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5.1. Authentication Protocols  

     Authentication is the technique by which a process verifies that its communication partner 
is who it is supposed to be and not an imposter. Verifying the identity of a remote process in the 
face of a malicious, active intruder is surprisingly difficult and requires complex protocols based 
on cryptography. In this section, we will study some of the many authentication protocols that 
are used on insecure computer networks.  

     As an aside, some people confuse authorization with authentication. Authentication deals 
with the question of whether you are actually communicating with a specific process. 
Authorization is concerned with what that process is permitted to do. For example, a client 
process contacts a file server and says: I am Scott's process and I want to delete the file 
cookbook.old. From the file server's point of view, two questions must be answered:  

1. Is this actually Scott's process (authentication)?  

2. Is Scott allowed to delete cookbook. Old (authorization)?  

     Only after both of these questions have been unambiguously answered in the affirmative can 
the requested action take place. The former question is really the key one. Once the file server 
knows to whom it is talking, checking authorization is just a matter of looking up entries in local 
tables or databases. For this reason, we will concentrate on authentication in this section.  

     The general model that all authentication protocols use is this. Alice starts out by sending a 
message either to Bob or to a trusted KDC (Key Distribution Center), which is expected to be 
honest. Several other message exchanges follow in various directions. As these messages are 
being sent Trudy may intercept, modify, or replay them in order to trick Alice and Bob or just to 
gum up the works.  

     Nevertheless, when the protocol has been completed, Alice is sure she is talking to Bob and 
Bob is sure he is talking to Alice. Furthermore, in most of the protocols, the two of them will also 
have established a secret session key for use in the upcoming conversation. In practice, for 
performance reasons, all data traffic is encrypted using symmetric-key cryptography (typically 
AES or triple DES), although public-key cryptography is widely used for the authentication 
protocols themselves and for establishing the session key.  

     The point of using a new, randomly-chosen session key for each new connection is to 
minimize the amount of traffic that gets sent with the users' secret keys or public keys, to reduce 
the amount of cipher text an intruder can obtain, and to minimize the damage done if a process 
crashes and its core dump falls into the wrong hands. Hopefully, the only key present then will 
be the session key. All the permanent keys should have been carefully zeroed out after the 
session was established.  

 

 



5.1.1. Authentication Based on a Shared Secret Key  

For our first authentication protocol, we will assume that Alice and Bob already share a secret 
key, K

AB 
. This shared key might have been agreed upon on the telephone or in person, but, in 

any event, not on the (insecure) network.  

This protocol is based on a principle found in many authentication protocols: one party sends a 
random number to the other, who then transforms it in a special way and then returns the result. 
Such protocols are called challenge-response protocols. In this and subsequent authentication 
protocols, the following notation will be used:  

A, B are the identities of Alice and Bob.  

R
i
's are the challenges, where the subscript identifies the challenger.  

K
i 
are keys, where i indicate the owner.  

K
S 

is the session key.  

The message sequence for our first shared-key authentication protocol is illustrated in Fig.. In 
message 1, Alice sends her identity, A, to Bob in a way that Bob understands. Bob, of course, 
has no way of knowing whether this message came from Alice or from Trudy, so he chooses a 
challenge, a large random number, R

B
, and sends it back to ''Alice'' as message 2, in plaintext. 

Random numbers used just once in challenge-response protocols like this one are called 
nonces. Alice then encrypts the message with the key she shares with Bob and sends the 
ciphertext, K

AB 
(R

B
), back in message 3. When Bob sees this message, he immediately knows 

that it came from Alice because Trudy does not know K
AB 

and thus could not have generated it. 

Furthermore, since R
B 

was chosen randomly from a large space (say, 128-bit random numbers), 

it is very unlikely that Trudy would have seen R
B 

and its response from an earlier session. It is 

equally unlikely that she could guess the correct response to any challenge. 

 

Fig. 5.1. Two-way authentication using a challenge-response protocol. 

At this point, Bob is sure he is talking to Alice, but Alice is not sure of anything. For all Alice 
knows, Trudy might have intercepted message 1 and sent back R

B 
in response. Maybe Bob 

died last night. To find out to whom she is talking, Alice picks a random number, R
A 

and sends it 

to Bob as plaintext, in message 4. When Bob responds with K
AB 

(R
A
), Alice knows she is talking 

to Bob. If they wish to establish a session key now, Alice can pick one, K
S
, and send it to Bob 

encrypted with K
AB

.  

The protocol of Fig. 5.1contains five messages. Let us see if we can be clever and eliminate 

some of them. One approach is illustrated in Fig. 5.2. Here Alice initiates the challenge-

response protocol instead of waiting for Bob to do it. Similarly, while he is responding to Alice's 



challenge, Bob sends his own. The entire protocol can be reduced to three messages instead of 

five. 

 

Fig. 5.2. A shortened two-way authentication protocol. 

Is this new protocol an improvement over the original one? In one sense it is: it is shorter. 
Unfortunately, it is also wrong. Under certain circumstances, Trudy can defeat this protocol by 
using what is known as a reflection attack. In particular, Trudy can break it if it is possible to 
open multiple sessions with Bob at once. This situation would be true, for example, if Bob is a 
bank and is prepared to accept many simultaneous connections from teller machines at once.  

Trudy's reflection attack is shown in Fig. 5.3. It starts out with Trudy claiming she is Alice and 

sending R
T
. Bob responds, as usual, with his own challenge, R

B
. Now Trudy is stuck. What can 

she do? She does not know K
AB 

(R
B
). 

 

Fig. 5.3. The reflection attack. 

She can open a second session with message 3, supplying the R
B 

taken from message 2 as her 

challenge. Bob calmly encrypts it and sends back K
AB 

(R
B
)in message 4. We have shaded the 

messages on the second session to make them stand out. Now Trudy has the missing 

information, so she can complete the first session and abort the second one. Bob is now 

convinced that Trudy is Alice, so when she asks for her bank account balance, he gives it to her 

without question. Then when she asks him to transfer it all to a secret bank account in 

Switzerland, he does so without a moment's hesitation. 



 

Fig. 5.4. Authentication using HMACs.  

 

     Can Trudy somehow subvert this protocol? No, because she cannot force either party to 
encrypt or hash a value of her choice, as happened and Fo. Both HMACs include values 
chosen by the sending party, something which Trudy cannot control.  

     Using HMACs is not the only way to use this idea. An alternative scheme that is often used 
instead of computing the HMAC over a series of items is to encrypt the items sequentially using 
cipher block chaining.  

5.1.2 Establishing a Shared Key: The Diffie-Hellman Key Exchange  

     So far we have assumed that Alice and Bob share a secret key. Suppose that they do not 
(because so far there is no universally accepted PKI for signing and distributing certificates). 
How can they establish one? One way would be for Alice to call Bob and give him her key on 
the phone, but he would probably start out by saying: How do I know you are Alice and not 
Trudy? They could try to arrange a meeting, with each one bringing a passport, a drivers' 
license, and three major credit cards, but being busy people, they might not be able to find a 
mutually acceptable date for months. Fortunately, incredible as it may sound, there is a way for 
total strangers to establish a shared secret key in broad daylight, even with Trudy carefully 
recording every message.  

     The protocol that allows strangers to establish a shared secret key is called the Diffie-
Hellman key exchange (Diffie and Hellman, 1976) and works as follows. Alice and Bob have to 
agree on two large numbers, n and g, where n is a prime, (n - 1)/2 is also a prime and certain 
conditions apply to g. These numbers may be public, so either one of them can just pick n and g 
or tell the other openly. Now Alice picks a large (say, 512-bit) number, x, and keeps it secret. 
Similarly, Bob picks a large secret number, y.  

     Alice initiates the key exchange protocol by sending Bob a message containing (n, g, g
x 
mod 

n), as shown in Fig. 5-1.4. Bob responds by sending Alice a message containing g
y 
mod n. Now 

Alice raises the number Bob sent her to the xth power modulo n to get (g
y 
mod n)

x 
mod n. Bob 

performs a similar operation to get (g
x 

mod n)
y 

mod n. By the laws of modular arithmetic, both 

calculations yield g
xy 

mod n. Lo and behold, Alice and Bob suddenly share a secret key, g
xy 

mod 
n.  



 

Fig. 5.5. The Diffie-Hellman key exchange. 

 

     Trudy, of course, has seen both messages. She knows g and n from message 1. If she could 

compute x and y, she could Fig. out the secret key. The trouble is, given only g
x 

mod n, she 
cannot find x. No practical algorithm for computing discrete logarithms modulo a very large 
prime number is known.  

    To make the above example more concrete, we will use the (completely unrealistic) values of 
n = 47 and g = 3. Alice picks x = 8 and Bob picks y = 10. Both of these are kept secret. Alice's 

message to Bob is (47, 3, 28) because 3
8 

mod 47 is 28. Bob's message to Alice is (17). Alice 

computes 17
8 

mod 47, which is 4. Bob computes 28
10 

mod 47, which is 4. Alice and Bob have 

independently determined that the secret key is now 4. Trudy has to solve the equation 3
x 
mod 

47 = 28, which can be done by exhaustive search for small numbers like this, but not when all 
the numbers are hundreds of bits long. All currently-known algorithms simply take too long, 
even on massively parallel supercomputers.  

     Despite the elegance of the Diffie-Hellman algorithm, there is a problem: when Bob gets the 
triple (47, 3, 28), how does he know it is from Alice and not from Trudy? There is no way he can 
know. Unfortunately, Trudy can exploit this fact to deceive both Alice and Bob, as illustrated in 
Fig. 5.1.5. Here, while Alice and Bob are choosing x and y, respectively, Trudy picks her own 
random number, z. Alice sends message 1 intended for Bob. Trudy intercepts it and sends 
message 2 to Bob, using the correct g and n (which are public anyway) but with her own z 
instead of x. She also sends message 3 back to Alice. Later Bob sends message 4 to Alice, 
which Trudy again intercepts and keeps.  

 

Fig. 5.6. The bucket brigade or man-in-the-middle attack. 

     Now everybody does the modular arithmetic. Alice computes the secret key as g
xz 

mod n, 

and so does Trudy (for messages to Alice). Bob computes g
yz 

mod n and so does Trudy (for 
messages to Bob). Alice thinks she is talking to Bob so she establishes a session key (with 
Trudy). So does Bob. Every message that Alice sends on the encrypted session is captured by 
Trudy, stored, modified if desired, and then (optionally) passed on to Bob. Similarly, in the other 
direction. Trudy sees everything and can modify all messages at will, while both Alice and Bob 



are under the illusion that they have a secure channel to one another. This attack is known as 
the bucket brigade attack, because it vaguely resembles an old-time volunteer fire department 
passing buckets along the line from the fire truck to the fire. It is also called the man-in-the-
middle attack.  

5.1.3 Authentication Using a Key Distribution Center  

     Setting up a shared secret with a stranger almost worked, but not quite. On the other hand, it 
probably was not worth doing in the first place (sour grapes attack). To talk to n people this way, 
you would need n keys. For popular people, key management would become a real burden, 
especially if each key had to be stored on a separate plastic chip card.  

A different approach is to introduce a trusted key distribution center (KDC). In this model, each 
user has a single key shared with the KDC. Authentication and session key management now 
goes through the KDC. The simplest known KDC authentication protocol involving two parties 
and a trusted KDC is depicted in Fig. 5.7.  

 

Fig. 5.7. A first attempt at an authentication protocol using a KDC. 

 

     The idea behind this protocol is simple: Alice picks a session key, K
S
, and tells the KDC that 

she wants to talk to Bob using K
S
. This message is encrypted with the secret key Alice shares 

(only) with the KDC, K
A
. The KDC decrypts this message, extracting Bob's identity and the 

session key. It then constructs a new message containing Alice's identity and the session key 
and sends this message to Bob. This encryption is done with K

B
, the secret key Bob shares with 

the KDC. When Bob decrypts the message, he learns that Alice wants to talk to him and which 
key she wants to use.  

     The authentication here happens for free. The KDC knows that message 1 must have come 

from Alice, since no one else would have been able to encrypt it with Alice's secret key. 

Similarly, Bob knows that message 2 must have come from the KDC, whom he trusts, since no 

one else knows his secret key.  

Unfortunately, this protocol has a serious flaw. Trudy needs some money, so she Fig.s out 

some legitimate service she can perform for Alice, makes an attractive offer, and gets the job. 

After doing the work, Trudy then politely requests Alice to pay by bank transfer. Alice then 

establishes a session key with her banker, Bob. Then she sends Bob a message requesting 

money to be transferred to Trudy's account.  

     Meanwhile, Trudy is back to her old ways, snooping on the network. She copies both 

message 2 in fig and the money-transfer request that follows it. Later, she replays both of them 

to Bob. Bob gets them and thinks: Alice must have hired Trudy again. She clearly does good 

work. Bob then transfers an equal amount of money from Alice's account to Trudy's. Sometime 

after the 50th message pair, Bob runs out of the office to find Trudy to offer her a big loan so 

she can expand her obviously successful business. This problem is called the replay attack.  



     Several solutions to the replay attack are possible. The first one is to include a timestamp in 

each message. Then if anyone receives an obsolete message, it can be discarded. The trouble 

with this approach is that clocks are never exactly synchronized over a network, so there has to 

be some interval during which a timestamp is valid. Trudy can replay the message during this 

interval and get away with it.  

     The second solution is to put a nonce in each message. Each party then has to remember all 

previous nonces and reject any message containing a previously-used nonce. But nonces have 

to be remembered forever, lest Trudy try replaying a 5-year-old message. Also, if some machine 

crashes and it loses its nonce list, it is again vulnerable to a replay attack. Timestamps and 

nonces can be combined to limit how long nonces have to be remembered, but clearly the 

protocol is going to get a lot more complicated.  

     A more sophisticated approach to mutual authentication is to use a multiway challenge-

response protocol. A well-known example of such a protocol is the Needham-Schroeder 

authentication protocol (Needham and Schroeder, 1978), one variant of which is shown in Fig. 

5.8.  

 

Fig. 5.8. The Needham-Schroeder authentication protocol. 

 

     The protocol begins with Alice telling the KDC that she wants to talk to Bob. This message 

contains a large random number, R
A
, as a nonce. The KDC sends back message 2 containing 

Alice's random number, a session key, and a ticket that she can send to Bob. The point of the 

random number, R
A
, is to assure Alice that message 2 is fresh, and not a replay. Bob's identity 

is also enclosed in case Trudy gets any funny ideas about replacing B in message 1 with her 

own identity so the KDC will encrypt the ticket at the end of message 2 with K
T 

instead of K
B
. 

The ticket encrypted with K
B 

is included inside the encrypted message to prevent Trudy from 

replacing it with something else on the way back to Alice.  

     Alice now sends the ticket to Bob, along with a new random number, R
A2

, encrypted with the 

session key, K
S
. In message 4, Bob sends back K

S
(R

A2 
- 1) to prove to Alice that she is talking 

to the real Bob. Sending back K
S
(R

A2
) would not have worked, since Trudy could just have 

stolen it from message 3.  

     After receiving message 4, Alice is now convinced that she is talking to Bob and that no 

replays could have been used so far. After all, she just generated R
A2 

a few milliseconds ago. 

The purpose of message 5 is to convince Bob that it is indeed Alice he is talking to, and no 



replays are being used here either. By having each party both generate a challenge and 

respond to one, the possibility of any kind of replay attack is eliminated.  

      Although this protocol seems pretty solid, it does have a slight weakness. If Trudy ever 

manages to obtain an old session key in plaintext, she can initiate a new session with Bob by 

replaying the message 3 corresponding to the compromised key and convince him that she is 

Alice (Denning and Sacco, 1981). This time she can plunder Alice's bank account without 

having to perform the legitimate service even once.  

      Needham and Schroeder later published a protocol that corrects this problem (Needham 

and Schroeder, 1987). In the same issue of the same journal, Otway and Rees (1987) also 

published a protocol that solves the problem in a shorter way. Fig. 5.9.shows a slightly modified 

Otway-Rees protocol.  

 

Fig. 5.9. The Otway-Rees authentication protocol (slightly simplified). 

     In the Otway-Rees protocol, Alice starts out by generating a pair of random numbers, R, 
which will be used as a common identifier, and R

A
, which Alice will use to challenge Bob. When 

Bob gets this message, he constructs a new message from the encrypted part of Alice's 
message and an analogous one of his own. Both the parts encrypted with K

A 
and K

B 
identify 

Alice and Bob, contain the common identifier, and contain a challenge.  

     The KDC checks to see if the R in both parts is the same. It might not be because Trudy 
tampered with R in message 1 or replaced part of message 2. If the two Rs match, the KDC 
believes that the request message from Bob is valid. It then generates a session key and 
encrypts it twice, once for Alice and once for Bob. Each message contains the receiver's 
random number, as proof that the KDC, and not Trudy, generated the message. At this point 
both Alice and Bob are in possession of the same session key and can start communicating. 
The first time they exchange data messages, each one can see that the other one has an 
identical copy of K

S
, so the authentication is then complete.  

5.1.4 Authentication Using Kerberos  

An authentication protocol used in many real systems (including Windows 2000) is Kerberos, 
which is based on a variant of Needham-Schroeder. It is named for a multiheaded dog in Greek 
mythology that used to guard the entrance to Hades (presumably to keep undesirables out). 
Kerberos was designed at M.I.T. to allow workstation users to access network resources in a 
secure way. Its biggest difference from Needham-Schroeder is its assumption that all clocks are 
fairly well synchronized. The protocol has gone through several iterations. V4 is the version 
most widely used in industry, so we will describe it. Afterward, we will say a few words about its 
successor, V5. For more information, see (Steiner et al., 1988).  

Kerberos involves three servers in addition to Alice (a client workstation):  

 Authentication Server (AS): verifies users during login  



 Ticket-Granting Server (TGS): issues ''proof of identity tickets''  

 Bob the server: actually does the work Alice wants performed  

     AS is similar to a KDC in that it shares a secret password with every user. The TGS's job is 
to issue tickets that can convince the real servers that the bearer of a TGS ticket really is who 
he or she claims to be.  

     To start a session, Alice sits down at an arbitrary public workstation and types her name. The 
workstation sends her name to the AS in plaintext. What comes back is a session key and a 
ticket, K

TGS
(A, K

S
), intended for the TGS. These items are packaged together and encrypted 

using Alice's secret key, so that only Alice can decrypt them. Only when message 2 arrives 
does the workstation ask for Alice's password. The password is then used to generate K

A 
in 

order to decrypt message 2 and obtain the session key and TGS ticket inside it. At this point, 
the workstation overwrites Alice's password to make sure that it is only inside the workstation for 
a few milliseconds at most. If Trudy tries logging in as Alice, the password she types will be 
wrong and the workstation will detect this because the standard part of message 2 will be 
incorrect.  

Authentication Using Public-Key Cryptography  

Mutual authentication can also be done using public-key cryptography. To start with, Alice 
needs to get Bob's public key. If a PKI exists with a directory server that hands out certificates  

for public keys, Alice can ask for Bob's, as shown in Fig. 5.10. as message 1. The reply, in 
message 2, is an X.509 certificate containing Bob's public key. When Alice verifies that the 
signature is correct, she sends Bob a message containing her identity and a nonce. 

 

Fig. 5.10. Mutual authentication using public-key cryptography. 

 

      When Bob receives this message, he has no idea whether it came from Alice or from Trudy, 
but he plays along and asks the directory server for Alice's public key (message 4) which he 
soon gets (message 5). He then sends Alice a message containing Alice's R

A
, his own nonce, 

R
B
, and a proposed session key, K

S
, as message 6.  

     When Alice gets message 6, she decrypts it using her private key. She sees R
A 

in it, which 

gives her a warm feeling inside. The message must have come from Bob, since Trudy has no 
way of determining R

A
. Furthermore, it must be fresh and not a replay, since she just sent Bob 

R
A
. Alice agrees to the session by sending back message 7. When Bob sees R

B 
encrypted with 

the session key he just generated, he knows Alice got message 6 and verified R
A
.  



     What can Trudy do to try to subvert this protocol? She can fabricate message 3 and trick 
Bob into probing Alice, but Alice will see an R

A 
that she did not send and will not proceed 

further. Trudy cannot forge message 7 back to Bob because she does not know R
B 

or K
S 

and 

cannot determine them without Alice's private key. She is out of luck. 

5.2. E-Mail Security  

     When an e-mail message is sent between two distant sites, it will generally transit dozens of 
machines on the way. Any of these can read and record the message for future use. In practice, 
privacy is nonexistent, despite what many people think. Nevertheless, many people would like 
to be able to send e-mail that can be read by the intended recipient and no one else: not their 
boss and not even their government. This desire has stimulated several people and groups to 
apply the cryptographic principles we studied earlier to e-mail to produce secure e-mail. In the 
following sections we will study a widely-used secure e-mail system, PGP, and then briefly 
mention two others, PEM and S/MIME. For additional information about secure e-mail, see 
(Kaufman et al., 2002; and Schneier, 1995).  

5.2.1. PGP—Pretty Good Privacy  

     Our first example, PGP (Pretty Good Privacy) is essentially the brainchild of one person, 
Phil Zimmermann (Zimmermann, 1995a, 1995b). Zimmermann is a privacy advocate whose 
motto is: If privacy is outlawed, only outlaws will have privacy. Released in 1991, PGP is a 
complete e-mail security package that provides privacy, authentication, digital signatures, and 
compression, all in an easy-to-use form. Furthermore, the complete package, including all the 
source code, is distributed free of charge via the Internet. Due to its quality, price (zero), and 
easy availability on UNIX, Linux, Windows, and Mac OS platforms, it is widely used today. 

     PGP encrypts data by using a block cipher called IDEA (International Data Encryption 
Algorithm), which uses 128-bit keys. It was devised in Switzerland at a time when DES was 
seen as tainted and AES had not yet been invented. Conceptually, IDEA is similar to DES and           
AES: it mixes up the bits in a series of rounds, but the details of the mixing functions are 
different from DES and AES. Key management uses RSA and data integrity uses MD5, topics 
that we have already discussed.  

      PGP has also been embroiled in controversy since day 1 (Levy, 1993). Because 
Zimmermann did nothing to stop other people from placing PGP on the Internet, where people 
all over the world could get it, the U.S. Government claimed that Zimmermann had violated U.S. 
laws prohibiting the export of munitions. The U.S. Government's investigation of Zimmermann 
went on for 5 years, but was eventually dropped, probably for two reasons. First, Zimmermann 
did not place PGP on the Internet himself, so his lawyer claimed that he never exported 
anything (and then there is the little matter of whether creating a Web site constitutes export at 
all). Second, the government eventually came to realize that winning a trial meant convincing a 
jury that a Web site containing a downloadable privacy program was covered by the arms-
trafficking law prohibiting the export of war materiel such as tanks, submarines, military aircraft, 
and nuclear weapons. Years of negative publicity probably did not help much, either.  

     As an aside, the export rules are bizarre, to put it mildly. The government considered putting 
code on a Web site to be an illegal export and harassed Zimmermann for 5 years about it. On 
the other hand, when someone published the complete PGP source code, in C, as a book (in a 
large font with a checksum on each page to make scanning it in easy) and then exported the 
book, that was fine with the government because books are not classified as munitions. The 
sword is mightier than the pen, at least for Uncle Sam.  



     Another problem PGP ran into involved patent infringement. The company holding the RSA 
patent, RSA Security, Inc., alleged that PGP's use of the RSA algorithm infringed on its patent, 
but that problem was settled with releases starting at 2.6. Furthermore, PGP uses another 
patented encryption algorithm, IDEA, whose use caused some problems at first. 

     Since PGP is open source, various people and groups have modified it and produced a 
number of versions. Some of these were designed to get around the munitions laws, others 
were focused on avoiding the use of patented algorithms, and still others wanted to turn it into a 
closed-source commercial product. Although the munitions laws have now been slightly 
liberalized (otherwise products using AES would not have been exportable from the U.S.), and 
the RSA patent expired in September 2000, the legacy of all these problems is that several 
incompatible versions of PGP are in circulation, under various names. The discussion below 
focuses on classic PGP, which is the oldest and simplest version. Another popular version, 
Open PGP, is described in RFC 2440. Yet another is the GNU Privacy Guard.  

      PGP intentionally uses existing cryptographic algorithms rather than inventing new ones. It 
is largely based on algorithms that have withstood extensive peer review and were not designed 
or influenced by any government agency trying to weaken them. For people who tend to distrust 
government, this property is a big plus.  

     PGP supports text compression, secrecy, and digital signatures and also provides extensive 
key management facilities, but oddly enough, not e-mail facilities. It is more of a preprocessor 
that takes plaintext as input and produces signed ciphertext in base64 as output. This output 
can then be e-mailed, of course. Some PGP implementations call a user agent as the final step 
to actually send the message.  

      To see how PGP works, let us consider the example of Fig. 5.11. Here, Alice wants to send 
a signed plaintext message, P, to Bob in a secure way. Both Alice and Bob have private (D

X
) 

and public (E
X
) RSA keys. Let us assume that each one knows the other's public key; we will 

cover PGP key management shortly. 

 

Fig. 5.11. PGP in operation for sending a message. 

 

      Alice starts out by invoking the PGP program on her computer. PGP first hashes her 
message, P, using MD5, and then encrypts the resulting hash using her private RSA key, D

A
. 

When Bob eventually gets the message, he can decrypt the hash with Alice's public key and 
verify that the hash is correct. Even if someone else (e.g., Trudy) could acquire the hash at this 
stage and decrypt it with Alice's known public key, the strength of MD5 guarantees that it would 
be computationally infeasible to produce another message with the same MD5 hash.  



     The encrypted hash and the original message are now concatenated into a single message, 
P1, and compressed using the ZIP program, which uses the Ziv-Lempel algorithm (Ziv and 
Lempel, 1977). Call the output of this step P1.Z.  

     Next, PGP prompts Alice for some random input. Both the content and the typing speed are 
used to generate a 128-bit IDEA message key, K

M 
(called a session key in the PGP literature, 

but this is really a misnomer since there is no session). K
M 

is now used to encrypt P1.Z with 

IDEA in cipher feedback mode. In addition, K
M 

is encrypted with Bob's public key, E
B
. These two 

components are then concatenated and converted to base64, as we discussed in the section on 
MIME . The resulting message then contains only letters, digits, and the symbols +, /, and =, 
which means it can be put into an RFC 822 body and be expected to arrive unmodified.  

     When Bob gets the message, he reverses the base64 encoding and decrypts the IDEA key 
using his private RSA key. Using this key, he decrypts the message to get P1.Z. After 
decompressing it, Bob separates the plaintext from the encrypted hash and decrypts the hash 
using Alice's public key. If the plaintext hash agrees with his own MD5 computation, he knows 
that P is the correct message and that it came from Alice.  

     It is worth noting that RSA is only used in two places here: to encrypt the 128-bit MD5 hash 
and to encrypt the 128-bit IDEA key. Although RSA is slow, it has to encrypt only 256 bits, not a 
large volume of data. Furthermore, all 256 plaintext bits are exceedingly random, so a 
considerable amount of work will be required on Trudy's part just to determine if a guessed key 
is correct. The heavy duty encryption is done by IDEA, which are orders of magnitude faster 
than RSA. Thus, PGP provides security, compression, and a digital signature and does so in a 
much more efficient way than the previous scheme. 

     PGP supports four RSA key lengths. It is up to the user to select the one that is most 
appropriate. The lengths are  

1. Casual (384 bits): can be broken easily today.  

2. Commercial (512 bits): breakable by three-letter organizations.  

3. Military (1024 bits): Not breakable by anyone on earth. 

4. Alien (2048 bits): Not breakable by anyone on other planets, either.  

 

    Since RSA is only used for two small computations, everyone should use alien strength keys 
all the time.  

     The format of a classic PGP message is shown in Fig.5.12. Numerous other formats are also 
in use. The message has three parts, containing the IDEA key, the signature, and the message, 
respectively. The key part contains not only the key, but also a key identifier, since users are 
permitted to have multiple public keys. 

 

Fig. 5.12. A PGP message. 



 

     The signature part contains a header, which will not concern us here. The header is followed 
by a timestamp, the identifier for the sender's public key that can be used to decrypt the 
signature hash, some type information that identifies the algorithms used (to allow MD6 and 
RSA2 to be used when they are invented), and the encrypted hash itself.  

     The message part also contains a header, the default name of the file to be used if the 
receiver writes the file to the disk, a message creation timestamp, and, finally, the message 
itself.  

     Key management has received a large amount of attention in PGP as it is the Achilles heel 
of all security systems. Key management works as follows. Each user maintains two data 
structures locally: a private key ring and a public key ring. The private key ring contains one or 
more personal private-public key pairs. The reason for supporting multiple pairs per user is to 
permit users to change their public keys periodically or when one is thought to have been 
compromised, without invalidating messages currently in preparation or in transit. Each pair has 
an identifier associated with it so that a message sender can tell the recipient which public key 
was used to encrypt it. Message identifiers consist of the low-order 64 bits of the public key. 
Users are responsible for avoiding conflicts in their public key identifiers. The private keys on 
disk are encrypted using a special (arbitrarily long) password to protect them against sneak 
attacks.  

     The public key ring contains public keys of the user's correspondents. These are needed to 
encrypt the message keys associated with each message. Each entry on the public key ring 
contains not only the public key, but also its 64-bit identifier and an indication of how strongly 
the user trusts the key.  

     The problem being tackled here is the following. Suppose that public keys are maintained on 
bulletin boards. One way for Trudy to read Bob's secret e-mail is to attack the bulletin board and 
replace Bob's public key with one of her choice. When Alice later fetches the key allegedly 
belonging to Bob, Trudy can mount a bucket brigade attack on Bob.  

     To prevent such attacks, or at least minimize the consequences of them, Alice needs to 
know how much to trust the item called ''Bob's key'' on her public key ring. If she knows that Bob 
personally handed her a floppy disk containing the key, she can set the trust value to the 
highest value. It is this decentralized, user-controlled approach to public-key management that 
sets PGP apart from centralized PKI schemes.  

      Nevertheless, people do sometimes obtain public keys by querying a trusted key server. For 
this reason, after X.509 was standardized, PGP supported these certificates as well as the 
traditional PGP public key ring mechanism. All current versions of PGP have X.509 support.  

5.2.2 PEM—Privacy Enhanced Mail  

     In contrast to PGP, which was initially a one-man show, our second example, PEM (Privacy 
Enhanced Mail), developed in the late 1980s, is an official Internet standard and described in 
four RFCs: RFC 1421 through RFC 1424. Very roughly, PEM covers the same territory as PGP: 
privacy and authentication for RFC 822-based e-mail systems. Nevertheless, it also has some 
differences from PGP in approach and technology.  

Messages sent using PEM are first converted to a canonical form so they all have the same 
conventions about white space (e.g., tabs, trailing spaces). Next, a message hash is computed 
using MD2 or MD5. Then the concatenation of the hash and the message is encrypted using 
DES. In light of the known weakness of a 56-bit key, this choice is certainly suspect. The 
encrypted message can then be encoded with base64 coding and transmitted to the recipient.  



     As in PGP, each message is encrypted with a one-time key that is enclosed along with the 
message. The key can be protected either with RSA or with triple DES using EDE.  

     Key management is more structured than in PGP. Keys are certified by X.509 certificates 
issued by CAs, which are arranged in a rigid hierarchy starting at a single root. The advantage 
of this scheme is that certificate revocation is possible by having the root issue CRLs 
periodically.  

     The only problem with PEM is that nobody ever used it and it has long-since gone to that big 
bit bin in the sky. The problem was largely political: who would operate the root and under what 
conditions? There was no shortage of candidates, but many people were afraid to trust anyone 
company with the security of the whole system. The most serious candidate, RSA Security, Inc., 
wanted to charge per certificate issued. However, some organizations balked at this idea. In 
particular, the U.S. Government is allowed to use all U.S. patents for free, and companies 
outside the U.S. had become accustomed to using the RSA algorithm for free (the company 
forgot to patent it outside the U.S.). Neither was enthusiastic about suddenly having to pay RSA 
Security, Inc., for doing something that they had always done for free. In the end, no root could 
be found and PEM collapsed.  

5.2.3. S/MIME  

     IETF's next venture into e-mail security, called S/MIME (Secure/MIME), is described in 
RFCs 2632 through 2643. Like PEM, it provides authentication, data integrity, secrecy, and 
nonrepudiation. It also is quite flexible, supporting a variety of cryptographic algorithms. Not 
surprisingly, given the name, S/MIME integrates well with MIME, allowing all kinds of messages 
to be protected. A variety of new MIME headers are defined, for example, for holding digital 
signatures.  

     IETF definitely learned something from the PEM experience. S/MIME does not have a rigid 
certificate hierarchy beginning at a single root. Instead, users can have multiple trust anchors. 
As long as a certificate can be traced back to some trust anchor the user believes in, it is 
considered valid. S/MIME uses the standard algorithms and protocols we have been examining 
so far, so we will not discuss it any further here. For the details, please consult the RFCs.  

 

5.3. Web Security  

     We have just studied two important areas where security is needed: communications and e-
mail. You can think of these as the soup and appetizer. Now it is time for the main course: Web 
security. The Web is where most of the Trudies hang out nowadays and do their dirty work. In 
the following sections we will look at some of the problems and issues relating to Web security.  

     Web security can be roughly divided into three parts. First, how are objects and resources 
named securely? Second, how can secure, authenticated connections be established? Third, 
what happens when a Web site sends a client a piece of executable code? After looking at 
some threats, we will examine all these issues.  

 

5.3.1 Threats 

     One reads about Web site security problems in the newspaper almost weekly. The situation 
is really pretty grim. Let us look at a few examples of what has already happened. First, the 
home page of numerous organizations has been attacked and replaced by a new home page of 
the crackers' choosing. (The popular press calls people who break into computers ''hackers,'' 
but many programmers reserve that term for great programmers. We prefer to call these people 



''crackers.'') Sites that have been cracked include Yahoo, the U.S. Army, the CIA, NASA, and 
the New York Times. In most cases, the crackers just put up some funny text and the sites were 
repaired within a few hours.  

     Now let us look at some much more serious cases. Numerous sites have been brought down 
by denial-of-service attacks, in which the cracker floods the site with traffic, rendering it unable 
to respond to legitimate queries. Often the attack is mounted from a large number of machines 
that the cracker has already broken into (DDoS atacks). These attacks are so common that they 
do not even make the news any more, but they can cost the attacked site thousands of dollars 
in lost business.  

     In 1999, a Swedish cracker broke into Microsoft's Hotmail Web site and created a mirror site 
that allowed anyone to type in the name of a Hotmail user and then read all of the person's 
current and archived e-mail.  

     In another case, a 19-year-old Russian cracker named Maxim broke into an e-commerce 
Web site and stole 300,000 credit card numbers. Then he approached the site owners and told 
them that if they did not pay him $100,000, he would post all the credit card numbers to the 
Internet. They did not give in to his blackmail, and he indeed posted the credit card numbers, 
inflicting great damage to many innocent victims.  

     In a different vein, a 23-year-old California student e-mailed a press release to a news 
agency falsely stating that the Emulex Corporation was going to post a large quarterly loss and 
that the C.E.O. was resigning immediately. Within hours, the company's stock dropped by 60%, 
causing stockholders to lose over $2 billion. The perpetrator made a quarter of a million dollars 
by selling the stock short just before sending the announcement. While this event was not a 
Web site break-in, it is clear that putting such an announcement on the home page of any big 
corporation would have a similar effect.  

     We could (unfortunately) go on like this for many pages. But it is now time to examine some 
of the technical issues related to Web security. For more information about security problems of 
all kinds, see (Anderson, 2001; Garfinkel with Spafford, 2002; and Schneier, 2000). Searching 
the Internet will also turn up vast numbers of specific cases. 

5.4. Social Issues  

The Internet and its security technology is an area where social issues, public policy, and 
technology meet head on, often with huge consequences. Below we will just briefly examine 
three areas: privacy, freedom of speech, and copyright. Needless to say, we can only scratch 
the surface here. For additional reading, see (Anderson, 2001; Garfinkel with Spafford, 2002; 
and Schneier, 2000). The Internet is also full of material. Just type words such as ''privacy,'' 
''censorship,'' and ''copyright'' into any search engine. Also, see this book's Web site for some 
links.  

5.4.1 Privacy  

     Do people have a right to privacy? Good question. The Fourth Amendment to the U.S. 
Constitution prohibits the government from searching people's houses, papers, and effects 
without good reason, and goes on to restrict the circumstances under which search warrants 
shall be issued. Thus, privacy has been on the public agenda for over 200 years, at least in the 
U.S.  

     What have changed in the past decade is both the ease with which governments can spy on 
their citizens and the ease with which the citizens can prevent such spying. In the 18th century, 
for the government to search a citizen's papers, it had to send out a policeman on a horse to go 
to the citizen's farm demanding to see certain documents. It was a cumbersome procedure. 



Nowadays, telephone companies and Internet providers readily provide wiretaps when 
presented with search warrants. It makes life much easier for the policeman and there is no 
danger of falling off the horse.  

      Cryptography changes all that. Anybody who goes to the trouble of downloading and 

installing PGP and who uses a well-guarded alien-strength key can be fairly sure that nobody in 

the known universe can read his e-mail, search warrant or no search warrant. Governments well 

understand this and do not like it. Real privacy means it is much harder for them to spy on 

criminals of all stripes, but it is also much harder to spy on journalists and political opponents. 

Consequently, some governments restrict or forbid the use or export of cryptography. In France, 

for example, prior to 1999, all cryptography was banned unless the government was given the 

keys. France was not alone. In April 1993, the U.S. Government announced its intention to 

make a hardware crypto processor, the clipper chip, the standard for all networked 

communication. In this way, it was said; citizens' privacy would be guaranteed. It also mentioned 

that the chip provided the government with the ability to decrypt all traffic via a scheme called 

key escrow, which allowed the government access to all the keys. However, it promised only to 

snoop when it had a valid search warrant. Needless to say, a huge furor ensued, with privacy 

advocates denouncing the whole plan and law enforcement officials praising it. Eventually, the 

government backed down and dropped the idea.     

Anonymous Remailers  

     PGP, SSL, and other technologies make it possible for two parties to establish secure, 

authenticated communication, free from third-party surveillance and interference. However, 

sometimes privacy is best served by not having authentication, in fact by making communication 

anonymous. The anonymity may be desired for point-to-point messages, newsgroups, or both.  

     Let us consider some examples. First, political dissidents living under authoritarian regimes 

often wish to communicate anonymously to escape being jailed or killed. Second, wrongdoing in 

many corporate, educational, governmental, and other organizations has often been exposed by 

whistleblowers, who frequently prefer to remain anonymously to avoid retribution. Third, people 

with unpopular social, political, or religious views may wish to communicate with each other via 

e-mail or newsgroups without exposing themselves. Fourth, people may wish to discuss 

alcoholism, mental illness, sexual harassment, child abuse, or being a member of a persecuted 

minority in a newsgroup without having to go public. Numerous other examples exist, of course.  

     Let us consider a specific example. In the 1990s, some critics of a nontraditional religious 

group posted their views to a USENET newsgroup via an anonymous remailer. This server 

allowed users to create pseudonyms and send e-mail to the server, which then re-mailed or re-

posted them using the pseudonym, so no one could tell where the message really came from. 

Some postings revealed what the religious group claimed were trade secrets and copyrighted 

documents. The religious group responded by telling local authorities that its trade secrets had 

been disclosed and its copyright infringed, both of which were crimes where the server was 

located. A court case followed and the server operator was compelled to turn over the mapping 

information which revealed the true identities of the persons who had made the postings. 

(Incidentally, this was not the first time that a religion was unhappy when someone leaked its 

secrets: William Tyndale was burned at the stake in 1536 for translating the Bible into English).  



      A substantial segment of the Internet community was outraged by this breach of 

confidentiality. The conclusion that everyone drew is that an anonymous remailer that stores a 

mapping between real e-mail addresses and pseudonyms (called a type 1 remailer) is not worth 

much. This case stimulated various people into designing anonymous remailers that could 

withstand subpoena attacks.  

     These new remailers often called cypherpunk remailers, work as follows. The user 

produces an e-mail message, complete with RFC 822 headers (except From:, of course), 

encrypts it with the remailer's public key, and sends it to the remailer. There the outer RFC 822 

headers are stripped off, the content is decrypted and the message is remailed. The remailer 

has no accounts and maintains no logs, so even if the server is later confiscated, it retains no 

trace of messages that have passed through it.  

      Many users who wish anonymity chain their requests through multiple anonymous 

remailers, as shown in Fig.5.13. Here, Alice wants to send Bob a really, really, really 

anonymous Valentine's Day card, so she uses three remailers. She composes the message, M, 

and puts a header on it containing Bob's e-mail address. Then she encrypts the whole thing with 

remailer 3's public key, E
3
. (Indicated by horizontal hatching). To this she prepends a header 

with remailer 3's e-mail address in plaintext. This is the message shown between remailers 2 

and 3 in the Fig.. 

 

Fig.5.13. How Alice uses 3 remailers to send Bob a message. 

 

     Then she encrypts this message with remailer 2's public key, E
2 

(indicated by vertical 

hatching) and prepends a plaintext header containing remailer 2's e-mail address. This 
message is shown between 1 and 2 in Fig.5.4.1. Finally, she encrypts the entire message with 
remailer 1's public key, E

1
, and prepends a plaintext header with remailer 1's e-mail address. 

This is the message shown to the right of Alice in the Fig. and this is the message she actually 
transmits.  

     When the message hits remailer 1, the outer header is stripped off. The body is decrypted 
and then e-mailed to remailer 2. Similar steps occur at the other two remailers.  

      Although it is extremely difficult for anyone to trace the final message back to Alice, many 

remailers take additional safety precautions. For example, they may hold messages for a 

random time, add or remove junk at the end of a message, and reorder messages, all to make it 

harder for anyone to tell which message output by a remailer corresponds to which input, in 



order to thwart traffic analysis. For a description of a system that represents the state of the art 

in anonymous e-mail, see (Mazières and Kaashoek, 1998).  

      Anonymity is not restricted to e-mail. Services also exist that allow anonymous Web surfing. 

The user conFig.s his browser to use the anonymizer as a proxy. Henceforth, all HTTP requests 

go to the anonymizer, which requests the page and sends it back. The Web site sees the 

anonymizer as the source of the request, not the user. As long as the anonymizer refrains from 

keeping a log, after the fact no one can determine who requested which page. 

 

Steganography  

     In countries where censorship abounds, dissidents often try to use technology to evade it. 

Cryptography allows secret messages to be sent (although possibly not lawfully), but if the 

government thinks that Alice is a Bad Person, the mere fact that she is communicating with Bob 

may get him put in this category, too, as repressive governments understand the concept of 

transitive closure, even if they are short on mathematicians. Anonymous remailers can help, but 

if they are banned domestically and messages to foreign ones require a government export 

license, they cannot help much. But the Web can.  

     People who want to communicate secretly often try to hide the fact that any communication 

at all is taking place. The science of hiding messages is called steganography, from the Greek 

words for ''covered writing.'' In fact, the ancient Greeks used it themselves. Herodotus wrote of a 

general who shaved the head of a messenger, tattooed a message to his scalp, and let the hair 

grow back before sending him off. Modern techniques are conceptually the same, only they 

have a higher bandwidth and lower latency. 

 
5.5. Specification & Description Language (SDL) 
 

 SDL is object-oriented, formal language developed and standardized by ITU-T. 

 Intended for specification of complex, event-driven, real time interactive application 

involving many concurrent activities that communicate using discrete signals. 

 Specification language specifies the communication protocols either by using formal or 

graphical notation or both. Specification language is like any programming language 

which follows syntax and semantics. 

 SDL has been applied to system analysis and design in many application domains. 

 SDL uses FSMs and its extensions for specification 

 Graphical representation to specify behavior of protocols. 

Salient Features of SDL 
 

 Well defined set of concepts. 

 Unambiguous, clear, precise, and concise specifications 

 Thorough basis for analyzing specifications and conformance testing. 

 Basis for determining the consistency of specifications. 

 Good computer support interface for generating applications without the need for the 

traditional coding phase. 



 High degree of testability as a result of its formalism for parallelism, interfaces, 

communication and time. 

 portability, scalability and open specification 

 High degree of reuse because of visual clarity, object oriented concepts, clear interfaces, 

and abstraction mechanisms. 

 facility for applying optimization techniques improving protocol 

SDL Based Protocol Verification 
 

• Create the FSMs of all the entities of the protocol. 

● Translate the FSMs into the SDL based specification (like system, block and process 

diagrams). 

● Run the simulation and check that all the processes are running in the given specifications. 

● Input the required signals to check for safety and liveness properties of the specified protocol. 

● Generate the MSC diagrams using the SDL tool. 

● Check the MSC diagrams of the test-cases to verify the safety and liveness properties. 

 
 
Alternating Bit Protocol 

 

 

Alternating Bit Protocol 
 
• The block consists of the following processes 

• UL sender P: upper layer sender process 

• UL Receiver: upper layer receiver process 

• Data Medium: provides service to transmit data from sender to receiver 

• Sender P: sender process to transmit the frames 

• Receiver P: receiver process to receive the data and deliver to upper layer process as well as 

acknowledge the received data. 

• Ack Medium: provides service to transmit the acknowledgments 

Received from the receiver to sender. 



 

Reciever Process of ABP 

 

Verification of the ABP 



 
Safety properties: 
 

 To verify the ABP sends the packet with correct sequence number to the receiver, even 
if the medium loses the data frames. 

 We Send lose_data signal to the data medium. When sender process sends data_0 
packet, the data medium does not forwards it to the receiver but sender times out 
ultimately and retransmits the packet and reaches the destination. 

 To verify that ABP sends the ack signal with correct sequence number to sender, even if 
the medium loses the ack, we send lose_ack signal to ack_medium. sender sends 
data_0, receiver send ack_0 to ack medium which loses ack making sender to timeout 
and resend data_0, receiver retxm. ack_0 which reaches destination. 
 

Protocol Validation 
● Definition:– Protocol validation is a method of checking whether the interactions of protocol 
entities are according to the protocol specification, 
– do indeed satisfy certain properties or conditions which may be either general or specific to 
the particular protocol system directly derived from the specifications. 
● Validation sometimes refers to check the protocol specification such that it will not get into 
protocol design errors like deadlock, unspecified receptions, and live lock errors. 
 
Protocol Validation Approaches 
● Perturbation Technique: Reachability Analysis 

 



 
Reachability Analysis 
 
– consider global stateSS4inwhich: 
● P1is inS1state 
● P2is inS1state 
● Channel P12 is containingmessage1, and 
● Channel P21 is containing message3. From this the following transitions are possible: 
● P1canreceivethemessage3andtransit to global stateS6, 
● P2canreceivethemessage1andtransit toSS8, 
● P1 can transmit a message2 and reachSS9. 

Pros &Cons of Reachability Analysis 
 
– The advantages of using the reachability tree (sometimes called as graphs) for protocol 
validation are: 
● The tree generation can be easily automated 
● Many logical errors can be detected by only examining individual global states in the 
reachability graph. 
– The disadvantages of using reachability graphs are: 
● State space explosion problem; 
● Does not work on unbounded protocols; and 
● Many relationships among the protocol state variables, expressing the desirable logical 
correctness properties of the protocol, are not apparent from simply traversing the reachability 
tree. 
 
Fair Reachability Graphs 

 

 



Fair Reachability Graphs 
 
● Consider simple message exchange protocol where Process P1(sender) sendes3 messages 
toprocessP2(receiver) via a queue that has a maximum capacity of 3 messages. 
● The possible sequences are shown in the Fig., have the common property that both process 
execute the same sequence of interaction steps, that isP1sends3 messages and P2receives 3 
messages. 
● To Illustrate sequence, consider sequence5and1.Sequence5canonlybe execute dif at least 
3messagesareallowedinthequeue. similarly sequence1 requires only single queued 
message(transitionS12) , ie reception is followed by every 
transmission(transitionsS12,R21,S12,R21,S12,R21). 
● the sequence is treated as a series of executing steps, where each sequence consists of a 
protocol process sending or receiving message. 
● assumed that any transition starts and ends in a stable global system states. 
● This restriction requires that protocol execution periodically results in a global state in which 
all transmitted messages have been received. 

5.6. Internet Protocol  

 •In OSI reference model terminology - the IP protocol covers the network layer. •IP can be used 

on many data-link layers (can support many network hardware implementations). 

 

Internet Protocol 

 The IP in UDP/IP and TCP/IP 

 •IP is the network layer • packet delivery service (host-to-host). •translation between different 

data-link  protocols. 

 

IP Datagrams 

 •IP provides connectionless, unreliable delivery of IP datagram. • Connectionless: each 

datagram is independent of all others. • Unreliable: there is no guarantee that datagrams are 

delivered correctly or at all 

 

IP Addresses  

•IP addresses are not the same as the underlying data-link (MAC) addresses. 

IP is a network layer - it must be capable of providing communication between hosts on different 

kinds of networks (different data-link implementations). • The address must include information 

about what network the receiving host is on. This makes routing feasible. 

 

IP addresses are logical addresses (not physical) • 32 bits. • Includes a network ID and a host 

ID. • Every host must have a unique IP address. • IP addresses are assigned by a central 

authority (Internet Corporation for Assigned Names and Numbers -- ICANN) 

 



The four formats of IP Addresses 

Class A  

128 possible network IDs  

over 4 million host IDs per network ID  

128 possible network IDs  

over 4 million host IDs per network ID  

Class B   

16K possible network IDs  64K host IDs per network ID  

 16K possible network IDs  

 64K host IDs per network ID  

Class C  

 over 2 million possible network IDs  

 about 256 host IDs per network ID 

 

 

 

Network and Host IDs  

• A Network ID is assigned to an organization by a global authority. • Host IDs are assigned 

locally by a system administrator. • Both the Network ID and the Host ID are used for routing. 

IP Addresses  



•IP Addresses are usually shown in dotted decimal notation: 

 1.2.3.4 00000001 00000010 00000011 00000100  

• cs.rpi.edu is 128.213.1.1  

10000000 11010101 00000001 00000001  

CS has a class B network 

 

Host and Network Addresses  

• A single network interface is assigned a single IP address called the host address. • A host 

may have multiple interfaces, and therefore multiple host addresses. • Hosts that share a 

network all have the same IP network address (the network ID). 

 

IP Broadcast and Network Addresses  

• An IP broadcast addresses has a host ID of all 1s. •IP broadcasting is not necessarily a true 

broadcast; it relies on the underlying hardware technology. • An IP address that has a host ID of 

all 0s is called a network address and refers to an entire network. 

 

Subnet Addresses  

• An organization can subdivide its host address space into groups called subnets. • The subnet 

ID is generally used to group hosts based on the physical network topology. 

 

IP Datagram 

 
IP Datagram Fragmentation 
 
• Each fragment (packet) has the same structure as the IP datagram. 
• IP specifies that datagram reassembly is done only at the destination (not on a hop-by-hop 
basis). 



• If any of the fragments are lost – the entire datagram is discarded (and an ICMP message is 
sent to the sender). 
 
IP Flow Control & Error 
Detection 
• If packets arrive too fast – the receiver discards excessive packets and sends an ICMP 
message to the sender (SOURCE QUENCH). 
• If an error is found (header checksum problem) the packet is discarded and an ICMP message 
is sent to the sender 
 
5.7. SDL based interoperability testing of CSMA/CD and CSMA/CA protocol using bridge  
 

● The procedure for interoperability testing by using SDL is as follows. – Create FSMs for the 

protocols and their interoperations using a bridge. – Create SDL diagrams of the protocols and 

the bridge operations. – Run the system by giving the inputs (test sequence) from the 

environment such as source, destination and number of packets. – Create the MSCs for the 

different kinds of inputs. – Observe from MSCs interworking of CSMA/CA and CSMA/CD using 

a bridge. 

MSC Interoperability test 1 

 

 



MSC Interoperability test 2 

 

 

 

MSC Interoperability test 3 

 



Results 
 
1) MSC for the movement of 3 packets from node 1 (on CSMA/CD) to node 3 (on CSMA/CA). 
The bridge checks the destination of the packet, if it is on the same link, then it will not forward 
the packet. 
• In case destination is on different link, the bridge buffers the packet until CSMA/CA channel is 
free. 
• Once the channel is free, packets are sent one by one to the receiver. 
2) MSC for the movement of 3 packets from node 4 (CSMA/ CA) to node 2 (on CSMA/CD). 
• The bridge is forwarding packets reliably to the node 2. 
3) MSC for the movement of packets in both directions simultaneously (from node 1 to 3, and 
node 4 to 2). 

• bridge is able to handle the data transfer reliably for both sides. 

 

5.8. Scalability Testing  

 

     Scalability refers to the ability of communication protocol to support the network even when 

the network size grows without consuming much of the resources such as bandwidth and 

buffers. −Large networks like internet has some scalability limitation when it comes to managing 

individual traffic flows. Internet protocol RSVP are believed to be non scablable..  

 Scalability Testing of BGP: − 

BGP is designed to support scalability. The first item to test is the routing table capacity as the 

internet currently has 120,000 routes and still continues to grow. A BGP tester should generate 

Ipv4 routers and then validate the capacity of the local router to correctly process and store 

these routes. −The upper limits should be discovered and communicated to the appropriate 

network architects. −The current Internet routing table should also be loaded into the router so 

that real world scalability can be verified. 

 

Scalability testing of BGP  

The following are the test procedures used in scalability testing of BGP.  

Test case 1: Initially a baseline set of tests was performed which determined the number of 

routes which could be held in a VRF (Virtual routing and forwarding) table relative to the number 

of VRFs that were conFig.d on the router.  

Test case 2: Once the baseline set of tests has been performed the configuration on the router 

was altered so that each VRF had a firewall filter and a counter on its outgoing interface. This 

subset of tests was performed with 5, 10 and 15 filter statements and counters per VRF. 

 Test case 3: The third set of tests involved altering the configuration again by adding a policer 

to each VRF in addition to the filter and counter added in test case 2. Once this was established 

a similar subset of tests to test case 2 was performed. 



 

Fig. 5.14.BGP layer 3 MPLS VPN network 

 

Important Questions: 

1. Discuss in detail about Authentication protocols. 

2. Explain the various aspects of Internet Protocol (IP). 

3. Describe the social issues in communication security. 

4. With neat diagram brief the SDL based interoperability testing of CSMA/CD and 

CSMA/CA protocol using bridge 


