
  

Page 1 

 

  

Unit –II 
 

Antenna Array 
 
The study of a single small antenna indicates that the radiation fields are uniformly 

distributed and antenna provides wide beam width, but low directivity and gain. For 

example, the maximum radiation of dipole antenna takes place in the direction normal to its 

axis and decreases slowly as one moves toward the axis of the antenna. The antennas of 

such radiation characteristic may be preferred in broadcast services where wide coverage is 

required but not in point to point communication. Thus to meet the demands of point to point 

communication, it is necessary to design the narrow beam and high directive antennas, so 

that the radiation can be released in the preferred direction. The simplest way to achieve 

this requirement is to increase the size of the antenna, because a larger-size antenna leads 

to more directive characteristics. But from the practical aspect the method is inconvenient as 

antenna becomes bulky and it is difficult to change the size later. Another way to improve 

the performance of the antenna without increasing the size of the antenna is to arrange the 

antenna in a specific configuration, so spaced and phased that their individual contributions 

are maximum in desired direction and negligible in other directions. This way particularly, we 

get greater directive gain. This new arrangement of multi-element is referred to as an array 

of the antenna. The antenna involved in an array is known as element. The individual 

element of array may be of any form (wire. dipole. slot, aperture. etc.). Having identical 

element in an array is often simpler, convenient and practical, but it is not compulsory. The 

antenna array makes use of wave interference phenomenon that occurs between the 

radiations from the different elements of the array. Thus, the antenna array is one of the 

methods of combining the radiation from a group of radiators in such a way that the 

interference is constructive in the preferred direction and destructive in the remaining 

directions. The main function of an array is to produce highly directional radiation. The field 

is a vector quantity with both magnitude and phase. The total field (not power) of the array 

system at any point away from its centre is the vector sum of the field produced by the 

individual antennas. The relative phases of individual field components depend on the 

relative distance of the individual clement and in turn depend on the direction. 

 
 
ARRAY CONFIGURATIONS 

Broadly, array antennas can be classified into four categories: 
 
(a) Broadside array  
 
(b) End-fire array  
 
(c) Collinear array  
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(d) Parasitic array  
 
Broadside Array- This is a type of array in which the number of identical elements 

is placedon a supporting line drawn perpendicular to their respective axes. 
 
Elements are equally spaced and fed with a current of equal magnitude and all in same 

phase. The advantage of this feed technique is that array fires in broad side direction (i.e. 

perpendicular to the line of array axis, where there are maximum radiation and small 

radiation in other direction). Hence the radiation pattern of broadside array is bidirectional 

and the array radiates equally well in either direction of maximum radiation. In Fig. 1 the 

elements are arranged in horizontal plane with spacing between elements and radiation is 

perpendicular to the plane of array (i.e. normal to plane of paper.) They may also be 

arranged in vertical and in this case radiation will be horizontal. Thus, it can be said that 

broadside array is a geometrical arrangement of elements in which the direction of 

maximum radiation is perpendicular to the array axis and to the plane containing the array 

clement. Radiation pattern of a broad side array is shown in Fig. 2. The bidirectional pattern 

of broadside array can be converted into unidirectional by placing an identical array behind 

this array at distance of λ/4 fed by current leading in phase by 90
0
. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Geometry of broadside array Fig. 2 Radiation pattern of broadside array 

 

 
End Fire Array-The end fire array is very much similar to the broadside array from thepoint 

of view of arrangement. But the main difference is in the direction of maximum radiation. In 

broadside array, the direction of the maximum radiation is perpendicular to the 

axis of array; while in the end fire array, the direction of the maximum radiation is 

along the axis of array. 

 
 
 
 
 
 
 
 
 
 

Fig. 3 End fire array 
 
Thus in the end fire array number of identical antennas are spaced equally along a 
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line. All the antennas are fed individually with currents of equal magnitudes but their 

phases vary progressively along the line to get entire arrangement unidirectional 

finally. i.e. maximum radiation along the axis of array. 
 
Thus end fire array can be defined as an array with direction of maximum radiation 

coincides with the direction of the axis of array to get unidirectional radiation. 

 
 
Collinear Array-In collinear array the elements are arranged co-axially, i.e., antennas 

areeither mounted end to end in a single line or stacked over one another. The collinear 

array is also a broadside array and elements are fed equally in phase currents. But the 

radiation pattern of a collinear array has circular symmetry with its main lobe 

everywhere normal to the principal axis. This is reason why this array is called 

broadcast or Omni-directional arrays. Simple collinear array consists of two elements: 

however, this array can also have more than two elements (Fig. 4). The performance 

characteristic of array does not depend directly on the number of elements in the array. 

For example, the power gain for collinear array of 2, 3, and 4 elements are respectively 

2 dB, 3.2 dB and 4.4 dB respectively. The power gain of 4.4 dB obtained by this array is 

comparatively lower than the gain obtained by other arrays or devices. The collinear 

array provides maximum gain when spacing between elements is of the order of 0.3λ to 

0.5λ; but this much spacing results in constructional and feeding difficulties. The 

elements are operated with their ends are much close to each other and joined simply 

by insulator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 (a) Vertical collinear antenna array (b) Horizontal collinear antenna array 

 
Increase in the length of collinear arrays increases the directivity: however, if the 

number of elements in an array is more (3 or 4), in order to keep current in phase in all 

the elements, it is essential to connect phasing stubs between adjacent elements. A 



  

Page 4 

 

  

collinear array is usually mounted vertically in order to increase overall gain and 

directivity in the horizontal direction. Stacking of dipole antennas in the fashion of 

doubling their number with proper phasing produces a 3 dB increase in directive gain. 
 
Parasitic Arrays-In some way it is similar to broad side array, but only one element is 

feddirectly from source, other element arc electromagnetically coupled because of its 

proximity to the feed element. Feed element is called driven element while other elements 

are called parasitic elements. A parasitic element lengthened by 5% to driven element act 

as reflector and another element shorted by 5% acts as director. Reflector makes the 

radiation maximum in perpendicular direction toward driven element and direction helps in 

making maximum radiation perpendicular to next parasitic element. The simplest parasitic 

array has three elements: reflector, driven element and director, and is used, for example in 

Yagi-Uda array antenna. The phase and amplitude of the current induced in a parasitic 

element depends upon its tuning and the spacing between elements and driven element to 

which it is coupled. Variation in spacing between driven element and parasitic elements 

changes the relative phases and this proves to be very convenient. It helps in making the 

radiation pattern unidirectional. A distance of λ/4 and phase difference of π/2 radian 

provides a unidirectional pattern. A properly designed parasitic array with spacing 0.1λ to 

0.15λ provides a frequency bandwidth of the order of 2%, gain of the order of 8 dB and FBR 

of about 20 dB. It is of great practical importance, especially at higher frequencies between 

150 and 100 MHz, for Yagi array used for TV reception. 

 
The simplest array configuration is array of two point sources of same polarization and 

separated by a finite distance. The concept of this array can also be extended to more 

number of elements and finally an array of isotropic point sources can be formed. 

Based on amplitude and phase conditions of isotropic point sources, there are three 

types of arrays: 

(a) Array with equal amplitude and phases  
 
(b) Array with equal amplitude and opposite phases  
 
(c) Array with unequal amplitude and opposite phases  
 
Two Point Sources with Currents Equal in Magnitude and Phase 
 
 
 
 
 
 
 
 
 
 
 

 ...(1) 
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Fig. 5 Two element array  

Consider two point sources A1 and A2, separated by distance d as shown in the Fig. 5. Consider 

that both the point sources are supplied with currents equal in magnitude and phase. Consider 

point P far away from the array. Let the distance between point P and point sources A1 and A2 

be r1 and r2 respectively. As these radial distances are extremely large as compared with the 

distance of separation between two point sources i.e. d, we can assume, 

r1= r2 = r  

The radiation from the point source A2 will reach earlier at point P than that from point 

source A1 because of the path difference. The extra distance is travelled by the radiated 

wave from point source A1 than that by the wave radiated from point source A2. 
 
Hence path difference is given 

by, Path difference = d cos ʋ 
 
The path difference can be expressed in terms of 

wavelength as, Path difference = (d cos ʋ) / λ...(2) 

Hence the phase angle ʋ is given by, 
 
Phase angle ʋ = 2π (Path difference) 
 
 
 
 
 
 
 
 
 

But phase shift β = 2π/λ, thus equation (3) becomes, 
 
 

 

Let E1 be the far field at a distant point P due to point source Al. Similarly let E2 be 

the far field at point P due to point source A2. Then the total field at point P be the 

addition of the two field components due to the point sources A1 and A2. If the 

phase angle between the two fields is ʋ = βdcosʋ then the far field component at 

point P due to point source A1 is given by, 

 
 
 

Similarly the far field component at point P due to the point source A2 is given by, 
 
 

 

Note that the amplitude of both the field components is E0 as currents are same and 

the point sources are identical. 

The total field at point P is given by, 
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Rearranging the terms on R.H.S., we get, 
 
 
 
 

 

By trigonometric identity, 
 
 
 
 
Hence equation (7) can be written as, 
 
 
 
 
 
 
 
Substituting value of Ψ from equation (4), we get,. 
 
 
 
 

 

Above equation represents total field in intensity at point P. due to two point sources 

having currents of same amplitude and phase. The total amplitude of the field at 

point P is 2E0 while the phase shift is βdcosʋ/2 
 
The array factor is the ratio of the magnitude of the resultant field to the magnitude 

of the maximum field. 

 
 

 

But maximum field is Ernax =2E0 
 
 
 
 
 

 

The array factor represents the relative value of the field as a function of ʋ defines 

the radiation pattern in a plane containing the line of the array. 
 
Maxima direction 
 

From equation (9), the total field is maximum when is maximum. As we know, 

the variation of cosine of a angle is ± 1. Hence the condition for maxima is given by, 
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Let spacing between the two point sources be λ/2. Then we can write, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If n = 0, then 
 
 
 
 
 
 
 

 

Minima direction 
 

Again from equation (9), total field strength is minimum when  is minimum i.e. 

0 as cosine of angle has minimum value 0. Hence the condition for minima is given by, 

 
 

 

Again assuming d = λ/2 and β=2π/λ, we can write 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Half power point direction: 
 
When the power is half, the voltage or current is 1/√2 times the maximum value. 
 
Hence the condition for half power point is given by, 
 



  

Page 8 

 

  

 
 
 
 
 
 
 
Let d=λ/2 and β=2π/λ, then we can write, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The field pattern drawn with ET against ʋ for d=λ/2, then the pattern is bidirectional 

as shown in Fig 6. The field pattern obtained is bidirectional and it is a figure of 

eight. 
 

If this pattern is rotated by 360
0
 about axis, it will represent three dimensional doughnut 

shaped space pattern. This is the simplest type of broadside array of two point sources 

and it is called Broadside couplet as two radiations of point sources are in phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Field pattern for two point source with spacing d=λ/2 and fed with currents equal in 
magnitude andphase. 
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Two Point Sources with Currents Equal in Magnitudes but Opposite in Phase 
 
Consider two point sources separated by distance d and supplied with currents 

equal in magnitude but opposite in phase. Consider Fig. 5 all the conditions are 

exactly same except the phase of the currents is opposite i.e. 180°. With this 

condition, the total field at far point P is given by, 

 

Assuming equal magnitudes of currents, the fields at point P due to the point 

sources A1 and A2 can be written as, 

 
 
 
 
 
 

Substituting values of E1 and E2 in equation (1), we get 
 
 
 
 
 
 

 

Rearranging the terms in above equation, we get, 
 
 
 
 

 

By trigonometry identity, 
 
 
 

 

Equation (4) can be written as, 
 
 
 
 
Now as the condition for two point sources with currents in phase and out of phase 

is exactly same, the phase angle can be written as previous case. 
 
Phase angle = βdcosʋ ...(6) Substituting value of phase angle in 

equation (5), we get, 
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Maxima direction 
 

From equation (7), the total field is maximum when  is maximum i.e. ±1 as 

the maximum value of sine of angle is ±1. Hence condition for maxima is given by, 

 
 

 

Let the spacing between two isotropic point sources be equal to d=λ/2 
 
Substituting d=λ/2 and β=2π/λ, in equation (8), we get, 
 
 
 
 
 
 

 

If n = 0. then 
 
 
 
 
 
 
 

 

Minima direction 
 

Again from equation (7), total field strength is minimum when  is 

minimum i.e. 0. 

Hence the condition for minima is given by, 
 
 
 
 

 

Assuming d=λ/2 and β=2π/λ in equation (10), we get, 
 
 
 
 
 
 

 

If n = 0, then 
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Half Power Point Direction (HPPD) 
 
When the power is half of maximum value, the voltage or current equals to 1/√2 

times the respective maximum value. Hence the condition for the half power point 

can be obtained from equation (7) as, 

 
 
 
 
 

Let d=λ/2 and β=2π/λ, we can write, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus from the conditions of maxima, minima and half power points, the field pattern 

can be drawn as shown in the Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Field pattern for two point sources with spacing d = d=λ/2 and fed 

with currents equal in magnitude but out of phase by 

180
0
. 

 

As compared with the field pattern for two point sources with inphase currents, the 

maxima have shifted by 90° along X-axis in case of out-phase currents in two point 

source array. Thus the maxima are along the axis of the array or along the line joining 

two point sources. In first case, we have obtained vertical figure of eight. Now in above 

case, we have obtained horizontal figure of eight. As the maximum field is along the line 
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joining the two point sources, this is the simple type of the end fire array. 

 
 
Two point sources with currents unequal in magnitude and with any phase 
 
Let us consider Fig. 5. Assume that the two point sources are separated by distance d and 

supplied with currents which are different in magnitudes and with any phase difference say 

α. Consider that source 1 is assumed to be reference for phase and amplitude of the fields 

E1 and E2, which are due to source 1 and source 2 respectively at the distant point P. Let us 

assume that E1 is greater than E2 in magnitude as shown in the vector diagram in Fig. 8. 

 
 
 
 
 
 
 
 
 

 

Fig. 8 Vector diagram of fields El and E2 
 
Now the total phase difference between the radiations by the two point sources at 

any far point P is given by, 

 
 
 

 

where α is the phase angle with which current I2 leads current Il. Now if α = 0, then 

the condition is similar to the two point sources with currents equal in magnitude and 

phase. Similarly if α = 180", then the condition is similar to the two point source with 

currents equal in magnitude but opposite in phase. Assume value of phase 

difference as 0 <α< 180
0
. Then the resultant field at point P is given by, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that E1> E2, the value of k is less than unity. Moreover the value of k is given by, 0 ≤ k 
 
≤ 1 
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The magnitude of the resultant field at point P is given by, 
 
 
 
 
 
 

 

The phase angle between two fields at the far point P is given by, 
 
 
 
 
 
 
 
 
n Element Uniform Linear Arrays 
 
At higher frequencies, for point to point communications it is necessary to have a 

pattern with single beam radiation. Such highly directive single beam pattern can be 

obtained by increasing the point sources in the arrow from 2 to n say. An array of n 

elements is said to be linear array if all the individual elements are spaced equally along 

a line. An array is said to be uniform array if the elements in the array are fed with 

currents with equal magnitudes and with uniform progressive phase shift along the line. 

Consider a general n element linear and uniform array with all the individual elements 

spaced equally at distance d from each other and all elements are fed with currents 

equal in magnitude and uniform progressive phase shift along line as shown in the Fig. 

9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 9 Uniform, linear array of n elements 

 
 

The total resultant field at the distant point P is obtained by adding the fields due to n 
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individual sources vectorically. Hence we can write, 

 

 
 
 
 

 

Note that ʋ= (βdcosʋ + α) indicates the total phase difference of the fields from adjacent 

sources calculated at point P. Similarly α is the progressive phase shift between two adjacent 

point sources. The value of α may lie between 0
0
 and 180

0
. If α = 0

0
 we get n element uniform 

linear broadside array. If α = 180
0
 we get n element uniform linear endfire array. 

Multiplying equation (1) by e
jʋ

, we get, 
 

 

Subtracting equation (2) from (1), we get, 
 
 
 
 
 
 
 
 
 

. 
 
Simply mathematically, we get 
 
 
 
 
 
 
 
 
 
According to trigonometric identity, 
 
 
 
The resultant field is given by, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This equation (4) indicates the resultant field due to n element array at 

distant point P. The magnitude of the resultant field is given by, 
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The phase angle θ of the resultant field at point P is given by, 
 
 
 
 
 
 

 

Array of n elements with Equal Spacing and Currents Equal in Magnitude and Phase • 
 
Broadside Array 
 
Consider 'n' number of identical radiators carries currents which are equal in magnitude and in 

phase. The identical radiators are equispaced. Hence the maximum radiation occurs in the 

directions normal to the line of array. Hence such an array is known as Uniform broadside array. 

Consider a broadside array with n identical radiators as shown in the Fig. 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig 10 Array of n elements with Equal Spacing  

The electric field produced at point P due to an element A0 is given by, 
 
 
 

 

As the distance of separation d between any two array elements is very small as 

compared to the radial distances of point P from A0, A1, ...An-1, we can assume r0, 

r1, ...rn-1 are approximately same. 
 
 

Now the electric field produced at point P due to an element A1 will differ in phase 

as r0 and r1 are not actually same. Hence the electric field due to A1 is given by, 



  
Page 
16 

 

  

 
 
 
 
 
 
 
 
 
 
 
Exactly on the similar lines we can write the electric field produced at point P due to 

an element A2 as, 
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But the term inside the bracket represent E1 
 

 

 
 

From equation (2), substituting the value of E1, we get, 
 
 
 
 

 
 
 

Similarly, the electric field produced at point P due to element An-1 is given by, 
 
 
 
 

 
The total electric field at point P is given by, 
 
 
 
 
 

 

Let βdcosʋ = ʋ, then rewriting above equation, 
 
 
 
 
 
 
 

Consider a series given 

by s = 1 + r + r
2
 +..... + 

r
n-1

 where r = e
jʋ

 
 
Multiplying both the sides of the equation (i) 

by r, s . r = r + r
2
 +..... + r

n
 

 
Subtracting equation (ii) from (i), we 

get. s(1-r) = 1-r
n
 

 
 
 
Using equation (iii), equation (5) can be modified as, 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
... (i) 
 
 
 

 

... (ii) 
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From the trigonometric identities, 
 
 
 
 
 
 

 

Equation (6) can be written as, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The exponential term in equation (7) represents the phase shift. Now considering 

magnitudes of the electric fields, we can write, 

 
 
 
 

 

Properties of Broadside Array 
 

1. Major lobe  
 

In case of broadside array, the field is maximum in the direction normal to the 

axis of the array. Thus the condition for the maximum field at point P is given by,  

 
 
 
 
 

 

Thus ʋ = 90
0
 and 270

0
 are called directions of principle maxima.  

 
2. Magnitude of major lobe  
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The maximum radiation occurs when ʋ=0. Hence we can write, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where, n is the number of elements in the array. 
 

Thus from equation (10) and (11) it is clear that, all the field components add 

up together to give total field which is ‘n’ times the individual field when ʋ = 

90
0
 and 270

0
. 

3. Nulls  
 

The ratio of total electric field to an individual electric field is given by,  
 
 
 
 
 
 

Equating ratio of magnitudes of the fields to zero,  
 
 
 
 
 
 
 

 
The condition of minima is given by,  

 
 
 
 
 

Hence we can write,  
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where, n= number of elements in the array d= 

spacing between elements in meter 
 

λ= wavelength in meter 
 

m= constant= 1, 2 , 3.... 
 

Thus equation (13) gives direction of nulls 
 

4. Side Lobes Maxima  
 

The directions of the subsidary maxima or side lobes maxima can be obtained 

if in equation (8),  

 
 
 
 
 
 
 

Hence sin(nʋ/2), is not considered. Because if nʋ/2=π/2 then sin nʋ/2 =1 

which is the direction of principle maxima.  

Hence we can skip sin nʋ/2 = ±π/2 value Thus, we get  
 
 
 
 
 
 

 

Now equation for ʋ can be written as,  
 
 
 
 
 
 
 
 
 
 
 

 
The equation (15) represents directions of subsidary maxima or side lobes maxima. 
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5. Beamwidth of Major Lobe  
 

Beamwidth is defined as the angle between first nulls. Alternatively 

beamwidth is the angle equal to twice the angle between first null and the 

major lobe maximum direction. Hence beamwidth between first nulls is given 

by,  

 
 
 
 
 
 
 
 

Also  
 

Hence  
 

Taking cosine of angle on both sides, we get 
 
 
 
 
 
 
 
 

If γ is very small, then sin γ ≈ γ. Substituting n above equation we get, 
 
 
 
 

For first null i.e. m=1, 
 
 
 
 
 
 
 

 

But nd≈ (n-1)d if n is very large. This L= (nd) indicates total length of the 

array. 
 
 
 
 
 
 
 

BWFN in degree is written as, 
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Now HPBW is given by, 
 
 
 
 
 
 
 

HPBW in degree is written as, 
 
 
 
 
 
 
 

6. Directivity  
 

The directivity in case of broadside array is defined as, 

where, U0 is average radiation intensity which is given by,  

 
From the expression of ratio of magnitudes we can write,  

 
 
 

 

or    

For the normalized condition let us assume E0 = 1, then  
 
 

 

Thus field from array is maximum in any direction θ when ʋ = 0. Hence 

normalized field pattern is given by,  

 
 
 
 

Hence the field is given by,  
 
 
 
 
 

 

where ʋ = βdcosʋ 
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Equation (23) indicated array factor, hence we can write electric field due to n 

array as 

 
 
 
 
 

 

Assuming d is very small as compared to length of an array, 
 
 
 
 

Then, 
 
 
 
 
 
 
 

Substituting value of E in equation (24) we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Rewritting above equation we get, 
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For large array, n is large hence nβd is also very large (assuming tending to 

infinity). Hence rewriting above equation. 

 
 
 

 

Interchanging limits of integration, we get 
 
 
 
 
 

By integration formula, 
 
 
 
 

 

Using above property in above equation we can write, 
 
 
 
 

 

From equation (23), the directivity is given by, 
 
 
 
 

But Umax = 1 at ʋ = 90° and substituting value of U0  from equation (28), we get, 
 
 
 
 
 
 
 

But β= 2π/λ 
 

Hence 
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The total length of the array is given by, L = (n - 1) d ≈ nd, if n is very large. Hence 

the directivity can be expressed in terms of the total length of the array as, 

 
 
 
 
 

 

Array of n Elements with Equal Spacing and Currents Equal in Magnitude but with 
 
Progressive Phase Shift - End Fire Array 
 
Consider n number of identical radiators supplied with equal current which are not in 

phase as shown in the Fig. 11. Assume that there is progressive phase lag of βd 

radians in each radiator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 End fire array  

Consider that the current supplied to first element A0 be I0. Then the current 

supplied to A1 is given by, 

 

 

Similarly the current supplied to A2 is given by, 
 
 
 
 
Thus the current supplied to last element is 
 

 

The electric field produced at point P, due to A0 is given by, 
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The electric field produced at point P, due to A1 is given by, 
 
 
 
 

But r1 = r0 – dcosʋ 
 
 
 
 
 
 
 
 
 
 

 

Let ʋ = βd(cosʋ -1) 
 

 

The electric field produced at point P, due to A2 is given by, 
 
 
 

Similarly electric field produced at point P, due to An-1 is given by, 
 
 

 

The resultant field at point p is given by, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Considering only magnitude we get, 
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Properties of End Fire Array 
 
1. Major lobe  
 

For the end fire array where currents supplied to the antennas are equal in amplitude  
 

but the phase changes progressively through array, the phase angle is given by, 
 

ʋ = βd(cosʋ -1) ...(9) 
 

 

In case of the end fire array, the condition of principle maxima is given by, 
 

ʋ = = 0 i.e. 
 
 

 

i.e. cosʋ 

= 1 
 

i.e. ʋ = 0
0
 ...(11) 

Thus ʋ = 0
0
 indicates the direction of principle maxima.  

 
 

2. Magnitude of the major lobe  
 

The maximum radiation occurs when ʋ= 0. Thus we can write,  
 
 
 
 
 
 
 
 
 
 

where, n is the number of elements in the array. 
 
3. Nulls  
 

The ratio of total electric field to an individual electric field is given by,  
 
 
 
 
 
 

Equating ratio of magnitudes of the fields to zero,  
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The condition of minima is given by, 
 
 

 
Henc 

 
e we can write, 

 
 
 
 
 

 

Substituting value of ʋ from equation (9), we get, 
 
 
 

 

But β= 2π/λ 
 
 
 
 

Note that value of (cosʋ-1) is always less than 1. Hence it is always negative. 

Hence only considering -ve values, R.H.S., we get 

 
 
 
 
 
 
 
 
 
 

 
where, n= number of elements in the array d= 

spacing between elements in meter 
 

λ= wavelength in meter 
 

m= constant= 1, 2 , 3.... 
 

Thus equation (15) gives direction of nulls 
 

Consider equation(14), 
 
 
 
 

Expressing term on L.H.S. in terms of halfangles, we get, 
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4. Side Lobes Maxima  
 

The directions of the subsidary maxima or side lobes maxima can be obtained 

if in equation (8),  

 
 
 
 
 
 

 

Hence sin(nʋ/2), is not considered. Because if nʋ/2=±π/2 then sin nʋ/2 

=1 which is the direction of principle maxima.  

Hence we can skip sin nʋ/2 = ±π/2 value Thus, we get  
 
 
 

 

Putting value of ʋ from equation (9) we get 
 
 
 
 
 
 
 
 

 

Now equation for ʋ can be 

written as,But β = 2π/λ  

 
 
 
 
 
 

 

Note that value of (cosʋ-1) is always less than 1. Hence it is always negative. Hence 
 

only considering -ve values, R.H.S., we get 
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5. Beamwidth of Major Lobe  
 

Beamwidth is defined as the angle between first nulls. Alternatively 

beamwidth is the angle equal to twice the angle between first null and the 

major lobe maximum direction.  
 

From equation (16) we get,  
 
 
 
 
 
 

 

ʋminis very low  

Hence sin ʋmin/2 ≈ ʋmin/2  
 
 
 
 
 
 
 
 

But nd≈ (n-1)d if n is very large. This L= (nd) indicates total length of 

the array. So equation (20) becomes,  

 
 

 

BWFN is given by,  
 
 
 
 

 

BWFN in degree is expressed as  
 
 
 

 

For m=1, 



  
Page 
31 

 

  

 
 
 
 
 
 
 
 
 
 
6. Directivity  
 

The directivity in case of endfire array is defined as,  
 
 
 
 

where, U0 is average radiation intensity which is 

given by, For endfire array, Umax = 1and   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The total length of the array is given by, L = (n - 1) d ≈ nd, if n is very large. Hence 

the directivity can be expressed in terms of the total length of the array as, 

 
 
 
 
 

 

Multiplication of patterns 
 
In the previous sections we have discussed the arrays of two isotropic point sources 

radiating field of constant magnitude. In this section the concept of array is extended 

to non-isotropic sources. The sources identical to point source and having field 

patterns of definite shape and orientation. However, it is not necessary that 

amplitude of individual sources is equal. The simplest case of non-isotropic sources 

is when two short dipoles are superimposed over the two isotopic point sources 

separated by a finite distance. If the field pattern of each source is given by 
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Then the total far-field pattern at point P becomes 
 
 

 
...(1) 

 
 
 

 

where 
 
 
 

 
Equation (1) shows that the field pattern of two non-isotropic point sources (short dipoles) is 

equal to product of patterns of individual sources and of array of point sources. The pattern of 

array of two isotropic point sources, i.e., cos ʋ/2 is widely referred as an array factor. That is 
 
ET= E (Due to reference source) x Array factor 
 
This leads to the principle of pattern multiplication for the array of identical elements. 

In general, the principle of pattern multiplication can he stated as follows: 

 
 
The resultant field of an array of non-isotropic hut similar sources is the product of the 

fields of individual source and the field of an array of isotropic point sources, each 

located at the phase centre of individual source and hating the relative amplitude and 

phase. The total phase is addition of the phases of the individual source and that of 

isotropic point sources. The same is true for their respective patterns also. 

 

The normalized total field (i.e., ETn), given in Eq. (1), can re-written as 
 
 

where E1(θ) = sin θ = Primary pattern of array 
 

 = Secondary pattern of array. 
 

 

Thus the principle of pattern multiplication is a speedy method of sketching the field pattern 

of complicated array. It also plays an important role in designing an array. There is no 

restriction on the number of elements in an array; the method is valid to any number of 

identical elements which need not have identical magnitudes, phase and spacing between 

then). However, the array factor varies with the number of elements and their 

arrangement, relative magnitudes, relative phases and element spacing. The array 

of elements having identical amplitudes, phases and spacing provides a simple array 
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factor. The array factor does not depend on the directional characteristic of the array 

elements; hence it can be formulated by using pattern multiplication techniques. The 

proper selection of the individual radiating element and their excitation are also 

important for the performance of array. Once the array factor is derived using the 

point-source array, the total field of the actual array can be obtained using Eq. (2). 

 

Binomial Array 
 
In order to increase the directivity of an array its total length need to be increased. In this 

approach, number of minor lobes appears which are undesired for narrow beam applications. In 

has been found that number of minor lobes in the resultant pattern increases whenever spacing 

between elements is greater than λ/2. As per the demand of modern communication where 

narrow beam (no minor lobes) is preferred, it is the greatest need to design an array of only main 

lobes. The ratio of power density of main lobe to power density of the longest minor lobe is 

termed side lobe ratio. A particular technique used to reduce side lobe level is called tapering. 

Since currents/amplitude in the sources of a linear array is non-uniform, it is found that minor 

lobes can be eliminated if the centre element radiates more strongly than the other sources. 

Therefore tapering need to be done from centre to end radiators of same specifications. The 

principle of tapering are primarily intended to broadside array but it is also applicable to end-fire 

array. Binomial array is a common example of tapering scheme and it is an array of n-isotropic 

sources of non-equal amplitudes. Using principle of pattern multiplication, John Stone first 

proposed the binomial array in 1929, where amplitude of the radiating sources arc arranged 

according to the binomial expansion. That is. if minor lobes 
 
appearing in the array need to be eliminated, the radiating sources must have 

current amplitudes proportional to the coefficient of binomial series, i.e. proportional 

to the coefficient of binomial series, i.e. 
 

 ...(1) 
 
where n is the number of radiating sources in the array. 
 

 

For an array of total length nλ/2, the relative current in the nth element from the one 

end is given by 

 
 
 
 
 

 
where r = 0, 1, 2, 3, and the above relation is equivalent to what is known as Pascal's triangle. 
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For example, the relative amplitudes for the array of 1 to 10 radiating sources are as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since in binomial array the elements spacing is less than or equal to the half-wave 

length, the HPBW of the array is given by 

 
 
 
 

 

and directivity 
 
 
 
 

Using principle of multiplication, the resultant radiation pattern of an n-source 

binomial array is given by 
 
In particular, if identical array of two point sources is superimposed one above other, 

then three effective sources with amplitude ratio 1:2:1 results. Similarly, in case 

three such elements are superimposed in same fashion, then an array of four 

sources is obtained whose current amplitudes are in the ratio of 1:3:3:1. 

The far-field pattern can be found by substituting n = 3 and 4 in the above 

expression and they take shape as shown in Fig. 14(a) and (b). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14(a) Radiation pattern of 2-element array with amplitude ratio 1:2:1. 
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Fig 14(b) Radiation pattern of 3-element array with amplitude ratio 1:3:3:1. 
 

 

It has also been noticed that binomial array offers single beam radiation at the cost 

of directivity, the directivity of binomial array is greater than that of uniform array for 

the same length of the array. In other words, in uniform array secondary lobes 

appear, but principle lobes are narrower than that of the binomial array. 
 
Disadvantages of Binomial Array 
 
(a) The side lobes are eliminated but the directivity of array reduced.  
 
(b) As the length of array increases, larger current amplitude ratios are required.  
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