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                                  The Media Access Control (MAC) data communication Networks 

protocol sub-layer, also known as the Medium Access Control, is a sub-layer of the data link 

layer specified in the seven-layer OSI model. The medium access layer was made necessary by 

systems that share a common communications medium. Typically these are local area 

networks. The MAC layer is the "low" part of the second OSI layer, the layer of the "data link". In 

fact, the IEEE divided this layer into two layers "above" is the control layer the logical connection 

(Logical Link Control, LLC) and "down" the control layer The medium access (MAC). 

                   The LLC layer is standardized by the IEEE as the 802.2 since the beginning 1980 

Its purpose is to allow level 3 network protocols (for eg IP) to be based on a single layer (the 

LLC layer) regardless underlying protocol used, including WiFi, Ethernet or Token Ring, for 

example. All WiFi data packets so carry a pack LLC, which contains itself packets from the 

upper network layers. The header of a packet LLC indicates the type of layer 3 protocol in it: 

most of the time, it is IP protocol, but it could be another protocol, such as IPX (Internet Packet 

Exchange) for example. Thanks to the LLC layer, it is possible to have at the same time, on the 

same network, multiple Layer 3 protocols. 

In LAN nodes uses the same communication channel for transmission. The MAC sub-layer has 

two primary responsibilities: 

Data encapsulation, including frame assembly before transmission, and frame parsing/error 

detection during and after reception. Media access control, including initiation of frame 

transmission and recovery from transmission failure. 
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Figure  3.1. MAC layer protocol stack 

3.1. The channel allocation problem 

         The traditional way of allocating a single channel, such as a telephone trunk, among 
multiple competing users is Frequency Division Multiplexing (FDM). If there are N users, the 
bandwidth is divided into N equal-sized portions each user being assigned one portion. Since 
each user has a private frequency band, there is no interference between users. When there is 
only a small and constant number of users, each of which has a heavy (buffered) load of traffic 
(e.g., carriers' switching offices), FDM is a simple and efficient allocation mechanism.  

          However, when the number of senders is large and continuously varying or the traffic is 
bursty, FDM presents some problems. If the spectrum is cut up into N regions and fewer than N 
users are currently interested in communicating, a large piece of valuable spectrum will be 
wasted. If more than N users want to communicate, some of them will be denied permission for 
lack of bandwidth, even if some of the users who have been assigned a frequency band hardly 
ever transmit or receive anything. 

 

      (3.1) 
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      However, even assuming that the number of users could somehow be held constant at N, 

dividing the single available channel into static subchannels is inherently inefficient. The basic 

problem is that when some users are quiescent, their bandwidth is simply lost. They are not 

using it, and no one else is allowed to use it either. Furthermore, in most computer systems, 

data traffic is extremely bursty (peak traffic to mean traffic ratios of 1000:1 are common). 

Consequently, most of the channels will be idle most of the time.  



       The poor performance of static FDM can easily be seen from a simple queueing theory 
calculation. Let us start with the mean time delay, T, for a channel of capacity C bps, with an 
arrival rate of λ frames/sec, each frame having a length drawn from an exponential probability 
density function with mean 1/μ bits/frame. With these parameters the arrival rate is λ frames/sec 
and the service rate is μC frames/sec. From queueing theory it can be shown that for Poisson 
arrival and service times,  

         For example, if C is 100 Mbps, the mean frame length, 1/μ, is 10,000 bits, and the frame 
arrival rate, λ, is 5000 frames/sec, then T = 200 μsec. Note that if we ignored the queueing 
delay and just asked how long it takes to send a 10,000 bit frame on a 100-Mbps network, we 
would get the (incorrect) answer of 100 μsec. That result only holds when there is no contention 
for the channel.  

         Now let us divide the single channel into N independent subchannels, each with capacity 

C/N bps. The mean input rate on each of the subchannels will now be λ/N. Recomputing T we 

get  

      The mean delay using FDM is N times worse than if all the frames were somehow magically 
arranged orderly in a big central queue.  

      Precisely the same arguments that apply to FDM also apply to time division multiplexing 
(TDM). Each user is statically allocated every Nth time slot. If a user does not use the allocated 
slot, it just lies fallow. The same holds if we split up the networks physically. Using our previous 
example again, if we were to replace the 100-Mbps network with 10 networks of 10 Mbps each 
and statically allocate each user to one of them, the mean delay would jump from 200 μsec to 2 
msec.  

      Since none of the traditional static channel allocation methods work well with bursty traffic, 
we will now explore dynamic methods.  

Dynamic Channel Allocation in LANs and MANs  

       Before we get into the first of the many channel allocation methods to be discussed in this 

chapter, it is worthwhile carefully formulating the allocation problem. Underlying all the work 

done in this area are five key assumptions, described below.  

Station Model. The model consists of N independent stations (e.g., computers, telephones, or 

personal communicators), each with a program or user that generates frames for transmission. 

Stations are sometimes called terminals. The probability of a frame being generated in an 

interval of length Δt is λΔt, where λ is a constant (the arrival rate of new frames). Once a frame 

has been generated, the station is blocked and does nothing until the frame has been 

successfully transmitted.  

Single Channel Assumption. A single channel is available for all communication. All stations 

can transmit on it and all can receive from it. As far as the hardware is concerned, all stations 

are equivalent, although protocol software may assign priorities to them.  

Collision Assumption. If two frames are transmitted simultaneously, they overlap in time and 

the resulting signal is garbled. This event is called a collision. All stations can detect collisions. 

A collided frame must be transmitted again later. There are no errors other than those 

generated by collisions.  



4a. Continuous Time. Frame transmission can begin at any instant. There is no master clock 

dividing time into discrete intervals.  

4b. Slotted Time. Time is divided into discrete intervals (slots). Frame transmissions always 

begin at the start of a slot. A slot may contain 0, 1, or more frames, corresponding to an idle 

slot, a successful transmission, or a collision, respectively.  

5a. Carrier Sense. Stations can tell if the channel is in use before trying to use it. If the channel 

is sensed as busy, no station will attempt to use it until it goes idle.  

5b. No Carrier Sense. Stations cannot sense the channel before trying to use it. They just go 

ahead and transmit. Only later can they determine whether the transmission was successful.  

           Some discussion of these assumptions is in order. The first one says that stations are 

independent and that work is generated at a constant rate. It also implicitly assumes that each 

station only has one program or user, so while the station is blocked, no new work is generated. 

More sophisticated models allow multi programmed stations that can generate work while a 

station is blocked, but the analysis of these stations is much more complex.  

           The single channel assumption is the heart of the model. There are no external ways to 

communicate. Stations cannot raise their hands to request that the teacher call on them.  

          The collision assumption is also basic, although in some systems (notably spread 

spectrum), this assumption is relaxed, with surprising results. Also, some LANs, such as token 

rings, pass a special token from station to station, possession of which allows the current holder 

to transmit a frame. But in the coming sections we will stick to the single channel with contention 

and collisions model.  

          Two alternative assumptions about time are possible. Either it is continuous (4a) or it is 

slotted (4b). Some systems use one and some systems use the other, so we will discuss and 

analyze both. For a given system, only one of them holds.  

           Similarly, a network can either have carrier sensing (5a) or not have it (5b). LANs 

generally have carrier sense. However, wireless networks cannot use it effectively because not 

every station may be within radio range of every other station. Stations on wired carrier sense 

networks can terminate their transmission prematurely if they discover that it is colliding with 

another transmission. Collision detection is rarely done on wireless networks, for engineering 

reasons. Note that the word ''carrier'' in this sense refers to an electrical signal on the cable and 

has nothing to do with the common carriers (e.g., telephone companies) that date back to the 

Pony Express days. 

3.2. MULTIPLE ACCESS PROTOCOLS 

Following Protocols are used by Medium Access Layer: 

ALOHA: ALOHA is a system for coordinating and arbitrating access to a shared communication 

channel. It was developed in the 1970s at the University of Hawaii. The original system used 

terrestrial radio broadcasting, but the system has been implemented in satellite communication 



systems. A shared communication system like ALOHA requires a method of handling collisions 

that occur when two or more systems attempt to transmit on the channel at the same time. 

PURE ALOHA  

     The basic idea of an ALOHA system is simple: let users transmit whenever they have data to 

be sent. There will be collisions, of course, and the colliding frames will be damaged. However, 

due to the feedback property of broadcasting, a sender can always find out whether its frame 

was destroyed by listening to the channel, the same way other users do. With a LAN, the 

feedback is immediate; with a satellite, there is a delay of 270 msec before the sender knows if 

the transmission was successful. If listening while transmitting is not possible for some reason, 

acknowledgements are needed. If the frame was destroyed, the sender just waits a random 

amount of time and sends it again. The waiting time must be random or the same frames will 

collide over and over, in lockstep. Systems in which multiple users share a common channel in 

a way that can lead to conflicts are widely known as contention systems. 

     In the ALOHA system, a node transmits whenever data is available to send. If another node 

transmits at the same time, a collision occurs, and the frames that were transmitted are lost. 

However, a node can listen to broadcasts on the medium, even its own, and determine whether 

the frames were transmitted. 

 

Figure 3.2. Frames are transmitted at completely arbitrary times 

 

SLOTTED ALOHA  

 

     In 1972, Roberts published a method for doubling the capacity of an ALOHA system 
(Roberts, 1972). His proposal was to divide time into discrete intervals, each interval 
corresponding to one frame. This approach requires the users to agree on slot boundaries. One 
way to achieve synchronization would be to have one special station emit a pip at the start of 
each interval, like a clock.  

     In Roberts' method, which has come to be known as slotted ALOHA, in contrast to 
Abramson's pure ALOHA, a computer is not permitted to send whenever a carriage return is 
typed. Instead, it is required to wait for the beginning of the next slot. Thus, the continuous pure 



ALOHA is turned into a discrete one. Since the vulnerable period is now halved, the probability 
of no other traffic during the same slot as our test frame is e-G which leads to  

 

      (3.3) 

 

Carrier Sensed Multiple Accesses (CSMA): CSMA is a network access method used on 

shared network topologies such as Ethernet to control access to the network. Devices attached 

to the network cable listen (carrier sense) before transmitting. If the channel is in use, devices 

wait before transmitting. MA (Multiple Access) indicates that many devices can connect to and 

share the same network. All devices have equal access to use the network when it is clear. 

     Even though devices attempt to sense whether the network is in use, there is a good chance 

that two stations will attempt to access it at the same time. On large networks, the transmission 

time between one end of the cable and another is enough that one station may access the cable 

even though another has already just accessed it. There are two methods for avoiding these so-

called collisions, listed here: 

CSMA/CD (Carrier Sense Multiple Access/Collision Detection): CD (collision detection) 

defines what happens when two devices sense a clear channel, and then attempt to transmit at 

the same time. A collision occurs, and both devices stop transmission, wait for a random 

amount of time, and then retransmit. This is the technique used to access the 802.3 Ethernet 

network channel. 

     This method handles collisions as they occur, but if the bus is constantly busy, collisions can 

occur so often that performance drops drastically. It is estimated that network traffic must be 

less than 40 percent of the bus capacity for the network to operate efficiently. If distances are 

long, time lags occur that may result in inappropriate carrier sensing, and hence collisions. 

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance): In CA collision avoidance), 

collisions area voided because each node signals its intent to transmit before actually doing so. 

This method is not popular because it requires excessive overhead that reduces performance. 



 

Figure 3.3. Performance comparison of various MAC protocols 

 

CSMA WITH COLLISION DETECTION 

     Persistent and non-persistent CSMA protocols are clearly an improvement over ALOHA 

because they ensure that no station begins to transmit when it senses the channel busy. 

Another improvement is for stations to abort their transmissions as soon as they detect a 

collision. In other words, if two stations sense the channel to be idle and begin transmitting 

simultaneously, they will both detect the collision almost immediately. Rather than finish 

transmitting their frames, which are irretrievably garbled anyway, they should abruptly stop 

transmitting as soon as the collision is detected. Quickly terminating damaged frames saves 

time and bandwidth. This protocol, known as CSMA/CD (CSMA with Collision Detection) is 

widely used on LANs in the MAC sublayer. In particular, it is the basis of the popular Ethernet 

LAN, so it is worth devoting some time to looking at it in detail. 

       CSMA/CD, as well as many other LAN protocols, uses the conceptual model. At the point 

marked t
0
, a station has finished transmitting its frame. Any other station having a frame to send 

may now attempt to do so. If two or more stations decide to transmit simultaneously, there will 

be a collision. Collisions can be detected by looking at the power or pulse width of the received 

signal and comparing it to the transmitted signal. 

 

Figure 3.4. CSMA/CD can be in one of three states: contention, transmission, or idle. 

COLLISION-FREE PROTOCOLS  



     Although collisions do not occur with CSMA/CD once a station has unambiguously captured 

the channel, they can still occur during the contention period. These collisions adversely affect 

the system performance, especially when the cable is long (i.e., large τ) and the frames are 

short. And CSMA/CD is not universally applicable. In this section, we will examine some 

protocols that resolve the contention for the channel without any collisions at all, not even during 

the contention period. Most of these are not currently used in major systems, but in a rapidly 

changing field, having some protocols with excellent properties available for future systems is 

often a good thing.  

     In the protocols to be described, we assume that there are exactly N stations, each with a 

unique address from 0 to N - 1 ''wired'' into it. It does not matter that some stations may be 

inactive part of the time. We also assume that propagation delay is negligible. 

A BIT-MAP PROTOCOL  

          In our first collision-free protocol, the basic bit-map method, each contention period 

consists of exactly N slots. If station 0 has a frame to send, it transmits a 1 bit during the zeroth 

slot. No other station is allowed to transmit during this slot. Regardless of what station 0 does, 

station 1 gets the opportunity to transmit a 1 during slot 1, but only if it has a frame queued. In 

general, station j may announce that it has a frame to send by inserting a 1 bit into slot j. After 

all N slots have passed by, each station has complete knowledge of which stations wish to 

transmit. At that point, they begin transmitting in numerical order  

 

 

Figure 3.5. Basic bit-map protocol 

      Since everyone agrees on who goes next, there will never be any collisions. After the last 

ready station has transmitted its frame, an event all stations can easily monitor, another N bit 

contention period is begun. If a station becomes ready just after its bit slot has passed by, it is 

out of luck and must remain silent until every station has had a chance and the bit map has 

come around again. Protocols like this in which the desire to transmit is broadcast before the 

actual transmission are called reservation protocols. 

 

WAVELENGTH DIVISION MULTIPLE ACCESS PROTOCOLS  

       A different approach to channel allocation is to divide the channel into subchannels using 

FDM, TDM, or both, and dynamically allocate them as needed. Schemes like this are commonly 

used on fiber optic LANs to permit different conversations to use different wavelengths (i.e., 

frequencies) at the same time. In this section we will examine one such protocol (Humblet et al., 

1992).  



     A simple way to build an all-optical LAN is to use a passive star coupler. In effect, two fibers 

from each station are fused to a glass cylinder. One fiber is for output to the cylinder and one is 

for input from the cylinder. Light output by any station illuminates the cylinder and can be 

detected by all the other stations. Passive stars can handle hundreds of stations.  

     To allow multiple transmissions at the same time, the spectrum is divided into channels 

(wavelength bands). In this protocol, WDMA (Wavelength Division Multiple Access), each 

station is assigned two channels. A narrow channel is provided as a control channel to signal 

the station, and a wide channel is provided so the station can output data frames.  

     Each channel is divided into groups of time slots, as shown in. Let us call the number of slots 

in the control channel m and the number of slots in the data channel n + 1, where n of these are 

for data and the last one is used by the station to report on its status (mainly, which slots on 

both channels are free). On both channels, the sequence of slots repeats endlessly, with slot 0 

being marked in a special way so latecomers can detect it. All channels are synchronized by a 

single global clock. 

 

Figure 3.6. Wavelength division multiple access 

 

3.3. ETHERNET:  

 IEEE 802.3 Local Area Network (LAN) Protocols: Ethernet protocols refer to the 

family of local-area network (LAN) covered by the IEEE 802.3. In the Ethernet standard, there 

are two modes of operation: half-duplex and full-duplex modes. In the half duplex mode, data 

are transmitted using the popular Carrier-Sense Multiple Access/Collision Detection 

(CSMA/CD) protocol on a shared medium. 



 The main disadvantages of the half-duplex are the efficiency and distance limitation, in 

which the link distances, is limited by the minimum MAC frame size. This restriction reduces 

the efficiency drastically for high-rate transmission. Therefore, the carrier extension technique 

is used to ensure the minimum frame size of 512 bytes in Gigabit Ethernet to achieve a 

reasonable link distance. Four data rates are currently defined for operation over optical fiber 

and twisted-pair cables : 

10 Mbps - 10Base-T Ethernet (IEEE 802.3) 

100 Mbps - Fast Ethernet (IEEE 802.3u) 

1000 Mbps - Gigabit Ethernet (IEEE 802.3z) 

10-Gigabit - 10 Gbps Ethernet (IEEE 802.3ae). 

The Ethernet System consists of three basic elements: 

(1) The physical medium used to carry Ethernet signals between computers, 

(2) a set of medium access control rules embedded in each Ethernet interface that allow 

multiple computers to fairly arbitrate access to the shared Ethernet channel, and 

(3) an Ethernet frame that consists of a standardized set of bits used to carry data over the 

system. 

     As with all IEEE 802 protocols, the ISO data link layer is divided into two IEEE 802 sub-

layers, the Media Access Control (MAC) sub-layer and the MAC-client sub-layer. The IEEE 

802.3 physical layer corresponds to the ISO physical layer. 

     Each Ethernet-equipped computer operates independently of all other stations on the 

network: there is no central controller. All stations attached to an Ethernet are connected to a 

shared signaling system, also called the medium. To send data a station first listens to the 

channel, and when the channel is idle the station transmits its data in the form of an Ethernet 

frame, or packet. 

     After each frame transmission, all stations on the network must contend equally for the next 

frame transmission opportunity. Access to the shared channel is determined by the medium 

access control (MAC) mechanism embedded in the Ethernet interface located in each station. 

The medium access control mechanism is based on a system called Carrier Sense Multiple 

Access with Collision Detection (CSMA/CD). 

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
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     As each Ethernet frame is sent onto the shared signal channel, all Ethernet interfaces look at 

the destination address. If the destination address of the frame matches with the interface 

address, the frame will be read entirely and be delivered to the networking software running on 

that computer. All other network interfaces will stop reading the frame when they discover that 

the destination address does not match their own address. 

IEEE 802.4 Token Bus: In token bus network station must have possession of a token before it 

can transmit on the network. The IEEE 802.4 Committee has defined token bus standards as 

broadband networks, as opposed to Ethernet's baseband transmission technique. The topology 

of the network can include groups of workstations connected by long trunk cables. 

     These workstations branch from hubs in a star configuration, so the network has both a bus 

and star topology. Token bus topology is well suited to groups of users that are separated by 

some distance. IEEE 802.4 token bus networks are constructed with 75-ohm coaxial cable 

using a bus topology. The broadband characteristics of the 802.4 standard support transmission 

over several different channels simultaneously. 

     The token and frames of data are passed from one station to another following the numeric 

sequence of the station addresses. Thus, the token follows a logical ring rather than a physical 

ring. The last station in numeric order passes the token back to the first station. The token does 

not follow the physical ordering of workstation attachment to the cable. Station 1 might be at one 

end of the cable and station 2 might be at the other, with station 3 in the middle. 

While token bus is used in some manufacturing environments, Ethernet and token ring 

standards have become more prominent in the office environment. 

IEEE 802.5 Token Ring: Token ring is the IEEE 802.5 standard for a token-passing ring 

network with a star-configured physical topology. Internally, signals travel around the network 

from one station to the next in a ring. Physically, each station connects to a central hub called a 

MAU (multistation access unit). The MAU contains a "collapsed ring," but the physical 

configuration is a star topology. When a station is attached, the ring is extended out to the 

station and then back to the MAU. 

     If a station goes offline, the ring is reestablished with a bypass at the station connector. 

Token ring was popular for an extended period in the late 1980s and 1990s, especially in IBM 

legacy system environments. IBM developed the technology and provided extensive support for 

connections to SNA systems. More recently, Ethernet, Fast Ethernet, and Gigabit Ethernet 

technologies have pushed token ring and other LAN technologies to the sidelines. 

     Historically, 10Base5 cabling, popularly called thick Ethernet, came first. It resembles a 

yellow garden hose, with markings every 2.5 meters to show where the taps go. (The 802.3 



standard does not actually require the cable to be yellow, but it does suggest it.) Connections to 

it are generally made using vampire taps, in which a pin is very carefully forced halfway into the 

coaxial cable's core. The notation 10Base5 means that it operates at 10 Mbps, uses baseband 

signaling, and can support segments of up to 500 meters. The first number is the speed in 

Mbps. Then comes the word ''Base'' (or sometimes ''BASE'') to indicate baseband transmission. 

There used to be a broadband variant, 10Broad36, but it never caught on in the marketplace 

and has since vanished. Finally, if the medium is coax, its length is given rounded to units of 

100 m after ''Base.''  

     Historically, the second cable type was 10Base2, or thin Ethernet, which, in contrast to the 

garden-hose-like thick Ethernet, bends easily. Connections to it are made using industry-

standard BNC connectors to form T junctions, rather than using vampire taps. BNC connectors 

are easier to use and more reliable. Thin Ethernet is much cheaper and easier to install, but it 

can run for only 185 meters per segment, each of which can handle only 30 machines.  

     Detecting cable breaks, excessive length, bad taps, or loose connectors can be a major 

problem with both media. For this reason, techniques have been developed to track them down. 

Basically, a pulse of known shape is injected into the cable. If the pulse hits an obstacle or the 

end of the cable, an echo will be generated and sent back. By carefully timing the interval 

between sending the pulse and receiving the echo, it is possible to localize the origin of the 

echo. This technique is called time domain reflectometry.  

     The problems associated with finding cable breaks drove systems toward a different kind of 

wiring pattern, in which all stations have a cable running to a central hub in which they are all 

connected electrically (as if they were soldered together). Usually, these wires are telephone 

company twisted pairs, since most office buildings are already wired this way, and normally 

plenty of spare pairs are available. This scheme is called 10Base-T. Hubs do not buffer 

incoming traffic. We will discuss an improved version of this idea (switches), which do buffer 

incoming traffic later.  

     For 10Base5, a transceiver is clamped securely around the cable so that its tap makes 

contact with the inner core. The transceiver contains the electronics that handle carrier detection 

and collision detection. When a collision is detected, the transceiver also puts a special invalid 

signal on the cable to ensure that all other transceivers also realize that a collision has occurred. 

 

 

Figure 3.7. Frame formats. (a) DIX Ethernet. (b) IEEE 802.3 

Types: 

 Fast Ethernet 



 Gigabit Ethernet 

 Ten- Gigabit Ethernet 

 

3.4. Wireless LANs 

 IEEE 802.11, the Working Group Setting the Standards for Wireless LANs. 

 WiFi Alliance 

 IEEE 802.11x and 802.11aa IEEE standards for authentication 

 Wi-Fi Planet News and hype about IEEE 802.11 wireless LANs 

 IEEE 802.11 Wikipedia article 

 ZigBee versus other wireless networking standards A comparison with Bluetooth, 

802.11, etc. 

 

 

 

 

Figure 3.8. The 802.11 Protocol Stack 

 

 

Figure 3.9. Frame Format 
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http://www.stg.com/wireless/ZigBee_comp.html


     The protocol starts when A decides it wants to send data to B. It begins by sending an RTS 

frame to B to request permission to send it a frame. When B receives this request, it may decide 

to grant permission, in which case it sends a CTS frame back. Upon receipt of the CTS, A now 

sends its frame and starts an ACK timer. Upon correct receipt of the data frame, B responds 

with an ACK frame, terminating the exchange. If A's ACK timer expires before the ACK gets 

back to it, the whole protocol is run again.  

     Now let us consider this exchange from the viewpoints of C and D. C is within range of A, so 

it may receive the RTS frame. If it does, it realizes that someone is going to send data soon, so 

for the good of all it desists from transmitting anything until the exchange is completed. From the 

information provided in the RTS request, it can estimate how long the sequence will take, 

including the final ACK, so it asserts a kind of virtual channel busy for itself, indicated by NAV 

(Network Allocation Vector) 

 

3.5. BROADBAND WIRELESS 

 

 IEEE 802.16 (Wireless MAN) Fixed broadband (MMDS and LMDS) 

 Wireless broadband Wikipedia article 

 IEEE 802.16 Wikipedia article 

 WiMAX Wikipedia article 

 WiMAX Forum Industry news, press releases, white papers, etc. 

  

      Running fiber, coax, or even category 5 twisted pair to millions of homes and businesses is 

prohibitively expensive. 

 

      The answer is broadband wireless. Erecting a big antenna on a hill just outside of town and 

installing antennas directed at it on customers' roofs is much easier and cheaper than digging 

trenches and stringing cables. Thus, competing telecommunication companies have a great 

interest in providing a multimegabit wireless communication service for voice, Internet, movies 

on demand, etc. 

 

Figure. 3.10. Protocol stack 
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      Many people in the industry realized that having a broadband wireless standard was the key 

element missing, so IEEE was asked to form a committee composed of people from key 

companies and academia to draw up the standard. The next number available in the 802 

numbering space was 802.16, so the standard got this number. Work was started in July 1999, 

and the final standard was approved in April 2002. Officially the standard is called ''Air Interface 

for Fixed Broadband Wireless Access Systems.'' However, some people prefer to call it a 

wireless MAN (Metropolitan Area Network) or a wireless local loop. We regard all these 

terms as interchangeable.  

      Like some of the other 802 standards, 802.16 was heavily influenced by the OSI model, 

including the (sub) layers, terminology, service primitives, and more. Unfortunately, also like 

OSI, it is fairly complicated. In the following sections we will give a brief description of some of 

the highlights of 802.16, but this treatment is far from complete and leaves out many details. For 

additional information about broadband wireless in general, see (Bolcskei et al., 2001; and 

Webb, 2001). For information about 802.16 in particular, see (Eklund et al., 2002). 

 

3.6. BLUETOOTH 

 

 Bluetooth is to allow very different (portable and fixed) devices located in each other’s 

proximity to exchange information: 

  Let very different portable devices (PDA, cellular phone, notebook) set up 

connections  

 Replace many of the existing cables (headset, keyboard, mouse, printer) Provide 

better wireless connection (handsfree solutions)  

 Provide wireless access to Internet entry points Relatively high bandwidth: 1 

Mbit/second  

 Also referred to as IEEE 802.15.1  

 It’s named after a Viking king who unified Denmark and Norway (940-981) Paolo Costa 

04 - MAC Sublayer Bluetooth 53 

 

 Bluetooth Architecture  

 

Piconet: Group of devices with one master and multiple slaves. There can as much as 7 active 

slaves, but a total of 255 parked ones (i.e., in a power-saving state). 

Scatternet: An interconnected collection of piconets A piconet is a centralized TDM system with 

the master determining which device gets to communicate the connection procedure for a non-

existent piconet is initiated by any of the devices, which then becomes the master The master-



slave design facilitates the implementation of Bluetooth chips for under 5$ Paolo Costa 04 - 

MAC Sublayer Bluetooth  

 

 

Figure 3.11.Two piconets can be connected to form a scatternet 

 

Bluetooth Protocol Stack (1/2)  
Radio: it uses frequency hopping (2.4 GHz band):  

 Take data signal and modulate it with a carrier signal that changes frequency in hops.  

 Good to minimize interference from other devices (microwave ovens!) hops for Bluetooth: 

fixed at 2402 + k MHz, k = 0, 1. . . 78.  

 Modulation is frequency shift keying with 1 bit / Hertz ⇒ 1Mbps data rate but much of this is 

consumed as overhead  

 Baseband: Core of the data link layer.  

 Determines timing, framing, packets, and flow control.  

 Provides synchronous and asynchronous data communication.  

 Error correction can be used to provide higher reliability 

 

 

Figure 3.12. 802.15 version of the Bluetooth protocol architecture 

 

Bluetooth Protocol Stack (2/2)  

Link manager: Manages connections, power management  



Logical link control: Multiplexing of higher-level protocols, segmentation and reassembly of large 

packets, device discovery  

Audio: Handles streaming for voice-related applications  

RFCOMM: Emulate serial cable based on GSM protocol 

 

Figure 3.13. Typical Bluetooth data frame 

 

3.7. Data Link Layer Switching 

 LAN Switching LAN switching tutorial from Cisco 

 Multiprotocol Label Switching (MPLS) Wikipedia article 

 Virtual LANs 

 IEEE 802.1Q Home Page Many 802.1Q links 

 Virtual LAN s Links to articles about VLANs 

 VLAN Tutorial everything about VLANs, from Computer-Network.net 

 VLAN Basics Tutorial A brief tutorial on VLANs. 

 Virtual LAN Wikipedia Article 

 Multiprotocol Label Switching article at Cisco 

 Many organizations have multiple LANs and wish to connect them. LANs can be 

connected by devices called bridges, which operate in the data link layer. Bridges 

examine the data layer link addresses to do routing. Since they are not supposed to 

examine the payload field of the frames they route, they can transport IPv4 (used in the 

Internet now), IPv6 (will be used in the Internet in the future), AppleTalk, ATM, OSI, or 

any other kinds of packets. In contrast, routers examine the addresses in packets and 

route based on them. Although this seems like a clear division between bridges and 

routers, some modern developments, such as the advent of switched Ethernet, have 

muddied the waters, as we will see later. In the following sections we will look at bridges 

and switches, especially for connecting different 802 LANs. For a comprehensive 

treatment of bridges, switches, and related topics, see (Perlman, 2000).  

 Before getting into the technology of bridges, it is worthwhile taking a look at some 

common situations in which bridges are used. We will mention six reasons why a single 

organization may end up with multiple LANs.  

http://www.cisco.com/en/US/docs/internetworking/technology/handbook/LAN-Switching.html
http://en.wikipedia.org/wiki/Multiprotocol_Label_Switching
http://www.ieee802.org/1/pages/802.1Q.html
http://compnetworking.about.com/cs/virtuallans/
http://www.intel.com/network/connectivity/resources/doc_library/tech_brief/virtual_lans.htm
http://www.computer-network.net/vlan-tutorial
http://www.computer-network.net/
http://searchnetworking.techtarget.com/generic/0,295582,sid7_gci1049442,00.html
http://en.wikipedia.org/wiki/Virtual_LAN
http://www.cisco.com/en/US/products/ps6557/products_ios_technology_home.html


 First, many university and corporate departments have their own LANs, primarily to 

connect their own personal computers, workstations, and servers. Since the goals of the 

various departments differ, different departments choose different LANs, without regard 

to what other departments are doing. Sooner or later, there is a need for interaction, so 

bridges are needed. In this example, multiple LANs came into existence due to the 

autonomy of their owners.  

 Second, the organization may be geographically spread over several buildings 

separated by considerable distances. It may be cheaper to have separate LANs in each 

building and connect them with bridges and laser links than to run a single cable over 

the entire site.  

 Third, it may be necessary to split what is logically a single LAN into separate LANs to 

accommodate the load. At many universities, for example, thousands of workstations are 

available for student and faculty computing. Files are normally kept on file server 

machines and are downloaded to users' machines upon request. The enormous scale of 

this system precludes putting all the workstations on a single LAN—the total bandwidth 

needed is far too high. Instead, multiple LANs connected by bridges are used, as shown 

in Fig 3.14. Each LAN contains a cluster of workstations with its own file server so that 

most traffic is restricted to a single LAN and does not add load to the backbone. 

 

 

Figure. 3.14. The IEEE 802 frame formats 

 

 

             Figure. 3.15. (a) Which device is in which layer. (b) Frames, packets, and headers. 



     Now let us look at the switching devices and see how they relate to the packets and frames. 

At the bottom, in the physical layer, we find the repeaters. These are analog devices that are 

connected to two cable segments. A signal appearing on one of them is amplified and put out 

on the other. Repeaters do not understand frames, packets, or headers. They understand volts. 

Classic Ethernet, for example, was designed to allow four repeaters, in order to extend the 

maximum cable length from 500 meters to 2500 meters.  

      Next we come to the hubs. A hub has a number of input lines that it joins electrically. 

Frames arriving on any of the lines are sent out on all the others. If two frames arrive at the 

same time, they will collide, just as on a coaxial cable. In other words, the entire hub forms a 

single collision domain. All the lines coming into a hub must operate at the same speed. Hubs 

differ from repeaters in that they do not (usually) amplify the incoming signals and are designed 

to hold multiple line cards each with multiple inputs, but the differences are slight. Like 

repeaters, hubs do not examine the 802 addresses or use them in any way. 

 

 

Figure 3.16. (a) A hub. (b) A bridge. (c) A switch 

 

 

3.8 Network Layer 

3.8.1 Network Layer Design Issues 

 

3.8.1.1 Store-and-Forward Packet Switching  
The major components of the system are the carrier's equipment (routers connected by 

transmission lines), shown inside the shaded oval, and the customers' equipment, shown 
outside the oval.  
 
 Host H1 is directly connected to one of the carrier's routers, A, by a leased line. In contrast, H2 
is on a LAN with a router, F, owned and operated by the customer. This router also has a 
leased line to the carrier's equipment.  
 
· We have shown F as being outside the oval because it does not belong to the carrier, but in 



terms of construction, software, and protocols, it is probably no different from the carrier's 
routers.  

 

Figure 3.17 The environment of the network layer protocols. 

 

 

This equipment is used as follows. A host with a packet to send transmits it to the nearest 
router, either on its own LAN or over a point-to-point link to the carrier. The packet is stored 
there until it has fully arrived so the checksum can be verified. 
 
·Then it is forwarded to the next router along the path until it reaches the destination host, where 
it is delivered. This mechanism is store-and-forward packet switching.  

3.8.1.2. Services provided to the Transport Layer  
 
The network layer provides services to the transport layer at the network layer/transport layer 
interface. An important question is what kind of services the network layer provides to the 
transport layer.  
 
The network layer services have been designed with the following goals in mind.  
 
1. The services should be independent of the router technology.  
 
2. The transport layer should be shielded from the number, type, and topology of the routers 
present.  
 
3. The network addresses made available to the transport layer should use a uniform numbering 
plan, even across LANs and WANs.  
 
Given these goals, the designers of the network layer have a lot of freedom in writing detailed 
specifications of the services to be offered to the transport layer. This freedom often degenerates 
into a raging battle between two warring factions.  
 
The other camp argues that the subnet should provide a reliable, connection-oriented service. 
They claim that 100 years of successful experience with the worldwide telephone system is an 



excellent guide. In this view, quality of service is the dominant factor, and without connections in 
the subnet, quality of service is very difficult to achieve, especially for real-time traffic such as 
voice and video.  
 
These two camps are best exemplified by the Internet and ATM. The Internet offers 
connectionless network-layer service; ATM networks offer connection-oriented network-layer 
service. However, it is interesting to note that as quality-of-service guarantees are becoming 
more and more important, the Internet is evolving.  
 
3.8.1.3Implementation of Connectionless Service  
 
Two different organizations are possible, depending on the type of service offered. If 
connectionless service is offered, packets are injected into the subnet individually and routed 
independently of each other. No advance setup is needed.  
 
In this context, the packets are frequently called datagrams (in analogy with telegrams) and the 
subnet is called a datagram subnet. If connection-oriented service is used, a path from the 
source router to the destination router must be established before any data packets can be sent.  
 
This connection is called a VC (virtual circuit), in analogy with the physical circuits set up by the 
telephone system, and the subnet is called a virtual-circuit subnet. In this section we will examine 
datagram subnets; in the next one we will examine virtual-circuit subnets.  
 
Let us now see how a datagram subnet works. Suppose that the process P1 in Fig. 3-18 has a 
long message for P2. It hands the message to the transport layer with instructions to deliver it to 
process P2 on host H2.  
 
The transport layer code runs on H1, typically within the operating system. It prepends a 
transport header to the front of the message and hands the result to the network layer, probably 
just another procedure within the operating system.  
 

 

Figure 3.18 Routing within a datagram subnet. 



Let us assume that the message is four times longer than the maximum packet size, so the 
network layer has to break it into four packets, 1, 2, 3, and 4 and sends each of them in turn to 
router A using some point-to-point protocol, for example, PPP. 
 
At this point the carrier takes over. Every router has an internal table telling it where to send 
packets for each possible destination. Each table entry is a pair consisting of a destination and 
the outgoing line to use for that destination.  
 
Only directly-connected lines can be used. A has only two outgoing lines—to B and C—so every 
incoming packet must be sent to one of these routers, even if the ultimate destination is some 
other router. A's initial routing table is shown in the figure under the label ''initially.''  

However, something different happened to packet 4. When it got to A it was sent to router B, 

even though it is also destined for F. For some reason, A decided to send packet 4 via a 

different route than that of the first three. 

 

Perhaps it learned of a traffic jam somewhere along the ACE path and updated its routing table, 

as shown under the label ''later.'' The algorithm that manages the tables and makes the routing 

decisions is called the routing algorithm.  

 

3.8.1.4. Implementation of Connection-Oriented Service  

 

For connection-oriented service, we need a virtual-circuit subnet. The idea behind virtual circuits 

is to avoid having to choose a new route for every packet sent, as in Fig.  

 

Instead, when a connection is established, a route from the source machine to the destination 

machine is chosen as part of the connection setup and stored in tables inside the routers. That 

route is used for all traffic flowing over the connection, exactly the same way that the telephone 

system works.  

 

When the connection is released, the virtual circuit is also terminated. With connection-oriented 

service, each packet carries an identifier telling which virtual circuit it belongs to. As an example, 

consider the situation of Fig. 3-3. Here, host H1 has established connection 1 with host H2.  

 

It is remembered as the first entry in each of the routing tables. The first line of A's table says 

that if a packet bearing connection identifier 1 comes in from H1, it is to be sent to router C and 

given connection identifier 1. Similarly, the first entry at C routes the packet to E, also with 

connection identifier 1.  

 



 

Figure 3-19. Routing within a virtual-circuit subnet. 

Now let us consider what happens if H3 also wants to establish a connection to H2. It chooses 
connection identifier 1 and tells the subnet to establish the virtual circuit. This leads to the 
second row in the tables.  
 
Note that we have a conflict here because although A can easily distinguish connection 1 
packets from H1 from connection 1 packets from H3, C cannot do this. For this reason, A 
assigns a different connection identifier to the outgoing traffic for the second connection.  
 
Avoiding conflicts of this kind is why routers need the ability to replace connection identifiers in 
outgoing packets. In some contexts, this is called label switching.  
 
3.8.1.5. Comparison of Virtual-Circuit and Datagram Subnets  
Both virtual circuits and datagrams have their supporters and their detractors. We will now 
attempt to summarize the arguments both ways. The major issues are listed in Fig. 3-4, 
although purists could probably find a counterexample for everything in the figure.  
 

Table 3.1 

   



Inside the subnet, several trade-offs exist between virtual circuits and datagrams. One 
trade-off is between router memory space and bandwidth. Virtual circuits allow packets 
to contain circuit numbers instead of full destination addresses. 
If the packets tend to be fairly short, a full destination address in every packet may 
represent a significant amount of overhead and hence, wasted bandwidth. The price 
paid for using virtual circuits internally is the table space within the routers.  
 
Depending upon the relative cost of communication circuits versus router memory, one 
or the other may be cheaper. Another trade-off is setup time versus address parsing 
time. Using virtual circuits requires a setup phase, which takes time and consumes 
resources.  
 
However, figuring out what to do with a data packet in a virtual-circuit subnet is easy: the 
router just uses the circuit number to index into a table to find out where the packet 
goes. In a datagram subnet, a more complicated lookup procedure is required to locate 
the entry for the destination.  
 
For transaction processing systems (e.g., stores calling up to verify credit card 
purchases), the overhead required to set up and clear a virtual circuit may easily dwarf 
the use of the circuit. If the majority of the traffic is expected to be of this kind, the use of 
virtual circuits inside the subnet makes little sense.  
 
On the other hand, permanent virtual circuits, which are set up manually and last for 
months or years, may be useful here. Virtual circuits also have a vulnerability problem. If 
a router crashes and loses its memory, even if it comes back up a second later, all the 
virtual circuits passing through it will have to be aborted.  
 
In contrast, if a datagram router goes down, only those users whose packets were 
queued in the router at the time will suffer, and maybe not even all those, depending 
upon whether they have already been acknowledged.  
 
The loss of a communication line is fatal to virtual circuits using it but can be easily 
compensated for if datagrams are used. Datagrams also allow the routers to balance the 
traffic throughout the subnet, since routes can be changed partway through a long 
sequence of packet transmissions. 

3.9 What is Network Layer? 

The network layer is concerned with getting packets from the source all the way to the 
destination. The packets may require to make many hops at the intermediate routers while 
reaching the destination. This is the lowest layer that deals with end to end transmission. In 
order to achieve its goals, the network layer must know about the topology of the 
communication network. It must also take care to choose routes to avoid overloading of some of 
the communication lines while leaving others idle. The network layer-transport layer interface 
frequently is the interface between the carrier and the customer, that is the boundary of the 
subnet. The functions of this layer include : 

1. Routing - The process of transferring packets received from the Data Link Layer of the 
source network to the Data Link Layer of the correct destination network is called 
routing. Involves decision making at each intermediate node on where to send the 



packet next so that it eventually reaches its destination. The node which makes this 
choice is called a router. For routing we require some mode of addressing which is 
recognized by the Network Layer. This addressing is different from the MAC layer 
addressing. 

2. Inter-networking - The network layer is the same across all physical networks (such as 
Token-Ring and Ethernet). Thus, if two physically different networks have to 
communicate, the packets that arrive at the Data Link Layer of the node which connects 
these two physically different networks, would be stripped of their headers and passed to 
the Network Layer. The network layer would then pass this data to the Data Link Layer 
of the other physical network.. 

3. Congestion Control - If the incoming rate of the packets arriving at any router is more 
than the outgoing rate, then congestion is said to occur. Congestion may be caused by 
many factors. If suddenly, packets begin arriving on many input lines and all need the 
same output line, then a queue will build up. If there is insufficient memory to hold all of 
them, packets will be lost. But even if routers have an infinite amount of memory, 
congestion gets worse, because by the time packets reach to the front of the queue, 
they have already timed out (repeatedly), and duplicates have been sent. All these 
packets are dutifully forwarded to the next router, increasing the load all the way to the 
destination. Another reason for congestion are slow processors. If the router's CPUs are 
slow at performing the bookkeeping tasks required of them, queues can build up, even 
though there is excess line capacity. Similarly, low-bandwidth lines can also cause 
congestion. 

The main functions performed by the network layer are as follows: 

 Routing 
 Congestion Control 
 Internetwokring 

3.10 Routing 

Routing is the process of forwarding of a packet in a network so that it reaches its intended 
destination. The main goals of routing are: 

1. Correctness: The routing should be done properly and correctly so that the packets 
may reach their proper destination. 

2. Simplicity: The routing should be done in a simple manner so that the overhead is as 
low as possible. With increasing complexity of the routing algorithms the overhead also 
increases. 

3. Robustness: Once a major network becomes operative, it may be expected to run 
continuously for years without any failures. The algorithms designed for routing should 
be robust enough to handle hardware and software failures and should be able to cope 
with changes in the topology and traffic without requiring all jobs in all hosts to be 
aborted and the network rebooted every time some router goes down. 

4. Stability: The routing algorithms should be stable under all possible circumstances. 
5. Fairness: Every node connected to the network should get a fair chance of transmitting 

their packets. This is generally done on a first come first serve basis. 
6. Optimality: The routing algorithms should be optimal in terms of throughput and 

minimizing mean packet delays. Here there is a trade-off and one has to choose 
depending on his suitability. 



3.10.1Classification of Routing Algorithms 

The routing algorithms may be classified as follows: 

1. Adaptive Routing Algorithm: These algorithms change their routing decisions to reflect 
changes in the topology and in traffic as well. These get their routing information from 
adjacent routers or from all routers. The optimization parameters are the distance, 
number of hops and estimated transit time. This can be further classified as follows: 

1. Centralized: In this type some central node in the network gets entire 
information about the network topology, about the traffic and about other nodes. 
This then transmits this information to the respective routers. The advantage of 
this is that only one node is required to keep the information. The disadvantage is 
that if the central node goes down the entire network is down, i.e. single point of 
failure. 

2. Isolated: In this method the node decides the routing without seeking information 
from other nodes. The sending node does not know about the status of a 
particular link. The disadvantage is that the packet may be send through a 
congested route resulting in a delay. Some examples of this type of algorithm for 
routing are: 

 Hot Potato: When a packet comes to a node, it tries to get rid of it as fast 
as it can, by putting it on the shortest output queue without regard to 
where that link leads. A variation of this algorithm is to combine static 
routing with the hot potato algorithm. When a packet arrives, the routing 
algorithm takes into account both the static weights of the links and the 
queue lengths. 

 Backward Learning: In this method the routing tables at each node gets 
modified by information from the incoming packets. One way to 
implement backward learning is to include the identity of the source node 
in each packet, together with a hop counter that is incremented on each 
hop. When a node receives a packet in a particular line, it notes down the 
number of hops it has taken to reach it from the source node. If the 
previous value of hop count stored in the node is better than the current 
one then nothing is done but if the current value is better then the value is 
updated for future use. The problem with this is that when the best route 
goes down then it cannot recall the second best route to a particular 
node. Hence all the nodes have to forget the stored informations 
periodically and start all over again. 

3. Distributed: In this the node receives information from its neighbouring nodes 
and then takes the decision about which way to send the packet. The 
disadvantage is that if in between the the interval it receives information and 
sends the paket something changes then the packet may be delayed. 

2. Non-Adaptive Routing Algorithm: These algorithms do not base their routing 
decisions on measurements and estimates of the current traffic and topology. Instead 
the route to be taken in going from one node to the other is computed in advance, off-
line, and downloaded to the routers when the network is booted. This is also known as 
static routing. This can be further classified as: 

1. Flooding: Flooding adapts the technique in which every incoming packet is sent 
on every outgoing line except the one on which it arrived. One problem with this 
method is that packets may go in a loop. As a result of this a node may receive 
several copies of a particular packet which is undesirable. Some techniques 
adapted to overcome these problems are as follows: 



 Sequence Numbers: Every packet is given a sequence number. When a 
node receives the packet it sees its source address and sequence 
number. If the node finds that it has sent the same packet earlier then it 
will not transmit the packet and will just discard it. 

 Hop Count: Every packet has a hop count associated with it. This is 
decremented(or incremented) by one by each node which sees it. When 
the hop count becomes zero(or a maximum possible value) the packet is 
dropped. 

 Spanning Tree: The packet is sent only on those links that lead to the 
destination by constructing a spanning tree routed at the source. This 
avoids loops in transmission but is possible only when all the intermediate 
nodes have knowledge of the network topology. 

Flooding is not practical for general kinds of applications. But in cases where 
high degree of robustness is desired such as in military applications, flooding is 
of great help. 

2. Random Walk: In this method a packet is sent by the node to one of its 
neighbours randomly. This algorithm is highly robust. When the network is highly 
interconnected, this algorithm has the property of making excellent use of 
alternative routes. It is usually implemented by sending the packet onto the least 
queued link. 

Delta Routing 

Delta routing is a hybrid of the centralized and isolated routing algorithms. Here each node 
computes the cost of each line (i.e some functions of the delay, queue length, utilization, 
bandwidth etc) and periodically sends a packet to the central node giving it these values which 
then computes the k best paths from node i to node j. Let Cij1 be the cost of the best i-
j path, Cij2 the cost of the next best path and so on.If Cijn - Cij1 < delta, (Cijn - cost 
of n'th besti-j path, delta is some constant) then path n is regarded equivalent to the best i-
j path since their cost differ by so little. When delta -> 0 this algorithm becomes centralized 
routing and when delta -> infinity all the paths become equivalent. 

Multipath Routing 

In the above algorithms it has been assumed that there is a single best path between any pair of 
nodes and that all traffic between them should use it. In many networks however there are 
several paths between pairs of nodes that are almost equally good. Sometimes in order to 
improve the performance multiple paths between single pair of nodes are used. This technique 
is called multipath routing or bifurcated routing. In this each node maintains a table with one row 
for each possible destination node. A row gives the best, second best, third best, etc outgoing 
line for that destination, together with a relative weight. Before forwarding a packet, the node 
generates a random number and then chooses among the alternatives, using the weights as 
probabilities. The tables are worked out manually and loaded into the nodes before the network 
is brought up and not changed thereafter. 

Hierarchical Routing 



In this method of routing the nodes are divided into regions based on hierarchy. A particular 

node can communicate with nodes at the same hierarchial level or the nodes at a lower level 

and directly under it. Here, the path from any source to a destination is fixed and is exactly one 

if the heirarchy is a tree. 

Non-Hierarchical Routing 

In this type of routing, interconnected networks are viewed as a single network, where bridges, 
routers and gateways are just additional nodes. 

 Every node keeps information about every other node in the network 
 In case of adaptive routing, the routing calculations are done and updated for all the 

nodes. 

The above two are also the disadvantages of non-hierarchical routing, since the table sizes and 
the routing calculations become too large as the networks get bigger. So this type of routing is 
feasible only for small networks. 

Hierarchical Routing 

This is essentially a 'Divide and Conquer' strategy. The network is divided into different regions 
and a router for a particular region knows only about its own domain and other routers. Thus, 
the network is viewed at two levels: 

1. The Sub-network level, where each node in a region has information about its peers in 
the same region and about the region's interface with other regions. Different regions 
may have different 'local' routing algorithms. Each local algorithm handles the traffic 
between nodes of the same region and also directs the outgoing packets to the 
appropriate interface. 

2. The Network Level, where each region is considered as a single node connected to its 
interface nodes. The routing algorithms at this level handle the routing of packets 
between two interface nodes, and is isolated from intra-regional transfer. 

Networks can be organized in hierarchies of many levels; e.g. local networks of a city at one 
level, the cities of a country at a level above it, and finally the network of all nations. 

In Hierarchical routing, the interfaces need to store information about: 

 All nodes in its region which are at one level below it. 
 Its peer interfaces. 
 At least one interface at a level above it, for outgoing packages. 

Advantages of Hierarchical Routing : 

 Smaller sizes of routing tables. 
 Substantially lesser calculations and updates of routing tables. 

Disadvantage : 



 Once the hierarchy is imposed on the network, it is followed and possibility of direct 
paths is ignored. This may lead to sub optimal routing. 

Source Routing 

Source routing is similar in concept to virtual circuit routing. It is implemented as under: 

 Initially, a path between nodes wishing to communicate is found out, either by flooding or 
by any other suitable method. 

 This route is then specified in the header of each packet routed between these two 
nodes. A route may also be specified partially, or in terms of some intermediate hops. 

Advantages: 

 Bridges do not need to lookup their routing tables since the path is already specified in 
the packet itself. 

 The throughput of the bridges is higher, and this may lead to better utilization of 
bandwidth, once a route is established. 

Disadvantages: 

 Establishing the route at first needs an expensive search method like flooding. 
 To cope up with dynamic relocation of nodes in a network, frequent updates of tables 

are required, else all packets would be sent in wrong direction. This too is expensive. 

Policy Based Routing 

In this type of routing, certain restrictions are put on the type of packets accepted and sent. e.g.. 
The IIT- K router may decide to handle traffic pertaining to its departments only, and reject 
packets from other routes. This kind of routing is used for links with very low capacity or for 
security purposes. 

Shortest Path Routing 

Here, the central question dealt with is 'How to determine the optimal path for routing ?' Various 
algorithms are used to determine the optimal routes with respect to some predetermined 
criteria. A network is represented as a graph, with its terminals as nodes and the links as edges. 
A 'length' is associated with each edge, which represents the cost of using the link for 
transmission. Lower the cost, more suitable is the link. The cost is determined depending upon 
the criteria to be optimized. Some of the important ways of determining the cost are: 

 Minimum number of hops: If each link is given a unit cost, the shortest path is the one 
with minimum number of hops. Such a route is easily obtained by a breadth first search 
method. This is easy to implement but ignores load, link capacity etc. 

 Transmission and Propagation Delays: If the cost is fixed as a function of 
transmission and propagation delays, it will reflect the link capacities and the 
geographical distances. However these costs are essentially static and do not consider 
the varying load conditions. 



 Queuing Delays: If the cost of a link is determined through its queuing delays, it takes 
care of the varying load conditions, but not of the propagation delays. 

Ideally, the cost parameter should consider all the above mentioned factors, and it should be 
updated periodically to reflect the changes in the loading conditions. However, if the routes are 
changed according to the load, the load changes again. This feedback effect between routing 
and load can lead to undesirable oscillations and sudden swings. 

Routing Algorithms 

As mentioned above, the shortest paths are calculated using suitable algorithms on the graph 
representations of the networks.  Let the network be represented by graph G ( V, E ) and let the 
number of nodes be 'N'.   For all the algorithms discussed below, the costs associated with the 
links are assumed to be positive.  A node has zero cost w.r.t itself.  Further, all the links are 
assumed to be symmetric, i.e.  if  di,j   =  cost of link  from node i to node j, then d i,j = d j,i .  The 
graph is assumed to be complete. If there exists no edge between two nodes, then a link of 
infinite cost is assumed.  The algorithms given below find costs of the paths from all nodes to a 
particular node; the problem is equivalent to finding the cost of paths from a source to all 
destinations. 

3.11 Bellman-Ford Algorithm 

This algorithm iterates on the number of edges in a path to obtain the shortest path. Since the 
number of hops possible is limited (cycles are implicitly not allowed),  the algorithm terminates 
giving the shortest path. 

Notation:  
    d i,j         =   Length of path between nodes i and j,  indicating the cost of the link.  
    h            =   Number of hops.  
    D[ i,h]   =   Shortest path length from node i to node 1, with upto 'h' hops.  
    D[ 1,h]  =   0  for all h .  
   
Algorithm :  
   
    Initial condition  :                 D[ i, 0]  =  infinity,  for all  i  ( i != 1 ) 

    Iteration             :                 D[i, h+1]  = min { di,j + D[j,h] }     over all values of j . 

    Termination        :                The algorithm terminates when 

                                                D[i, h]  =  D [ i,  h+1]     for all  i . 

Principle:  
For zero hops,  the minimum length path has length of infinity, for every node.  For one hop the 
shortest-path length associated with a node is equal to the length of the edge between  that 
node and node 1. Hereafter, we increment the number of hops allowed, (from h to h+1 ) and 
find out whether a shorter path exists through each of the  other nodes.  If  it exists, say through 
node 'j',  then its length must be the sum of the lengths between these two nodes (i.e.  di,j ) and 
the shortest path between j and 1 obtainable in upto h paths. If such a path doesn't exist, then 



the path length remains the same. The algorithm is guaranteed to terminate, since there are 
utmost N nodes, and so N-1 paths. It has time complexity of O ( N3 ) . 

3.12 Dijkstra's Algorithm 

Notation: 
Di   =     Length of shortest path from node 'i' to node 1.  
di,j  =     Length of path between nodes i and j . 

Algorithm 
Each node j  is  labeled with Dj, which is an estimate of cost of path from node j to node 1. 
Initially, let the estimates be infinity, indicating that nothing is known about the paths.  We now 
iterate on the length of paths, each time revising our estimate to lower values, as we obtain 
them. Actually, we divide the nodes into two groups ; the first one, called set P contains the 
nodes whose shortest distances have been found, and the other Q containing all the remaining 
nodes. Initially P contains only the node 1. At each step,  we select the node that has minimum 
cost path to node 1. This node is transferred to set P.  At the first step, this corresponds to 
shifting the node closest to 1 in P. Its minimum cost to node 1 is now known. At the next step, 
select the next closest node from set Q and update the labels corresponding to each node using 
: 

Dj    =   min [ Dj  ,  Di  +  dj,i   ]         (3.4) 

Finally, after N-1 iterations, the  shortest paths for all nodes are known, and the algorithm 
terminates.  
  

Principle 
Let the closest node to 1 at some step be i. Then i is shifted to P. Now, for each node j , the 
closest path to 1 either passes through i or it doesn't.  In the first case Dj remains the same. In 
the second case, the revised estimate of Dj is the sum Di  +  di,j . So we take the minimum of 
these two cases and update Dj accordingly.  As each of the nodes get transferred to set P, the 
estimates get closer to the lowest possible value. When a node is transferred, its shortest path 
length is known. So finally all the nodes are in P and the Dj 's represent the minimum costs. The 
algorithm is guaranteed to terminate in N-1 iterations and  its complexity is O( N2 ). 

3.13 The Floyd Warshall Algorithm 

This algorithm iterates on the set of nodes that can be used as intermediate nodes on paths. 
This set grows from a single node ( say node 1 ) at start to finally all the nodes of the graph.  At 
each iteration, we find the shortest path using given set of nodes as intermediate nodes, so that 
finally all the shortest paths are obtained. 

Notation 
Di,j [n]     =     Length of shortest  path between the nodes i and j using only the nodes 1,2,....n as 
intermediate nodes. 

Initial Condition 
Di,j[0]     =     di,j        for all nodes i,j . 



Algorithm 
Initially,  n = 0.      At each iteration, add next node to n. i.e.   For  n = 1,2, .....N-1 ,  
 
Di,j[n + 1]    =  min  {  Di,j[n] ,   Di,n+1[n]  + Dn+1,j[n]  }      (3.5) 

Principle 
Suppose the shortest path between i and j using nodes 1,2,...n is known. Now, if node n+1 is 
allowed to be an intermediate node, then the shortest path under new conditions either passes 
through node n+1 or it doesn't. If it does not pass through the node n+1, then Di,j[n+1] is same 
as Di,j[n] .  Else, we find the cost of the new route, which is obtained from the sum,  Di,n+1[n] + 
Dn+1,j[n]. So we take the minimum of these two cases at each step.  After adding all the nodes to 
the set of intermediate nodes, we obtain the shortest paths between all pairs of nodes together.  
The complexity of  Floyd-Warshall algorithm is O ( N3 ). 

It is observed that all the three algorithms mentioned above give comparable performance, 
depending upon the exact topology of the network. 

3.14 Address Resolution Protocol 

If a machine talks to another machine in the same network, it requires its physical or MAC 
address. But ,since the application has given the destination's IP address it requires some 
mechanism to bind the IP address with its MAC address.This is done through Address 
Resolution protocol (ARP).IP address of the destination node is broadcast and the destination 
node informs the source of its MAC address. 

1. Assume broadcast nature of LAN 
2. Broadcast IP address of the destination 
3. Destination replies it with its MAC address. 
4. Source maintains a cache of IP and MAC address bindings 

But this means that every time machine A wants to send packets to machine B, A has to send 
an ARP packet to resolve the MAC address of B and hence this will increase the traffic load too 
much, so to reduce the communication cost computers that use ARP maintains a cache of 
recently acquired IP_to_MAC address bindings, i.e. they dont have to use ARP repeatedly. ARP 
Refinements Several refinements of ARP are possible: When machine A wants to send packets 
to macine B, it is possible that machine B is going to send packets to machine A in the near 
future.So to avoid ARP for machine B, A should put its IP_to_MAC address binding in the 
special packet while requesting for the MAC address of B. Since A broadcasts its initial request 
for the MAC address of B, every machine on the network should extract and store in its cache 
the IP_to_MAC address binding of A When a new machine appears on the network (e.g. when 
an operating system reboots) it can broadcast its IP_to_MAC address binding so that all other 
machines can store it in their caches. This will eliminate a lot of ARP packets by all other 
machines, when they want to communicate with this new machine.  
 
Example displaying the use of Address Resolution Protocol:  
 
Consider a scenario where a computer tries to contact some remote machine using ping 
program, assuming that there has been no exchange of IP datagrams previously between the 
two machines and therefore arp packet must be sent to identify the MAC address of the remote 
machine.  



The arp request message (who is A.A.A.A tell B.B.B.B where the two are IP addresses) is 
broadcast on the local area network with an Ethernet protocol type 0x806. The packet is 
discarded by all the machines except the target machine which responds with an arp response 
message (A.A.A.A is hh:hh:hh:hh:hh:hh where hh:hh:hh:hh:hh:hh is the Ethernet source 
address). This packet is unicast to the machine with IP address B.B.B.B. Since the arp request 
message included the hardware address (Ethernet source address) of the requesting computer, 
target machine doesn't require another arp message to figure it out. 
 

3.15 Reverse Address Resolution Protocol 

RARP is a protocol by which a physical machine in a local area network can request to learn 
its IP address from a gateway server's Address Resolution Protocol table or cache. This is 
needed since the machine may not have permanently attacded disk where it can store its IP 
address permanently. A network administrator creates a table in a local area network's gateway 
router that maps the physical machine (or Medium Access Control - MAC) addresses to 
corresponding Internet Protocol addresses. When a new machine is set up, its RARP client 
program requests from the RARP server on the router to be sent its IP address. Assuming that 
an entry has been set up in the router table, the RARP server will return the IP address to the 
machine which can store it for future use.  
 
Both the machine that issues the request and the server that responds use physical network 
addresses during their brief communication. Usually, the requester does not know the physical 
address. So, the request is broadcasted to all the machines on the network. Now, the requester 
must identify istelf uniquely to the server. For this either CPU serial number or the machine's 
physical network address can be used. But using the physical address as a unique id has two 
advantages. 

 These addresses are always available and do not have to be bound into bootstrap code. 
 Because the identifying information depends on the network and not on the CPU vendor, 

all machines on a given network will supply unique identifiers. 

Request: 
Like an ARP message, a RARP message is sent from one machine to the another encapsulated 
in the data portion of a network frame. An ethernet frame carrying a RARP request has the 
usual preamle, Ethernet source and destination addresses, and packet type fields in front of the 
frame. The frame conatins the value 8035 (base 16) to identify the contents of the frame as a 
RARP message. The data portion of the frame contains the 28-octet RARP message. The 
sender braodcasts a RARP request that specifies itself as both the sender and target machine, 
and supplies its physical network address in the target hardware address field. All machines on 
the network receive the request, but only those authorised to supply the RARP services process 
the request and send a reply, such machines are known informally as RARP servers. For RARP 
to succeed, the network must contain at least one RARP server.  
Reply:  
Servers answers request by filling in the target protocol address field, changing the message 
type from request to reply, and sending the reply back directly to the machine making the 
request.  
 
Timing RARP Transactions  
Since RARP uses the physical network directly, no other protocol software will time the 



response or retransmit the request. RARP software must handle these tasks. Some 
workstations that rely on RARP to boot, choose to retry indefinitely until the receive a response. 
Other implementations announce failure after only a few tries to avoid flooding the network with 
unnecessary broadcast.  
 
Mulitple RARP Servers  
Advantage: More reliability. Diadvantage: Overloading may result when all servers respond. So, 
to get away with disadvantage we have primary and secondary servers. Each machine that 
makes RARP request is assigned a primary server. Normally, the primary server responds but if 
it fails, then requester may time out and rebroadcast the request.Whenever a secondary server 
receives a second copy of the request within a short time of the first, it responds. But, still there 
might be a problem that all secondary servers respond, thus overloading the network. So, the 
solution adopted is to avoid having all secondary servers transmit responses simultaneously. 
Each secondary server that receives the request computes a random delay and then sends a 
response.  
 
Drawbacks of RARP 

 Since it operates at low level, it requires direct addresss to the network which makes it 
difficult for an application programmer to build a server. 

 It doesn't fully utilizes the capability of a network like ethernet which is enforced to send 
a minimum packet size since the reply from the server contains only one small piece of 
information, the 32-bit internet address. 

RARP is formally described in RFC903. 
 
3.16. Congestion Control Algorithms 

As Internet can be considered as a Queue of packets, where transmitting nodes are 

constantly adding packets and some of them (receiving nodes) are removing packets from the 

queue. So, consider a situation where too many packets are present in this queue (or internet or 

a part of internet), such that constantly transmitting nodes are pouring packets at a higher rate 

than receiving nodes are removing them. This degrades the performance, and such a situation 

is termed as Congestion. Main reason of congestion is more number of packets into the network 

than it can handle. So, the objective of congestion control can be summarized as to maintain the 

number of packets in the network below the level at which performance falls off dramatically. 

The nature of a Packet switching network can be summarized in following points:  

• A network of queues  

• At each node, there is a queue of packets for each outgoing channel  

• If packet arrival rate exceeds the packet transmission rate, the queue size grows without 

bound 

 • When the line for which packets are queuing becomes more than 80% utilized, the queue 

length grows alarmingly 

 When the number of packets dumped into the network is within the carrying capacity, they all 

are delivered, expect a few that have too be rejected due to transmission errors). And then the 



number delivered is proportional to the number of packets sent. However, as traffic increases 

too far, the routers are no longer able to cope, and they begin to lose packets. This tends to 

make matter worse. At very high traffic, performance collapse completely, and almost no packet 

is delivered. In the following sections, the causes of congestion, the effects of congestion and 

various congestion control techniques are discussed in detail 

3.16.1. Causes Of Congestion  

Congestion can occur due to several reasons. For example, if all of a sudden a stream 

of packets arrive on several input lines and need to be out on the same output line, then a long 

queue will be build up for that output. If there is insufficient memory to hold these packets, then 

packets will be lost (dropped). Adding more memory also may not help in certain situations. If 

router have an infinite amount of memory even then instead of congestion being reduced, it gets 

worse; because by the time packets gets at the head of the queue, to be dispatched out to the 

output line, they have already timed-out (repeatedly), and duplicates may also be present. All 

the packets will be forwarded to next router up to the destination, all the way only increasing the 

load to the network more and more. Finally when it arrives at the destination, the packet will be 

discarded, due to time out, so instead of been dropped at any intermediate router (in case 

memory is restricted) such a packet goes all the way up to the destination, increasing the 

network load throughout and then finally gets dropped there. Slow processors also cause 

Congestion. If the router CPU is slow at performing the task required for them (Queuing buffers, 

updating tables, reporting any exceptions etc.), queue can build up even if there is excess of 

line capacity. Similarly, LowBandwidth lines can also cause congestion. Upgrading lines but not 

changing slow processors, or vice-versa, often helps a little; these can just shift the bottleneck 

to some other point. The real problem is the mismatch between different parts of the system. 

Congestion tends to feed upon itself to get even worse. Routers respond to overloading by 

dropping packets. When these packets contain TCP segments, the segments don't reach their 

destination, and they are therefore left unacknowledged, which eventually leads to timeout and 

retransmission. So, the major cause of congestion is often the bursty nature of traffic. If the 

hosts could be made to transmit at a uniform rate, then congestion problem will be less common 

and all other causes will not even led to congestion because other causes just act as an 

enzyme which boosts up the congestion when the traffic is bursty (i.e., other causes just add on 

to make the problem more serious, main cause is the bursty traffic). This means that when a 

device sends a packet and does not receive an acknowledgment from the receiver, in most the 

cases it can be assumed that the packets have been dropped by intermediate devices due to 

congestion. By detecting the rate at which segments are sent and not acknowledged, the source 

or an intermediate router can infer the level of congestion on the network. In the following 

section we shall discuss the ill effects of congestion. 

3.16.2 Effects of Congestion 

Congestion affects two vital parameters of the network performance, namely throughput and 

delay. In simple terms, the throughput can be defined as the percentage utilization of the 

network capacity. Figure shows how throughput is affected as offered loadincreases. Initially 

throughput increases linearly with offered load, because utilization of the network increases. 



However, as the offered load increases beyond certain limit, say 60% of the capacity of the 

network, the throughput drops. If the offered load increases further, a point is reached when not 

a single packet is delivered to any destination, which is commonly known as deadlock situation. 

There are three curves in Fig. the ideal one corresponds to the situation when all the packets 

introduced are delivered to their destination up to the maximum capacity of the network. The 

second one corresponds to the situation when there is no congestion control. The third one is 

the case when some congestion control technique is used. This prevents the throughput 

collapse, but provides lesser throughput than the ideal condition due to overhead of the 

congestion control technique. The delay also increases with offered load, as shown in Fig.. And 

no matter what technique is used for congestion control, the delay grows without bound as the 

load approaches the capacity of the system. It may be noted that initially there is longer delay 

when congestion control policy is applied. However, the network without any congestion control 

will saturate at a lower offered load 

 

Figure 3.20 (a) Effect of congestion on throughput (b) Effect of congestion on delay 

3.17 Congestion Control Techniques 

Congestion control refers to the mechanisms and techniques used to control congestion and 

keep the traffic below the capacity of the network. As shown in Fig., the congestion control 

techniques can be broadly classified two broad categories:  

• Open loop: Protocols to prevent or avoid congestion, ensuring that the system (or network 

under consideration) never enters a Congested State.  

• Close loop: Protocols that allow system to enter congested state, detect it, and remove it 



 

Figure 3.21 Congestion control categories 

The first category of solutions or protocols attempt to solve the problem by a good design, at 

first, to make sure that it doesn’t occur at all. Once system is up and running midcourse 

corrections are not made. These solutions are somewhat static in nature, as the policies to 

control congestion don’t change much according to the current state of the system. Such 

Protocols are also known as Open Loop solutions. These rules or policies include deciding upon 

when to accept traffic, when to discard it, making scheduling decisions and so on. Main point 

here is that they make decision without taking into consideration the current state of the 

network. The open loop algorithms are further divided on the basis of whether these acts on 

source versus that act upon destination. The second category is based on the concept of 

feedback. During operation, some system parameters are measured and feed back to portions 

of the subnet that can take action to reduce the congestion. This approach can be divided into 3 

steps:  

• Monitor the system (network) to detect whether the network is congested or not and what’s the 

actual location and devices involved. 

 • To pass this information to the places where actions can be taken 

 • Adjust the system operation to correct the problem.  

These solutions are known as Closed Loop solutions. Various Metrics can be used to monitor 

the network for congestion. Some of them are: the average queue length, number of packets 

that are timed-out, average packet delay, number of packets discarded due to lack of buffer 

space, etc. A general feedback step would be, say a router, which detects the congestion send 

special packets to the source (responsible for the congestion) announcing the problem. These 

extra packets increase the load at that moment of time, but are necessary to bring down the 

congestion at a later time. Other approaches are also used at times to curtail down the 

congestion. For example, hosts or routers send out probe packets at regular intervals to 

explicitly ask about the congestion and source itself regulate its transmission rate, if congestion 

is detected in the network. This kind of approach is a pro-active one, as source tries to get 

knowledge about congestion in the network and act accordingly. 



Yet another approach may be where instead of sending information back to the source an 

intermediate router which detects the congestion send the information about the congestion to 

rest of the network, piggy backed to the outgoing packets. This approach will in no way put an 

extra load on the network (by not sending any kind of special packet for feedback). Once the 

congestion has been detected and this information has been passed to a place where the action 

needed to be done, then there are two basic approaches that can overcome the problem. These 

are: either to increase the resources or to decrease the load. For example, separate dial-up 

lines or alternate links can be used to increase the bandwidth between two points, where 

congestion occurs. Another example could be to decrease the rate at which a particular sender 

in transmitting packets out into the network. The closed loop algorithms can also be divided into 

two categories, namely explicit feedback and implicit feedback algorithms. In the explicit 

approach, special packets are sent back to the sources to curtail down the congestion. While in 

implicit approach, the source itself acts pro-actively and tries to deduce the existence of 

congestion by making local observations. In the following sections we shall discuss about some 

of the popular algorithms from the above categories. 

3.17.1 Leaky Bucket Algorithm 

Consider a Bucket with a small hole at the bottom, whatever may be the rate of water pouring 

into the bucket, the rate at which water comes out from that small hole is constant. This 

scenario is depicted in figure Once the bucket is full, any additional water entering it spills over 

the sides and is lost (i.e. it doesn’t appear in the output stream through the hole underneath). 

The same idea of leaky bucket can be applied to packets, as shown in Fig. Conceptually each 

network interface contains a leaky bucket. And the following steps are performed: 

 • When the host has to send a packet, the packet is thrown into the bucket.  

• The bucket leaks at a constant rate, meaning the network interface transmits packets at a 

constant rate. 

 • Bursty traffic is converted to a uniform traffic by the leaky bucket.  

• In practice the bucket is a finite queue that outputs at a finite rate. This arrangement can be 

simulated in the operating system or can be built into the hardware. Implementation of this 

algorithm is easy and consists of a finite queue. Whenever a packet arrives, if there is room in 

the queue it is queued up and if there is no room then the packet is discarded. 



 

Figure 3.22 (a) Leaky bucket (b) Leaky bucket implementation 

3.17.2  Token Bucket Algorithm 

The leaky bucket algorithm described above, enforces a rigid pattern at the output stream, 

irrespective of the pattern of the input. For many applications it is better to allow the output to 

speed up somewhat when a larger burst arrives than to loose the data. Token Bucket algorithm 

provides such a solution. In this algorithm leaky bucket holds token, generated at regular 

intervals. Main steps of this algorithm can be described as follows: ƒ In regular intervals tokens 

are thrown into the bucket. ƒ The bucket has a maximum capacity. ƒ If there is a ready packet, 

a token is removed from the bucket, and the packet is send. ƒ If there is no token in the bucket, 

the packet cannot be send. Figure shows the two scenarios before and after the tokens present 

in the bucket have been consumed. In Fig.3.17.2 the bucket holds two tokens, and three 

packets are waiting to be sent out of the interface, in Fig. two packets have been sent out by 

consuming two tokens, and 1 packet is still left. The token bucket algorithm is less restrictive 

than the leaky bucket algorithm, in a sense that it allows bursty traffic. However, the limit of 

burst is restricted by the number of tokens available in the bucket at a particular instant of time. 

The implementation of basic token bucket algorithm is simple; a variable is used just to count 

the tokens. This counter is incremented every t seconds and is decremented whenever a packet 

is sent. Whenever this counter reaches zero, no further packet is sent out as shown in 

Fig.3.17.2. 



 

Fig 3.23 Token bucket holding two tokens, before packets are send out, (b) Token bucket after 

two packets are send, one packet still remains as no token is left 

 

Figure 3.24  Implementation of the Token bucket algorithm 

3.Congestion control in virtual Circuit 

 Till now we have discussed two open loop algorithms, where the policy decisions are made in 

the beginning, irrespective of the current state. Both leaky bucket algorithm and token bucket 

algorithm are open loop algorithms. 



In this section we shall have a look at how the congestion is tackled in a virtualcircuit network. 

Admission control is one such closed-loop technique, where action is taken once congestion is 

detected in the network. Different approaches can be followed:  

• Simpler one being: do not set-up new connections, once the congestion is signaled. This type 

of approach is often used in normal telephone networks. When the exchange is overloaded, 

then no new calls are established. 

 • Another approach, which can be followed is: to allow new virtual connections, but route these 

carefully so that none of the congested router (or none of the problem area) is a part of this 

route.  

• Yet another approach can be: To negotiate different parameters between the host and the 

network, when the connection is setup. During the setup time itself, Host specifies the volume 

and shape of traffic, quality of service, maximum delay and other parameters, related to the 

traffic it would be offering to the network. Once the host specifies its requirement, the resources 

needed are reserved along the path, before the actual packet follows. 

Choke Packet Technique 

The choke packet technique, a closed loop control technique, can be applied in both virtual 

circuit and datagram subnets. Each router monitors its resources and the utilization at each of 

its output line. There is a threshold set by the administrator, and whenever any of the resource 

utilization crosses this threshold and action is taken to curtail down this. Actually each output 

line has a utilization associated with it, and whenever this utilization crosses the threshold, the 

output line enters a ―warning‖ state. If so, the router sends a choke packet back to the source, 

giving it a feedback to reduce the traffic. And the original packet is tagged (a bit is manipulated 

in the header field) so that it will not generate other choke packets by other intermediate router, 

which comes in place and is forwarded in usual way. It means that the first router (along the way 

of a packet), which detects any kind of congestion, is the only one that sends the choke 

packets. When the source host gets the choke packet, it is required to reduce down the traffic 

send out to that particular destination (choke packet contains the destination to which the 

original packet was send out). After receiving the choke packet the source reduces the traffic by 

a particular fixed percentage, and this percentage decreases as the subsequent choke packets 

are received. Figure depicts the functioning of choke packets. For Example, when source A 

receives a choke packet with destination B at first, it will curtail down the traffic to destination B 

by 50%, and if again after affixed duration of time interval it receives the choke packet again for 

the same destination, it will further curtail down the traffic by 25% more and so on. As stated 

above that a source will entertain another subsequent choke packet only after a fixed interval of 

time, not before that. The reason for this is that when the first choke packet arrives at that point 

of time other packets destined to the same destination would also be there in the network and 

they will generate other choke packets too, the host should ignore these choke packets which 

refer to the same destination for a fixed time interval. 



 

Figure 3.25 Depicts the functioning of choke packets, (a) Heavy traffic between nodes P and Q, 

(b) Node Q sends the Choke packet to P, (c) Choke packet reaches P, (d) P reduces the flow 

and send a reduced flow out, (e) Reduced flow reaches node Q 

Hop-by Hop Choke Packets 

This technique is an advancement over Choked packet method. At high speed over long 

distances, sending a packet all the way back to the source doesn’t help much, because by the 

time choke packet reach the source, already a lot of packets destined to the same original 

destination would be out from the source. So to help this, Hop-by-Hop Choke packets are used. 

In this approach, the choke packet affects each and every intermediate router through which it 

passes by. Here, as soon as choke packet reaches a router back to its path to the source, it 

curtails down the traffic between those intermediate routers. In this scenario, intermediate nodes 

must dedicate few more buffers for the incoming traffic as the outflow through that node will be 

curtailed down immediately as choke packet arrives it, but the input traffic flow will only be 

curtailed down when choke packet reaches the node which is before it in the original path. This 

method is illustrated in Fig.. As compared to choke packet technique, hop-by-hop choke packet 

algorithm is able to restrict the flow rapidly. As can been seen from Figures and one-step 

reduction is seen in controlling the traffic, this single step advantage is because in our example 

there is only one intermediate router. Hence, in a more complicated network, one can achieve a 

significant advantage by using hop-by-hop choke packet method. 



 

Figure 3.26 Depicts the functioning of Hop-by-Hop choke packets, (a) Heavy traffic between 

nodes P and Q, (b) Node Q sends the Choke packet to P, (c) Choke packet reaches R, and the 

flow between R and Q is curtail down, Choke packer reaches P, and P reduces the flow out 

Load Shedding 

Another simple closed loop technique is Load Shedding; it is one of the simplest and more 

effective techniques. In this method, whenever a router finds that there is congestion in the 

network, it simply starts dropping out the packets. There are different methods by which a host 

can find out which packets to drop. Simplest way can be just choose the packets randomly 

which has to be dropped. More effective ways are there but they require some kind of 

cooperation from the sender too. For many applications, some packets are more important than 

others. So, sender can mark the packets in priority classes to indicate how important they are. If 

such a priority policy is implemented than intermediate nodes can drop packets from the lower 

priority classes and use the available bandwidth for the more important packets. 

Slow Start - a Pro-active technique 

This is one of the pro-active techniques, which is used to avoid congestion. In the original 

implementation of TCP, as soon as a connection was established between two devices, they 

could each go ―hog wild‖, sending segments as fast as they liked as long as there was room in 

the other devices receive window. In a busy internet, the sudden appearance of a large amount 

of new traffic could aggravate any existing congestion. To alleviate this, modern TCP devices 

are restrained in the rate at which they initially send segments. Each sender is at first restricted 

to sending only an amount of data equal to one ―full-sized‖ segment—that is, equal to the MSS 

(maximum segment size) value for the connection. Each time an acknowledgment is received, 

the amount of data the device can send is increased by the size of another full-sized segment. 

Thus, the device ―starts slow‖ in terms of how much data it can send, with the amount it sends 



increasing until either the full window size is reached or congestion is detected on the link. In the 

latter case, the congestion avoidance feature is used. When potential congestion is detected on 

a TCP link, a device responds by throttling back the rate at which it sends segments. A special 

algorithm is used that allows the device to drop the rate at which segments are sent quickly 

when congestion occurs. The device then uses the Slow Start algorithm just above to gradually 

increase the transmission rate back up again to try to maximize throughput without congestion 

occurring again. 

Flow Control versus Congestion control 

Flow control is a very important part of regulating the transmission of data between devices, but 

it is limited in a way that it only considers what is going on within each of the devices on the 

connection, and not what is happening in devices between them. It relates to the point-point 

traffic between a given sender and a receiver. Flow control always involves some kind of 

feedback from receiver to sender to tell sender how things are at other end of the network. 

Since we are dealing with how TCP works between a typical server and client at layer four, we 

don't worry about how data gets between them; that's the job of the Internet Protocol at layer 

three. In practice, what is going on at layer three can be quite important. Considered from an 

abstract point of view, our server and client may be connected ―directly‖ using TCP, but all the 

packets we transmit are carried across an internet and routers between different networks. 

These networks and routers are also carrying data from many other connections and higher-

layer protocols. If the internet becomes very busy, the speed at which segments are carried 

between the endpoints of our connection will be reduced, and they could even be dropped. This 

is called congestion control. Congestion control has to do with making sure that subnet carry the 

offered traffic. It is the global issue, involving the behavior of all the hosts, router, link, store and 

forward mechanism between them in the entire subnet or internet 

 

Quality of Service 

Requirements • Techniques for Achieving Good Quality of Service • Integrated Services • 

Differentiated Services • Label Switching and MPLS 

Requirements 

How stringent the quality-of-service requirements are 



 

 

Techniques for Good QoS 

 Over provisioning  

 Buffering   

 Traffic shaping  

 The leak bucket algorithm  

 Token bucket algorithm  

 Resource reservation  

 Admission control  

 Proportional routing  

 Packet scheduling 
 
 
 
3.16 Transport protocol 
 

 In computer networking, the transport layer is a conceptual division of methods in the 
layered architecture of protocols in the network stack in the Internet Protocol Suite and 
the Open Systems Interconnection (OSI). The protocols of the layer provide host-to-host 
communication services for applications.[1] It provides services such as connection-
oriented data stream support, reliability, flow control, and multiplexing. 

 The details of implementation and semantics of the Transport Layer of the TCP/IP 
model (RFC 1122),[2] which is the foundation of the Internet, and the Open Systems 
Interconnection (OSI) model of general networking, are different. In the OSI model the 
transport layer is most often referred to as Layer 4 or L4, while numbered layers are not 
used in TCP/IP. 

 The best-known transport protocol of TCP/IP is the Transmission Control 
Protocol (TCP), and lent its name to the title of the entire suite. It is used for connection-
oriented transmissions, whereas the connectionless User Datagram Protocol (UDP) is 
used for simpler messaging transmissions. TCP is the more complex protocol, due to its 
stateful design incorporating reliable transmission and data stream services. Other 
prominent protocols in this group are the Datagram Congestion Control Protocol (DCCP) 
and the Stream Control Transmission Protocol (SCTP). 
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3.16.1 Transport Service 

Transport layer services are conveyed to an application via a programming interface to the 

transport layer protocols. The services may include the following features: 

 Connection-oriented communication: It is normally easier for an application to interpret a 
connection as a data stream rather than having to deal with the underlying connection-
less models, such as the datagram model of the User Datagram Protocol (UDP) and of 
the Internet Protocol (IP). 

 Same order delivery: The network layer doesn't generally guarantee that packets of data 
will arrive in the same order that they were sent, but often this is a desirable feature. This 
is usually done through the use of segment numbering, with the receiver passing them to 
the application in order. This can cause head-of-line blocking. 

 Reliability: Packets may be lost during transport due to network congestion and errors. 
By means of an error detection code, such as a checksum, the transport protocol may 
check that the data is not corrupted, and verify correct receipt by sending 
an ACK or NACK message to the sender. Automatic repeat request schemes may be 
used to retransmit lost or corrupted data. 

 Flow control: The rate of data transmission between two nodes must sometimes be 
managed to prevent a fast sender from transmitting more data than can be supported by 
the receiving data buffer, causing a buffer overrun. This can also be used to improve 
efficiency by reducing buffer under run. 

 Congestion avoidance: Congestion control can control traffic entry into a 
telecommunications network, so as to avoid congestive collapse by attempting to avoid 
oversubscription of any of the processing or link capabilities of the intermediate nodes 
and networks and taking resource reducing steps, such as reducing the rate of 
sending packets. For example, automatic repeat requests may keep the network in a 
congested state; this situation can be avoided by adding congestion avoidance to the 
flow control, including slow-start. This keeps the bandwidth consumption at a low level in 
the beginning of the transmission, or after packet retransmission. 

 Multiplexing: Ports can provide multiple endpoints on a single node. For example, the 
name on a postal address is a kind of multiplexing, and distinguishes between different 
recipients of the same location. Computer applications will each listen for information on 
their own ports, which enables the use of more than one network service at the same 
time. It is part of the transport layer in the TCP/IP model, but of the session layer in the 
OSI model. 
 

 The transport layer is responsible for delivering data to the appropriate application 
process on the host computers. This involves statistical multiplexing of data from different 

application processes, i.e. forming data packets, and adding source and destination port 
numbers in the header of each transport layer data packet. Together with the source and 
destination IP address, the port numbers constitutes a network socket, i.e. an 

identification address of the process-to-process communication. In the OSI model, this 
function is supported by the session layer. 

 Some transport layer protocols, for example TCP, but not UDP, support virtual circuits, 
i.e. provide connection oriented communication over an underlying packet 
oriented datagram network. A byte-stream is delivered while hiding the packet mode 
communication for the application processes. This involves connection establishment, 
dividing of the data stream into packets called segments, segment numbering and 
reordering of out-of order data. 
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Finally, some transport layer protocols, for example TCP, but not UDP, provide end-to-end 

reliable communication, i.e. error recovery by means of error detecting code and automatic 

repeat request (ARQ) protocol. The ARQ protocol also provides flow control, which may be 

combined with congestion avoidance. 

 UDP is a very simple protocol, and does not provide virtual circuits, nor reliable 
communication, delegating these functions  to the application program. UDP packets are 
called datagrams, rather than segments. 

 TCP is used for many protocols, including HTTP web browsing and email transfer. UDP 
may be used for multicasting and broadcasting, since retransmissions are not possible 
to a large amount of hosts. UDP typically gives higher throughput and shorter latency, 
and is therefore often used for real-time multimedia communication where packet loss 
occasionally can be accepted, for example IP-TV and IP-telephony, and for online 
computer games. 

 Many non-IP-based networks, such as X.25, Frame Relay and ATM, implement the 
connection-oriented communication at the network or data link layer rather than the 
transport layer. In X.25, in telephone network modems and in wireless communication 
systems, reliable node-to-node communication is implemented at lower protocol layers. 

 The OSI connection-mode transport layer protocol specification defines five classes of 
transport protocols: TP0, providing the least error recovery, to TP4, which is designed for 
less reliable networks. 
 
 

3.16.2 Elements of transport protocol 
 
 

 Transport protocol similar to data link protocols 

  Both do error control and flow control 

  However, significant differences exist 
 

 
 
 

Environment of the data link layer    Environment of the transport layer 
 
13.16.2.1 Addressing 
 
 

 Specify which host process to connect to 
 TSAP: Transport Service Access Point 
 In TCP, UDP, called ports 
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 Analogy: NSAP. Example: IP address 
 Client or server app attaches to TSAP 
 Connections run through NSAP 
 TSAP to distinguish endpoints sharing NSAP 

 

 
 Many server processes used only rarely 
 Waste if each process listen to TSAP all day 
 Instead, use initial connection protocol 
 Spec process server listens all known TSAP 
 Act as proxy for lightly used servers 
 e.g. inted, xinetd on UNIX 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
Connection Establishment 

 Sounds easy; surprisingly tricky! 
 Just send REQUEST, wait for ACCEPTED? 
 Can lose, delay, corrupt, duplicate packets 
 Duplicate may transfer bank money again! 
 Protocols must work correct all cases 
 Implemented efficiently in common cases 
 Main problem is delayed duplicates 
 Cannot prevent; must deal with (reject) 

 
Solutions for delayed duplicates 

 Not reuse transport address (TSAP) 
 difficult to connect to process 
 Give each connection unique ID 
 seq # chosen by initiating party 
 update table listing obsolete connections 
 check new connections against table 
 requires maintain certain amount of history 
 if machine crashes, no longer identify old con 

 
 To simplify problem, restrict packet lifetime 
 restricted network design: prevent looping 
 hop counter in each packet: ‐ 1 at each hop 
 timestamp in each packet: clock must be synced 



 Must also guarantee ACKs are dead 
 Assume a value T of max packet lifetime 
 T sec after packet sent, sure traces are gone 
 In the Internet, T is usually 120 seconds. 

 
New method with packet lifetime bounded 

 Label segments with seq # not reused in T 
 T and packet rate determine size of seq #s 
 1 packet w given seq # may be outstanding 
 Duplicates may still occur, but discarded dst 
 Not possible to have delayed duplicate old 

packet with same seq # accepted at dest 
 
 
How to deal with losing memory after crash? 
 

 Each host has time‐ of‐ day clock 
 clocks at different host need not be synced 
 binary counter increments uniform intervals 
 no. of bits must be ≥ of seq # 
 clock must be running even if host goes down 
 Initial seq # (k‐ bits) ← low k‐ bits of clock 
 Seq space must be so large 
 by time # wrap, old pkts w same # are long gone 

 
 
Clock method work within connection 

 Host don’t remember # across connections 
 Can’t know if CONN REQUEST with initial 

seq # is a duplicate of a recent connection 
 To solve this, use three‐ way handshake 
 Check with other peer that con req is current 
 Used in TCP, with 32‐ bit seq # 
 Clock not used in TCP; attacker can predict 

 
Normal Procedure 
 

 H1 choses initial s# x 
 H2 replies 
 ACKs x 
 announce own s# y 
 H1replies 
 ACKs y 
 with 1st data segment 



 
 
 
 
 
Abnormal situations 

 Delayed duplicate CR 
 H2 sends ACK to H1 
 H1 rejects 
 H2 knows it was tricked 

16 
 Worst case 

DD CR, old ACK floating 
 H2 gets delayed CR, replies 
 H1 rejects 
 H2 gets old DATA, discards 

(z received instead of y) 
 
 
 

 
 



Connection Release 
 

 Easier than establish 
 However, some pitfalls 
 Asymmetric release 
 each con term separately 
 abrupt; may cause data loss 
 better protocol needed 

 

 
 
Symmetric release 

 Each direction is released independently 
 Can receive data after sending DISCONNECT 
 H1: I am done, are you done too? 
 H2: I am done too, goodbye 
 Two‐ army problem: unreliable channel 

 

 

 Two army problem 
 
 

 each blue army < white army, but together are larger 
 need to sync attack 
 however, only com channel is the valley (unreliable) 
 3‐ way handshake? B1 can’t know ACK arrived 
 making 4‐ way handshake doesn’t help either 
 Let each side independently decide its done 
 Easier to solve 

 
Normal release sequence 

 H1 send DR, start timer 
 H2 responds with DR 
 when H1 recv DR, release 



 when H2 recv ACK, release 
 

 
 
Error cases, handled by timers, retransmissions 
 
 

 
 
 

Final ACK lost:   Lost DR:H1 starts over  Extreme: 
Many lost DRs       both release after N 
Host 2 times out 
 
 
 

 Protocol usually suffices; can fail in theory 
 after N lost attempts; half open connection 
 Not allowing give up, can go on forever 
 To kill half open connections, automatically 



disconnect if no received segments in X sec 
 Must have timer reset after each segment 
 Send dummy segments to keep con alive 
 TCP normally does symmetric close, with 

each side independently close ½ con w FIN 
 
Multiplexing 

 Transport, network sharing can either be: 
 Multiplexing: connections share a network address 
 Inverse multiplexing: addresses share a connection 

 

 
 
 
PART – A 
1. Write down the design issue of network layer. 
2. What is meant by Routing? 
3. What is congestion? 
4. What is Static and Dynamic Routing? 
5. What is Centralized routing and isolated routing? 
6. What is flooding? 
7. Write the concept behind flow based routing. 
8. What are the Different Broadcast routing techniques? 
9. Give the advantages of multipath routing? 
10. What is reverse path forwarding and state its advantage. 
11. What are the various congestion control techniques? 
12. What is leaky bucket algorithm? 
13. What is Token bucket algorithm? 
14. What is choke packet, How congestion is controlled over here? 
15. What is reliability? 
16. What is vulnerable time in CSMA, CSMA/CD,CSMA/CA? Differentiate 
 
 
 
 



 
PART – B 
 

1. Explain about the various multiple access protocols. 

2. Give short notes on Bluetooth. 

3. Describe in detail about Ethernet. 

4. Discuss the architecture of IEEE 802.11 in detail. 
5. What is Routing, Explain Shortest Path Routing algorithm with example. 
6. Explain Distance Vector & Link state routing algorithm. 

 Explain the following routing algorithm with example. 
a. Flooding routing algorithm. 
b. Hierarchical routing algorithm. 

7. What is congestion? What are the different methods for controlling congestion? 
 
 


