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UNIT II STYLES OF MODELING  

 

Process statement – Wait statement – If statement - Loop statement - Assertion 

statement – Data flow modeling– Concurrent Signal Assignment statement - 

Structural modeling – Examples – Component declaration – Component Instantiation 

– Generate statement – Guarded signals. 

 

Behavioral Modeling 

This chapter presents the behavioral style of modeling. In this modeling style, the 

behavior of the entity is expressed using sequentially executed, procedural type code, 

A process statement is the primary mechanism used to model the procedural type 

behavior of an entity. This chapter describes the process statement and the various 

kinds of sequential statements that can be used within a process statement to model 

such behavior.  
Irrespective of the modeling style used, every entity is represented using an 

entity declaration and at least one architecture body. The first two sections describe 

these in detail. 

An architecture body describes the internal view of an entity. It describes the 

functionality or the structure of the entity. The syntax of an architecture body is 
 
An architecture body describes the internal view of an entity. It describes the 

functionality or the structure of the entity. The syntax of an architecture body is 
 

architecture architecture-name of 

entity-name is [ architecture-

item-declarations ]  
begin  

                                              statements;   
                          end  architecture-name ; 

                  

  Statements are —> 

process-statement 

block-statement 

concurrent-procedure call 

concurrent 

assertionstatement  
concurrent-signal-

assignmentstatement 

component-instantiation-

statement generate-statement 

Process Statement 
A process statement contains sequential statements that describe the functionality of a 

portion of an entity in sequential terms. The syntax of a process statement is 
 

[ process-label: ] process [ ( 

sensitivity-list ) ] [process-

item-declarations]  
begin  

sequential-statements; 



 these are -> variable-

assignment-statement 

signal-assignment 

statement wait-statement 

if-statement 

case-

statement 

loop-

statement 

null-

statement 

exit-

statement 

next-statement 

assertion-statement 

procedure-call-

statement return-

statement.  
end process [process-label]; 

 
A set of signals that the process is sensitive to is defined by the sensitivity list. In 

other words, each time an event occurs on any of the signals in the sensitivity list, the 

sequential statements within the process are executed in a sequential order, that is, in 

the order in which they appear (similar to statements in a high-level programming 

language like C or Pascal). The process then suspends after executing the last 

sequential statement and waits for another event to occur on a signal in the sensitivity 

list. Items declared in the item declarations part are available for use only within the 

process.  
The architecture body, AOI _SEQUENTIAL, presented earlier, contains one process 

statement. This process statement has four signals in its sensitivity list and has one 

variable declaration. If an event occurs on any of the signals, A, B, C, or D, the 

process is executed. This is accomplished by executing statement I first, then 

statement 2, followed by statement 3, and then statement 4. After this, the process 

suspends (simulation does not stop, however) and waits for another event to occur on 

a signal in the sensitivity list 

 

Variable Assignment Statement 
 
Variables can be declared and used inside a process statement. A variable is assigned 

a value using the variable assignment statement that typically has the form 
 

variable-object := expression; 
 
The expression is evaluated when the statement is executed and the computed value is 

assigned to the variable object instantaneously, that is, at the current simulation time.  
Variables are created at the time of elaboration and retain their values throughout the 

entire simulation run (like static variables in C high- level programming language). 

This is because a process is never exited; it is either in an active state, that is, being 

executed, or in a suspended state, that is, waiting for a certain event to occur. A 

process is first entered at the start of simulation (actually, during the initialization 

phase of simulation) at which time it is executed until it suspends because of a wait 

statement (wait statements are described later in this chapter) or a sensitivity list. 

 



Consider the following process statement. 

process (A)  
variable EVENTS_ON_A: INTEGER := 0; 

begin  
EVENTS_ON_A := 

EVENTS_ON_A+1; end process; 
 
At start of simulation, the process is executed once. The variable EVENTS_ON_A 

gets initialized to 0 and then incremented by 1. After that, any time an event occurs on 

signal A, the process is activated and the single variable assignment statement is 

executed. This causes the variable EVENTS_ON_A to be incremented. At the end of 

simulation, variable EVENTS_ON_A contains the total number of events that 

occurred on signal A plus one.  
Here is another example of a process statement. 

 
signal A, Z: INTEGER;  
. . . 

PZ: process (A) --PZ is a label for the 

process. 

variable V1, V2: INTEGER; 

begin  
V1 := A - V2; --statement 1 

Z  <= - V1; --statement 2 

V2 := Z+V1 * 2; -- statement 3  
end process PZ; 

 
If an event occurred on signal A at time T1 and variable V2 was assigned a value, say 

10, in statement 3, then when the next time an event occurs on signal A, say at time 

T2, the value of V2 used in statement 1 would still be 10. 

 

Signal Assignment Statement 
 
Signals are assigned values using a signal assignment statement The simplest form of 

a signal assignment statement is 

signal-object <= expression [after delay-value ]; 
 

A signal assignment statement can appear within a process or outside of a 

process. If it occurs outside of a process, it is considered to be a concurrent signal 

assignment statement. This' is discussed in the next chapter. When a signal 

assignment statement appears within a process, it is considered to be a sequential 

signal assignment statement and is executed in sequence with respect to the other 

sequential statements that appear within that process.  
When a signal assignment statement is executed, the value of the expression is 

computed and this value is scheduled to be assigned to the signal after the specified 

delay. It is important to note that the expression is evaluated at the time the statement 

is executed (which is the current simulation time) and not after the specified delay. If 

no after clause is specified, the delay is assumed to be a default delta delay. 

Some examples of signal assignment statements are 
 

COUNTER <= COUNTER+ "0010"; - Assign after a delta delay.  
PAR <= PAR xor DIN after 12 ns;  
Z <= (AO and A1) or (BO and B1) or (CO and C1) after 6 ns; 

 

 



Wait Statement 

As we saw earlier, a process may be suspended by means of a sensitivity list. That is, 

when a process has a sensitivity list, it always suspends after executing the last 

sequential statement in the process. The wait statement provides an alternate way to 

suspend the execution of a process. There are three basic forms of the wait statement. 
 

wait on sensitivity-list;  
wait until boolean-

expression; wait for 

time-expression; 

They may also be combined in a single wait statement. For example 

 

wait on sensitivity-list until boolean-expression for time-expression-, 
 
Some examples of wait statements are 
 

wait on A, B, C; -- statement 1  
wait until (A = B); -- statement 2 

wait for 10ns; -- statement 3  
wait on CLOCK for 20ns; -- statement 4  
wait until (SUM > 100) for 50 ms;  -- statement 5 

 
In statement 1, the execution of the wait statement causes the process to suspend and 

then it waits for an event to occur on signals A, B, or C. Once that happens, the 

process resumes execution from the next statement onwards. In statement 2, the 

process is suspended until the specified condition becomes true. When an event 

occurs on signal A or B, the condition is evaluated and if it is true, the process 

resumes execution from the next statement onwards, otherwise, it suspends again. 

When the wait statement in statement 3 is executed, say at time T, the process 

suspends for 10 ns and when simulation time advances to T+10 ns, the process 

resumes execution from the statement following the wait statement.  
The execution of statement 4 causes the process to suspend and then it waits for an 

event to occur on the signal CLOCK for 20 ns. If no event occurs within 20 ns, the 

process resumes execution with the statement following the wait. In the last statement, 

the process suspends for a maximum of 50 ms until the value of signal SUM is greater 

than 100. The boolean condition is evaluated every time there is an event on signal 

SUM. If the boolean condition is not satisfied for 50 ms, the process resumes from the 

statement following the wait statement.  
It is possible for a process not to have an explicit sensitivity list. In such a case, the 

process may have one or more wait statements. It must have at least one wait 

statement, otherwise, the process will never get suspended and would remain in an 

infinite loop during the initialization phase of simulation. It is an error if both the 

sensitivity list and a wait statement are present within a process. The presence of a 

sensitivity list in a process implies the presence of an implicit "wait on sensitivity- 

list" statement as the last statement in the process. An equivalent process statement for 

the process statement in the AOLSEQUENTIAL architecture body is 
 

process -- No sensitivity list.  
variable TEMP1 ,TEMP2: BIT; 

begin 
TEMP1 :=A and B: 

TEMP2 := C and D;  
TEMP1 := TEMP1 or TEMP2; 

Z<= not TEMP1;  



wait on A, B, C, D; -- Replaces the sensitivity list.  
end process; 

 
Therefore, a process with a sensitivity list always suspends at the end of the process 

and when reactivated due to an event, resumes execution from the first statement in 

the process. 
 
If Statement 

An if statement selects a sequence of statements for execution based on the value of a 

condition. The condition can be any expression that evaluates to a boolean value. The 

general form of an if statement is 
 

if boolean-expressionthen  
sequential-statements  

[ elsifboolean-expressionthen -- elsif clause; if stmt can have 0 

or 

sequential-statements ] -- more elsif clauses. 

[ else -- else clause. 

sequential-statements ] 

end if; 
 
The if statement is executed by checking each condition sequentially until the first 

true condition is found; then, the set of sequential statements associated with this 

condition is executed. The if statement can have zero or more elsif clauses and an 

optional else clause. An if statement is also a sequential statement, and therefore, the 

previous syntax allows for arbitrary nesting of if statements. Here are some examples. 
 

if SUM<=100 then 

-- This is a less-than-or-equal-to 

operator.  
SUM := SUM+10; 
end if;    

if NICKEL_IN then    
DEPOSITED 
<=TOTAL_10; 

--This"<=" is a signal 
assignment  

elsif DIME_IN then  -- operator.  

DEPOSITED <= 

TOTAL_15; elsif 

QUARTERJN then 

DEPOSITED <= TOTAL_30; 

else 
DEPOSITED <= TOTAL_ERROR;  

end if; 
 

if CTRLI='1' then  
if CTRL2 = '0' then  

MUX_OUT<= "0010"; 

else  
MUX_OUT<= "0001";  

end if; 

else 
if CTRL2 ='0' then  

MUX_OUT <= "1000";  
else 

MUX_OUT <= "0100"; 

end if;  



end if; 
 
A complete example of a 2-input nor gate entity using an if statement is shown next. 
 

entity NOR2 is  
port (A, B: in BIT; Z: 

out BIT); end NOR2; 
 

architecture NOR2 of NOR2 is -- Architecture body 

can have-- same name 

as entity.  
begin 

PI: process (A, B) 

constant RISE_TIME: TIME 

:= 10 ns; constant 

FALL_TIME: TIME := 5 ns: 

variable TEMP: BIT; 

begin 
TEMP := A nor 

B; if (TEMP = 

'1') then 

Z <= TEMP after RISE_TIME; 

else 
Z <= TEMP after FALLJIME;  

end 

if; end 

process PI; 

end NOR2; 
 
Case Statement 

The format of a case statement is 
 

case expression is  
when choices=>sequential-statements -- branch #1  
when choices=>sequential-statements -- branch #2 

-- Can have any number of branches. 

[ when others =>sequential-statements ]   -- last branch 

end case; 
 
The case statement selects one of the branches for execution based on the value of the 

expression. The expression value must be of a discrete type or of a one-dimensional 

array type. Choices may be expressed as single values, as a range of values, by using I 

(vertical bar: represents an "or"), or by using the others clause. All possible values of 

the expression must be covered in the case statement. "The others clause can be used 

as a choice to cover the "catch-all" values and, if present, must be the last branch in 

the case statement. An example of a case statement is 
 

type WEEK_DAY is (MON, TUE, WED, THU, 

FRI, SAT, SUN); type DOLLARS is range 0 to 10; 

variable DAY: WEEK_DAY;  
variable POCKET_MONEY: DOLLARS; 

case DAY is  
when TUE => POCKET_MONEY := 6; -- branch 1 

when MON I WED =>POCKET_MONEY := 2; -- branch 2  
when FRI to SUN=>POCKET_MONEY := 7; -- branch 3 



when others =>POCKET_MONEY := 0; -- branch 4  
end case; 

 
Branch 2 is chosen if DAY has the value of either MON or WED. Branch 3 covers the 

values FRI, SAT, and SUN, while branch 4 covers the remaining value, THU. The 

case statement is also a sequential statement and it is, therefore, possible to have 

nested case statements. A model for a 4*1 multiplexer using a case statement is shown 

next. 
 

entity MUX is  
port (A, B, C, D: in BIT; CTRL: in BIT_VECTOR(0 to 1); 

Z: out BIT);  
end MUX; 

 
architecture MUX_BEHAVIOR of 

MUX is constant 

MUX_DELAY: TIME := 10 ns; 

begin  
PMUX: process (A, B, C, D, 

CTRL) variable 

TEMP: BIT; 

begin 
case CTRL is  

when "00" => TEMP 

:= A: when "01" => 

TEMP := B; when 

"10" => TEMP := C; 

when "11" => TEMP 

:= D; 

end case; 

Z <= TEMP after 

MUX_DELAY; end process 

PMUX; 

end MUX_BEHAVIOR; 
 
Null Statement 

The statement  
null; 

is a sequential statement that does not cause any action to take place and execution 

continues with the next statement. One example of this statement's use is in an if 

statement or in a case statement where for certain conditions, it may be useful or 

necessary to explicitly specify that no action needs to be performed. 

 

Loop Statement 
 
A loopstatement is used to iterate through a set of sequential statements.Thesyntax of 

a loop statement is 
 

[ loop-label : ] iteration-

schemeloopsequential

-statements  
end loop [loop-label] ; 

 
There are three types of iteration schemes. The first is the for iteration scheme that has 

the form 



for identifier in range 
 
An example of this iteration scheme is 
 

FACTORIAL := 1;  
for NUMBER in 2 to N loop  

FACTORIAL := FACTORIAL * 

NUMBER; end loop; 
 
The body of the for loop is executed (N-1) times, with the loop identifier, NUMBER, 

being incremented by I at the end of each iteration. The object NUMBER is implicitly 

declared within the for loop to belong to the integer type whose values are in the range 

2 to N. No explicit declaration for the loop identifier is, therefore, necessary. The loop 

identifier, also, cannot be assigned any value inside the for loop. If another variable 

with the same name exists outside the for loop, these two variables are treated 

separately and the variable used inside the for loop refers to the loop identifier.  
The range in a for loop can also be a range of an enumeration type such as 
 

type HEXA is ('0', '1', '2', '3', '4', ' 5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 

'F'):  
. . .  
for NUM in HEXA'('9') downto HEXA'('0') loop 

-- NUM will take values in type HEXA from '9' through '0'.  
. . .  

end loop; 
 

for CHAR in HEXA loop  
-- CHAR will take all values in type HEXA from '0' through 'F'. 

. . .  
end loop; 

 
Notice that it is necessary to qualify the values being used for NUM [e.g., HEXA'('9')] 

since the literals '0' through '9' are overloaded, once being defined in type HEXA and 

the second time being defined in the predefined type CHARACTER. Qualified 

expressions are described in Chap. 10.  
The second form of the iteration scheme is the while scheme that has the form 
 

while boolean-expression 
 
An example of the while iteration scheme is 

J:=0;SUM:=10;  
WH-LOOP: while J < 20 loop - This loop has a label, 

WH_LOOP. SUM := SUM * 2;  
J:=J+

3; end loop; 

The statements within the body of the loop are executed sequentially and repeatedly 

as long as the loop condition, J < 20, is true. At this point, execution continues with 

the statement following the loop statement.  
The third and final form of the iteration scheme is one where no iteration 

scheme is specified. In this form of loop statement, all statements in the loop body are 

repeatedly executed until some other action causes it to exit the loop. These actions 

can be caused by an exit statement, a next statement, or a return statement. Here is an 

example. 
 

 



SUM:=1;J:=0;  
L2: loop -- This loop also has a label.  
J:=J+21; 

SUM := SUM* 10; 

exit when SUM > 100;  
end loop L2; -- This loop label, if present, must be the same 

-- as the initial loop label.  
In this example, the exit statement causes the execution to jump out of loop L2 when 

SUM becomes greater than 100. If the exit statement were not present, the loop would 

execute indefinitely. 
 
Exit Statement 

The exit statement is a sequential statement that can be used only inside a loop. It 

causes execution to jump out of the innermost loop or the loop whose label is 

specified. The syntax for an exit statement is 
 

exit [loop-label][ when condition ]: 
 
If no loop label is specified, the innermost loop is exited. If the when clause is used, 

the specified loop is exited only if the given condition is true, otherwise, execution 

continues with the next statement. An alternate form for loop L2 described in the 

previous section is 
 

SUM := 1; J 

:= 0; L3: loop  
J:=J+21;  
SUM := SUM* 

10; if (SUM > 

100) then 

exit L3; -- "exit;" also would have been sufficient.  
end 

if; end loop 

L3; 

Next Statement 

The next statement is also a sequential statement that can be used only inside a loop. 

The syntax is the same as that for the exit statement except that the keyword next 

replaces the keyword exit. Its syntax is 
 

next [loop-label][ when condition ]; 
 
The next statement results in skipping the remaining statements in the current 

iteration of the specified loop and execution resumes with the first statement in the 

next iteration of this loop. If no loop label is specified, the innermost loop is assumed. 

In contrast to the exit statement that causes the loop to be terminated (i.e., exits the 

specified loop), the next statement causes the current loop iteration of the specified 

loop to be prematurely terminated and execution resumes with the next iteration. Here 

is an example. 
 

for J in 10 downto 5 loop  
if (SUM < 

TOTAL_SUM) 

then SUM := 

SUM +2; 



elsif (SUM = 

TOTAL_SUM) 

then next; 

else 

null;  
end if;  

K:=K

+1; end loop; 
 
When the next statement is executed, execution jumps to the end of the loop (the last 

statement, K := K+1, is not executed), decrements the value of the loop identifier, J, 

and resumes loop execution with this new value of J.  
The next statement can also cause an inner loop to be exited. Here is such an 

example. 
 

L4: for K in 10 downto 1 loop  
--statements 

section 1 L5: loop 

-- statements section 2  
next L4 when WR_DONE = '1';  
-- statements 

section 3end loop L5;  
-- statements section 4   

end loop L4; 
 
When WR_DONE = 1' becomes true, statements sections 3 and 4 are skipped and 

execution jumps to the beginning of the next iteration of loop L4. Notice that the loop 

L5 was terminated because of the result of next statement. 
 
 Assertion Statement 

Assertion statements are useful in modeling constraints of an entity. For example, you 

may want to check if a signal value lies within a specified range, or check the setup 

and hold times for signals arriving at the inputs of an entity. If the check fails, an error 

is reported. The syntax of an assertion statement is 
 

assert boolean-

expression[ 

reportstring-

expression ] [ 

severityexpression ]: 
 
If the value of the boolean expression is false, the report message is printed along with 

the severity level. The expression in the severity clause must generate a value of type 

SEVERTTY_ LEVEL (a predefined enumerated type in the language with values 

NOTE, WARNING, ERROR, and FAILURE). The severity level is typically used by 

a simulator to initiate appropriate actions depending on its value. For example, if the 

severity level is ERROR, the simulator may abort the simulation process and provide 

relevant diagnostic information. At the very least, the severity level is displayed.  
Here is a model of a D-type rising-edge-triggered flip-flop that uses assertion 

statements to check for setup and hold times. 
 

entity DFF is  
port (D, CK: in BIT: Q, NOTQ: 

out BIT); end DFF; 



 

architecture CHECK_TIMES of DFF 

is constant HOLD_TIME: 

TIME := 5 ns; constant 

SETUP_TIME: TIME := 3 ns;  
begin 

process (D, CK)  
variable LastEventOnD, LastEventOnCk: TIME;  

begin  
--Check for hold 

time: if D' 

EVENT then  
assert (NOW = 0ns) or  

((NOW - LastEventOnCk) >= 

HOLD_TIME) report "Hold time too 

short!"  
severity 

FAILURE;LastEventO

nD := NOW; 

end if; 
 

-- Check for setup time:  
if (CK = '1') and 

CK'EVENT then 

assert (NOW = 

0ns) or  
((NOW - LastEventOnD) >= 

SETUP_TIME) report "Setup time too 

short!"  
severity 

FAILURE;LastEventO

nCk := NOW; 

end if; 
-- Behavior of FF: 

if (CK = '1' ) and 

CK'EVENT then 

Q<=D; 

NOTQ <= not D;  
end 

if; end 

process; 

end CHECK_TIMES; 
 

EVENT is a predefined attribute of a signal and is true if an event (a change of 

value) occurred on that signal at the time the value of the attribute is determined. 

Attributes are described in greater detail in Chap. 10. NOW is a predefined function 

that returns the current simulation time. In the previous example, the process is 

sensitive to signals D and CK. When an event occurs on either of these signals, the 

first if statement is executed. This checks to see if an event occurred on D. If so, the 

assertion is checked to make sure that the difference between the current simulation 

time and the last time an event occurred on signal CK is greater than a constant 

HOLD_TIME delay. If not, a report message is printed and the severity level is 

returned to the simulator. Similarly, the next if statement checks for the setup time. 



The last if statement describes the latch behavior of the D-type flip-flop. The setup 

and hold times have been modeled as constants in this example. These could also be 

modeled as generic parameters of the flip-flop. Generics are discussed in Chap. 7.  
Here is another example that uses an assertion statement to check for spikes at 

the input of an inverter. 
 

package PACK1 is  
constant MIN_PULSE: TIME := 5 

ns; constant PROPAGATE_DLY: 

TIME := 10 ns; 

end PACK1; 
 

use 

WORK.PACK1.a

ll; entity INV is  
port (A: in BIT; NOT_A: 

out BIT): end INV; 
 

architecture CHECK_INV 

of INV is begin  
process (A) 

variable LastEventOnA: TIME := 0 ns; 

begin  
assert (NOW = 0ns) or  

((NOW - LastEventOnA) >= 

MIN_PULSE) report "Spike detected on 

input of inverter" severity WARNING; 

LastEventOnA := NOW:  
NOT_A <= not A after 

PROPAGATE_DLY; end process; 

end CHECK_INV; 

Some other examples of assertion statements are 
 

assert (DATA <= 255)  
report "Data out of range.'; 

 
assert (CLK = '0') or (CLK = '1');  --CLK is of type ('X', '0', 'I ', 'Z'). 

 
In the last assertion statement example, the default report message "Assertion 

violation" is printed. The default severity level is ERROR if the severity clause is not 

specified as in the previous two examples. 

 

Dataflow Modeling 
This chapter presents techniques for modeling the dataflow of an entity. A dataflow 

model specifies the functionality of the entity without explicitly specifying its 

structure. This functionality shows the flow of information through the entity, which 

is expressed primarily using concurrent signal assignment statements and block 

statements. This is in contrast to the behavioral style of modeling described in the 

previous chapter, in which the functionality of the entity is expressed using procedural 

type statements that are executed sequentially. This chapter also describes resolution 

functions and their usage. 

 

 

 



Concurrent Signal Assignment Statement 
One of the primary mechanisms for modeling the dataflow behavior of an entity is by 

using the concurrent signal assignment statement. An example of a dataflow model 

for a 2-input or gate, shown in Fig.2.1, follows. 

 

 

 

                                Fig 2.1 An or gate  

 

entity OR2 is  
port (signal A, B: in BIT; signal Z: 

out BIT); end OR2; 
 

architecture OR2 of 

OR2 is begin  
Z <= A or B after 

9 ns; end OR2; 
 
The architecture body contains a single concurrent signal assignment statement that 

represents the dataflow of the or gate. The semantic interpretation of this statement is 

that whenever there is an event (a change of value) on either signal A or B (A and B 

are signals in the expression for Z), the expression on the right is evaluated and its 

value is scheduled to appear on signal Z after a delay of 9 ns. The signals in the 

expression, A and B, form the "sensitivity list" for the signal assignment statement.  
There are two other points to mention about this example. First, the input and output 

ports have their object class "signal" explicitly specified in the entity declaration. If it 

were not so, the ports would still have been signals, since this is the default and the 

only object class that is allowed for ports. The second point to note is that the 

architecture name and the entity name are the same. This is not a problem since 

architecture bodies are considered to be secondary units while entity declarations are 

primary units and the language allows secondary units to have the same names as the 

primary units. 

An architecture body can contain any number of concurrent signal assignment 

statements. Since they are concurrent statements, the ordering of the statements is not 

important. Concurrent signal assignment statements are executed whenever events 

occur on signals that are used in their expressions. An example of a dataflow model 

for a 1-bit full-adder, whose external view is shown in Fig. 5.2, is presented next. 
 

entity FULL_ADDER is  
port (A, B, CIN: in BIT; SUM, 

COUT: out BIT); end FULL_ADDER; 
 

architecture FULL_ADDER of 

FULL_ADDER is begin SUM<=(A 

xor B) xor CIN after 15 ns; 

COUT <= (A and B) or (B and CIN) or (CIN and 

A) after 10 ns; end FULL_ADDER; 

 

Concurrent versus Sequential Signal Assignment 

In the previous chapter, we saw that signal assignment statements can also appear 

within the body of a process statement. Such statements are called sequential signal 

assignment statements, while signal assignment statements that appear outside of a 

process are called concurrent signal assignment statements. Concurrent signal 



assignment statements are event triggered, that is, they are executed whenever there is 

an event on a signal that appears in its expression, while sequential signal assignment 

statements are not event triggered and are executed in sequence in relation to the other 

sequential statements that appear within the process. To further understand the 

difference between these two kinds of signal assignment statements, consider the 

following two architecture bodies. 
 

architecture SEQ_SIG_ASG of 

FRAGMENT1 is - A, B and Z 

are signals. 

begin  
process (B)  
begin -- Following are sequential signal assignment 

statements:A<=B;  
Z<=

A; end 

process;  
end; 

 
architecture CON_SIG_ASG of FRAGMENT2 is  
begin -- Following are concurrent signal assignment 

statements:A<=B;  
Z<=A; 

end; 
 
In architecture SEQ_SIG_ASG, the two signal assignments are sequential signal 

assignments. Therefore, whenever signal B has an event, say at time T, the first signal 

assignment statement is executed and then the second signal assignment statement is 

executed, both in zero time. However, signal A is scheduled to get its new value of B 

only at time T+∆ (the delta delay is implicit), and Z is scheduled to be assigned the 

old value of A (not the value of B) at time T+∆ also.  
In architecture CON_SIG_ASG, the two statements are concurrent signal assignment 

statements. When an event occurs on signal B, say at time T, signal A gets the value 

of B after delta delay, that is, at time T+∆. When simulation time advances to T+∆, 

signal A will get its new value and this event on A (assuming there is a change of 

value on signal A) will trigger the second signal assignment statement that will cause 

the new value of A to be assigned to Z after another delta delay, that is, at time T+2∆. 

The delta delay model is explored in more detail in the next section.  
Aside from the previous difference, the concurrent signal assignment statement is 

identical to the sequential signal assignment statement. 

For every concurrent signal assignment statement, there is an equivalent process 

statement with the same semantic meaning. The concurrent signal assignment 

statement: 
 

CLEAR <= RESET or PRESET 

after 15 ns; -- RESET and PRESET 

are signals. 
 
is equivalent to the following process statement:. 
 

proces

begin 

CLEAR <= RESET or PRESET 

after 15 ns; wait on RESET, 



PRESET; 

end process; 
 
An identical signal assignment statement (this is now a sequential signal assignment) 

appears in the body of the process statement along with a wait statement whose 

sensitivity list comprises of signals used in the expression of the concurrent signal 

assignment statement. 

 

Conditional Signal Assignment Statement 

The conditional signal assignment statement selects different values for the target 

signal based on the specified, possibly different, conditions (it is like an if statement). 

A typical syntax for this statement is 
 

Target - signal <=[ waveform-elements when 

condition else][ waveform-

elementswhenconditionelse ]  
. . .  
waveform-elements; 

 
The semantics of this concurrent statement are as follows. Whenever an event occurs 

on a signal used either in any of the waveform expressions (recall that a waveform 

expression is the value expression in a waveform element) or in any of the conditions, 

the conditional signal assignment statement is executed by evaluating the conditions 

one at a time. For the first true condition found, the corresponding value (or values) of 

the waveform is scheduled to be assigned to the target signal. For example, 
 

Z  <=   IN0 after 10ns when S0 = '0' and S1 = '0' else  
IN1 after 10ns when S0 = '1' and S1 = '0' else 

IN2 after 10ns when S0 = '0' and S1 = '1' else 

IN3 after 10 ns; 
 

In this example, the statement is executed any time an event occurs on signals 

IN0, IN1, IN2, IN3, S0, or S1. The first condition (S0='0' and S1='0') is checked; if 

false, the second condition (S0='1' and S1='0') is checked; if false, the third condition 

is checked; and so on. Assuming S0='0' and S1='1', then the value of IN2 is scheduled 

to be assigned to signal Z after 10 ns.  
For a given conditional signal assignment statement, there is an equivalent 

process statement that has the same semantic meaning. Such a process statement has 

exactly one if statement and one wait statement within it. The signals in the sensitivity 

list for the wait statement is the union of signals in all the waveform expressions and 

the signals referenced in all the conditions. The equivalent process statement for these 

conditional signal assignment statement example is 
 

proces

begin 

if S0 = '0' and S1 = '0' 

then Z<= IN0 

after 10 ns; 

elsif S0='1'and S1='0' then 

Z<= IN1 after 10ns;  
elsif S0='0' and S1 = '1' then Z<= IN2 after 10 ns;  

else 
Z<= INS after 10 ns;  

end if;  



wait on IN0, IN1, IN2, IN3, 

S0, S1; end process; 

 

Selected Signal Assignment Statement 

The selected signal assignment statement selects different values for a target signal 

based on the value of a select expression (it is like a case statement). A typical syntax 

for this statement is 
 

with expression select —This is the select 

expression.target-signal <= waveform-

elements when choices,  
waveform-elements when choices, 

…  
waveform-elements when choices ; 

 
The semantics of a selected signal assignment statement are very similar to 

that of the conditional signal assignment statement. Whenever an event occurs on a 

signal in the select expression or on any signal used in any of the waveform 

expressions, the statement is executed. Based on the value of the select expression that 

matches the choice value specified, the value (or values) of the corresponding 

waveform is scheduled to be assigned to the target signal. Note that the choices are 

not evaluated in sequence. All possible values of the select expression must be 

covered by the choices that are specified not more than once. Values not covered 

explicitly may be covered by an "others" choice, which covers all such values. The 

choices may be a logical "or" of several values or may be specified as a range of 

values.  
Here is an example of a selected signal assignment statement. 

 
type OP is (ADD, SUB, 

MUL, DIV); signal 

OP_CODE: OP; 

. . . 
with OP_CODE select  

Z <= A+B after ADD_PROP_DLY 

when ADD, A - B after 

SUB_PROP_DLY when SUB,  
A * B after MUL_PROP_DLY 

when MUL, A / B after 

DIV_PROP_DLY when DIV; 
 
In this example, whenever an event occurs on signals, OP_CODE, A, or B, the 

statement is executed. Assuming the value of the select expression, OP_CODE, is 

SUB, the expression "A - B" is computed and its value is scheduled to be assigned to 

signal Z after SUB_PROP_DLY time.  
For every selected signal assignment statement, there is also an equivalent process 

statement with the same semantics. In the equivalent process statement, there is one 

case statement that uses the select expression to branch. The list of signals in the 

sensitivity list of the wait statement comprises of all signals in the select expression 

and in the waveform expressions. The equivalent process statement for the previous 

example is 
 

proces 

begin 

case OP_CODE is  



when ADD => Z<= A +B after 

ADD_PROP_DLY; when SUB =>Z <= 

A-B after SUB_PROP_DLY; when 

MUL =>Z<= A * B after 

MUL_PROP_DLY; when DIV => Z <= 

A /B after DIV_PROP_DLY; 

end case;  
wait on OP_CODE, 

A, B; end process; 

 

Structural Modeling 
This chapter describes the structural style of modeling. An entity is modeled as a set 

of components connected by signals, that is, as a netlist. The behavior of the entity is 

not explicitly apparent from its model. The component instantiation statement is the 

primary mechanism used for describing such a model of an entity. 
 
An Example 
 
Consider the circuit shown in Fig. 2.2 and its VHDL structural model. 
 

entity GATING is  
port (A, CK, MR, DIN: in BIT; RDY, 

CTRLA: out BIT); end GATING; 
 

architecture STRUCTURE_VIEW of 

GATING is component AND2  
port (X, Y: in BIT; Z: 

out BIT); end component; 

component DFF \ 
port (D, CLOCK: in BIT; Q, 

QBAR: out BIT); end component;  
component NOR2  

port (A, B: in BIT; Z: 

out BIT); end component; 

signal SI, S2: BIT; 

begin 
D1: DFF port map (A, CK, SI, S2); 

A1: AND2 port map (S2, DIN, 

CTRLA); N1: NOR2 port map 

(SI, MR, RDY); 

end STRUCTURE_VIEW 

 

 

 

 

 

 

                   Fig 2.2: A circuit generating control signals  

 

Three components, AND2, DFF, and NOR2, are declared. These components are 

instantiated in the architecture body via three component instantiation statements, and 

the instantiated components are connected to each other via signals SI and S2. The 



component instantiation statements are concurrent statements, and therefore, their 

order of appearance in the architecture body is not important. A component can, in 

general, be instantiated any number of times. However, each instantiation must have a 

unique component label; as an example, A1 is the component label for the AND2 

component instantiation. 
 

Component Declaration 
A component instantiated in a structural description must first be declared using a 

component declaration. A component declaration declares the name and the interface 

of a component. The interface specifies the mode and the type of ports. The syntax of 

a simple form of component declaration is 
 

component component-name  
port (list-of-interface-

ports ) ; end component; 
 
The component-name may or may not refer to the name of an already ex-isfing entity 

in a library. If it does not, it must be explicitly bound to an entity; otherwise, the 

model cannot be simulated. This is done using a configuration. Configurations are 

discussed in the next chapter.  
The list-of-interface-ports specifies the name, mode, and type for each port of the 

component in a manner similar to that specified in an entity declaration. "The names 

of the ports may also be different from the names of the ports in the entity to which it 

may be bound (different port names can be mapped in a configuration). In this 

chapter, we will assume that an entity of the same name as that of the component 

already exists and that the name, mode, and type of each port matches the 

corresponding ones in the component. Some examples of component declarations are 
 

component NAND2  
port (A, B: in MVL; Z: 

out MVL); end component; 
 

component MP  
port (CK, RESET, RON, WRN: in BIT;  

DATA_BUS: inout INTEGER range 

0 to 255; ADDR_BUS: in 

BIT_VECTOR(15 downto 0)); 

end component; 
 

component RX  
port (CK, RESET, ENABLE, DATAIN, RD: 

in BIT;DATA_OUT: out INTEGER 

range 0 to (2**8 - 1); 

PARITY_ERROR, FRAME_ERROR, 

OVERRUN_ERROR: out BOOLEAN); 

end component; 
 

Component Instantiation 
 
A component instantiation statement defines a subcomponent of the entity in which it 

appears. It associates the signals in the entity with the ports of that subcomponent. A 

format of a component instantiation statement is 
 
component-label: component-name port map( association-list) ', 



 
The component-label can be any legal identifier and can be considered as the name of 

the instance. The component-name must be the name of a component declared earlier 

using a component declaration. The association-list associates signals in the entity, 

called actuals, with the ports of a component, called locals. An actual must be an 

object of class signal. Expressions or objects of class variable or constant are not 

allowed. An 

actual may also be the keyword open to indicate a port 

that is not connected. There are two ways to perform the 

association of locals with actuals: 
 

1. positional association,   
2. named association.  

 
In positional association, an association-list is of the form 
 

actuali, actualg, actual3, . . ., actual 
 
Each actual in the component instantiation is mapped by position with each port in the 

component declaration. That is, the first port in the component declaration 

corresponds to the first actual in the component instantiation, the second with the 

second, and so on. Consider an instance of a NAND2 component. 
 

-- Component 

declaration: 

component NAND2 

port (A, B: in BIT; Z: 

out BIT); end component;  
 

-- Component instantiation:   
N1: NAND2 port map (S1, S2, S3); 

 
N1 is the component label for the current instantiation of the NAND2 component. 

Signal S1 (which is an actual) is associated with port A (which is a local) of the 

NAND2 component, S2 is associated with port B of the NAND2 component, and S3 

is associated with port Z. Signals S1 and S2 thus provide the two input values to the 

NAND2 component and signal S3 receives the output value from the component. The 

ordering of the actuals is, therefore, important.  
If a port in a component instantiation is not connected to any signal, the 

keyword open can be used to signify that the port is not connected. For example, 
 

N3: NAND2 port map (S1, open, S3); 
 
The second input port of the NAND2 component is not connected to any signal. An 

input port may be left open only if its declaration specifies an initial value. For the 

previous component instantiation statement to be legal, a component declaration for 

NAND2 may appear like 
 

component NAND2  
port (A, B: in BIT := '0'; Z: out BIT);  

1 Both A and B have an initial value of '0'; however, only  

2 the initial value of B is necessary in this case.   
end component; 

 
A port of any other mode may be left unconnected as long as it is not 

an unconstrained array. In named association, an association-



list is of the form 
 

locale => actual1, local2 => actual2, ..., localn => actualn 
 
For example, consider the component NOR2 in the entity GATING described in the 

first section. The instantiation using named association may be written as 
 

N1: NOR2 port map (B=>MR, Z=>RDY, A=>S1); 
 
In this case, the signal MR (an actual), that is declared in the entity port list, is 

associated with the second port (port B, a local) of the NOR2 gate, signal RDY is 

associated with the third port (port Z) and signal S1 is associated with the first port 

(port A) of the NOR2 gate. In named association, the ordering of the associations is 

not important since the mapping between the actuals and locals are explicitly 

specified. An important point to note is that the scope of the locals is restricted to be 

within the port map part of the instantiation for that component; for example, the 

locals A, B, and Z of component NOR2 are relevant only within the port map of 

instantiation of component NOR2.  
For either type of association, there are certain rules imposed by the language. First, 

the types of the local and the actual being associated must be the same. Second, the 

modes of the ports must conform to the rule that if the local is readable, so must the 

actual and if the local is writable, so must the actual. Since a signal locally declared is 

considered to be both readable and writable, such a signal may be associated with a 

local of any mode. If an actual is a port of mode in, it may not be associated with a 

local of mode out or inout; if the actual is a port of mode out, it may not be associated 

with a local of mode in or inout; if the actual is a port of mode inout, it may be 

associated with a local of mode in, out, or inout. 

 

Generate Statements 
Concurrent statements can be conditionally selected or replicated during the 

elaboration phase using the generate statement. There are two forms of the generate 

statement.  
1. Using the for-generaHon scheme, concurrent statements can be 

replicated a predetermined number of times.   
2. With the if-generation scheme, concurrent statements can be 

conditionally selected for execution.  

The generate statement is interpreted during elaboration, and therefore, has no 

simulation semantics associated with it. It resembles a macro expansion. The generate 

statement provides for a compact description of regular structures such as memories, 

registers, and counters.  
The format of a generate statement using the for-generation scheme is 

 
generate-label: for generale-identifierin discrete-

range generate concurrent-statements end 

generate[ generate-label]; 

The values in the discrete range must be globally static, that is, they must be 

computable at elaboration time. During elaboration, the set of concurrent statements 

are replicated once for each value in the discrete range. These statements can also use 

the generate identifier in their expressions and its value would be substituted during 

elaboration for each replication. There is an implicit declaration for the generate 

identifier within the generate statement, and therefore, no declaration for this 

identifier is required. The type of the identifier is defined by the discrete range.  
Consider the following representation of a 4-bit full-adder, shown in Fig. 2.3, using 



the generate statement. 
 

entity FULL_ADD4 is  
port (A, B: in BIT_VECTOR(3 downto 0); CIN: in BIT;  

SUM: out BIT_VECTOR(3 downto 0); COUT: out 

BIT);  
end FULL_ADD4: 

 
architecture FOR_GENERATE of 

FULL_ADD4 is component 

FULL_ADDER 

port (A, B, C: in BIT; COUT, 

SUM: out BIT); end component;  
signal CAR: BIT_VECTOR(4 downto 0);  

begin  
CAR(0) <= CIN;  
GK: for K in 3 downto 0 generate  
FA: FULL_ADDER port map (CAR(K), 

A(K), B(K), 

CAR(K+1),SUM(

K));  
end generate 

GK;COUT <= 

CAR(4);  
end FOR_GENERATE 

 

 

 

 

                                                                                                                                                                                      

 

 

 

 

Fig.2.3: A 4-bit full-adder. 
 

After elaboration, the generate statement is expanded to 
 

FA(3): FULL_ADDER port map (CAR(3), A(3), B(3), CAR(4), 

SUM(3));  
FA(2): FULL_ADDER port map (CAR(2), A(2), B(2), CAR(3), 

SUM(2));  
FA(1): FULL_ADDER port map (CAR(1), A(1), B(1), CAR(2), 

SUM(1));  
FA(0): FULL_ADDER port map (CAR(0), A(0), B(0), CAR(1), 

SUM(0)); 
 
Components in a generate statement can be bound to entities using a generate block 

configuration. A block configuration is defined for each range of generate labels. Here 

is an example of such a binding using a configuration declaration. 
 

configuration GENERATE_BIND of FULL_ADD4 is  
use WORK.all;   -- Example of a declaration in the  

-- configuration declarative part.  



for FOR_GENERATE -- An architecture body block 

configuration.  
forGK(1) --A generate block configuration.  

for FA: FULL_ADDER  
use configuration 

WORK.FA_HA_CON;  
end for;  

end for;  
for GK(2 to 3)  

for FA: FULL_ADDER - No explicit binding.  
-- Use defaults, i.e., use entity 

FULL_ADDER -- in working 

library.  
end for;  

end 

for; for 

GK(0) 

for FA: FULL_ADDER  
use entity  

WORK.FULL_ADDER(FA_DA

TAFLOW); end for;  
end for;  

end for;  
end GENERATE_BIND; 

 
There are three generate block configurations, one each for GK(1), GK(2 to 3), and 

for GK(0). Each of these block configurations define the bindings for the components 

valid for that generate index.  
The body of the generate statement can also have other concurrent statements. 

For example, in the previous architecture body, the component instantiation statement 

could be replaced by signal assignment statements like this 
 

G2: for M in 3 downto 0 generate  
SUM(M) <= (A(M) xor B(M)) xor 

CAR(M); CAR(M+1 ) <= (A(M) and 

B(M)) and CAR(M);  
end generate G2; 

 
The second form of the generate statement uses the if-generation scheme. The 

format for this type of generate statement is 
 

genarate-label: H expression 

generate concurrent-

statements 

end generate [generete-label] ; 
 

The if-generate statement allows for conditional selection of concurrent 

statements based on the value of an expression. This expression must be a globally 

static expression, that is, the value must be computable at elaboration time.  
Here is an example of a 4-bit counter, that is modeled using the if-generate 

statement. 
 

entity COUNTER4 is  



port (COUNT, CLOCK: in BIT; Q: buffer 

BIT_VECTOR(0 to 3)); end COUNTER4; 
 

architecture IF_GENERATE of 

COUNTER4 is component 

D_FLIP_FLOP 

port (D, CLK: in BIT; Q: 

out BIT); end component;  
begin  

GK: for K in 0 to 3 

generate GKO: if K 

= 0 generate  
DFF: D_FLIP_FLOP port map (COUNT, 

CLOCK, Q(K)); end generate GK0;  
GK1_3: if K > 0 generate  

DFF: D_FLIP_FLOP port map (Q(K-1), 

CLOCK, Q(K)); end generate GK1_3;  
end generate 

GK; end 

IF_GENERATE; 

 

Guarded Signals 
A guarded signal is a special type of a signal that is declared to be of a register or a 

bus kind in its declaration. A general form of a signal declaration is 
 

signal list-of-signals: resolution-function 

signal-typesignal-kind [ 

:= expression ]; 
 

A guarded signal must be a resolved signal, that is, it must have a resolution 

function associated with it. Also, the signal can only be assigned values under the 

control of a guard expression, for example, using a guarded assignment (guarded 

option used in a concurrent signal assignment statement). This implies that guarded 

signals can only be assigned values within block statements.  
A guarded signal behaves differently from other signals in that when the guard 

expression is false, the driver to the guarded signal becomes disconnected after a 

specific time, called the disconnect time. On the other hand, in an unguarded signal, if 

the guard expression is false, any new events on the signals appearing in the 

expression do not influence the value of the target signal; the driver continues to drive 

the target signal with the old value. To understand this difference better, consider the 

following guarded block BL 
 

architecture GUARDED_EX of EXAMPLE is  
signal GUARD_SIG: WIRED_OR 

BIT register; signal 

UNGUARD_SIG: WIRED_AND BIT; 

begin  
B1: block ( guard-

expression )begin  
GUARD_SIG <= 

guardedexpression1 ; 

UNGUARD_SIG <= 



guardedexpression2; 

end block 

B1; end 

GUARDED_EX; 
 
Transforming the guarded signal assignment statement into its equivalent process 

statement, the block B1 now looks like this 
 

B1: block ( guard-

expression )begin 

proces

s 

begin 

if GUARD then  
GUARD_SIG <=expression1;  

else  
GUARD_SIG<=null; 

 

end if;  
wait on signals-in-

expressioni1,GUARD; end process;  
proces

s 

begin 

If GUARD then  
UNGUARD_SIG <= expression2;  

end if;  
wait on signals-in-

expressionS,GUARD; end process;  
end block B1; 

 
The process statement for the guarded signal, GUARD_ SIG, has an explicit signal 

assignment statement that disconnects its driver, while there is no such statement for 

the unguarded signal, UNGUARD_SIG. As this example shows, a driver of a guarded 

signal can be explicitly disconnected by assigning a null value to the signal. Such a 

statement is called a disconnection statement.  
Let us now explore the differences between a register and a bus signal. A bus 

signal represents a hardware bus in that when all drivers to the signal become 

disconnected (as might be the case on a real hardware bus), the value of the signal is 

determined by calling the resolution function with all the drivers off. A register signal, 

on the other hand, models a storage component (that is multiply driven) in which if all 

drivers to the signal become disconnected, the resolution function is not called and the 

value of the last active driver is retained. With a bus signal, the previous value is lost. 

Also, bus signals may either be ports of an entity or locally declared signals, whereas 

register signals can only be locally declared signals.  
The disconnect time for a guarded signal can be specified using a 

disconnection specification. The syntax of a disconnection specification is 
 

disconnect guarded-signal-name: signal-type after time-expression; 
 
This is an example of a disconnection specification. 
 

disconnect GUARD_SIG: BIT after 8 ns; 



 
This implies that the driver of signal GUARD_SIG will get disconnected 8 ns after the 

corresponding GUARD goes false.  
The disconnection specification is useful in modeling decay times, for 

example, capacitance delay on buses. An alternate way of specifying disconnect time 

is by assigning a value null to the signal in a disconnection statement as shown. 
 

S1 <= null after 10 ns; 
 
This statement specifies that the driver of SI will be disconnected after 10 ns. 

Thereafter, this driver does not contribute to the resolved value of the signal. 

However, such a statement can appear only as a sequential statement and the target 

signal must be a guarded signal.  
Here is a more comprehensive example. 

 
use WORK.RF.PACK.all;  
-- Package RF_PACK contains functions WIRED_AND 

and WIRED_OR. entity GUARDED_SIGNALS is  
port (CLOCK: in BIT; N: in INTEGER);  

end; 
 

architecture EXAMPLE of GUARDED_SIGNALS is  
signal REG_SIG: WIRED_AND 

INTEGER register; signal BUS_SIG: 

WIRED_OR INTEGER bus; disconnect 

REG_SIG: INTEGER after 50 ns; 

disconnect BUS_SIG: INTEGER after 20 

ns;  
begin  

BX: block (CLOCK='1' and (not 

CLOCK'STABLE)) begin  
REG_SIG <= guarded N 

after 15 ns; BUS_SIG <= 

guarded N after 10 ns; 

end block 

BX; end 

EXAMPLE;



 


