
SECX1023 -  PROGRAMMING IN HDL 

UNIT- 3 

UNIT 3  - ADVANCED FEATURES 

3.1 Generics 
It is often useful to pass certain types of information into a design description 

from its environment. Examples of such information are rise and fall delays, and size of 
interface ports. This is accomplished by using generics. Generics of an entity are 
declared along with its ports in the entity declaration.  
 

 

In this example, the size of the input port has been modeled as a generic. By 
doing this, we have modeled an  entire  class  of  and  gates  with  a  variable  number  
of  inputs  using  a  single  behavioral  description.  The AND_GATE entity may now 
be used with a different number of input ports in different instantiations. 

A generic declares a constant object of mode in (that is, the value can only be 
read), and can be used in the entity declaration and its corresponding architecture 
bodies. The value of this constant can be specified as a locally static expression in one 
of the following: 

 
1. entity declaration 
2. component declaration 
3. component instantiation 
4. configuration specification 
5. configuration declaration 

 
The value of a generic must be determinable at elaboration time, that is, a 

value for a generic must be explicitly specified at least once using any of the ones 
mentioned. The value for a generic may be specified in the entity declaration for an 
entity as shown in this example. This is the default value for the generic. It can be 
overridden by others. 

 
entity NAND_GATE is 

generic (M: INTEGER := 2); -- M models the number of inputs. 
port (A: in BIT_VECTOR(M downto 1); Z: out BIT); 

end NAND_GATE; 
 

Two other alternate ways of specifying the value of a generic are in a 
component declaration and in a component instantiation. The following examples 
demonstrate these. 



entity 
ANOTHER_GEN_EX is 
 end; 
 
architecture GEN_IN_COMP of ANOTHER_GEN_EX is 
-- Component declaration for NAND_GATE: 
component NAND_GATE 

generic (M: INTEGER); 
port (A: in BIT_VECTOR (M downto 1); Z: out BIT); 

end component; 
-- Component declaration for AND_GATE: 
component AND_GATE 

generic (N: NATURAL := 5); 
port (A: in BIT_VECTOR(1 to N); Z: out BIT); 

end component; 
signal S1, S2, S3, S4: BIT; 
signal SA: BIT_VECTOR (1 to 5); 
signal SB: BIT_VECTOR (2 downto 1); signal SC: BIT_VECTOR (1 
to 10);  
signal SD: BIT_VECTOR (5 downto 0); 

begin 
- Component instantiations: 
N1: NAND_GATE generic map (6) port map (SD, S1); 
A1: AND_GATE generic map (N => 10) port map (SC, 
S3); A2; AND_GATE port map (SA, S4); 
-- N2: NAND_GATE port map (SB, S2); 

end GEN_IN_COMP; 
 
For the purposes of this discussion, we shall assume that the components 

NAND_GATE and AND_GATE are bound to the entities NAND_GATE and 
AND_GATE described earlier. The component declaration for AND_GATE specifies 
a value for the generic. When this component is instantiated and a new generic value 
is assigned using a generic map as in instance A1, the new value, that is, 10, overrides 
the value specified in the component declaration, that is, 5. When the AND_GATE 
component is instantiated and no generic map is specified as in instance A2, the 
value of the generic specified in the component declaration, that is, 5, is used. In the 
case of instance N1, again the value supplied by the generic map (i.e., 6) overrides the 
value assigned to the generic in the entity declaration for NAND_GATE (i.e., 2). The 
instance N2, shown as a comment, is illegal since neither the instantiation nor the 
declaration supply the value for the generic. 

Values for generics may also be specified in a configuration specification or in 
a configuration declaration. We shall see this later in the section on configurations. 
The model of a nor gate with generic rise and fall delays is shown next. 

 
entity NOR2 is 

generic (PT_HL, PT_LH: TIME); 
port (A, B: in BIT; Z: out BIT); 

end NOR2; 
 

architecture NOR2_DELAYS of NOR2 is 
signal TEMP: BIT; 

begin  
TEMP <= not (A or B); 
Z <= TEMP after PT_HL when (TEMP = -0') else 



TEMP after PT_LH; 
end NOR2_DELAYS; 

 
Since no default values were provided for the generics in this case, the values must 
be provided later when this entity is instantiated or configured. 

Consider an or gate constructed using two nor gates; each nor gate has the 
behavior described previously. The rise and fall delays are specified when the 
NOR2 component is instantiated. In the following example, different propagation 
delays are specified in each component instantiation statement. 

 
entity OR2 is 

port (A, B: in BIT; C: out BIT); 
end OR2; 

 
architecture OR2_NOR2 of 

OR2 is component 
NOR2 

generic (PT_HL, PT_LH: 
TIME); 
port (A, B: in BIT: Z: 
out BIT); 

end component; 
signal S1: BIT; 

    begin 
 

N1: NOR2 generic map (5 ns, 3 ns) port map (A, B, S1); 
N2: NOR2 generic map (6 ns, 5 ns) port map (S1, S1, C); 

      end; 
 

Generics can also be used to control the number of instantiations of a component in a 
generate statement. 
 
3.2 Configurations 
 

 why are configurations needed? There are two main reasons. 
 

1. Sometimes it may be convenient to specify multiple views for a single entity 
and use any one of these for simulation. This can be easily done by specifying 
one architecture body for each view and using a configuration to bind the 
entity to the desired architecture body. For example, corresponding to an entity 
FULL_ADDER, there may be three architecture bodies, called FA_BEH, 
FA_STR, and FA_MIXED. Any one of these can be selected for simulation be 
specifying an appropriate configuration. 

2. Similar to the previous case, it may be desirable to associate a component 
with any one of a set of entities. The component declaration may have its 
name and the names, types, and number of ports and generics different from 
those of its entities. For example, a declaration for a component used in a 
design may be 

 
component OR2 

port (A, B: in BIT; Z: 
out BIT); 

end component; 
 



and the entities that the above component may possibly be bound to are 
entity OR_GENERIC is 

port (N: out BIT; L, M: in BIT): 
end OR_GENERIC; 

 
entity OR_HS is 

port (X, Y: in BIT; Z: out BIT); 
end OR_HS; 

 
The component names and the entity names, as well as the port names and 

their order are different. In one case we may be interested in using the OR_HS entity 
for the OR2 component, and in another case, the OR_GENERIC entity. This can be 
achieved by appropriately specifying a configuration for the component.  The  
advantage  is  that  when  components  are  used  in  a  design,  arbitrary  names  for 
components and their interface ports can be used and these can later be bound to 
specific entities prior to simulation. 
 

A configuration is, therefore, used to bind 
1.  An architecture body to its entity declaration, 
2. A component with an entity. 
 

Note that a configuration does not have any simulation semantics associated 
with it; it only specifies how a top-level entity is organized in terms of lower level 
entities by specifying the bindings between the entities. The 
language provides two ways of performing this binding: 

1. By using a configuration specification, 
2. By using a configuration declaration. 

 
3.3   Configuration Specification 
 

A configuration specification is used to bind component instantiations to specific 
entities that are stored in design libraries. The specification appears in the declarations 
part of the architecture or block in which the components are instantiated. Binding of a 
component to an entity can be done on a per instance basis, or for all instantiations of a 
component, or for a selected set of instantiations of a component. Instantiations of 
different components can also be bound to the same entity. 
Figure 3.1 shows a logic diagram for a 1-bit full-adder. Its structural model is described 
next. 
 

 
Figure 3.1  A 1 -bit full-adder circuit. 

 
library HS_LIB, CMOS_LIB;  
entity FULL_ADDER is  



port (A, B, CIN: in BIT; SUM, COUT: out BIT); 
end; 

 
 

The four for statements appearing in the declarative part of the architecture body 
are the configuration specifications. The first specification statement indicates that 
instances XI and X2 of component XOR2 are bound to the entity represented by the 
entity-architecture pair, XOR2 and XOR2BEH, respectively,  that resides in library 
WORK. The second specification binds the AND2 component with instantiation label 
A3 to the entity represented by the entity-architecture pair, AND2HS and AND2STR, 
respectively, that is present in design library HS_LIB. "The mapping of the component 
(AND2) ports and the entity (AND2HS) ports is specified using named association; for 
example, port HS_A of the AND2HS entity is mapped to port AO of the AND2 
component. The third specification implies that for all instances of component OR2, use 
the entity represented by the specified entity-architecture pair that is present in the 
design library, CMOS_LIB. The last specification statement implies that all unbound 
instances of component AND2, that is, Al and A2, are bound to the entity A_GATE 
using the architecture A_GATE_BODY, that resides in library WORK. 

  
The previous example showed that different instances of the same component 

can be bound to different entities. Figure 3.2 depicts this binding. Similarly, it is also 
possible to bind different components to the same entity. An example is shown in Fig. 
3.3. This figure shows that there is nothing special about the component name being 
AND2. By binding an instance of component AND2 to an entity called OR_GATE, this 



instance is being made to behave as specified in the architecture of entity OR_GATE. 
Using such a binding may cause confusion to the reader, even though it is syntactically 
correct, and it may be what was intended. Such bindings may sometimes be necessary, 
for example, while debugging a model, we may want to see the effect of specifying an 
AND gate to behave like an or gate without changing the rest of the description.  This 
flexibility of being allowed to bind a component instance to any entity may result in a 
complex maze of bindings. An example is shown in Fig. 3.4. 

 
Figure 3.2 Different instances bound to different entities 

 

 
Figure 3.3 Different components bound to same entity 

 
 

 
Figure 3.4 A complex maze of bindings 

 

Entity P has four component instances, PXI and PX2 of component type PX, PYI 
of component type PY, and PWI of component type PW. Component instances PXI and 
PYI are bound to entity Q while PX2 is bound to R. Component instances QLI and QL2 
(of component type QL) in entity Q are bound to entities S and T, respectively. 
Component instances RLI and RMI in entity R are bound to entities S and W, 
respectively. All component instances in S and T, and component PWI in entity P are 
bound to a single entity W. In other words, all the entities, P, Q, R, S, and T have been 
built hierarchically using a single primitive component, W.  

 
 



The syntax of a configuration specification is 
for list-ofrcomp-labels: component-name  
use binding-indication; 
 

The binding-indication specifies the entity represented by the entity-architecture pair, 
and the generic and port bindings, and one of its forms is 

entity entity-name [ ( architecture-name ) ]  
[ generic map ( generic-association ) ]  
[ port map ( port-association ) ]    -- Form 1 

 
The list of component labels may be replaced with the keyword all to denote all 

instances of a component; it may also be the keyword others to specie all as yet unbound 
instances of a component. The generic map is used to specify the values for the generics 
or provide the mapping between the generic parameters of the component and the entity 
to which it is bound. The port map is used to specify the port bindings between the 
component and the bound entity. Additional examples of configuration specifications 
appear in the following architecture body. 

 
In the binding for N1 and N2, the generic map specifies the mapping of generic 

names from the entity NOR2 to the component NOR_GATE using named association. 
The generic values supplied in the instantiations are, therefore, passed to the NOR2 
entity through this mapping. The port binding is specified using positional association, 
that is, ports SO, SI, and Q of NOR_GATE component map to ports A, B, and Z, 
respectively, of the NOR2 entity. The configuration specification for the AND2_GATE 
specifies the value, 10, of the generic explicitly (using positional association) which 
overrides the default value, 5, specified in the entity declaration for the AND2 entity. 
The component declaration for AND2_GATE, in this case, should not specify any 
generics since the values are passed directly to the actual generics of the entity. The port 
mapping for the AND2_GATE is specified using named association.  

 

 
 
The entity declarations for the entities that are bound to components NOR_GATE and 
AND2_GATE are 
 



 
How are the generic map and port map values in a component instantiation 

passed into its bound entity via the configuration specification? A look at the elaboration 
of a component instantiation helps us to understand this. Let us take the N1 instantiation 
in the previous architecture body as an example. Elaboration transforms this component 
instantiation into the following block statement. 

 

 
 
The block Nl is created from the component instantiation of NOR_GATE. The 

generic map and port map for this block are the generic map and port map specified in 
the component instantiation for Nl, that is, they specify the mapping between the values 
and signals in the component instantiation statement with the generics and ports of 
component NOR_GATE. The inner block with label NOR2 represents the entity NOR2 
that the component instantiation Nl is bound to in the configuration specification. The 
generic map and port map of this block specify the generic map and port map that 
appear in the configuration specification, that is, they specify the mapping between the 
component NOR_GATE and the entity NOR2. 

 
3.4 Configuration Declaration  

 
Configuration specifications have to appear in an architecture body. Therefore, 

to change a binding, it is necessary to change the architecture body and re-analyze it. 
This may sometimes be cumbersome and time consuming. To avoid this, a configuration 
declaration may be used to specify a binding.  

A configuration declaration is a separate design unit, therefore, it allows for late 
binding of components, that is, the binding can be performed after the architecture body 
has been written. It is also possible to have more than one configuration declaration for 



an entity, each of which defines a different set of bindings for components in a single 
architecture body, or possibly specifies a unique entity-architecture pair.  

 
The typical format of a configuration declaration is 

configuration configuration-name of entity-name is  
block-configuration  

end [ configuration-name ]; 
 
It declares a configuration with the name, configuration-name, for the entity, 

entity-name. A block-configuration defines the binding of components in a block, where 
a block may be an architecture body, a block statement, or a generate statement. A block 
configuration is a recursive structure of the form 

 
for block-name  

component-configurations  
block-configurations  

end for; 
The block-name is the name of an architecture body, a block statement label, or a 
generate statement label. The top-level block is always an architecture body. A 
component-configuration binds components that appear in a block to entities and is of 
the form  

for list-of-comp-labels: comp-name [ use binding-indication; ]  
[ block-configuration ]  

end for;  
 

The block configuration that appears within a component configuration defines the 
bindings of components at the next level of hierarchy in the entity-architecture pair 
specified by the binding indication.  
 
There are two other forms of binding indication in addition to the one shown in the 
previous section. These are  

 
configuration configuration-name -- Form 2  
open -- Form 3  
 

In form 2, the binding indication specifies that the component instances are to be bound 
to a configuration of a lower level entity as specified by the configuration name. This 
implies that a configuration declaration with such a name must exist. In form 3, the 
binding indication indicates that the binding is not yet specified and that it is to be 
deferred. Both these forms of binding indication may also be used in a configuration 
specification. 
 

Here is an example of a configuration declaration that specifies the component 
configurations for all component instances in architecture FA_STR of entity 
FULL_ADDER described in the previous section. 

 



 
 
The configuration with name, FA_CON, binds architecture FA_STR with the 

FULL_ADDER entity. For components within this architecture body, instances Al, A2, 
and A3, are bound to the entity, BIGAND2, that exists in the design library, 
CMOS_LIB. For all instances of component OR2, the default bindings are used; these 
are the entities in the working library with the same names as the component names. The 
last component configuration shows a different type of binding indication. In this case, 
all component instances are bound to a configuration instead of an entity-architecture 
pair. All instances of component XOR2 are bound to a configuration with name 
XOR2CON, that exists in the working library. This type of binding may also be 
specified in a configuration specification.  

 
The power of the configuration declaration lies in the fact that the 

subcomponents in an entire hierarchy of a design can be bound using a single 
configuration declaration. For example, consider a full-adder circuit composed of two 
half-adders and an or gate. The half-adder circuit is in turn composed of xor and and 
gates. The hierarchy for this full-adder is shown in Fig. 3.5. 

 

 
Figure 3.5 A hierarchical 1 -bit full-adder 

 
The structural models for the full-adder and half-adder circuits are described 

next. A configuration declaration which specifies the bindings for components used in 
the entire hierarchy of the full-adder is also shown. 

 
The top-level block configuration specifies the bindings of component instances 

present in the architecture body FA_WITH_HA. Instances HAI and HA2 are bound to 
an entity specified by the entity-architecture pair, entity HA and architecture HA_STR. 
The nested block configuration specifies the binding of component instances present in 
the architecture body HA_STR. In this way, a configuration can be nested to any 
arbitrary depth and can be used to bind all components in a hierarchy.  



 

 

 
 
The previous example shows that when components in a hierarchy are bound, a 

single configuration declaration may be used to replace a set of configuration 
specifications. If configuration specifications were used in the earlier example, they 
would have to be included separately in the architecture bodies, FA_WITH_HA and 
HA_STR, and then these bodies would have to be recompiled every time a binding is 
changed. Note that a component instance must not be bound both in a configuration 
specification and in a configuration declaration. Configurations, therefore, provide the 
mechanism by which architecture bodies may contain technology-independent 



components. Technology-specific mappings can be specified separately using 
configuration declarations. 
 
 
3.5 Subprograms  

A subprogram defines a sequential algorithm that performs a certain computation 
and executes in zero simulation time. There are two kinds of subprograms:  

1.   Functions: These are usually used for computing a single value.  
2. Procedures: These are used to partition large behavioral descriptions. 

Procedures can return zero or more values.  
A subprogram is defined using a subprogram body. The typical format for a 

subprogram body is  
            subprogram-specification is  

subprogram-item-declarations  
begin  

subprogram-statements -- Same as sequential-statements.  
end [ subprogram-name ];  

 

The subprogram-specification specifies the name of a subprogram and defines 
its interface, that is, it defines the formal parameter names, their class (i.e., signal, 
variable, or constant), their type, and their mode (whether they are in, out, or inout). 
Parameters of mode in are read-only parameters; these cannot be updated within a 
subprogram body. Parameters of mode out are write-only parameters; their values 
cannot be used but can only be updated within a subprogram body. Parameters of mode 
inout can be read as well as updated.  
 

Actual values are passed to and from a subprogram via a subprogram call. Only a 
signal object may be used to pass a value to a parameter of the signal class. Only a 
variable object may be used to pass a value to a parameter of the variable class. A 
constant or an expression may be used to pass a value to a parameter of constant class. 
When parameters are of a variable or constant class, values are passed to the subprogram 
by value. Arrays may or may not be passed by reference. For signal objects, the 
reference to the signal, its driver, or both are passed into the subprogram. What this 
means is that any assignment to a signal in a procedure (signals cannot be assigned 
values in a function because the parameters are restricted to be of input mode) affects 
the actual signal driver immediately and is independent of whether the procedure 
terminates or not. For a signal of any mode, the signal-valued attributes, STABLE, 
QUIET, DELAYED, and TRANSACTION (attributes are discussed in Chap. 10), 
cannot be used in a subprogram body.  
 

The type of an actual value in a subprogram call must match that of its 
corresponding formal parameter. If the formal parameter belongs to an unconstrained 
type, the size of this parameter is determined from the actual value that is passed in.  
The subprogram-item-declarations part contains a set of declarations (e.g., type and 
object declarations) that are accessible for use locally within the subprogram. These 
declarations come into effect every time the subprogram is called. Variables are also 
created and initialized every time the subprogram is called. They remain in existence 
until the subprogram completes. This is in contrast with declarations in a process 
statement that get initialized only once, that is at start of simulation, and any declared 
variables persist throughout the entire simulation run.  



 

The subprogram-statements part contains sequential statements that define the 
computation to be performed by the subprogram. A return statement, which is also a 
sequential statement, is a special statement that is allowed only within subprograms. The 
format of a return statement is  

return { expression];  
The return statement causes the subprogram to terminate and control is returned 

back to the calling object. All functions must have a return statement and the value of 
the expression in the return statement is returned to the calling program. For procedures, 
objects of mode out and inout return their values to the calling program.  
The subprogram-name appearing at the end of a subprogram body, if present, must be 
the same as the function or procedure name specified in the subprogram specification 
part. 
 
Functions : 

Functions are used to describe frequently used sequential algorithms that return a 
single value. This value is returned to the calling program using a return statement. 
Some of their common uses are as resolution functions, and as type conversion 
functions. The following is an example of a function body. 

 

 

Variable RETURN_VALUE comes into existence with an initial value of 0.0 every time 
the function is called. It ceases to exist after the function returns back to the calling 
program.  

The general syntax of a subprogram specification for a function body is function  
function-name (parameter-list) return return-type 

 
Procedures : 

Procedures allow decomposition of large behaviors into modular sections. In 
contrast to a function, a procedure can return zero or more values using parameters of 
mode out and inout. The syntax for the subprogram specification for a procedure body is  

procedure procedure-name ( parameter-list )  
The parameter^ist specifies the list of formal parameters for the procedure. Parameters 
may be constants, variables, or signals and their modes may be in, out, or inout. If the 
object class of a parameter is not explicitly specified, then the object class is by default a 
constant if the parameter is of mode in, else it is a variable if the parameter is of mode 
out or inout. 

A procedure can normally be used simultaneously as a concurrent and a sequential 
statement. However, if any of the procedure parameters are of the variable class, the 
procedure would be restricted to be used as a sequential procedural call, since variables 



can only be defined inside of a process. Concurrent procedure calls are useful in 
representing frequently used processes.  
 

A procedure body can have a wait statement while a function cannot. Functions 
are used to compute values that are available instantaneously. Therefore, a function 
cannot be made to wait, for example, it cannot call a procedure with a wait statement in 
it. A process that calls a procedure with a wait statement cannot have a sensitivity list. 
This follows from the fact that a process cannot be sensitive to signals and also be made 
to wait simultaneously. Since a procedure can have a wait statement, any variables 
declared in the procedure retain their values through this wait period and cease to exist 
only when the procedure terminates. 

Declarations :  
A subprogram body may appear in the declarative part of the block in which a 

call is made. This is not convenient if the subprogram is to be shared by many entities. 
In such cases, the subprogram body can be described at one place, possibly in a package 
body and then in the package declaration, the corresponding subprogram declaration is 
specified. If this package declaration is included in other design units using context 
clauses, the subprograms can then be used in these design units. A subprogram 
declaration describes the subprogram name and the list of parameters without describing 
the internal behavior of the subprogram, that is, it describes the interface for the 
subprogram. The syntax of a subprogram declaration is  

subprogram-specification;  
Two examples of procedure and function declarations are shown next. 

 

Another reason subprogram declarations are necessary is to allow two subprograms to 
call each other recursively, for example, 

 

The call to function Q in procedure P is illegal since Q has not yet been declared. This 
can be corrected by writing the function declaration for Q either before procedure P or 
inside the declarative part of procedure P. 

3.6 Subprogram Overloading  
Sometimes it is convenient to have two or more subprograms with the same 

name. In such a case, the subprogram name is said to be overloaded. For example, 
consider the following two declarations. 

function COUNT (ORANGES: INTEGER) return INTEGER;  
function COUNT (APPLES: BIT) return INTEGER; 



 

Both functions are overloaded since they have the same name, COUNT, and have 
different parameter types. When a call to either function is made, it is easily possible to 
identify the exact function to which the call was made from the type of the actual 
parameters passed. For example, the function call  

COUNT(20)  
refers to the first function since 20 is of type INTEGER, while the function call  

COUNT('1')  
refers to the second function, since the type of actual parameter is BIT.  If two 
overloaded subprograms have the same parameter types and result types, then it is 
possible for one subprogram to hide the other subprogram. This can happen, for 
example, if a subprogram is declared within another subprogram's scope. Here is an 
example. 
 

 

The function ADD declared in the architecture body is hidden within the process 
because of the second function ADD that is declared within the declarative part of the 
process. This function can still be accessed by qualifying the function name with the 
architecture name as shown in the second statement in the process.  
 

It is also possible for two overloaded subprograms to be directly visible within a 
region, for example, caused by using use clauses. In such a case, a subprogram call may 
be ambiguous, and hence an error, if it is not possible to determine which of the 
overloaded subprograms is being called. Here is an example. 

 



The function call in the first signal assignment statement is not an error since it refers to 
the function declared in package P2, while the call in the second signal assignment 
statement is ambiguous and hence an error.   
 

It is also possible for two subprograms to have the same parameter types and 
result types but have a different number of parameters. In this case, the number of actual 
values supplied in the subprogram call identifies the correct subprogram. Here is an 
example of such a set of functions that determine the smallest value from a set of 2,4, or 
8 integers. 

 

A call such as  
. . . SMALLEST (4, 5) . . .  

refers to the first function, while the function call  
. . . SMALLEST (20, 45,52,1,89,67,91,22)...  

refers to the third function. This flexibility helps in writing code that is easy to decipher 
since the same subprogram name can be made to serve differently when used with a 
different set of inputs. 

3.7 Operator Overloading  
 

Operator overloading is one of the most useful features in the language. When a 
standard operator symbol is made to behave differently based on the type of its 
operands, the operator is said to be overloaded. The need for operator overloading arises 
from the fact that the predefined operators in the language are defined for operands of 
certain predefined types. For example, the and operation is defined for arguments of 
type BIT and BOOLEAN only. What if the arguments were of type MVL (where MVL 
is a user-defined enumeration type with values 'U', '0', '1' and 'Z')? In such a case, it is 
possible to redefine the and operation as a function that operates on arguments of type 
MVL. The and operator is then said to be overloaded. The operator in the expression  

S1 and S2  
where S1 and S2 are of type MVL, would then refer to the and operation that 

was defined by the model writer as a function. The operator in the expression  
CLK1 and CLK2  

where CLK1 and CLK2 are of type BIT, would refer to the predefined and 
operator.  Function bodies are written to define the behavior of overloaded operators. 
Such a function has, at most, two parameters; the first one refers to the left operand of 
the operator and the second parameter, if present, refers to the second operand. Here are 
some examples of function declarations for such function bodies. 

 

Since the and, or, and not operators are predefined operator symbols, they have 
to be enclosed within double quotes when used as overloaded operator function names. 
Having declared the overloaded functions, the operators can now be called using two 
different types of notations:  

1. standard operator notation,  



2. standard function call notation.  
Here are some examples of these two types of notations based on the overloaded 
operator function declarations that appeared earlier. 

 

The or operator in the first statement refers to the overloaded operator because 
the type of the left operand is MVL. This is the standard operator notation since the 
overloaded operator symbol appears just like the standard operator symbol. An example 
of the function call notation is shown in the second statement in which the overloaded 
function, or, is explicitly called. The operators in the third and fourth statements refer to 
the predefined operators since their operands are of type BIT. The sixth statement would 
be an error assuming that there are no other overloaded or operators defined with the 
first parameter type of BIT and the second parameter type of MVL.  

The last example brings up a very interesting point. In overloaded operator 
functions, it is not necessary for both operands to have the same type. In the previous 
case, if another or overloaded function with a declaration such as  

 
function "or" (L: BIT; R: MVL) return BIT:  

were defined, the sixth assignment statement would not be an error. 
 

3.8 Package Declaration  
A package declaration contains a set of declarations that may possibly be shared 

by many design units. It defines the interface to the package, that is, it defines items that 
can be made visible to other design units, for example, a function declaration. A package 
body, in contrast, contains the hidden details of a package, for example, a function body.  

The syntax of a package declaration is 

 
 
An example of a package declaration is given next. 
 



 
Items declared in a package declaration can be accessed by other design units by 

using the library and use context clauses. The set of common declarations may also 
include function and procedure declarations and deferred constant declarations. In this 
case, the behavior of the subprograms and the values of the deferred constants are 
specified in a separate design unit called the package body. Since the previous package 
example did not contain any subprogram declarations and deferred constant 
declarations, a package body was not necessary.  
 

Consider the following package declaration. 

 

In this case, a package body is required. 

3.9 Package Body  
A package body primarily contains the behavior of the subprograms and the 

values of the deferred constants declared in a package declaration. It may contain other 
declarations as well, as shown by the following syntax of a package body. 

 

The package name must be the same as the name of its corresponding package 
declaration. A package body is not necessary if its associated package declaration does 
not have any subprogram or deferred constant declarations. The associated package 
body for the package declaration, PROGRAM_PACK, described in the previous section 
is 



 

An item declared inside a package body has its scope restricted to be within the 
package body and it cannot be made visible in other design units. This is in contrast to 
items declared in a package declaration that can be accessed by other design units. 
Therefore, a package body is used to store private declarations that should not be visible, 
while a package declaration is used to store public declarations which other design units 
can access. This is very similar to declarations within an architecture body which are not 
visible outside of its scope while items declared in an entity declaration can be made 
visible to other design units. An important difference between a package declaration and 
an entity declaration is that an entity can have multiple architecture bodies with different 
names, while a package declaration can have exactly one package body, the names for 
both being the same.  

A subprogram written in any other language can be made accessible to design 
units by specifying a subprogram declaration in a package declaration without a 
subprogram body in the corresponding package body. The association of this 
subprogram with its declaration in the package is not defined by the language and is, 
therefore, tool implementation-specific. 

3.10 Design Libraries  
A compiled VHDL description is stored in a design library. A design library is 

an area of storage in the file system of the host environment. The format of this storage 
is not defined by the language. Typically, a design library is implemented on a host 
system as a file directory and the compiled descriptions are stored as files in this 
directory. The management of the design libraries is also not defined by the language 
and is again tool implementation-specific.  
 

An arbitrary number of design libraries may be specified. Each design library has 
a logical name with which it is referenced inside a VHDL description. The association 
of the logical names with their physical storage names is maintained by the host 
environment. There is one design library with the logical name, STD, predefined in the 
language; this library contains the compiled descriptions for the two predefined 
packages, STANDARD and TEXTIO. Exactly one design library must be designated as 
the working library with the logical name, WORK. When a VHDL description is 
compiled, the compiled description is always stored in the working library. Therefore, 
before compilation begins, the logical name WORK must point tonne of the design 
libraries. Figure 3.6 shows a typical compilation scenario. 



 

Figure 3.6 Atypical compilation process. 
 

The VHDL source is present in an ASCII file called the design file. This is processed by 
the VHDL analyzer, which after verifying the syntactic and semantic correctness of the 
source, compiles it into an intermediate form. The intermediate form is stored in the 
design library that has been designated as the working library. 

3.11 State Machine Modeling 

State machines can usually be modeled using a case statement in a process. The 
state information is stored in a signal. The multiple branches of the case statement 
contain the behavior for each state. Here is an example of a simple multiplication 
algorithm represented as a state machine. When RESET signal is high, the accumulator 
ACC and the counter COUNT are initialized. When RESET goes low, multiplication 
starts. If the bit of the multiplier MPLR in position COUNT is 1', the multiplicand 
MCND is added to the accumulator. Next, the multiplicand is left-shifted by one bit and 
the counter is incremented. If COUNT is 16, multiplication is complete and the DONE 
signal is set high. If not, the COUNT bit of the multiplier MPLR is checked and the 
process repeated. The state diagram is shown in Fig. 12.11 and the corresponding state 
machine model is shown next. 

The signal MPY_STATE holds the state of the model. Initially the model is in 
state INIT and stays in this state as long as signal RESET is '1'. When RESET gets the 
value '0', the accumulator ACC is cleared, the counter COUNT is reset and the 
multiplicand MCND is loaded into a temporary variable MCND_TEMP, and model 
advances to state ADD. When model is in ADD state, the multiplicand in 
MCND_TEMP is added to ACC only if the bit at the COUNT position of the multiplier 
is a '1', and then the model advances to state SHIFT. In this state, the multiplier is left 
shifted once, counter is incremented and if the counter value is 16, signal DONE is set to 
'1' and model returns to state INIT. At this time, ACC contains the result of the 
multiplication. If the counter value was less than 16, the mode? repeats itself going 
through states ADD and SHIFT until the counter value becomes 16.  



State transitions occur at every falling clock edge; this is specified by the wait statement. 
The mode of signal ACC is set to buffer since the value is read and updated within the 
model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.12 Modeling Moore FSM 

The output of a Moore finite state machine (FSM) depends only on the state and 
not on its inputs. This type of behavior can be modeled using a single process with a 
case statement that switches on the state value. An example of a state transition diagram 
for a Moore finite state machine is shown in Fig. 12.16 and its corresponding behavior 
model appears next. 

 
Figure: State diagram of a Moore machine

 



3.13 Modeling Mealy FSM 

In a Mealy type finite state machine, the outputs not only depend on the state of 
the machine but also on its inputs. This type of finite state machine can also be modeled 
in a similar style as the Moore example case, that is, using a single process. To show the 
variety of the language, a different style is used to model a Mealy machine. In this case, 
we use two processes, one process that models the synchronous aspect of the finite state 
machine and the second process models the combinational part of the finite state 
machine. Here is an example of a state transition table, shown in Fig. 12.17, and its 
corresponding behavior model. 

 
Figure: State transition table for a Mealy machine 

 



 

In this type of finite state machine, it is important to put the input signals in the 
sensitivity list for the combinational part process, since the outputs may directly depend 
on the inputs independent of the clock. Such a condition does not occur in a Moore finite 
state machine since outputs depend only on states and state changes occur 
synchronously. 

 

 


