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after a single application of Gaussian elimination. Once a "solution" has been obtained, Gaussian elimination offers no method of refinement. The lack of refinements can be a problem because, as the previous section shows, Gaussian elimination is sensitive to rounding error. Numerical techniques more commonly involve an iterative method. For example, in calculus you probably studied Newton's iterative method for approximating the zeros of a differentiable function. In this section you will look at two iterative methods for approximating the solution of a system of n linear equations in n variables.

The Jacobi Method The first iterative technique is called the Jacobi method, after Carl Gustav Jacob Jacobi (1804-1851). This method makes two assumptions: (1) that the system given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots .+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots .+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots .+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL
 COURSE NAME: ENGINEERING MATHEMATICS IV
 COURSE CODE: SMT1204

has a unique solution and (2) that the coefficient matrix A has no zeros on its main diagonal. If any of the diagonal entries are zero, then rows or columns must be interchanged to obtain a coefficient matrix that has nonzero entries on the main diagonal. A matrix A is diagonally dominated if, in each row, the absolute value of the entry on the diagonal is greater than the sum of the absolute values of the other entries. More compactly, A is diagonally dominated if

$$
\left|A_{i}\right|>\sum_{i, j i=i}\left|A_{i j}\right| \text { for all } i
$$

To begin the Jacobi method, solve the first equation for the second equation for and so on, as follows

$$
\begin{aligned}
& x_{1}=1 / a_{11}\left[b_{1}-a_{12} x_{2}-\ldots-a_{1 n} x_{n}\right] \\
& x_{2}=1 / a_{22}\left[b_{2}-a_{21} x_{1}-\ldots-a_{2 n} x_{n}\right] \\
& \vdots \\
& x_{n}=1 / a_{n n}\left[b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\ldots\right]
\end{aligned}
$$

Then make an initial approximation of the solution, Initial approximation and substitute these values of into the right-hand side of the rewritten equations to obtain the first approximation. After this procedure has been completed, one iteration has been performed. In the same way, the second approximation is formed by substituting the first approximation's x -values into the right-hand side of the rewritten equations. By repeated iterations, you will form a sequence of approximations that often converges to the actual solution.

Example

Use the Jacobi method to approximate the solution of the following system of linear equations.

$$
\begin{aligned}
5 x_{1}-2 x_{2}+3 x_{3}= & -1 \\
-3 x_{1}+9 x_{2}+x_{3}= & 2 \\
2 x_{1}-x_{2}-7 x_{3}= & 3
\end{aligned}
$$

Solution

To begin, write the system in the form

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS
COURSE MATERIAL
COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& x_{1}=-\frac{1}{5}+\frac{2}{5} x_{2}-\frac{3}{5} x_{3} \\
& x_{2}=\frac{2}{9}+\frac{3}{9} x_{1}-\frac{1}{9} x_{3} \\
& x_{3}=-\frac{3}{7}+\frac{2}{7} x_{1}-\frac{1}{7} x_{2} .
\end{aligned}
$$

Let $\mathrm{x}_{1}=0, \mathrm{x}_{2}=0, \mathrm{x}_{3}=0$
as a convenient initial approximation. So, the first approximation is

$$
\begin{aligned}
& x_{1}=-\frac{1}{5}+\frac{2}{5}(0)-\frac{3}{5}(0)=-0.200 \\
& x_{2}=\frac{2}{9}+\frac{3}{9}(0)-\frac{1}{9}(0) \approx 0.222 \\
& x_{3}=-\frac{3}{7}+\frac{2}{7}(0)-\frac{1}{7}(0) \approx-0.429 .
\end{aligned}
$$

Continuing this procedure, you obtain the sequence of approximations shown in Table

n	0	1	2	3	4	5	6	7
x_{1}	0.000	-0.200	0.146	0.192	0.181	0.185	0.186	0.186
x_{2}	0.000	0.222	0.203	0.328	0.332	0.329	0.331	0.331
x_{3}	0.000	-0.429	-0.517	-0.416	-0.421	-0.424	-0.423	-0.423

Because the last two columns in the above table are identical, you can conclude that to three significant digits the solution is $\mathrm{x}_{1}=0.186, \mathrm{x}_{2}=0.331, \mathrm{x}_{3}=-0.423$.

GAUSS SEIDEL METHOD

Intuitively, the Gauss-Seidel method seems more natural than the Jacobi method. If the solution is converging and updated information is available for some of the variables, surely it makes sense to use that information! From a programming point of view, the Gauss-Seidel method is definitely more convenient, since the old value of a variable can be overwritten as soon as a new value becomes available. With the Jacobi method, the values of all variables from the previous iteration need to be retained throughout the current iteration, which means that twice as much as storage is needed. On the other hand, the Jacobi method is perfectly suited to parallel computation, whereas the Gauss-Seidel method is not. Because the Jacobi method updates or 'displaces' all of the variables at the same time (at the end of each iteration) it is often called the method of simultaneous displacements. The Gauss-Seidel

School of Science \& Humanities

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
method updates the variables one by one (during each iteration) so its corresponding name is the method of successive displacements.

Example 1
Solve the following system of equations by Gauss - Seidel method
$28 x+4 y-z=32$
$x+3 y+10 z=24$
$2 x+17 y+4 z=35$
Solution
Since the diagonal element in given system are not dominant, we rearrange the equation as follows
$28 x+4 y-z=32$
$2 x+17 y+4 z=35$
$x+3 y+10 z=24$
Hence
$x=1 / 28[32-4 y+z]$
$y=1 / 17[35-2 x-4 z]$
$\mathrm{z}=1 / 10[24-\mathrm{x}-3 \mathrm{y}]$
Setting $\mathrm{y}=0$ and $\mathrm{z}=0$, we get,
First iteration
$\mathrm{x}^{(1)}=1 / 28[32-4(0)+(0)]=1.1429$
$\mathrm{y}^{(1)}=1 / 17[35-2(1.1429)-4(0)]=1.9244$
$z^{(1)}=1 / 10[24-1.1429-3(1.9244)]=1.8084$
Second Iteration

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
$x^{(2)}=1 / 28[32-4(1.9244)+(1.8084)]=0.9325$
$\mathrm{y}^{(2)}=1 / 17[35-2(0.9325)-4(1.8084)]=1.5236$
$z^{(2)}=1 / 10[24-0.9325-3(1.5236)]=1.8497$
Third Iteration
$\mathrm{x}^{(3)}=1 / 28[32-4(1.5236)+(1.8497)]=0.9913$
$\mathrm{y}^{(3)}=1 / 17[35-2(0.9913)-4(1.8497)]=1.5070$
$z^{(3)}=1 / 10[24-0.9913-3(1.5070)]=1.8488$
Fourth Iteration
$x^{(4)}=1 / 28[32-4(1.5070)+(1.8488)]=0.9936$
$\mathrm{y}^{(4)}=1 / 17[35-2(0.9936)-4(1.8488)]=1.5069$
$\mathrm{z}^{(4)}=1 / 10[24-0.9936-3(1.5069)]=1.8486$
Fifth Iteration
$x^{(5)}=1 / 28[32-4(1.5069)+(1.8486)]=0.9936$
$y^{(5)}=1 / 17[35-2(0.9936)-4(1.8486)]=1.5069$
$\mathrm{z}^{(5)}=1 / 10[24-0.9936-3(1.5069)]=1.8486$
Since the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are same in the $4^{\text {th }}$ and $5^{\text {th }}$ Iteration, we stop the procedure here.
Hence $\mathrm{x}=0.9936, \mathrm{y}=1.5069, \mathrm{z}=1.8486$.

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF MATHEMATICS
COURSE MATERIAL
COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

UNIT IV

Interpolation

The process of computing intermediate values of $\left(x_{0}, x_{n}\right)$ for a function $y(x)$ from a given set of values of a function

Gregory-Newton's forward interpolation formula

$$
y(x)=y_{0}+\frac{\Delta y_{0}}{1} u+\frac{\Delta^{2} y_{0}}{2} u(u-1)+\frac{\Delta^{3} y_{0}}{6} u(u-1)(u-2)+\frac{\Delta^{4} y_{0}}{24} u(u-1)(u-2)(u-3)+---(a)
$$ where $u=\frac{1}{h}\left(x-x_{0}\right)$

Gregory-Newton's backward interpolation formula

$$
\begin{aligned}
& y(x)=y_{n}+\frac{\nabla y_{n}}{1} v+\frac{\nabla^{2} y_{n}}{2} v(v+1)+\frac{\nabla^{3} y_{n}}{6} v(v+1)(v+2)+\frac{\nabla^{4} y_{n}}{24} v(v+1)(v+2)(v+3)+--(b) \\
& \text { where } v=\frac{1}{h}\left(x-x_{n}\right)
\end{aligned}
$$

Remark:

(i) The process of finding the values of $y\left(x_{i}\right)$ outside the interval $\left(x_{0}, x_{n}\right)$ is called extrapolation
(ii) The interpolating polynomial is a function $p_{n}(x)$ through the data points $y_{i}=$ $f\left(x_{i}\right)=P_{n}\left(x_{i}\right) \mathrm{i}=0,12, . . \mathrm{n}$
(iii) Gregory-Newton's forward interpolation formula (a) can be applicable if the interval difference h is constant and used to interpolate the value of $y\left(x_{i}\right)$ nearer to beginning value x_{0} of the data set
(iv) If $y=f(x)$ is the exact curve and $y=p_{n}(x)$ is the interpolating polynomial then the Error in polynomial interpolation is $y(x)-p_{n}(x)$ given by Error $=\frac{h^{n+1} y^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right)--\left(x-x_{n}\right): x_{0}<x<x_{n}, x_{0}<c<x_{n}---(c)$
(v) Error in Newton's forward interpolation is Error $=\frac{h^{n+1} y^{(n+1)}(c)}{(n+1)!} u(u-1)(u-2)--(u-n): x_{0}<x<x_{n}, x_{0}<c<x_{n}----(d)$

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
(vi) Error in Newton's backward interpolation is

$$
\text { Error }=\frac{h^{n+1} y^{(n+1)}(c)}{(n+1)!} v(v+1)(v+2)--(v+n): x_{0}<x<x_{n}, x_{0}<c<x_{n}----(e)
$$

Problem 1: Estimate θ at $x=43 \& x=84$ from the following table .also find $y(x)$

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

Solution: Here all the intervals are equal with $\mathrm{h}=\mathrm{x}_{1}-\mathrm{x}_{0}=10$ we apply Newton interpolation
Difference Table:

x	$\theta=y$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
40	$184=y_{0}$	$y_{1}-y_{0}=20=\Delta y_{0}$				
50	$204=y_{1}$	$y_{2}-y_{1}=22=\Delta y_{1}$	$2=\Delta^{2} y_{0}$	$0=\Delta^{3} y_{0}$		
60	$226=y_{2}$	$y_{3}-y_{2}=24=\Delta y_{2}$	$2=\Delta^{2} y_{1}$	$0=\Delta^{3} y_{1}$	$0=\Delta^{4} y_{0}$	$0=\nabla^{5} y_{n}$
70	$250=y_{3}$	$y_{4}-y_{3}=26=\Delta y_{3}$	$2=\Delta^{2} y_{2}$	$0=\nabla^{3} y_{n}$	$0=\nabla^{4} y_{n}$	
80	$276=y_{4}$	$y_{n}-y_{n-1}=20.18=\nabla y_{n}$	$2=\nabla^{2} y_{n}$			
90	$304=y_{n}$					

Case (i): to find the value of θ at $x=43$

Since $x=43$ is nearer to x_{0} we apply Newton's forward Interpolation
$y(x)=y_{0}+\frac{\Delta y_{0}}{1} u+\frac{\Delta^{2} y_{0}}{2} u(u-1)+\frac{\Delta^{3} y_{0}}{6} u(u-1)(u-2)+\frac{\Delta^{4} y_{0}}{24} u(u-1)(u-2)(u-3)+---(1)$
where $u=\frac{1}{h}\left(x-x_{0}\right)=\frac{1}{10}(43-40)=\frac{3}{10}=0.3 \Rightarrow u-1=-0.7, u-2=-1.7, u-3=-2.7---$

Substituting (2) in (1), we get $y(x=43)=184+\frac{20}{1}\left(\frac{3}{10}\right)+\frac{2}{2}\left(\frac{3}{10}\right)\left(\frac{-7}{10}\right)+0=\frac{18979}{10}=189.79$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Case (ii): to find the value of θ at $x=84$

Since $x=84$ is nearer to x_{n} we apply Newton's backward Interpolation
$y(x)=y_{n}+\frac{\nabla y_{n}}{1} v+\frac{\nabla^{2} y_{n}}{2} v(v+1)+\frac{\nabla^{3} y_{n}}{6} v(v+1)(v+2)+\frac{\nabla^{4} y_{n}}{24} v(v+1)(v+2)(v+3)+---(3)$
where $v=\frac{1}{h}\left(x-x_{n}\right)=\frac{1}{10}(84-90)=\frac{-6}{10} \Rightarrow v+1=\frac{4}{10}, v+2=\frac{14}{10}, v+3=\frac{24}{10}---(4)$

Substituting (4) in (3), we get $y(x=84)=304+\frac{28}{1}\left(\frac{-6}{10}\right)+\frac{2}{2}\left(\frac{-6}{10}\right)\left(\frac{4}{10}\right)+0=\frac{7174}{25}=286.96$

To find polynomial $y(x)$, from (1) we get
$y(x)=y_{0}+\frac{\Delta y_{0}}{1} u+\frac{\Delta^{2} y_{0}}{2} u(u-1)+\frac{\Delta^{3} y_{0}}{6} u(u-1)(u-2)+\frac{\Delta^{4} y_{0}}{24} u(u-1)(u-2)(u-3)+---(1)$
where $u=\frac{1}{h}\left(x-x_{0}\right)=\frac{1}{10}(x-40) \Rightarrow u-1=\frac{1}{10}(x-50), u-2=\frac{1}{10}(x-60), u-3=\frac{1}{10}(x-60)---(2)^{1}$

Substituting (4) in (3), we get

$$
\begin{align*}
& y(x)=184+\frac{20}{1} \frac{1}{10}(x-40)+\frac{2}{2} \frac{1}{10}(x-40) \frac{1}{10}(x-50)+0=184+2 x-80+\frac{1}{100}\left(x^{2}-90 x+2000\right) \\
& \Rightarrow y(x)=\frac{1}{100}\left(x^{2}+110 x+12400\right)---------(5) \tag{5}
\end{align*}
$$

To Estimate θ at $x=43 \& x=84$, put $x=43 \& x=84$ in (5), we get

$$
y(43)=\frac{1}{100}(18979)=189.79 \text { and } y(84)=\frac{1}{100}(28696)=286.96
$$

Problem2: Estimate the number of students whose weight is between 60 lbs and 70 lbs from the following data

Weight(lbs)	$0-40$	$40-60$	$60-80$	$80-100$	$100-120$
No.Students	250	120	100	70	50

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Solution: let x-Weight less than 40 lbs, y-Number of Students, $\Rightarrow x_{0}=40, x_{1}=60, x_{2}=$ $80, x_{3}=100, x_{n}=120$, Here all the intervals are equal with $\mathrm{h}=\mathrm{x}_{1}-\mathrm{x}_{0}=20$ we apply Newton interpolation

Difference Table:

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
40	$250=y_{0}$	$y_{1}-y_{0}=120=\Delta y_{0}$			
60	$370=y_{1}$	$y_{2}-y_{1}=100=\Delta y_{1}$	$-20=\Delta^{2} y_{0}$	$-10=\Delta^{3} y_{0}$	
80	$470=y_{2}$	$y_{3}-y_{2}=70=\Delta y_{2}$	$-30=\Delta^{2} y_{1}$	$10=\nabla^{2} y_{n}$	$20=\Delta^{4} y_{0}=\nabla^{4} y_{n}$
100	$540=y_{3}$	$y_{n}-y_{n-1}=50=\nabla y_{n}$	$-20=\nabla^{2} y_{n}$		
120	$590=y_{n}$				

Case (i): to find the number of students y whose weight less than $60 \mathrm{lbs}(x=60)$

From the difference table the number of students y whose weight less than 60 lbs ($x=$ 60) $=370$

Case (ii): to find the number of students y whose weight less than $70 \mathrm{lbs}(x=70)$

Since $x=70$ is nearer to x_{0} we apply Newton's forward Interpolation

$$
\begin{equation*}
y(x)=y_{0}+\frac{\Delta y_{0}}{1} u+\frac{\Delta^{2} y_{0}}{2} u(u-1)+\frac{\Delta^{3} y_{0}}{6} u(u-1)(u-2)+\frac{\Delta^{4} y_{0}}{24} u(u-1)(u-2)(u-3)+ \tag{1}
\end{equation*}
$$

where $u=\frac{1}{h}\left(x-x_{0}\right)=\frac{1}{20}(70-40)=\frac{3}{2} \Rightarrow u-1=\frac{3}{2}, u-2=\frac{2}{2}, u-2=\frac{-1}{2}, u-3=\frac{-3}{2}$
Substituting
(2)
in
(1),
we
get
$y(x=70)=250+\frac{120}{1}\left(\frac{3}{2}\right)+\frac{-20}{2}\left(\frac{3}{2}\right)\left(\frac{1}{2}\right)+\frac{-10}{6}\left(\frac{3}{2}\right)\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)+\frac{20}{24}\left(\frac{3}{2}\right)\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=423.59$

The number of students y whose weight less than $70 \mathrm{lbs}(x=70)=424$

Number of students whose weight is between 60 lbs and $70 \mathrm{lbs}=$
$\left\{\begin{array}{c}\text { The number of students } y \\ \text { whose weight less than } 70 \mathrm{lbs}\end{array}\right\}-\left\{\begin{array}{c}\text { The number of students } y \\ \text { whose weight less than } 60 \mathrm{lbs}\end{array}\right\}=424-370=54$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Lagrange's interpolation formula Unequal intervals

$$
\begin{aligned}
& y(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)--\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)--\left(x_{0}-x_{n}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)--\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)--\left(x_{1}-x_{n}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)--\left(x-x_{n}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)--\left(x_{2}-x_{n}\right)} y_{2}+---+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)--\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right)--\left(x_{n}-x_{n-1}\right)} y_{n}
\end{aligned}
$$

Problem 3: Determine the value of $y(1)$ from the following data using Lagrange's Interpolation

x	-1	0	2	3
y	-8	3	1	12

Solution: given

x	$x_{0}=-1$	$x_{1}=0$	$x_{2}=3$	$x_{n}=3$
y	$y_{0}=-8$	$y_{1}=3$	$y_{2}=1$	$y_{n}=12$

Since the intervals ere not uniform we cannot apply Newton's interpolation.
Hence by Lagrange's interpolation for unequal intervals

$$
\begin{align*}
y(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{n}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{n}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{n}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{n}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right)\left(x_{n}-x_{n-1}\right)} y_{n} \\
y(x) & =\frac{(x-0)(x-2)(x-3)}{(-1-0)(-1-2)(-1-3)}(-8)+\frac{(x+1)(x-2)(x-3)}{(0+1)(0-2)(0-3)}(3) \tag{3}\\
& +\frac{(x+1)(x-0)(x-3)}{(2+1)(2-0)(2-3)}(1)+\frac{(x+1)(x-0)(x-2)}{(3+1)(3-0)(3-2)}(12)----
\end{align*}
$$

To compute $y(1)$ put $x=1$ in (1), we get

$$
\begin{align*}
& y(x=1)=\frac{(1-0)(1-2)(1-3)}{(-1-0)(-1-2)(-1-3)}(-8)+\frac{(1+1)(1-2)(1-3)}{(0+1)(0-2)(0-3)}(3) \\
& \quad+\frac{(1+1)(1-0)(1-3)}{(2+1)(2-0)(2-3)}(1)+\frac{(1+1)(1-0)(1-2)}{(3+1)(3-0)(3-2)}(12) \tag{12}\\
& \Rightarrow y(x=1)=2
\end{align*}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
To find polynomial $y(x)$, from (1) we get

$$
\begin{aligned}
& y(x)=\frac{2}{3}\left(x^{3}-5 x^{2}+6 x\right)+\frac{1}{2}\left(x^{3}-4 x^{2}+x+6\right) \\
&-\frac{1}{6}\left(x^{3}-2 x^{2}-3 x\right)+\frac{1}{1}\left(x^{3}-x^{2}-2 x\right)----(1) \\
& y(x)=x^{3}\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{6}+1\right)+x^{2}\left(\frac{-10}{3}+\frac{-4}{2}+\frac{2}{6}-1\right)+x\left(\frac{12}{3}+\frac{1}{2}+\frac{3}{6}-2\right)+\left(\frac{6}{2}\right) \\
& \Rightarrow y(x)=2 x^{3}-6 x^{2}+3 x+3---(2)
\end{aligned}
$$

To compute $y(1)$ put $x=1$ in (2), we get $y(x=1)=2-6+3+3=2$

Inverse interpolation

For a given set of values of x and y, the process of finding x (dependent) given y (independent) is called Inverse interpolation

$$
\begin{aligned}
& x(y)=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right)--\left(y-y_{n}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right)--\left(y_{0}-y_{n}\right)} x_{0}+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)--\left(y-y_{n}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)--\left(y_{1}-y_{n}\right)} x_{1} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)--\left(y-y_{n}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)--\left(y_{2}-y_{n}\right)} x_{2}+---+\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)--\left(y-y_{n-1}\right)}{\left(y_{n}-y_{0}\right)\left(y_{n}-y_{1}\right)--\left(y_{n}-y_{n-1}\right)} x_{n}
\end{aligned}
$$

Problem 4: Estimate the value of x given $y=100$ from the following data, $y(3)=6$ $y(5)=24, y(7)=58, y(9)=108, y(11)=174$

Solution: given

x	$x_{0}=3$	$x_{1}=5$	$x_{2}=7$	$x_{3}=9$	$x_{n}=11$
y	$y_{0}=6$	$y_{1}=24$	$y_{2}=58$	$y_{3}=108$	$y_{n}=174$

By applying Lagrange's inverse interpolation

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV COURSE CODE: SMT1204

$$
\begin{aligned}
& x(y)=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)\left(y-y_{n}\right)}{\left(y_{0}-x_{1}\right)\left(y_{0}-y_{2}\right)\left(y_{0}-y_{3}\right)\left(y_{0}-y_{n}\right)} x_{0}+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)\left(y-y_{n}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{1}-y_{n}\right)} x_{1} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{3}\right)\left(y-y_{n}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)\left(y_{2}-y_{3}\right)\left(y_{2}-y_{n}\right)} x_{2}+\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{n}\right)}{\left(y_{3}-y_{0}\right)\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)\left(y_{3}-y_{n}\right)} x_{3} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{n-1}\right)}{\left(y_{n}-y_{0}\right)\left(y_{n}-y_{1}\right)\left(y_{n}-y_{2}\right)\left(y_{n}-y_{n-1}\right)} x_{n} \\
& \Rightarrow x(100)=\frac{(100-24)(100-58)(100-108)(100-174)}{(6-24)(6-58)(6-108)(6-174)}(3)+\frac{(100-6)(100-58)(100-108)(100-174)}{(24-6)(24-58)(24-108)(24-174)} \\
& +\frac{(100-6)(100-24)(100-108)(100-174)}{(58-6)(58-24)(58-108)(58-174)}(7)+\frac{(100-6)(100-24)(100-58)(100-174)}{(108-6)(108-24)(108-58)(108-174)}(9) \\
& +\frac{(100-6)(100-24)(100-58)(100-108)}{(174-6)(174-24)(174-58)(174-108)}(11) \\
& \Rightarrow x(100)=0.35344-1.51547+2.88703+7.06759-0.13686=8.65573
\end{aligned}
$$

Newton's forward formula for Derivatives

$$
\begin{aligned}
& y^{\prime}(x)=\frac{d y}{d x}=\frac{1}{h}\left\{\Delta y_{0}+\frac{\Delta^{2} y_{0}}{2}(2 u-1)+\frac{\Delta^{3} y_{0}}{6}\left(3 u^{2}-6 u+2\right)+\frac{\Delta^{4} y_{0}}{24}\left(4 u^{3}-18 u^{2}+22 u-6\right)+--\right\} \\
& y^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left\{\Delta^{2} y_{0}+\frac{\Delta^{3} y_{0}}{1}(u-1)+\frac{\Delta^{4} y_{0}}{24}\left(12 u^{2}-36 u+22\right)+---\right\} \text { where } u=\frac{1}{h}\left(x-x_{0}\right)
\end{aligned}
$$

Newton's backward formula for Derivatives

$$
\begin{aligned}
& y^{\prime}(x)=\frac{d y}{d x}=\frac{1}{h}\left\{\nabla y_{n}+\frac{\nabla^{2} y_{n}}{2}(2 v+1)+\frac{\nabla^{3} y_{n}}{6}\left(3 v^{2}+6 v+2\right)+\frac{\nabla^{4} y_{n}}{24}\left(4 v^{3}+18 v^{2}+22 v+6\right)+---\right\} \\
& y^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left\{\nabla^{2} y_{n}+\frac{\nabla^{3} y_{n}}{1}(v+1)+\frac{\nabla^{4} y_{n}}{24}\left(12 v^{2}+36 v+22\right)+---\right\} \text { where } v=\frac{1}{h}\left(x-x_{n}\right)
\end{aligned}
$$

Problem 5: Find the rate of growth of population in the year 1941\&1961 from the following table

year	1931	1941	1951	1961	1971
Population	40.62	60.80	79.95	103.56	132.65

Solution: Here all the intervals are equal with $\mathrm{h}=\mathrm{x}_{1}-\mathrm{x}_{0}=10$ we apply Newton interpolation
Difference Table: let x-year, y-Population

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
1931	$40.62=y_{0}$	$y_{1}-y_{0}=20.18=\Delta y_{0}$			
1941	$60.80=y_{1}$	$y_{2}-y_{1}=19.15=\Delta y_{1}$	$-1.03=\Delta^{2} y_{0}$	$5.49=\Delta^{3} y_{0}$	
1951	$79.95=y_{2}$	$y_{3}-y_{2}=23.61=\Delta y_{2}$	$4.46=\Delta^{2} y_{1}$	$1.02=\nabla^{2} y_{n}$	$-4.47=\Delta^{4} y_{0}=\nabla^{4} y_{n}$
1196	$103.56=y_{3}$	$y_{n}-y_{n-1}=20.18=\nabla y_{n}$	$5.48=\nabla^{2} y_{n}$		
197	$132.65=y_{n}$				
1					

Case (i): to find rate of growth of population $\left(\frac{d y}{d x}\right)$ in the year $(x=1941)$

Since $x=1941$ is nearer to x_{0} we apply Newton's forwarded formula for derivative

$$
\begin{aligned}
& y^{\prime}(x)=\frac{d y}{d x}=\frac{1}{h}\left\{\Delta y_{0}+\frac{\Delta^{2} y_{0}}{2}(2 u-1)+\frac{\Delta^{3} y_{0}}{6}\left(3 u^{2}-6 u+2\right)+\frac{\Delta^{4} y_{0}}{24}\left(4 u^{3}-18 u^{2}+22 u-6\right)+---\right\} \\
& \text { where } u=\frac{1}{h}\left(x-x_{0}\right)=\frac{1}{10}(1941-1931)=1 \\
& \Rightarrow y^{\prime}(x=1941)=\frac{d y}{d x}=\frac{1}{10}\left\{20.18+\frac{-1.03}{2}(2-1)+\frac{5.49}{6}(3-6+2)+\frac{-4.47}{24}(4-18+22-6)+---\right\}
\end{aligned}
$$

The rate of growth of population $\left(\frac{d y}{d x}\right)$ in the year $(x=1941)=y^{\prime}(1941)=2.36425$

Case (ii): to find rate of growth of population $\left(\frac{d y}{d x}\right)$ in the year $(x=1961)$
Since $x=1961$ is nearer to x_{n} we apply Newton's backward formula for derivative

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
& y^{\prime}(x)=\frac{d y}{d x}=\frac{1}{h}\left\{\nabla y_{n}+\frac{\nabla^{2} y_{n}}{2}(2 v+1)+\frac{\nabla^{3} y_{n}}{6}\left(3 v^{2}+6 v+2\right)+\frac{\nabla^{4} y_{n}}{24}\left(4 v^{3}+18 v^{2}+22 v+6\right)+---\right\} \\
& v=\frac{1}{h}\left(x-x_{n}\right)=\frac{1}{10}(1961-1971)=-1 \\
& \Rightarrow y^{\prime}(x=1961)=\frac{d y}{d x}=\frac{1}{10}\left\{29.09+\frac{5.48}{2}(-2+1)+\frac{1.02}{6}(3-6+2)+\frac{-4.47}{24}(-4+18-22+6)+---\right\}
\end{aligned}
$$

The rate of growth of population $\left(\frac{d y}{d x}\right)$ in the year $(x=1961)=y^{\prime}(1961)=2.65525$

Problem 6 A rod is rotating in a plane, estimate the angular velocity and angular acceleration of the rod at time 6 secs from the following table

Time-t(sec)	0	0.2	0.4	0.6	0.8	1.0
Angle- θ (radians)	0	0.12	0.49	1.12	2.02	3.20

Solution: Here all the intervals are equal with $\mathrm{h}=\mathrm{x}_{1}-\mathrm{x}_{0}=0.2$ we apply Newton interpolation
Difference Table: let x-time (sec), y-Angle (radians)

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
0	$0=y_{0}$	$y_{1}-y_{0}=0.12=\Delta y_{0}$			
	$0.12=y_{1}$	$y_{2}-y_{1}=0.37=\Delta y_{1}$	$0.25=\Delta^{2} y_{0}$	$0.01=\Delta^{3} y_{0}$	
	$0.49=y_{2}$	$y_{3}-y_{2}=0.63=\Delta y_{2}$	$0.26=\Delta^{2} y_{1}$	$0.01=\Delta^{3} y_{1}$	$0=\Delta^{4} y_{0}$
	$1.12=y_{3}$	$y_{4}-y_{3}=0.90=\Delta y_{3}$	$0.27=\Delta^{2} y_{2}$	$0.01=\nabla^{2} y_{n}$	$0=\nabla^{4} y_{n}$
	$2.02=y_{4}$	$y_{n}-y_{n-1}=1.18=\nabla y_{n}$	$0.28=\nabla^{2} y_{n}$		
	$3.20=y_{n}$				

Case (i): to find Angular velocity $\left(\frac{d y}{d x}\right)$ in time $(x=0.6 \mathrm{sec})$

Since $x=0.6 \sec$ is nearer to x_{n} we apply Newton's backward formula for derivative

$$
\begin{aligned}
& y^{\prime}(x)=\frac{d y}{d x}=\frac{1}{h}\left\{\nabla y_{n}+\frac{\nabla^{2} y_{n}}{2}(2 v+1)+\frac{\nabla^{3} y_{n}}{6}\left(3 v^{2}+6 v+2\right)+\frac{\nabla^{4} y_{n}}{24}\left(4 v^{3}+18 v^{2}+22 v+6\right)+---\right\} \\
& v=\frac{1}{h}\left(x-x_{n}\right)=\frac{1}{0.2}(0.6-1.0)=-2 \\
& y^{\prime}(x=0.6)=\frac{d y}{d x}=\frac{1}{0.2}\left\{1.18+\frac{0.28}{2}(-4+1)+\frac{0.01}{6}(12-12+2)+\frac{0}{24}\left(4 v^{3}+18 v^{2}+22 v+6\right)+---\right\} \\
& \Rightarrow \text { The angular velocity } y^{\prime}(x=0.6)=3.81665 \mathrm{radian} / \mathrm{sec}
\end{aligned}
$$

Case (ii): to find Angular acceleration $\left(\frac{d^{2} y}{d x^{2}}\right)$ in time ($x=0.6 \mathrm{sec}$)
Since $x=0.6 \sec$ is nearer to x_{n} we apply Newton's backward formula for derivative

$$
y^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left\{\nabla^{2} y_{n}+\frac{\nabla^{3} y_{n}}{1}(v+1)+\frac{\nabla^{4} y_{n}}{24}\left(12 v^{2}+36 v+22\right)+---\right\}
$$

where $v=\frac{1}{h}\left(x-x_{n}\right)=\frac{1}{0.2}(0.6-1.0)=-2$
$\Rightarrow y^{\prime \prime}(x=0.6)=\frac{1}{0.2^{2}}\left\{0.28+\frac{0.01}{1}(-2+1)+0\right\}$
$y^{\prime \prime}(0.6)=6.75$ radian $/ \mathrm{sec}^{2}$

Numerical Integration

Trapezoidal rule

$$
\int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{h}{2}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+-\right) \text { where } h=\frac{1}{n}\left(x_{n}-x_{0}\right), n-\right.\text { number of int ervals }
$$

Simpson's $1 / 3$ rule

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
$\int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{h}{3}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{2}+y_{4}+y_{6}+-\right)+4\left(y_{1}+y_{3}+y_{5}+-\right)\right\}$
where $h=\frac{1}{n}\left(x_{n}-x_{0}\right), n-$ number of int ervals

Simpson's $\mathbf{3} / 8$ rule

$$
\int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{3 h}{8}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{3}+y_{6}+y_{9}+-\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+-\right)\right\}
$$

where $h=\frac{1}{n}\left(x_{n}-x_{0}\right), n-$ number of int ervals

Remarks:

1) Geometrical interpretation of $\int_{x_{0}}^{x_{n}} y(x) d x$ is approximated by the sum of area of the trapezium
2) Simpson's $1 / 3$ rule is applicable when number of intervals are multiples of 2 and Simpson's $3 / 8$ rule is applicable when number of intervals are multiples of 3
3) The error in trapezoidal rule is $\frac{b-a}{12} h^{2} M$ where $M=\max \left\{y_{0}^{\prime \prime}, y_{1}^{\prime \prime}, \ldots\right\}$ which is of order h^{2}
4) The error in Simpson's $1 / 3$ rule rule is $\frac{b-a}{180} h^{4} M$ where $M=$ $\max \left\{y_{0}^{\prime \prime \prime \prime}, y_{2}^{\prime \prime \prime \prime}, \ldots\right\}$ which is of order h^{4}

Problem7: Evaluate $\int_{1}^{6} \frac{1}{1+x^{2}} d x$ using (i) Trapezoidal rule (ii) Simpson's $1 / 3$ rule (iii) Simpson's $3 / 8$ rule and Compare your answer with actual value.

Solution: Given $\int_{0}^{6} \frac{1}{1+x^{2}} d x=\int_{x_{0}}^{x_{0}+n h} y(x) d x \Rightarrow y(x)=\frac{1}{1+x^{2}}, x_{0}=0, x_{0}+n h=6---(1)$

Choose the number of interval $(\mathrm{n})=6$ so that we can apply all rules

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF MATHEMATICS
COURSE MATERIAL
COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

x	$x_{0}=0$	$x_{1}=x_{0}+h=1$	$x_{2}=x_{1}+h=2$	$x_{3}=3$	$x_{4}=4$	$x_{5}=5$	$x_{n}=6$
$y(x)=\frac{1}{1+x^{2}}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{17}$	$\frac{1}{26}$	$\frac{1}{37}$

case(i) Trapezoidal rule

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{h}{2}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+--\right)\right. \\
& \Rightarrow \int_{0}^{6} \frac{1}{1+x^{2}} d x=\frac{1}{2}\left\{\left(1+\frac{1}{37}\right)+2\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{10}+\frac{1}{17}+\frac{1}{26}\right)\right\}=1.410799
\end{aligned}
$$

Case (ii) Simpson's $1 / 3$ rule

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{h}{3}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{2}+y_{4}+y_{6}+-\right)+4\left(y_{1}+y_{3}+y_{5}+-\right)\right\} \\
& \int_{0}^{6} \frac{1}{1+x^{2}} d x=\frac{1}{3}\left\{\left(1+\frac{1}{37}\right)+2\left(\frac{1}{5}+\frac{1}{17}\right)+4\left(\frac{1}{2}+\frac{1}{10}+\frac{1}{26}\right)\right\}=1.36617
\end{aligned}
$$

Case(iii) Simpson's $3 / 8$ rule

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{3 h}{8}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{3}+y_{6}+y_{9}+-\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+--\right)\right\} \\
& \int_{0}^{6} \frac{1}{1+x^{2}} d x=\frac{3}{8}\left\{\left(1+\frac{1}{37}\right)+2\left(\frac{1}{10}\right)+3\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{17}+\frac{1}{26}\right)\right\}=1.35708
\end{aligned}
$$

Comparison
Exact value $\int_{0}^{6} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1}(x)\right]_{x=0}^{x=6}=\tan ^{-1}(6)-\tan ^{-1}(0)=1.40565$

Hence trapezoidal rule gives better approximation than Simpson's rule.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Problem 8: By dividing the range into 10 equal part Determine the value of $\int_{0}^{\pi} \sin x d x$ using (i) Trapezoidal rule (ii) Simpson's $1 / 3$ rule (iii) Simpson's $3 / 8$ rule and Compare your answer with actual value.

Solution: Given $\int_{0}^{\pi} \sin x d x=\int_{x_{0}}^{x_{0}+n h} y(x) d x \Rightarrow y(x)=\sin x, x_{0}=0, x_{0}+n h=\pi$ and $n=10$
given number of int $\operatorname{ervals}(n)=10,(1) \Rightarrow h=\frac{1}{n}\left(x_{n}-x_{0}\right)=\frac{1}{10}(\pi-0)=\frac{\pi}{10}$

x	$x_{0}=0$	$x_{1}=x_{0}+h=\frac{\pi}{10}$	$x_{2}=x_{1}+h=\frac{2 \pi}{10}$	$x_{3}=\frac{3 \pi}{10}$	$x_{4}=\frac{4 \pi}{10}$	$x_{5}=\frac{5 \pi}{10}$	$x_{6}=\frac{6 \pi}{10}$
$y(x)=\sin (x)$	$\begin{aligned} & \sin (0) \\ & =0 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{\pi}{10}\right) \\ & =0.30901 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{2 \pi}{10}\right) \\ & =0.58779 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{3 \pi}{10}\right) \\ & =0.80901 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{4 \pi}{10}\right) \\ & =0.95106 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{5 \pi}{10}\right) \\ & =1.0 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{6 \pi}{10}\right) \\ & =0.95106 \end{aligned}$
x	$x_{7}=\frac{7 \pi}{10}$	$x_{8}=\frac{8 \pi}{10}$	$x_{9}=\frac{9 \pi}{10}$	$x_{n}=\pi$			
$y(x)=\sin (x)$	$\begin{aligned} & \sin \left(\frac{7 \pi}{10}\right) \\ & =0.80902 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{8 \pi}{10}\right) \\ & =0.58779 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{9 \pi}{10}\right) \\ & =0.30902 \end{aligned}$	$\begin{aligned} & \sin \left(\frac{10 \pi}{10}\right) \\ & =0 \end{aligned}$			

Case (i) Trapezoidal rule

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{h}{2}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+-\right)\right. \\
& \Rightarrow \int_{0}^{6} \frac{1}{1+x^{2}} d x=\frac{1}{2}\{(0+0)+2(0.30901+0.58779+0.80901+0.95106+1.0+0.95106+0.80901+0.58779+0.3090 \\
& \Rightarrow \int_{0}^{6} \frac{1}{1+x^{2}} d x=1.98352
\end{aligned}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Case (ii) Simpson's $1 / 3$ rule

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{h}{3}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{2}+y_{4}+y_{6}+-\right)+4\left(y_{1}+y_{3}+y_{5}+-\right)\right\} \\
& \Rightarrow \int_{0}^{6} \sin (x) d x=\frac{\pi}{30}\{(0+0)+2(0.58779+0.95106+0.95106+0.58779)+4(0.30901+0.80901+1.0+0.80901+ \\
& \Rightarrow \int_{0}^{6} \sin (x) d x=2.00010
\end{aligned}
$$

Case (iii) Simpson's $3 / 8$ rule
$\int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{3 h}{8}\left\{\left(y_{0}+y_{n}\right)+2\left(y_{3}+y_{6}+y_{9}+-\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+-\right)\right\}$
This rule cannot be applied \sin ce n is not a multipole of 3

Comparison

Exact value $\int_{0}^{\pi} \sin (x) d x=[-\cos (x)]_{x=0}^{x=\pi}=-[\cos (\pi)-\cos (0)]=2.0$

Hence, Simpson's $1 / 3$ rule gives better approximation than trapezoidal rule

SATHYABAMA

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

UNIT V

5.1 Numerical Solution to Ordinary Differential Equation

Introduction

An ordinary differential equation of order n in of the form $F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0$, where $y^{(n)}=\frac{d^{n} y}{d x^{n}}$.

We will discuss the Numerical solution to first order linear ordinary differential equations by Taylor series method, and Runge - Kutta method, given the initial condition $y\left(x_{0}\right)=y_{0}$.

5.1.1 Taylor Series method

Consider the first order differential equation of the form $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$.
The solution of the above initial value problem is obtained in two types
> Power series solution
> Point wise solution
(i) Power series solution

$$
y(x)=y\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{1!} y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots
$$

(ii) Point wise solution

$$
y(x)=y\left(x_{0}\right)+\frac{h}{1!} y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots
$$

Problems:

1. Using Taylor series method find y at $x=0.1$ if $\frac{d y}{d x}=y+1, y(0)=1$.

Solution:

$$
\text { Given } \frac{d y}{d x}=y+1 \text { and } x_{0}=0, y_{0}=1, h=0.1
$$

Taylor series formula for $y(0.1)$ is

$$
y(x)=y\left(x_{0}\right)+\frac{h}{1!} y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots
$$

$y^{\prime}(x)=y+1$	$y^{\prime}(0)=y(0)+1=1+1=2$
$y^{\prime \prime}(x)=y^{\prime}$	$y^{\prime \prime}(0)=y^{\prime}(0)=2$
$y^{\prime \prime \prime}(x)=y^{\prime \prime}$	$y^{\prime \prime \prime}(0)=y^{\prime \prime}(0)=2$

Substituting in the Taylor's series expansion:

$$
\begin{gathered}
y(0.1)=y(0)+h y^{\prime}(0)+\frac{h^{2}}{2!} y^{\prime \prime}(0)+\cdots \\
=1+0.1 \times 2+\frac{0.01}{2} \times 2+\frac{0.001}{6} \times 2+\cdots \\
y(0.1)=1.2103
\end{gathered}
$$

2. Find the Taylor series solution with three terms for the initial
value problem $\frac{d y}{d x}=x^{2}+y, y(1)=1$

Solution:

$$
\text { Given } \frac{d y}{d x}=x^{2}+y, x_{0}=1, y_{0}=1
$$

$y^{\prime}(x)=x^{2}+y$	$y^{\prime}(1)=1+1=2$
$y^{\prime \prime}(x)=2 x+y^{\prime}$	$y^{\prime \prime}(1)=2+2=4$
$y^{\prime \prime \prime}(x)=2+y^{\prime \prime}$	$y^{\prime \prime \prime}(1)=2+4=6$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$y^{\prime v}(x)=y^{\prime \prime \prime}$	$y^{\prime v}(1)=6$

The Taylor's series expansion about a point $x=x_{0}$ is given by

$$
y(x)=y\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{1!} y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots
$$

Hence at $x=1$

$$
\begin{gathered}
y(x)=y(1)+\frac{(x-1)}{1!} y^{\prime}(1)+\frac{(x-1)^{2}}{2!} y^{\prime \prime}(1)+\frac{(x-1)^{3}}{3!} y^{\prime \prime \prime}(1)+\cdots \\
y(x)=1+2 \frac{(x-1)}{1!}+4 \frac{(x-1)^{2}}{2!}+6 \frac{(x-1)^{3}}{3!}+\cdots
\end{gathered}
$$

5.1.2 Runge-Kutta method

Runge-kutta methods of solving initial value problem do not require the calculations of higher order derivatives and give greater accuracy. The Runge-Kutta formula possesses the advantage of requiring only the function values at some selected points. These methods agree with Taylor series solutions up to the term in h^{r} where r is called the order of that method.

Fourth-order Runge-Kutta method

Let $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$ be given.

Working rule to find $\boldsymbol{y}\left(\boldsymbol{x}_{1}\right)$

The value of $y_{n}=y\left(x_{n}\right)$ where $x_{n}=x_{n-1}+h$ where h is the incremental value for x is obtained as below:

Compute the auxiliary values

$$
\begin{gathered}
k_{1}=h f\left(x_{0}, y_{0}\right) \\
k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)
\end{gathered}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

$$
\begin{aligned}
k_{3} & =h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
k_{4} & =h f\left(x_{0}+h, y_{0}+k_{3}\right)
\end{aligned}
$$

Compute the incremental value for y

$$
\Delta y=\frac{k_{1}+2 k_{2}+2 k_{3}+k_{4}}{6}
$$

The iterative formula to compute successive value of y is $y_{n+1}=y_{n}+\Delta y$

Problems

1. Find the value of y at $x=0$.2. Given $\frac{d y}{d x}=x^{2}+y, y(0)=1$, using R-K method of order IV.

Sol:

Here $f(x, y)=x^{2}+y, y(0)=1$
Choosing $h=0.1, x_{0}=0, y_{0}=1$
Then by R-K fourth order method,

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& k_{1}=h f\left(x_{0}, y_{0}\right)=0 \\
& k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)=0.00525 \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)=0.00525 \\
& k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right)=0.0110050 \\
& y(0.1)=1.0053
\end{aligned}
$$

To find $y(0.2)$ given $x_{2}=x_{1}+h=0.2, y_{1}=1.0053$

$$
\begin{aligned}
& y_{2}=y_{1}+\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& k_{1}=h f\left(x_{1}, y_{1}\right)=0.0110 \\
& k_{2}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right)=0.01727 \\
& k_{3}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right)=0.01728 \\
& k_{4}=h f\left(x_{1}+h, y_{1}+k_{3}\right)=0.02409
\end{aligned}
$$

$$
y(0.2)=1.0227
$$

5.2 Numerical Solution to Partial Differential Equations

5.2.1 Solution of Laplace Equation and Poisson equation

Partial differential equations with boundary conditions can be solved in a region by replacing the partial derivative by their finite difference approximations. The finite difference approximations to partial derivatives at a point $\left(x_{i}, y_{i}\right)$ are given below:

$$
\begin{gathered}
u_{x}\left(x_{i}, y_{i}\right)=\frac{u\left(x_{i+1}, y_{i}\right)-u\left(x_{i}, y_{i}\right)}{h} \\
u_{y}\left(x_{i}, y_{i}\right)=\frac{u\left(x_{i}, y_{i+1}\right)-u\left(x_{i}, y_{i}\right)}{k} \\
u_{x x}\left(x_{i}, y_{i}\right)=\frac{u_{x}\left(x_{i+1}, y_{i}\right)-u_{x}\left(x_{i}, y_{i}\right)}{h}=\frac{u\left(x_{i+1}, y_{i}\right)-2 u\left(x_{i}, y_{i}\right)+u\left(x_{i-1}, y_{i}\right)}{h^{2}} \\
u_{y y}\left(x_{i}, y_{i}\right)=\frac{u_{y}\left(x_{i}, y_{i+1}\right)-u_{y}\left(x_{i}, y_{i}\right)}{k}=\frac{u\left(x_{i}, y_{i+1}\right)-2 u\left(x_{i}, y_{i}\right)+u\left(x_{i}, y_{i-1}\right)}{k^{2}}
\end{gathered}
$$

Graphical Representation

The $x y$-plane is divided into small rectangles of length h and breadth k by drawing the lines $x=i h$ and $y=i k$, parallel to the coordinate axes. The points of intersection of these lines are called grid points or mesh points or lattice points. The grid points $\left(x_{i}, y_{j}\right)$ is denoted

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
by (i, j) and is surrounded by the neighbouring grid points $(i-1, j)$ to the left, $(i+1, j)$ to the right, $(i, j+1)$ above and $(i, j-1)$ below.

Note

The most general linear P.D.E of second order can be written as

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=f(x, y)
$$

where A, B, C, D, E, F are in general functions of x and y.
A partial differential equation in the above form is said to be

- Elliptic if $B^{2}-4 A C<0$
- Parabolic if $B^{2}-4 A C=0$

Hyperbolic if $B^{2}-4 A C>0$

Standard Five Point Formula (SFPF)

$$
u_{i, j}=\frac{1}{4}\left[u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right]
$$

Diagonal Five Point Formula (DFPF)

$$
u_{i, j}=\frac{1}{4}\left[u_{i-1, j-1}+u_{i+1, j-1}+u_{i+1, j+1}+u_{i-1, j+1}\right]
$$

Solution of Laplace equation $\mathbf{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=\mathbf{0}$

Leibmann's Iteration Process

We compute the initial values of $u_{1}, u_{2}, \ldots . . u_{9}$ by using standard five point formula and diagonal five point formula .First we compute u_{5} by standard five point formula (SFPF).

$$
u_{5}=\frac{1}{4}\left[b_{7}+b_{15}+b_{11}+b_{3}\right]
$$

School of Science \& Humanities

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
We compute $u_{1}, u_{3}, u_{7} \cdot u_{9}$ by using diagonal five point formula (DFPF)
$u_{1}=\frac{1}{4}\left[b_{1}+u_{5}+b_{3}+b_{15}\right]$
$u_{3}=\frac{1}{4}\left[u_{5}+b_{5}+b_{3}+b_{7}\right]$
$u_{7}=\frac{1}{4}\left[b_{13}+u_{5}+b_{15}+b_{11}\right]$
$u_{9}=\frac{1}{4}\left[b_{7}+b_{11}+b_{9}+u_{5}\right]$

Finally we compute $u_{2}, u_{4}, u_{6}, u_{8}$ by using standard five point formula.
$u_{2}=\frac{1}{4}\left[u_{5}+b_{3}+u_{1}+u_{3}\right]$
$u_{4}=\frac{1}{4}\left[u_{1}+u_{5}+b_{15}+u_{7}\right]$
$u_{6}=\frac{1}{4}\left[u_{3}+u_{9}+u_{5}+b_{7}\right]$
$u_{8}=\frac{1}{4}\left[u_{7}+b_{11}+u_{9}+u_{5}\right]$

Solve the system of simultaneous equations obtained by finite difference method to get the value at the interior mesh points. This process is called Leibmann's method.

Problems

1.Solve the equation $\Delta^{2} \boldsymbol{u}=\mathbf{0}$ for the following mesh, with boundary values as shown using Leibmann's iteration process.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

Sol:

Let $u_{1}, u_{2} \ldots \ldots u_{9}$ be the values of u at the interior mesh points of the given region. By symmetry about the vertical lines AB and the horizontal line CD , we observe

$$
u_{1}=u_{3}=u_{9}=u_{7} ; u_{2}=u_{8} ; u_{4}=u_{6}
$$

Hence it is enough to find u_{1}, u_{2}, u_{4},
Using SFPF $u_{5}=1500$
Using DFPF $u_{1}=1125 u_{2}=1187.5 u_{4}=1437.5$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Gauss-seidel scheme
$u_{1}=\frac{1}{4}\left[1500+u_{2}+u_{4}\right]$
$u_{2}=\frac{1}{4}\left[2 u_{1}+u_{5}+1000\right]$
$u_{4}=\frac{1}{4}\left[2000+u_{5}+u_{4}\right]$
$u_{5}=\frac{1}{4}\left[2 u_{2}+2 u_{4}\right]$
The iteration values are tabulated as follows

Iteration No k	u_{1}	u_{2}	u_{4}	u_{5}
0	1500	1125	1187.5	1437.5
1	1031.25	1125	1375	1250
2	1000	1062.5	1312.5	1187.5
3	968.75	1031.25	1281.25	1156.25
4	953.1	1015.3	1265.6	1140.6
5	945.3	1007.8	1257.8	1132.8
6	941.4	1003.9	1253.9	1128.9
7	939.4	1001.9	1251.9	1126.9
8	938.4	1000.9	1250.9	1125.9
9	937.9	1000.4	1250.4	1125.4
10	937.7	1000.2	1250.2	1125.2
11	937.6	1000.1	1250.1	1125.1
12	937.6	1000.1	1250.1	1125.1

$u_{1}=u_{3}=u_{7}=u_{9}=937.6, u_{2}=u_{8}=1000.1, u_{4}=u_{6}=1250.1, u_{5}=1125.1$

Solution of Poisson equation

An equation of the type $\Delta^{2} u=f(x, y)$ i.e., is called Poisson's equation where $f(x, y)$ is a
function of x and y. Substituting the finite difference approximations to the partial differential coefficients, we get $u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=h^{2} f(i h, j h)$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204
Problem: 1
Solve the poisson equation $\Delta^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ and $\quad u=0$ on the boundary .assume mesh length $h=1$ unit.

Sol:

Here the mesh length $\Delta x=h=1$

Applying the formula below at the interior point of the mesh we get a system of simultaneous

$$
\text { equations } u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=h^{2} f(i h, j h)
$$

$u_{2}+u_{3}-4 u_{1}=-150$
$u_{1}+u_{4}-4 u_{3}=-120$
$u_{2}+u_{3}-4 u_{4}-150$
$u_{1}=u_{4}=75, u_{2}=82.5, u_{3}=67.5$

5.3 Solution of One dimensional heat equation

In this chapter, we will discuss the finite difference solution of one dimensional heat flow equation by Explicit and implicit method

Explicit Method(Bender-Schmidt method

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
Consider the one dimensional heat equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$.This equation is an example of parabolic equation.

$$
\begin{align*}
& +=\lambda u_{i+1, i}+1-2 \lambda u_{i, i}+\lambda u_{i-1, i} u_{i, j 1} \tag{1}\\
& \lambda=\frac{k}{2}
\end{align*}
$$

Expression (1) is called the explicit formula and it valid for $0<\lambda \leq \frac{1}{2}$
If $\lambda=1 / 2$ then (1) is reduced into

$$
\begin{equation*}
u i, j_{+}=\frac{1}{-}\left[u_{i+1, j}+\lambda u_{i-1, i} 1 \quad 2,\right. \tag{2}
\end{equation*}
$$

This formula is called Bender-Schmidt formula.

Implicit method (Crank- Nicholson method)

$-\lambda u_{i-1, j+1}+2(1+\lambda) u_{i, j+1}-\lambda u_{i+1, j+1}=\lambda u_{i-1, j}+2(1-\lambda) u_{i, j}+\lambda u_{i+1, j}$

This expression is called Crank-Nicholson's implicit scheme. We note that Crank Nicholson's scheme converges for all values of λ

When $\lambda=1$, i.e., $\mathrm{k}=\mathrm{ah}^{2}$ the simplest form of the formula is given by

$$
\Rightarrow u_{i, j+1}=\frac{1}{-}\left[u_{i+1, j+1}+u_{i-1, j+1}+u_{i-1, i}+u_{i+1, i}\right]
$$

4

The use of the above simplest scheme is given below.

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

The value of u at $A=A v e r a g e ~ o f ~ t h e ~ v a l u e s ~ o f ~ u ~ a t ~ B, ~ C, ~ D, ~ E ~ A ~$

Note

In this scheme, the values of u at a time step are obtained by solving a system of linear equations in the unknowns u_{i}.

Solved Examples

1.Solve $u_{x x}=2 u_{t}$ when $\mathbf{u}(\mathbf{0}, \mathbf{t})=\mathbf{0}, \mathbf{u}(\mathbf{4}, \mathbf{t})=\mathbf{0}$ and with initial condition $\mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{x}(\mathbf{4}-\mathbf{x})$ upto $\mathbf{t}=$ sec assuming $x \neq 1$

Sol:

By Bender-Schmidt recurrence relation,

$$
\begin{equation*}
u i, j^{+}=\frac{1}{-}\left[u_{i+1, j}+\lambda u_{i-1, j}\right] \tag{1}
\end{equation*}
$$

2

$$
=\frac{a h}{2}
$$

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

k

For applying eqn(1), we choose 2

Here $\mathrm{a}=2, \mathrm{~h}=1$. Then $\mathrm{k}=1$

By initial conditions, $u(x, 0)=x(4-x)$, we have

$$
\begin{aligned}
u_{i, 0} & =i(4 \quad \text { ₹ }) i \quad 1,2,3 \\
& =\quad=
\end{aligned}
$$

,u1,0 $3, u 2,0 \quad 4, u 3,0 \quad 3$

By boundary conditions, $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}_{0}=0, \mathrm{u}(4,0)=0 \Rightarrow u_{4, i}=0 \forall i$
Values of u at $t=1$

$$
\begin{aligned}
& i, 1=\frac{1}{2}\left[u_{i-1,0}+u_{i+1,0}\right] \\
& u_{1,1}=\frac{1}{2}\left[u_{0,0}+u_{2,0}\right]=2 \\
& u_{2,1}=\frac{1}{2}\left[u_{1,0}+u_{3,0}\right]=3 \\
& u_{3,1}=\frac{1}{2}\left[u_{2,0}+u_{4,0}\right]=2
\end{aligned}
$$

The values of u up to $t=5$ are tabulated below.

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF MATHEMATICS
COURSE MATERIAL
COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

jli	0	1	2	3	4
1	0	2	3	2	0
2	0	1.5	2	1.5	0
3	0	1	1.5	1	0
4	0	0.75	1	0.75	0
5	0		0.75	0.5	

2.Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$

$$
=x^{2}\left(25-x^{2}\right)
$$

subject to the conditions

$$
\mathrm{u}(0, \mathrm{t})=\mathrm{u}(5, \mathrm{t})=0 \text { and }
$$

$u(x, 0)$ taking $\mathrm{h}=1$ and $\mathrm{k}=1 / 2$, tabulate the values of u upto $\mathrm{t}=4 \mathrm{sec}$.

Solution

Here $\mathrm{a}=1, \mathrm{~h}=1$

For $\lambda=1 / 2$, we must choose $k=a^{2} / 2$
$\mathrm{K}=1 / 2$

By boundary conditions
$u(0, t)=0 \Rightarrow u_{0, j}=0 \forall j u(5, t) 0 u_{5, j}$
$0 j u\left(x=0 \Rightarrow x^{2} \neq 2 \delta x^{2}\right)^{2}\left(25 i^{2}\right.$
), $i 0,1, \neq 3,3,4,5-$
$\Rightarrow \quad=\quad=$
$=\quad=\quad=$

COURSE NAME: ENGINEERING MATHEMATICS IV

```
ui,0
    84,u3,0 144,u4,0 = =
    144,u5,0 0
```

By Bender-schmidt realtion,

$$
\begin{aligned}
& \\
& u i,+\stackrel{+}{j} 1 \quad \\
& =\frac{1}{[u i} \\
& 1, j \quad u i \\
& 1, j]
\end{aligned}
$$

2

The values of u upto 4 sec are tabulated as follows

jli	0	1	2	3	4	5
0	0	24	84	144	144	0
0.5	0	42	84	144	72	0
1	0	42	78	78	57	0
1.5	0	39	60	67.5	39	0
2	0	30	53.25	49.5	33.75	0
2.5	0	26.625	39.75	43.5	24.75	0
3	0	19.875	35.0625	32.25	21.75	0
3.5	0	17.5312	26.0625	28.4062	16.125	0
4	0	13.0312	22.9687	21.0938	14.2031	0

School of Science \& Humanities

SATHYABAMA
 INSTITUTE OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF MATHEMATICS
 COURSE MATERIAL

COURSE NAME: ENGINEERING MATHEMATICS IV
COURSE CODE: SMT1204

5.4 Solution of One dimensional wave equation

Introduction

$$
t t=a^{2} u_{x x}
$$

The one $\quad+\lambda^{2} a^{2} u_{i-1, j}+u_{i+1, i}-u_{i, j-1}$ dimensional wave equation is of hyperbolic type. In this chapter, we discuss the finite difference solution of the one dimensional wave equation $u_{t t} \quad a^{2} u_{x x}$.

Explicit method to solve u

$$
\begin{equation*}
u_{i, j \downarrow}=2\left(1-3 a^{2}\right) u_{i, j} \tag{1}
\end{equation*}
$$

Where $=\mathrm{k} / \mathrm{h}$
Formula (1) is the explicit scheme for solving the wave equation.

Problems

1.Solve numerically , $4 u_{x x} u_{\pi}$ with the boundary conditions $\mathbf{u}(0, t)=\mathbf{0}, \mathbf{u}(4, \mathbf{t})=\mathbf{0}$ and the initial conditions $\bar{u}_{\bar{t}}(x, 0) \quad 0 \& u(x, 0) \quad x(4 \quad x)$, taking $\mathbf{h}=\mathbf{1}$. Compute u upto t=3sec.

Solution

Here $\mathrm{a}^{2}=4$

$$
\mathrm{A}=2 \text { and } \mathrm{h}=1
$$

We choose $\mathrm{k}=\mathrm{h} / \mathrm{a} \Rightarrow \mathrm{k}=1 / 2$
The finite difference scheme is

$$
\begin{aligned}
& u_{i, j+1}=u_{i-1, j}+u_{i+1, j}-u_{i, j-1} \\
& u(0, t)=0 \Rightarrow u_{0, j} \& u(4, t)=0 \Rightarrow u_{4, j}=0 \forall j \\
& u(x, 0)=x(4-x) \Rightarrow u_{i, 0}=i(4-i), i=0,1,2,3,4 \\
& u_{0,0}=0, u_{1,0}=3, u_{2,0}=3, u_{4,0}=0 \\
& u_{1,1}=4+0 / 2=2 \\
& u_{2,1}=3, u_{3,1}=2
\end{aligned}
$$

The values of u for steps $t=1,1.5,2,2.5,3$ are calculated using (1) and tabulated below.

$\mathbf{j} \mathbf{l i}$	$\mathbf{0}$	\mathbf{l}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
0	0	3	4	3	0
1	0	2	3	2	0
2	0	0	0	0	0
3	0	-2	3	-2	0
4	0	-3	-4	3	0
5	0	-2	-3	-2	0
6	0	0	0	0	0

