SMT1105 ENGINEERING MATHS- II UNIT-I

 MULTIPLE INTEGRALS
INTRODUTION

* When a function $f(x)$ is integrated with respect to x between the limits a and b, we get the double integral $\int_{a}^{b} f(x) d x$.
* If the integrand is a function $f(x, y)$ and if it is integrated with respect to x and y repeatedly between the limits x_{0} and x_{1} (for x) and between the limits y_{0} and y_{1} (for y) we get a double integral that is denoted by the symbol $\int_{y_{0}}^{y_{1}} \int_{x_{0}}^{x_{1}} f(x, y) d x d y$.
* Extending the concept of double integral one step further, we get the triple integral, denoted by

$$
\int_{z_{0}}^{z_{1}} \int_{y_{0}}^{y_{1}} \int_{x_{0}}^{x_{1}} f(x, y, z) d x d y d z
$$

EVALUATION OF DOUBLE AND TRIPLE

INTEGRALS

* To evaluate $\int_{y_{0}}^{y_{1}} \int_{x_{0}}^{x_{1}} f(x, y) d x d y$ first integrate $f(x, y)$ with respect to x partially, treating y as constant temporarily, between the limits x_{0} and x_{1}.
* Then integrate the resulting function of y with respect to y between the limits y_{0} and y_{1} as usual.
* In notation $\int_{y_{0}}^{y_{1}}\left[\int_{x_{0}}^{x_{1}} f(x, y) d x\right] d y \quad$ (for double integral)

$$
\int_{z_{0}}^{z_{1}}\left\{\int_{y_{0}}^{y_{1}}\left[\int_{x_{0}}^{x_{1}} f(x, y, z) d x\right] d y\right\} d z \quad \text { (for triple }
$$ integral).

Note:

* Integral with variable limits should be the innermost integral and it should be integrated first and then the constant limits.

REGION OF INTEGRATION

Consider the double integral $\int_{c}^{d} \int_{\varphi_{1}(y)}^{\varphi_{2}(y)} f(x, y) d x d y, x$ varies from $\varphi_{1}(y)$ to $\varphi_{2}(y)$ and y varies from c to d. (i.e) $\varphi_{1}(y) \leq x \leq$ $\varphi_{2}(y)$ and $c \leq y \leq d$. These inequalities determine a region in the $x y$ - plane, which is shown in the following figure.This region ABCD is known as the region of integration

EXAMPLE:1
Evaluate $\int_{0}^{1} \int_{0}^{2} y^{2} x d y d x$
Solution:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2} y^{2} x d y d x= & \int_{0}^{1} x[y / 3]_{0}^{2} d x \\
& =\frac{8}{3} \int_{0}^{1} x d x \\
& =\frac{8}{3}\left[\frac{x^{2}}{2}\right]_{0}^{1} \\
& =\frac{4}{3}
\end{aligned}
$$

EXAMPLE :2

Evaluate $\int_{2}^{3} \int_{1}^{2} \frac{1}{x y} d y d x$
Solution:

$$
\begin{aligned}
\int_{2}^{3} \int_{1}^{2} \frac{1}{x y} d y & d x=\int_{2}^{3}[\log x]_{1}^{2} \frac{1}{y} d y \\
& =(\log 2-\log 1) \int_{2}^{3} \frac{1}{y} d y \\
& =\log 2[\log y]_{2}^{3} \\
& =\log 2(\log 3-\log 2) \\
& =\log 2 \cdot \log (3 / 2)
\end{aligned}
$$

EXAMPLE :3
Evaluate $\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} x y^{2} z d z d y d x$
Solution:

$$
\begin{aligned}
\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} x y^{2} z d z d y d x & =\int_{0}^{2} \int_{1}^{3}\left[\frac{z^{2}}{2}\right]_{1}^{2} x y^{2} d y d x \\
& =\int_{0}^{2} \int_{1}^{3} \frac{3}{2} x y^{2} d y d x \\
& =\frac{3}{2} \int_{0}^{2}\left[\frac{y^{3}}{3}\right]_{1}^{3} x d x \\
& =\frac{26}{2}\left[\frac{x^{2}}{2}\right]_{0}^{2}=26
\end{aligned}
$$

EXAMPLE:4
Evaluate $\int_{0}^{1} d x \int_{0}^{2} d y \int_{1}^{2} y x^{2} z d z$
Solution:

$$
\begin{aligned}
\int_{0}^{1} d x \int_{0}^{2} d y \int_{1}^{2} y x^{2} z d z & =\int_{0}^{1} d x \int_{0}^{2} d y\left[\frac{z^{2}}{2}\right]_{1}^{2} y x^{2} \\
& =\frac{3}{2} \int_{0}^{1}\left[\frac{y^{2}}{2}\right]_{0}^{2} x^{2} d x \\
& =\frac{3}{2} \int_{0}^{1} 2 x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{2}=1
\end{aligned}
$$

EXAMPLE:5

Evaluate $\int_{0}^{\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{2} \sin \theta d r d \theta d \emptyset$

Solution:

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{2} \sin \theta d r d \theta d \emptyset & =\int_{0}^{\pi} \int_{0}^{\frac{\pi}{2}} \sin \theta\left[\frac{r^{3}}{3}\right]_{0}^{1} d \theta d \emptyset \\
& =\frac{1}{3} \int_{0}^{\pi} \int_{0}^{\frac{\pi}{2}} \sin \theta d \theta d \emptyset \\
& =\frac{1}{3} \int_{0}^{\pi}[-\cos \theta]_{0}^{\frac{\pi}{2}} d \emptyset \\
& =\frac{1}{3} \int_{0}^{\pi} d \emptyset \\
& =\frac{\pi}{3}
\end{aligned}
$$

EXAMPLE :6

Evaluate $\int_{0}^{1} \int_{0}^{x} d x d y$
Solution:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{x} d y d x= & \int_{0}^{1}[y]_{0}^{x} d x \\
& =\int_{0}^{1} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

EXAMPLE :7

Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{y} x y z d x d y d z$
Solution:

$$
\begin{aligned}
\mathrm{I} & =\int_{0}^{a} \int_{0}^{x}\left[\int_{0}^{y} z d z\right] x y d y d x \\
& =\int_{0}^{a} \int_{0}^{x}\left[\frac{z^{2}}{2}\right]_{0}^{y} x y d y d x \\
& =\int_{0}^{a} \int_{0}^{x}\left[\frac{y^{2}}{2}\right] x y d y d x \\
& =\int_{0}^{a} \int_{0}^{x}\left[\frac{y^{3}}{2}\right] d y x d x=\int_{0}^{a}\left[\frac{y^{4}}{8}\right]_{0}^{x} x d x \\
& =\left[\frac{x^{6}}{48}\right]_{0}^{a}=\frac{a^{6}}{48}
\end{aligned}
$$

EXAMPLE:8

Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$

Solution:

$$
\begin{aligned}
& \mathrm{I}=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left[\sin ^{-1}\left(\frac{z}{\sqrt{1-x^{2}-y^{2}}}\right)\right]_{0}^{\sqrt{1-x^{2}-y^{2}}} d x d y \\
& =\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{\pi}{2} d x d y=\frac{\pi}{2} \int_{0}^{1}[y]_{0}^{\sqrt{1-x^{2}}} d x \\
& =\frac{\pi}{2} \int_{0}^{1} \sqrt{1-x^{2}} d x \\
& =\frac{\pi}{2}\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1}(x)\right]_{0}^{1} \\
& =\frac{\pi^{2}}{8}
\end{aligned}
$$

EXAMPLE :9

Evaluate $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r d r d \theta$
Solution:

$$
\begin{aligned}
& \mathrm{I}=\int_{0}^{\pi}\left[\frac{r^{2}}{2}\right]_{0}^{a \sin \theta} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi} a^{2} \sin ^{2} \theta d \theta \\
& =\frac{a^{2}}{2} \int_{0}^{\pi}\left[\frac{1-\cos 2 \theta}{2}\right] d \theta \\
& =\frac{a^{2}}{2} X \frac{1}{2}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi}=\frac{\pi a^{2}}{4}
\end{aligned}
$$

PROBLEMS FOR PRACTICE

Evaluate the following

1. $\int_{0}^{2} \int_{0}^{1} 4 x y d x d y$
2. $\int_{1}^{b} \int_{1}^{a} \frac{1}{x y} d x d y$

Ans: loga.logb
3. $\int_{0}^{1} \int_{0}^{x} d x d y$
4. $\int_{0}^{\pi} \int_{0}^{\sin \theta} r d r d \theta$
5. $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} x y z d x d y d z$
6. $\int_{0}^{1} \int_{0}^{z} \int_{0}^{y+z} d z d y d x$

Ans: 4

Ans: $1 / 2$

Ans: $\pi / 4$

Ans: 9/2

Ans: $1 / 2$

EXAMPLE:10

Sketch the region of integration for $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} f(x, y) d y d x$.

Solution:

Given $\quad x=0$ and $x=a ; y=0$ and $y^{2}=a^{2}-x^{2}$

$$
y=0 \text { and } x^{2}+y^{2}=a^{2}
$$

EXAMPLE :11

Sketch the region of integration for $\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x$.

Solution:

Given $x=0 ; x=1$ and $y=0 ; y=x$.

EXAMPLE:12

Evaluate $\iiint_{D} x y z d x d y d z$ where D is the region bounded by the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$

Solution:

$$
\begin{aligned}
I & =\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} x y z d z d y d x \\
& =\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x y\left[\frac{z^{2}}{2}\right]_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} d y d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x y\left(a^{2}-x^{2}-y^{2}\right) d y d x \\
& =\frac{1}{2} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x\left(a^{2} y-y x^{2}-y^{3}\right) d y d x \\
& =\frac{1}{2} \int_{0}^{a}\left[a^{2} \frac{y^{2}}{2}-x^{2} \frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{\sqrt{a^{2}-x^{2}}} x d x \\
& =\frac{1}{8} \int_{0}^{a} x\left(a^{2}-x^{2}\right)^{2} d x \\
& =\frac{1}{8} \int_{0}^{a}\left(a^{4} x-2 a^{2} x^{3}+x^{5}\right) d x \\
& =\frac{1}{8}\left[a^{4} \frac{x^{2}}{2}-2 a^{2} \frac{x^{4}}{4}-\frac{x^{6}}{6}\right]_{0}^{a}=\frac{a^{6}}{48} .
\end{aligned}
$$

PROBLEMS FOR PR ACTICE

1.Sketch the region of integration for the following
(i) $\int_{0}^{4} \int_{\frac{y^{2}}{4}}^{y} \frac{y d x d y}{x^{2}+y^{2}}$
(ii) $\int_{0}^{a} \int_{a-x}^{\sqrt{a^{2}-x^{2}}} y d y d x$
(iii) $\int_{0}^{1} \int_{x}^{1} \frac{y d x d y}{x^{2}+y^{2}}$
2.Evaluate $\iiint_{V}(x y+y z+z x) d x d y d z$, where V is the region of space bounded by $x=0, x=1, y=0, y=2, z=0$ and $z=3$.

Ans: 33/2
3. Evaluate $\iiint_{V} \frac{d x d y d z}{(1+x+y+z)^{3}}$, where V is the region of space bounded by $x=0, y=0, z=0$ and $x+y+z=1$

Ans: $\frac{1}{16}(8 \log 2-5)$
4. Evaluate $\iiint_{V} d x d y d z$, where V is the region of space bounded by $x=0,, y=0,, z=0$ and $2 x+3 y+4 z=12$.

Ans: 12

CHANGE OF ORDER OF INTEGRATION

* If the limits of integration in a double integral are constants, then the order of integration can be changed, provided the relevant limits are taken for the concerned variables.
* When the limits for inner integration are functions of a variable, the change in the order of integration will result in changes in the limits of integration.
i.e. $\int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) d x d y$ will take the form

$$
\int_{a}^{b} \int_{h_{1}(x)}^{h_{2}(x)} f(x, y) d y d x
$$

* This process of converting a given double integral into its equivalent double integral by changing the order of integration is called the change of order of integration.

EXAMPLE :13

Evaluate $\int_{0}^{1} \int_{y}^{2-y} x y d x d y$ by changing the order of integration.

Solution:

Given $\mathrm{y}: 0$ to 1 and x : y to $2-\mathrm{y}$
By changing the order of integration,
In Region $\mathrm{D}_{1} \mathrm{x}: 0$ to 1 and $\mathrm{y}: 0$ to x .
In Region $\mathrm{D}_{2} \mathrm{x}: 1$ to 2 and $\mathrm{y}: 0$ to $2-\mathrm{x}$.

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{2-y} x y d x d y & =\int_{0}^{1} \int_{0}^{x} x y d y d x+\int_{1}^{2} \int_{0}^{2-x} x y d y d x \\
& =\int_{0}^{1} x\left[\frac{y^{2}}{2}\right]_{0}^{x} d x+\int_{1}^{2} x\left[\frac{y^{2}}{2}\right]_{0}^{2-x} d x \\
& =\frac{1}{2} \int_{0}^{1} x^{3} d x+\frac{1}{2} \int_{1}^{2}\left[4 x-4 x^{2}+x^{3}\right] d x \\
& =\frac{1}{2}\left[\frac{x^{4}}{4}\right]_{0}^{1}+\frac{1}{2}\left[2 x^{2}-\frac{4 x^{3}}{3}+\frac{x^{4}}{4}\right]_{1}^{2} \\
& =\frac{1}{8}+\frac{5}{24}=\frac{1}{3}
\end{aligned}
$$

EXAMPLE:14

Evaluate $\int_{0}^{\infty} \int_{0}^{y} y e^{-\frac{y^{2}}{x}} d x d y$ by changing the order of integration.
Solution:

Given $x=0, x=y, y=0, y=\infty$.
By changing the order of integration $\mathrm{y}: \mathrm{x}$ to $\infty, \mathrm{x}: 0$ to ∞

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{y} y e^{-\frac{y^{2}}{x}} d x d y & =\int_{0}^{\infty} \int_{x}^{\infty} y e^{-\frac{y^{2}}{x}} d y d x \\
& =\int_{0}^{\infty} \int_{x}^{\infty} y e^{-\frac{y^{2}}{x}} d\left(\frac{y^{2}}{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{\infty}\left[\frac{e^{-\frac{y^{2}}{x}}}{-1 / x}\right]_{x}^{\infty} d x=\frac{1}{2} \int_{0}^{\infty} x e^{-x} d x
\end{aligned}
$$

Take $u=x, d v=e^{-x} d x \quad$ implies $d u=d x, v=-e^{-x}$,
by integration by parts,

$$
=\frac{1}{2}\left[x\left(\frac{e^{-x}}{-1}\right)-e^{-x}\right]_{0}^{\infty}=\frac{1}{2}
$$

EXAMPLE:15

Evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y$ by changing the order of integration.

Solution:

Given $\mathrm{y}=0, \mathrm{y}=3$ and $\mathrm{x}=1, \mathrm{x}=\sqrt{4-y}$
By changing the order of integration,
In region $\mathrm{D}, \mathrm{x}: 1$ to 2 and $\mathrm{y}: 0$ to $4-\mathrm{x}^{2}$

$$
\begin{aligned}
\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y & =\int_{1}^{2} \int_{0}^{4-x^{2}}(x+y) d y d x \\
& =\int_{1}^{2}\left[x y+\frac{y^{2}}{2}\right]_{0}^{4-x^{2}} d x \\
& =\int_{1}^{2}\left[x\left(4-x^{2}\right)+\frac{\left(4-x^{2}\right)^{2}}{2}\right] d x \\
& =\int_{1}^{2}\left[\frac{x^{4}}{4}-x^{3}-4 x^{2}+4 x+8\right] d x \\
& =\left[\frac{x^{5}}{10}-\frac{x^{4}}{4}-4 \frac{x^{3}}{3}+2 x^{2}+8 x\right]_{1}^{2} \\
& =\frac{241}{8}
\end{aligned}
$$

EXAMPLE :16

Evaluate $\int_{0}^{a} \int_{x^{2} / a}^{2 a-x} x y d y d x$ by changing the order of integration.

Solution:

Given $\mathrm{y}: x^{2} / a$ to $2 a-x$ and $\mathrm{x}: 0$ to a
By changing the order of integration,
In Region $\mathrm{D}_{1} \mathrm{x}: 0$ to $\sqrt{a y}$ and $\mathrm{y}: 0$ to a.
In Region $\mathrm{D}_{2} \mathrm{x}: 0$ to $2 a-y$ and y : a to 2 a .

$$
\begin{aligned}
\int_{0}^{a} \int_{x^{2} / a}^{2 a-x} x y d y d x & =\int_{0}^{a} \int_{0}^{\sqrt{a y}} x y d y d x+\int_{a}^{2 a} \int_{0}^{2 a-y} x y d y d x \\
& =\int_{0}^{a} y\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{a y}} d y+\int_{0}^{1} y\left[\frac{x^{2}}{2}\right]_{0}^{2 a-y} d y \\
& =\frac{a}{2} \int_{0}^{a} y^{2} d y+\frac{1}{2} \int_{a}^{2 a}\left[4 a^{2} y-4 a y^{2}+y^{3}\right] d y \\
& =\frac{a}{2}\left[\frac{y^{3}}{3}\right]_{0}^{a}+\frac{1}{2}\left[2 a^{2} y^{2}-\frac{4 a y^{3}}{3}+\frac{y^{4}}{4}\right]_{a}^{2 a} \\
& =\frac{a^{4}}{6}+\frac{5 a^{4}}{24}=\frac{3 a^{4}}{8} .
\end{aligned}
$$

Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ by changing the order of integration.

Solution:

Given $\mathrm{x}=0, \mathrm{x}=1$ and $\mathrm{y}=\mathrm{x}, \mathrm{y}^{2}=2-\mathrm{x}^{2}$
By changing the order of integration
In Region $\mathrm{D}_{1}, \mathrm{y}: 0$ to $1, \mathrm{x}: 0$ to y
In Region $\mathrm{D}_{2}, \mathrm{y}: 1$ to $\sqrt{2}, \mathrm{x}: 0$ to $\sqrt{2-y^{2}}$

$$
\begin{aligned}
\mathrm{I} & =\int_{0}^{1} \int_{0}^{y} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y+\int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \\
& =\int_{0}^{1}\left[\sqrt{x^{2}+y^{2}}\right]_{0}^{\sqrt{2}} d y+\int_{1}^{\sqrt{2}}\left[\sqrt{x^{2}+y^{2}}\right]_{0}^{\sqrt{2-y^{2}}} d y \\
& =\int_{0}^{1}(\sqrt{2} y-y) d y+\int_{1}^{\sqrt{2}}(\sqrt{2}-y) d y \\
& =\left((\sqrt{2}-1) \frac{y^{2}}{2}\right)_{0}^{1}+\left(\sqrt{2} y-\frac{y^{2}}{2}\right)_{1}^{\sqrt{2}} \\
& =1-\frac{1}{\sqrt{2}}
\end{aligned}
$$

PROBLEMS FOR PRACTICE

Evaluate the following by changing the order of integration

1. $\int_{0}^{a} \int_{x}^{a}\left(x^{2}+y^{2}\right) d y d x$ Ans: $\frac{a^{4}}{3}$
2. $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2 a-x} x y d y d x$ Ans: $\frac{3 a^{4}}{8}$
3. $\int_{0}^{a} \int_{a-y}^{\sqrt{a^{2}-y^{2}}} y d x d y$ Ans: $\frac{a^{3}}{6}$
4. $\int_{0}^{1} \int_{y}^{2-y} x y d x d y$ Ans: $\frac{1}{3}$

PLANE AREA USING DOUBLE INTEGRAL

CARTESIAN FORM

Find by double integration, the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Solution:

$$
\mathrm{A}=4 \iint d y d x=4 \int_{0}^{a} \int_{0}^{b} \sqrt{1-\frac{x^{2}}{a^{2}}} d y d x
$$

$$
=4 \int_{0}^{a}[y]_{0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}} d x
$$

$$
=\frac{4 b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x
$$

$$
=\frac{4 b}{a}\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}
$$

$$
=\frac{4 b}{a} \times \frac{a^{2}}{2} \times \frac{\pi}{2}=\pi a b \text { sq.units. }
$$

EXAMPLE :19

Find the area between the parabolay $=4 x-x^{2}$ and the line $y=x$.

Solution:

Given $y=4 x-x^{2}$ and $y=x$, solving for x ,

$$
\begin{aligned}
& x=4 x-x^{2}=>0=3 x-x^{2}=>0=(3-x) x=>x=0,3 \\
\mathrm{~A} & =\int_{0}^{3} \int_{x}^{4 x-x^{2}} d y d x=\int_{0}^{3}[y]_{x}^{4 x-x^{2}} d x \\
= & \int_{0}^{3}\left(3 x-x^{2}\right) d x \\
= & {\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}=\frac{9}{2} }
\end{aligned}
$$

EXAMPLE:20
Find the area between the parabola $y=x^{2}$ and the line $y=2 x+3$.

Solution:

Given $y=x^{2}$ and $y=2 x+3$.
solving for $x, x^{2}=2 x+3=>x=-1,3$

$$
\begin{aligned}
\mathrm{A} & =\int_{-1}^{3} \int_{x^{2}}^{2 x+3} d y d x=\int_{-1}^{3}[y]_{x^{2}}^{2 x+3} d x \\
& =\int_{-1}^{3}\left(2 x+3-x^{2}\right) d x \\
& =\left[\frac{2 x^{2}}{2}+3 x-\frac{x^{3}}{3}\right]_{-1}^{3}=\frac{32}{3}
\end{aligned}
$$

PLANE AREA USING DOUBLE INTEGRAL

POLAR FORM

EXAMPLE :21

Find the area bounded by the circle

$$
r=2 \sin \theta \text { and } r=4 \sin \theta
$$

Solution:

$$
\begin{aligned}
\mathrm{A} & =\int_{0}^{\pi} \int_{2 \sin \theta}^{4 \sin \theta} r d r d \theta=\int_{0}^{\pi}\left[\frac{r^{2}}{2}\right]_{2 \sin \theta}^{4 \sin \theta} d \theta \\
& =6 \int_{0}^{\pi}(\sin \theta)^{2} d \theta \\
& =3 \int_{0}^{\pi}(1-\cos 2 \theta) d \theta \\
& =3\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi}=3 \pi
\end{aligned}
$$

EXAMPLE :22

Find the area enclosed by the leminiscate $r^{2}=a^{2} \cos 2 \theta$ by double integration.

Solution:

If $r=0$ then $\cos 2 \theta=0$ implies $\theta=\frac{\pi}{4}$.

$$
\begin{aligned}
\mathrm{A} & =4 \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{a^{2} \cos 2 \theta}} r d r d \theta \\
& =4 \int_{0}^{\frac{\pi}{4}}\left[\frac{r^{2}}{2}\right]_{0}^{\sqrt{a^{2} \cos 2 \theta}} d \theta \\
& =4 a^{2} \int_{0}^{\frac{\pi}{4}} \frac{\cos 2 \theta}{2} d \theta \\
& =4\left[\frac{a^{2} \sin 2 \theta}{4}\right]_{0}^{\frac{\pi}{4}}=a^{2}
\end{aligned}
$$

EXAMPLE :23

Find the area that lies inside the cardioids $r=a(1+\cos \theta)$ and outside the circle $r=a$, by double integration.

Solution:

$$
\begin{aligned}
& \text { Solving } r=a(1+\cos \theta) \text { and } r=a \\
& =>a(1+\cos \theta)=a \\
& =>\cos \theta=0 \\
& =>\theta=\frac{\pi}{2} .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A} & =2 \int_{0}^{\frac{\pi}{2}} \int_{a}^{a(1+\cos \theta)} r d r d \theta=2 \int_{0}^{\frac{\pi}{2}}\left[\frac{r^{2}}{2}\right]_{a}^{a(1+\cos \theta)} d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left[(a(1+\cos \theta))^{2}-a^{2}\right] d \theta \\
& =a^{2} \int_{0}^{\frac{\pi}{2}}\left[2 \cos \theta+(\cos \theta)^{2}\right] d \theta \\
& =\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}}[4 \cos \theta+1+\cos 2 \theta] d \theta \\
& =\frac{a^{2}}{2}\left[\theta+\frac{\sin 2 \theta}{2}+4 \sin \theta\right]_{0}^{\frac{\pi}{2}}=\frac{a^{2}}{2}(\pi+8) .
\end{aligned}
$$

EXAMPLE :24

Find the common area to the circles $r=a, r=2 a \cos \theta$.
Solution:

Given $r=a, r=2 a \cos \theta$, solving

$$
\begin{aligned}
& \Rightarrow a=2 a \cos \theta \\
& \Rightarrow \cos \theta=\frac{1}{2} \\
& \Rightarrow \theta=\pi / 3
\end{aligned}
$$

when $r=0=>\cos \theta=0=>\theta=\pi / 2$

$$
\begin{aligned}
\mathrm{A} & =2 \iint r d r d \theta \\
& =2 \int_{0}^{\frac{\pi}{3}} \int_{0}^{a} r d r d \theta+2 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{0}^{2 a \cos \theta} r d r d \theta \\
& =2 \int_{0}^{\frac{\pi}{3}}\left[\frac{r^{2}}{2}\right]_{0}^{a} d \theta+2 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left[\frac{r^{2}}{2}\right]_{0}^{2 a \cos \theta} d \theta \\
& =a^{2} \int_{0}^{\frac{\pi}{3}} d \theta+2 a^{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(\cos \theta)^{2} d \theta \\
& =a^{2}[\theta]_{0}^{\frac{\pi}{3}}+2 a^{2}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\
& =a^{2} \frac{\pi}{3}+2 a^{2}\left(\frac{\pi}{2}-\frac{\pi}{3}\right)-a^{2} \frac{\sqrt{3}}{2} \\
& =a^{2}\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

PROBLEMS FOR PRACTICE

1.Find by double integration, the area bounded by the parabolas $x^{2}=4 a y$ and $y^{2}=4 a x$.

Ans: $\frac{16 a^{2}}{3}$ sq.units.
2.Find by double integration, the smallest area bounded by the circle $x^{2}+y^{2}=9$ and the line $x+y=3$.

Ans: $\frac{9}{4}(\pi-2) s q . u n i t s$.
3.Find by double integration, the area common to the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2$.

Ans: $\left(\frac{1}{3}+\frac{\pi}{2}\right)$ sq units.
4.Find by double integration, the area lying inside the circle $r=a \sin \theta$ and outside the coordinate $r=a(1-\cos \theta)$.

Ans: $a^{2}\left(1-\frac{\pi}{4}\right)$ sq.units.

