UNIT V
IMAGE DATA COMPRESSION

Introduction

In recent years, there have been significant advancements in algorithms and
architectures for the processing of image, video, and audio signals. These
advancements have proceeded along several directions. On the algorithmic front, new
techniques have led to the development of robust methods to reduce the size of the
image, video, or audio data. Such methods are extremely vital in many applications that
manipulate and store digital data. Informally, we refer to the process of size reduction as
a compression process. We will define this process in a more formal way later.

On the architecture front, it is now feasible to put sophisticated compression
processes on a relatively low-cost single chip; this has spurred a great deal of activity in
developing multimedia systems for the large consumer market. One of the exciting
prospects of such advancements is that multimedia information comprising image,
video, and audio has the potential to become just another data type. This usually
implies that multimedia information will be digitally encoded so that it can be
manipulated, stored, and transmitted along with other digital data types. For such data
usage to be pervasive, it is essential that the data encoding is standard across different
platforms and applications. This will foster widespread development of applications and
will also promote interoperability among systems from different vendors. Furthermore,
standardization can lead to the development of cost effective implementations, which in
turn will promote the widespread use of multimedia information. This is the primary

motivation behind the emergence of image and video compression standards.

Background

Compression is a process intended to yield a compact digital representation of a
signal. In the literature, the terms source coding, data compression, bandwidth
compression, and signal compression are all used to refer to the process of
compression. In the cases where the signal is defined as an image, a video stream, or

an audio signal, the generic problem of compression is to minimize the bit rate of their



digital representation. There are many applications that benefit when image, video, and
audio signals are available in compressed form. Without compression, most of these

applications would not be feasible!

Example 1: Let us consider facsimile image transmission. In most facsimile
machines, the document is scanned and digitised. Typically, an 8.5x11 inches page is
scanned at 200 dpi; thus, resulting in 3.74 Mbits. Transmitting this data over a low-cost
14.4 kbits/s modem would require 5.62 minutes. With compression, the transmission
time can be reduced to 17 seconds. This results in substantial savings in transmission
costs.

Example 2: Let us consider a video-based CD-ROM application. Full-motion video, at
30 fps and a 720 x 480 resolution, generates data at 20.736 Mbytes/s. At this rate, only
31 seconds of video can be stored on a 650 MByte CD-ROM. Compression technology

can increase the storage capacity to 74 minutes, for VHS-grade video quality.

Image, video, and audio signals are amenable to compression due to the factors
below.
* There is considerable statistical redundancy in the signal.
1. Within a single image or a single video frame, there exists significant correlation
among neighbor samples. This correlation is referred to as spatial correlation.
2. For data acquired from multiple sensors (such as satellite images), there exists
significant correlation amongst samples from these sensors. This correlation is referred
to as spectral correlation.
3. For temporal data (such as video), there is significant correlation amongst samples in
different segments of time. This is referred to as temporal correlation.
* There is considerable information in the signal that is irrelevant from a
perceptual point of view.
 Some data tends to have high-level features that are redundant across space
and time; that is, the data is of a fractal nature.

For a given application, compression schemes may exploit any one or all of the

above factors to achieve the desired compression data rate.



There are many applications that benefit from data compression technology.
Table 1.1 lists a representative set of such applications for image, video, and audio
data, as well as typical data rates of the corresponding compressed bit streams. Typical
data rates for the uncompressed bit streams are also shown.

Application Data Rate

Uncompressed Compressed

Voice 64 kbps 2-4 kbps

8 ksamples/s, 8 bits/sample

Slow motion video (101ps) 5.07 Mbps 8-16 kbps

framesize 176x120, 8bits/pixel

Audio conference 64 kbps 16-64 kbps

8 ksamples/s, 8 bits/sample

Video conference (15fps) 30.41 Mbps 64-768 kbps

framesize 352x240. 8bits/pixel

Digital audio 1.5 Mbps 1.28-1.5 Mbps

44.1 ksamples/s. 16 bits/sample

Video file transfer (15fps) 30.41 Mbps 384 kbps

framesize 352x240, 8bits/pixel

Digital wideo on CD-ROM 60.83 Mbps 1.5-4 Mbps

(30fps)

framesize 352x240. 8bits/pixel

Broadeast video (301ps) 248.83 Mbps 3-8 Mbps
framesize 720x480, 8bits/pixel




In the following figure, a systems view of the compression process is depicted.
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Figure Generic compression system
The core of the encoder is the source coder. The source coder performs the
compression process by reducing the input data rate to a level that can be supported by
the storage or transmission medium. The bit rate output of the encoder is measured in
bits per sample or bits per second. For image or video data, a pixel is the basic element;
thus, bits per sample are also referred to as bits per pixel or bits per pel. In the
literature, the term compression ratio, denoted as cr , is also used instead of bit rate to

characterize the capability of the compression system. An intuitive definition of cr is

o = source coderinput size
"~ source coder outputsize

This definition is somewhat ambiguous and depends on the data type and the
specific compression method that is employed. For a still-image, size could refer to the
bits needed to represent the entire image. For video, size could refer to the bits needed
to represent one frame of video. Many compression methods for video do not process
each frame of video, hence, a more commonly used notion for size is the bits needed to

represent one second of video.



In a practical system, the source coder is usually followed by a second level of
coding: the channel coder. The channel coder translates the compressed bit stream into
a signal suitable for either storage or transmission. In most systems, source coding and
channel coding are distinct processes. In recent years, methods to perform combined
source and channel coding have also been developed. Note that, in order to reconstruct
the image, video, or audio signal, one needs to reverse the processes of channel coding
and source coding. This is usually performed at the decoder.

From a system design viewpoint, one can restate the compression problem as a
bit rate minimisation problem, where several constraints may have to be met, including
the following:

e [ Specified level of signal quality. This constraint is usually applied at the
decoder.

e [ Implementation complexity. This constraint is often applied at the decoder,
and in some instances at both the encoder and the decoder.

e [1 Communication delay. This constraint refers to the end to end delay, and is
measured from the start of encoding a sample to the complete decoding of that
sample.

Note that, these constraints have different importance in different applications. For

example, in a two-way teleconferencing system, the communication delay might be the
major constraint, whereas, in a television broadcasting system, signal quality and

decoder complexity might be the main constraints.

Types of image compression

Image compression can be:
Reversible (loss less), with no loss of information.
e Anew image is identical to the original image (after
decompression).
¢ Original data exactly recovered from compressed data
e Lower compression ratio

* Reversibility is necessary in most image analysis applications.



e The compression ratio is typically 2 to 10 times.
e Examples are Huffman coding and run-length coding.
* Non reversible (lossy), with loss of some information.
® Lossy compression is often used in image communication,
video,WWW, etc.
e |tis usually important that the image visually is still nice.
e The compression ratio is typically 10 to 30 times.

e Loss of information

Perceptual loss of information reduced (controlled)

Higher compression ratio

RLE Huffman DPCM
Arithmetic
LZW



DPAM DFT Subbands
ADPCM DCT Wavelets
Delta Haar

modulation Hadamard

Lossless versus lossy compression
Lossless compression

In many applications, the decoder has to reconstruct without any loss the original
data. For a lossless compression process, the reconstructed data and the original data
must be identical in value for each and every data sample. This is also referred to as a
reversible process. In lossless compression, for a specific application, the choice of a
compression method involves a trade-off along the three dimensions depicted in Figure
1.2; that is, coding efficiency, coding complexity, and coding delay.

Coding Efficiency

This is usually measured in bits per sample or bits per second (bps). Coding
efficiency is usually limited by the information content or entropy of the source. In
intuitive terms, the entropy of a source X provides a measure for the "randomness" of X.
From a compression theory point of view, sources with large entropy are more difficult

to compress (for example, random noise is very hard to compress).

Coding Complexity



The complexity of a compression process is analogous to the computational
effort needed to implement the encoder and decoder functions. The computational effort
is usually measured in terms of memory requirements and number of arithmetic
operations. The operations count is characterised by the term millions of operations per
second and is often referred to as MOPS. Here, by operation, we imply a basic
arithmetic operation that is supported by the computational engine. In the compression
literature, the term MIPS (millions of instructions per second) is sometimes used. This is
specific to a computational engine's architecture; thus, in this text we refer to coding
complexity in terms of MOPS. In some applications, such as portable devices, coding
complexity may be characterised by the power requirements of a hardware

implementation.

Coding Delay

A complex compression process often leads to increased coding delays at the
encoder and the decoder. Coding delays can be alleviated by increasing the processing
power of the computational engine; however, this may be impractical in environments
where there is a power constraint or when the underlying computational engine cannot
be improved. Furthermore, in many applications, coding delays have to be constrained,;

for example, in interactive communications.

Lossy compression

The majority of the applications in image or video data processing do not require
that the reconstructed data and the original data are identical in value. Thus, some
amount of loss is permitted in the reconstructed data. A compression process that
results in an imperfect reconstruction is referred to as a lossy compression process.
This compression process is irreversible. In practice, most irreversible compression

processes degrade rapidly the signal quality when they are repeatedly applied on



previously decompressed data. The choice of a specific lossy compression method
involves trade-offs along the four dimensions shown in Figure 1.3. Due to the additional
degree of freedom, namely, in the signal quality, a lossy compression process can yield
higher compression ratios than a lossless compression scheme.
Signal Quality

This term is often used to characterize the signal at the output of the decoder.
There is no universally accepted measure for signal quality. One measure that is often

cited is the signal to noise ratio SNR, which can be expressed as

encoderinput signal energy

SNR=10log;, T
noisesignalenergy

The noise signal energy is defined as the energy measured for a hypothetical
signal that is the difference between the encoder input signal and the decoder output
signal. Note that, SNR as defined here is given in decibels (dB). In the case of images
or video, PSNR (peak signal-to noise ratio) is used instead of SNR. The calculations are
essentially the same as in the case of SNR , however, in the numerator, instead of
using the encoder input signal one uses a hypothetical signal with a signal strength of
255 (the maximum decimal value of an unsigned 8-bit number, such as in a pixel).

High SNR or PSNR values do not always correspond to signals with perceptually
high quality.

Another measure of signal quality is the mean opinion score, where the
performance of a compression process is characterized by the subjective quality of the

decoded signal.

METHODS FOR LOSSLESS COMPRESSION

Lossless compression refers to compression methods for which the original
uncompressed data set can be recovered exactly from the compressed stream. The
need for lossless compression arises from the fact that many applications, such as the
compression of digitized medical data, require that no loss be introduced from the
compression method. Bitonal image transmission via a facsimile device also imposes

such requirements. In recent years, several compression standards have been



developed for the lossless compression of such images. We discuss these standards
later. In general, even when lossy compression is allowed, the overall compression
scheme may be a combination of a lossy compression process followed by a lossless
compression process. Various image, video, and audio compression standards follow
this model, and several of the lossless compression schemes used in these standards
are described in this section. The general model of a lossless compression scheme is

as depicted in the following figure.
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Figure 1.1: A generic model for lossless compression

Basic Concepts of image compression



The term data compression refers to the process of reducing the amount of
data required to represent a given quantity of information. A clear distinc-
rjon must be made between data and information. They are not synonymous.
1n fact, data are the means by which information is conveyed. Various amounts
of data may be used to represent the same amount of information. Such might
be the case, for example, if a long-winded individual and someone who is short
and to the point were to relate the same story. Here, the information of interest
is the story; words are the data used to relate the information. If the two in-
dividuals use a different number of words to tell the same basic story, two
different versions of the story are created, and at least one includes nonessen-
tial data. That is, it contains data (or words) that either provide no relevant
information or simply restate that which is already known. It 1s thus said to
contain data redundancy.

Data Redundancy



Data redundancy is a central issue in digital image compression. It is not an
abstract concept but a mathematically quantifiable entity. If 17, and », denote the
number of information-carrying units in two data sets that represent the same
information, the relative data redundancy R, of the first data set (the one char-
acterized by n,) can be defined as

1
=1 - = &8.1-1
Rp o (8.1-1)

where Cg, commonly called the compression ratio, is
CR = e (8.1‘-2)

For the case n, = n;, Cx = 1 and Rp = 0, indicating that (relative to the sec-
ond data set) the first representation of the information contains no redundant
data. When n, <<< n,, Cxr — ocoand R, — 1, implying significant compression
and highly redundant data. Finally, when n, == n;,Cg — Oand R, — —o0.in-
dicating that the second data set contains much more data than the original
representation. This, of course, is the normally undesirable case of data expan-
sion. In general, C; and R, lie in the open intervals {0, oo} and (—oc. 1), re-
spectively. A practical compression ratio, such as 10 (or 10:1), means that the
first data set has 10 information carrying units (say, bits) for every 1 unit in the
second or compressed data set. The corresponding redundancy of 0.9 implies
that 909% of the data in the first data set 1s redundant.

Data that provide no relevant information=redundant data or redundancy.
Image compression techniques can be designed by reducing or eliminating
the Data Redundancy

Image coding or compression has a goal to reduce the amount of data by
reducing the amount of redundancy.
Three basic data redundancies

= Coding Redundancy
= Interpixel Redundancy

» Psychovisual Redundancy



CR: some graylevels are
more common than others

IR: the same graylevel — |\

covers large areas

PVR: the eye can only resolve
32 graylevels locally

Coding
e if grey levels of image are coded in such away that uses more
symbols than is necessary
Inter-pixel
e can guess the value of any pixel from its neighbours
Psyco-visual
e some information is less important than other info in normal
visual processing

Coding redundancy
* Fewer bits to represent frequent symbols
e Huffman coding : Lossless
® Occurs when the data used to represent the image is not utilized

in an optimal manner

Interpixel redundancy

e Neighboring pixels have similar values

® Occurs because adjacent pixels tend to be highly correlated, in
most images the brightness levels do not change rapidly, but
change gradually

e Predictive coding : Lossless

e Correlation between pixels is not used in coding
e Correlation due to geometry and structure

e Value of any pixel can be predicted from the value of the

neighbours



Information carried by one pixel is small

Take 2D visual information

o transformed - NONVISUAL format

This is called a MAPPING
A REVERSIBLE MAPPING allows original to be reconstructed
after MAPPING

Use run-length coding

Psychovisual redundancy

e Some information is more important to the human visual system

than other types of information

Coding redundancy

Quantization : Lossy

Remove information that human visual system cannot perceive
Removal of high frequency data : Lossy

Due to properties of human eye

Eye does not respond with equal sensitivity to all visual
information (e.g. RGB)

Certain information has less relative importance

If eliminated, quality of image is relatively unaffected

This is because HVS only sensitive to 64 levels

Use fidelity criteria to assess loss of information

If the gray level of an image is coded in a way that uses more code words than

necessary to represent each gray level, then the resulting image is said to contain

coding redundancy.

Interpixel redundancy



The value of any given pixel can be predicted from the values of its neighbors.

The information carried by is small. Therefore the visual contribution of a single pixel to

an image is redundant. Otherwise called as spatial redundant geometric redundant or

interpixel redundant. Eg: Run length coding

General compression model
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» Before encoding, preprocessing is performed to prepare the image for the encoding
process, and consists of any number of operations that are application specific

« After the compressed file has been decoded, postprocessing can be performed to
eliminate some of the potentially undesirable artifacts brought about by the
compression process

« The compressor can be broken into following stages:

1. Data reduction: Image data can be reduced by gray level and/or spatial quantization,
or can undergo any desired image improvement (for example, noise removal)

process

2. Mapping: Involves mapping the original image data into another mathematical space
where it is easier to compress the data

3. Quantization: Involves taking potentially continuous data from the mapping stage
and putting it in discrete form

4. Coding: Involves mapping the discrete data from the quantizer onto a code in an
optimal manner

« A compression algorithm may consist of all the stages, or it may consist of only one

or two of the stages
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The decompressor can be broken down into following stages:

1.

Decoding: Takes the compressed file and reverses the original coding
by mapping the codes to the original, quantized values

Inverse mapping: Involves reversing the original mapping process
Postprocessing: Involves enhancing the look of the final image

This may be done to reverse any preprocessing, for example, enlarging
an image that was shrunk in the data reduction process

In other cases the postprocessing may be used to simply enhance the

image to ameliorate any artifacts from the compression process itself
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« The mapping process is important because image data tends to be highly
correlated

« Specifically, if the value of one pixel is known, it is highly likely that the
adjacent pixel value is similar

» By finding a mapping equation that decorrelates the data this type of data

redundancy can be removed



Huffmann Coding

« The Huffman code, developed by D. Huffman in 1952, is a minimum length
code
« This means that given the statistical distribution of the gray levels (the
histogram), the Huffman algorithm will generate a code that is as close as
possible to the minimum bound, the entropy
« The method results in an unequal (or variable) length code, where the size of the
code words can vary
» For complex images, Huffman coding alone will typically reduce the file by 10% to
50% (1.1:1 to 1.5:1), but this ratio can be improved to 2:1 or 3:1 by preprocessing

for irrelevant information removal

The Huffman algorithm can be described in five steps:

Find the gray level probabilities for the image by finding the histogram
Order the input probabilities (histogram magnitudes) from smallest to largest
Combine the smallest two by addition

GOTO step 2, until only two probabilities are left

a > w0 N e

By working backward along the tree, generate code by alternating assignment of 0
and 1



The most popular technique for removing coding redundancy: yields
the smallest possible number of code symbols per source symbol

Huffiman Coding Algorithm

= Arrange the symbol probabilities p, in a decreasing order: consider
them (p;) as leaf nodes of a tree

= While there 1s more than one node:

— merge the two nodes with smallest probability to form a new
node whose probability is the sum of the two merged nodes

— Arrange the combined node according to its probability in the

ree

— Repeat until only two nodes are left

= Starting from the top, arbitrarily assign 1 and 0 to each pair of
branches merging into a node

= Continue sequentially from the root node to the leaf node where the
symbol 1s located to complete the coding

Coding and decoding are done by simple look-up tables

Example:
Ornginal source Source reduction FIGURE
: Hulfman source
Symbol Probability 1 2 a 4 reductions
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*The Huffman code results in an unambiguous code, i.e.
no code can be created by combining other codes.

*The code 1s reversible without loss.

The table for the translation of the code has to be stored
together with the coded image.

Run Length Coding

* Simplest method of compression.

* How: replace consecutive repeating occurrences of a symbol by1
occurrence of the symbol itself, then followed by the number of
occurrences.
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#. Original data
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b. Compressed data

* The method can be more efficient if the data uses only 2 symbols (os
and 1s) in bit patterns and 1 symbol is more frequent than another.
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* Run-length coding (RLC) works by counting adjacent pixels with the same

gray level value called the run-length, which is then encoded and stored

« RLC works best for binary, two-valued, images
« RLC can also work with complex images that have been preprocessed by

thresholding to reduce the number of gray levels to two



RLC can be implemented in various ways, but the first step is to define the

required parameters

Horizontal RLC (counting along the rows) or vertical RLC (counting along the

columns) can be used

* In basic horizontal RLC, the number of bits used for the encoding depends

on the number of pixels in a row
n
If the row has 2 pixels, then the required number of bits is n, so that a run

that is the length of the entire row can be encoded

Every code word is made up of a pair (g, /) where g is the
gray level, and /is the number of pixels with that gray
level (length, or “run”).

Eq
56 56 56 82 82 82 83 80
56 56 56 56 56 80 80 80

creates the run-length code (56, 3)(82, 3)(83, 1)(80, 4)(56, 5).
The code is calculated row by row.

|
= g

Very efficient coding for binary data.

Important to know position, and the image dimensions
must be stored with the coded image.

Used in most fax machines.

Example
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row # binary code
0 000 111
1 000 001 001 001 010 000 011 010
2 000 000 001 001 011 010 100 001

7 000 111

Compression Achieved
Original image requires 3 bits per pixel (in total - 8x8x3=192 bits).
Compressed image has 29 runs and needs 3+3=6 bits per

run (in total - 174 bits or 2.72 bits per pixel).

Image fidelity criteria
Quantify the nature and extent of information loss.

Objective fidelity criteria:
Level of information loss can be expressed as a function of the
original (input) and compressed-decompressed (output) umage.

Given an M=N umage f (x.)) (original image). its compressed-then-
decompressed image: f(x, v) . then the error between
corresponding values are given as:

e(x, V)= f(x.y)—f(x.¥)
Total error 1s given by:

)

Z [f(:r. V)= fix. j:}]

-1
x=0 yp=0



Normally the objective fidelity criterion parameters are as
follows:
(root-mean-square error):

I".'.l'i'.'.-T
1 MAN-Ip
E.;'fr:-r_= = [f(:'l_._:l':] - f(r 1’)
MN = ;,

Subjective fidelity criteria:

Since most decompressed images ultimately are viewed by human
beings, measuring image quality by the subjective evaluations of a
human observer often 1s more appropriate.

Method: evaluations are made using an absolute rating scale,

by means of side-by-side comparisons of flx.y) and f(x.y).

I:m;itlam of the Value Rating [rescription
Television I Excellent Animage of extremely high quality, @ good as you
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IMAGE COMPRESSION STANDARDS

Standard | Possible Application Areas
CCITT Facsimile, Document
CCITT Facsimile, Document

JPEG Photographic Imaging

JBIG Facsimile, Document
CCITT Teleconferencing
MPEG-1 | Video, Digital Storage
MPEG-2 | Video, HDTV, DSM
MPEG-4 | Audio-visual

(omminicatinng

JPEG Encoding

Used to compress pictures and graphics.
In JPEG, a grayscale picture is divided into 8x8 pixel blocks to decrease the
number of calculations.

Basic idea: Change the picture into a linear (vector) sets of numbers that reveals the

redundancies. The redundancies is then removed by one of lossless compression

methods.
Three phases of JPEG
5E Loss
. | & i ossless
> DCT Quantization  J—p1  Losless » 0011...0001
EE B Compressed
image
Blocked

1mage



e DCT: Discrete Concise Transform

¢ DCT transforms the 64 values in 8x8 pixel block in a way that the relative

relationships between pixels are kept but the redundancies are revealed.

*  Example:
28 203040 50 60 70 80 90 400 -146 0 31 -1 3 -1 -8
o 2030405060708090 0 0 0 0 0 0 0 0
2030405060708090 0 0 0 0 0 0 0 0
N 2030405060708090 N 0 0 0 0 0 0 0 0
2030405060708090 0 0 0 0 0 0 0 0
2030405060708090 0 0 0 0 0 0 0 0
Block 2030405060708090 0 0 0 0 0 0 0 0
oc 203040 5060708090 o 0 o0 o0 0 0 o0 0
P (x, ») T (m, n)
Sourge FDCT ——>»Quantizer —>» Entropy | Compressed
Image Data Encoder Image Data
®
8x8 blocks
Table Table
Specifications Specifications
Compressed Entropy :
—T> ——>» Dequantizer——>»{ IDCT |
Image Data | Decoder 1 Image Data
! T
Table Table
Specifications Specifications
JPEG 2000
A single tile Sub-bands
/_; N Code-blocks
- DWT P Quantization [~ Entropy Coding (‘u;:::‘:::sed




Quantization:

After T table is created, the values are quantized to reduce the number of bits
needed for encoding.

Quantization divides the number of bits by a constant, then drops the fraction. This
is done to optimize the number of bits and the number of Os for each particular

application.

Compression:

Quantized values are read from the table and redundant Os are removed.

To cluster the Os together, the table is read diagonally in an zigzag fashion. The
reason is if the table doesn’t have fine changes, the bottom right corner of the table
is all Os.

JPEG usually uses lossless run-length encoding at the compression phase.

T (m,n)
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STEPS IN JPEG COMPRESSION

Divide Each plane into 8x8 size blocks.

Compute DCT of each block

Treat separately DC components of each block.

Apply Quantization to discard values

Separately encode DC components and transmit data.

|1—8 pixels—bl
T An
=3 8x8
i block PN
/'—'_‘_"‘ S
Image
. ) Entropy
. DCT = Quantiser ——»| zigzag Encoder i
Channel
or
Storage
i reverse Entropy < _l
-—— IDCT |-4— Dequantiser |-f— zigzag Decoder




How JPEG Compression performed?

The example image matrix
before transformation.

Gray-Scale Example:
Value Range 0 (black) --- 255
(white)

&3 33 36 28 63 E1 86 98B
27 18 17 aEak 22 48 104 108
F2 52 28 15 1 16 47 77
132 100 56 19 10 o 21 S5
187 186 166 88 15 34 43 51
184 203 199 177 82 44 97 73
211 214 208 198 134 52 78 83

211 210 203 191 133 79 74 86

2D-DCT of matrix
Value Range 0 (Gray) --- -355
(Black)

-304 210 104 -69 10 20

=S 20 =260 6 T =10 S
93 -84 -66 16 P e
89 So =D 20 26 ]
-9 = Pl e e b
=5 LSS h
10 Se =il 2 =1 2 3
12 30 0 =g -5




Cut the least significant components

Value Range 0 (Gray) -—-- -355
(Black)
-304 210 104 -&9 10 20 -12 O
-327 -260 &7 FO A0 15 o O
o3 -84 -66 16 2 o o O
89 33 19 20 O o O o
-9 42 18 o O O O o
=5 15 o o O O O O
10 O o O O O O o
O O o o O O O O
Original Compressed

w e

5.

The JPEG2000 standard is also based on the wavelet transform

It provides high quality images at very high compression ratios

The committee that developed the standard had certain goals for
JPEG2000

The goals are as follows:
To provide better compression than the DCT-based JPEG algorithm
To allow for progressive transmission of high quality images

To be able to compress binary and continuous tone images by allowing
1 to 16 bits for image components

To allow random access to subimages

To be robust to transmission errors

To allow for sequentially image encoding

The JPEG2000 compression method begins by level shifting the data to center it at

zero, followed by an optional transform to decorrelate the data, such as a color



transfo

rm for color images The one-dimensional wavelet transform is applied to the

rows and columns, and the coefficients are quantized based on the image size and

numbe

e These

r of wavelet bands utilized

quantized coefficients are then arithmetically coded on a bitplane basis

Transform Coding

Input
image

(N XN} subimages

A reversible linear transform (such as Fourier Transform) is used to map the
image into a set of transform coefficients

These coefficients are then quantized and coded.

The goal of transform coding is to decorrelate pixels and pack as much
information into small number of transform coefficients.

Compression is achieved during quantization not during the transform step

Construct

] pxn e Forward Ll opantizer e Symbol | Compressed

transform encoder image

) . Merge
Compressed Symbol Inverse i Decompressed
. ) —_— - = = nxXn = . '
image decoder transform e image
. subimages .

a
b
FIGURE

A transform coding svstem: (a) encoder: (b) decoder.

Procedure

Divide the image into n x n sub-images.

Transform each sub-image using a reversible transform (e.g., the Hotelling
transform, the discrete Fourier transform (DFT) or the discrete cosine
transform (DCT)).

Quantify, i.e., truncate the transformed image (e.g., by using DFT,and DCT

frequencies with small amplitude can be removed without much information



image
block

loss). The quantification can be either image dependent (IDP) or image
independent (IIP).

Code the resulting data, normally using some kind of “variable length
coding”, e.g., Huffman code.

The coding is not reversible (unless step 3 is skipped). Divide the image into

n x n sub-images.

Transform coding, is a form of block coding done in the transform domain. The
is divided into blocks, or subimages, and the transform is calculated for each

Any of the previously defined transforms can be used, frequency (e.g.
Fourier) or sequency (e.g. Walsh/Hadamard), but it has been determined that
the discrete cosine transform (DCT) is optimal for most images

The newer JPEG2000 algorithms uses the wavelet transform, which has

been found to provide even better compression

After the transform has been calculated, the transform coefficients are
quantized and coded

This method is effective because the frequency/sequency transform of
images is very efficient at putting most of the information into relatively few
coefficients, so many of the high frequency coefficients can be quantized to 0
(eliminated completely)

This type of transform is a special type of mapping that uses spatial
frequency concepts as a basis for the mapping

The main reason for mapping the original data into another mathematical
space is to pack the information (or energy) into as few coefficients as
possible

The simplest form of transform coding is achieved by filtering by eliminating

some of the high frequency coefficients

However, this will not provide much compression, since the transform data is

typically floating point and thus 4 or 8 bytes per pixel (compared to the



original pixel data at 1 byte per pixel), so quantization and coding is applied

to the reduced data

» Quantization includes a process called bit allocation, which determines the

number of bits to be used to code each coefficient based on its importance

» Typically, more bits are used for lower frequency components where the

energy is concentrated for most images, resulting in a variable bit rate or

nonuniform quantization and better resolution

1
2.

Zonal coding

Two particular types of transform coding have been widely explored:

. Zonal coding

Threshold coding
These two vary in the method they use for selecting the transform
coefficients to retain (using ideal filters for transform coding selects the

coefficients based on their location in the transform domain)

It involves selecting specific coefficients based on maximal variance

A zonal mask is determined for the entire image by finding the variance
for each frequency component

This variance is calculated by using each subimage within the image as
a separate sample and then finding the variance within this group of

subimages



Figure 't Zonal Coding
I(r.2) Tiu,v)
B e = [d ™)
T B
&) Divide the imbge ints b} Apply the Leanaform Bo
blocks each block

1 i) i) 0 0

L1 Q o 0 0

¢} Treating each transfors d) Gensrate zonal masks;
block from Tio.vh as a 1 = cetain
Apparate $B.hp1!. chaloulats 0 = sliminate
the varisnce for each A typical mask is
frequency Component shvown:
Retain only the componsnts
vith wariance shave &
specified threshold

« The zonal mask is a bitmap of 1's and 0', where the 1's correspond to the
coefficients to retain, and the 0's to the ones to eliminate

» As the zonal mask applies to the entire image, only one mask is required

Threshold coding
« It selects the transform coefficients based on specific value
« A different threshold mask is required for each block, which increases
file size as well as algorithmic complexity
« In practice, the zonal mask is often predetermined because the Ilow
frequency terms tend to contain the most information, and hence exhibit the
most variance
 In this case we select a fixed mask of a given shape and desired
compression ratio, which streamlines the compression process
« It also saves the overhead involved in calculating the variance of each group of

subimages for compression and also eases the decompression process



« Typical masks may be square, triangular or circular and the cutoff frequency is

determined by the compression ratio

Lossless Predictive Coding

Let us now turn to an error-free compression approach that does not require de-
composition of an image into a collection of bit planes The approach. com-
monly referred to as lossless predictive coding, 1s based on ehminating the
interpixel redundancies of closely spaced pixels by extracting and coding ondy
the new information in each pixel The pew mformation of a pixelis defined as
the difference between the actual and predicted value of that pixel

Figure shows the basic components of a lossless predictive coding sys-
tem. The system consists of an encoder and a decoder, each containing an iden-
tical predictor. As each successive pixel of the input image, denoted f,, is
introduced to the encoder, the predictor generates the anticipated value of that
pixel based on some number of past inputs, The output of the predictor is then
rounded to the ncarest integer, denoted f,,, and used to form the difference or
prediction error

o

Fr: = Jrr.l - f-fl 1
a Fa
b _]“I‘" _ o Symbaol Compressed
FGURE A [ NE | encader e
lossless predictive ) Mearest
coding model: | Predictor | inleger Fa
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a
b ¢

FIGURE

() The prediction
Crror image
resulting from
Eq. (84-9).

(b) Gray-level
histogram of the
original image.
(¢) Histogram of
the prediction
error.
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which s coded using a vanable-length code (by the symbol encoder}) to gencet -
ate the neat element of the compressed data stream, The decoder of Fig (h)
reconstructs ¢, from the received vaniable-length code words and performs the
gvelse operation

f:ll' = f.ﬂ + .ffr

Vanous local. global, and adaptive methods can be used
o generate 1. In most cases, however, the prediction 1s formed by a limear com-
bination of m previous pixels. That s,

f,, = round[ ia‘ﬁ,.,}



Lossy Predictive Coding

In this section, we add a quantizer to the model
examine the resuiting trade-off between reconstruction accuracy and com-
pression performance. As Fig. shows, the quantizer, which absorbs the near-
est integer function of the error-free encoder, 1s inserted between the symbol

Quanuzer

Predictor

fu

T

Compressed Symbol
image decodel

encoder

fa

Predictor  |-a——-

and

o Symbol » Compressed

image

Decompressed
image

a
b

FIGURE A
fossy predicnive
coding model:
{a) encoder and
(b) decoder.

encoder and the point at which the prediction error is formed. It maps the pre-
diction error into a limited range of outputs, denoted ¢,,, which establish the
amount of compression and distortion associated with lossy predictive coding.

In order to accommodate the insertion of the quantization step, the error-free
encoder of Fig. 8.19(a) must be altered so that the predictions generated by the
encoder and decoder are equivalent. As Fig. 8.21(a) shows, this is accomplished
by placing the lossy encoder’s predictor within a feedback loop, where its input,
denoted f,, is generated as a function of past predictions and the correspond-

ing quantized errors. That is,

fﬂ':éﬂ.i.f.ﬂ



CCITT Compression method

_ Most ol the standards discussed are sanctioned by the Inter-
natiomal Standardization Organization {1SO}) and the Consultative Committec
of the International Telephone and Telegraph {(CCITT). They address both bi-
nary and continuous-tone (monochrome and color} image compression. as well
as both still-frame and video (i.e..sequential-frame) applications.
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IMPORTANT QUESTIONS

TWO MARKS QUESTIONS
1. What is image compression?
What are two main types of compression?
What is the need for Compression?
What are different Compression Methods?
Define is coding redundancy?
Define interpixel redundancy?
What is run length coding?

Define compression ratio.

© 00 N o g kDb

Define psycho visual redundancy?

10. Write notes on threshold coding.

12 MARKS QUESTIONS
1. Explain the schematics of image compression standard JPEG.
2. Explain CCITT Image compression standard.

3. Explain lossy and lose less predictive coding with a neat sketch.
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Briefly explain (a) variable length coding (b) Transform coding (c) Zonal coding.
Explain Shannon’s coding with a suitable example.
Explain Huffman coding with a suitable example.

Explain Pixel and threshold coding with a suitable example.



