
SECX1023 PROGRAMMING IN HDL

UNIT II STYLES OF MODELING

Process statement – Wait statement – If statement - Loop statement - Assertion

statement – Data flow modeling– Concurrent Signal Assignment statement -

Structural modeling – Examples – Component declaration – Component Instantiation

– Generate statement – Guarded signals.

Behavioral Modeling

This chapter presents the behavioral style of modeling. In this modeling style, the

behavior of the entity is expressed using sequentially executed, procedural type code,

A process statement is the primary mechanism used to model the procedural type

behavior of an entity. This chapter describes the process statement and the various

kinds of sequential statements that can be used within a process statement to model

such behavior.
Irrespective of the modeling style used, every entity is represented using an

entity declaration and at least one architecture body. The first two sections describe

these in detail.

An architecture body describes the internal view of an entity. It describes the

functionality or the structure of the entity. The syntax of an architecture body is

An architecture body describes the internal view of an entity. It describes the

functionality or the structure of the entity. The syntax of an architecture body is

architecture architecture-name of

entity-name is [architecture-

item-declarations]
begin

 statements;
 end architecture-name ;

 Statements are —>

process-statement

block-statement

concurrent-procedure call

concurrent

assertionstatement
concurrent-signal-

assignmentstatement

component-instantiation-

statement generate-statement

Process Statement
A process statement contains sequential statements that describe the functionality of a

portion of an entity in sequential terms. The syntax of a process statement is

[process-label:] process [(

sensitivity-list)] [process-

item-declarations]
begin

sequential-statements;

 these are -> variable-

assignment-statement

signal-assignment

statement wait-statement

if-statement

case-

statement

loop-

statement

null-

statement

exit-

statement

next-statement

assertion-statement

procedure-call-

statement return-

statement.
end process [process-label];

A set of signals that the process is sensitive to is defined by the sensitivity list. In

other words, each time an event occurs on any of the signals in the sensitivity list, the

sequential statements within the process are executed in a sequential order, that is, in

the order in which they appear (similar to statements in a high-level programming

language like C or Pascal). The process then suspends after executing the last

sequential statement and waits for another event to occur on a signal in the sensitivity

list. Items declared in the item declarations part are available for use only within the

process.
The architecture body, AOI _SEQUENTIAL, presented earlier, contains one process

statement. This process statement has four signals in its sensitivity list and has one

variable declaration. If an event occurs on any of the signals, A, B, C, or D, the

process is executed. This is accomplished by executing statement I first, then

statement 2, followed by statement 3, and then statement 4. After this, the process

suspends (simulation does not stop, however) and waits for another event to occur on

a signal in the sensitivity list

Variable Assignment Statement

Variables can be declared and used inside a process statement. A variable is assigned

a value using the variable assignment statement that typically has the form

variable-object := expression;

The expression is evaluated when the statement is executed and the computed value is

assigned to the variable object instantaneously, that is, at the current simulation time.
Variables are created at the time of elaboration and retain their values throughout the

entire simulation run (like static variables in C high- level programming language).

This is because a process is never exited; it is either in an active state, that is, being

executed, or in a suspended state, that is, waiting for a certain event to occur. A

process is first entered at the start of simulation (actually, during the initialization

phase of simulation) at which time it is executed until it suspends because of a wait

statement (wait statements are described later in this chapter) or a sensitivity list.

Consider the following process statement.

process (A)
variable EVENTS_ON_A: INTEGER := 0;

begin
EVENTS_ON_A :=

EVENTS_ON_A+1; end process;

At start of simulation, the process is executed once. The variable EVENTS_ON_A

gets initialized to 0 and then incremented by 1. After that, any time an event occurs on

signal A, the process is activated and the single variable assignment statement is

executed. This causes the variable EVENTS_ON_A to be incremented. At the end of

simulation, variable EVENTS_ON_A contains the total number of events that

occurred on signal A plus one.
Here is another example of a process statement.

signal A, Z: INTEGER;
. . .

PZ: process (A) --PZ is a label for the

process.

variable V1, V2: INTEGER;

begin
V1 := A - V2; --statement 1

Z <= - V1; --statement 2

V2 := Z+V1 * 2; -- statement 3
end process PZ;

If an event occurred on signal A at time T1 and variable V2 was assigned a value, say

10, in statement 3, then when the next time an event occurs on signal A, say at time

T2, the value of V2 used in statement 1 would still be 10.

Signal Assignment Statement

Signals are assigned values using a signal assignment statement The simplest form of

a signal assignment statement is

signal-object <= expression [after delay-value];

A signal assignment statement can appear within a process or outside of a

process. If it occurs outside of a process, it is considered to be a concurrent signal

assignment statement. This' is discussed in the next chapter. When a signal

assignment statement appears within a process, it is considered to be a sequential

signal assignment statement and is executed in sequence with respect to the other

sequential statements that appear within that process.
When a signal assignment statement is executed, the value of the expression is

computed and this value is scheduled to be assigned to the signal after the specified

delay. It is important to note that the expression is evaluated at the time the statement

is executed (which is the current simulation time) and not after the specified delay. If

no after clause is specified, the delay is assumed to be a default delta delay.

Some examples of signal assignment statements are

COUNTER <= COUNTER+ "0010"; - Assign after a delta delay.
PAR <= PAR xor DIN after 12 ns;
Z <= (AO and A1) or (BO and B1) or (CO and C1) after 6 ns;

Wait Statement

As we saw earlier, a process may be suspended by means of a sensitivity list. That is,

when a process has a sensitivity list, it always suspends after executing the last

sequential statement in the process. The wait statement provides an alternate way to

suspend the execution of a process. There are three basic forms of the wait statement.

wait on sensitivity-list;
wait until boolean-

expression; wait for

time-expression;

They may also be combined in a single wait statement. For example

wait on sensitivity-list until boolean-expression for time-expression-,

Some examples of wait statements are

wait on A, B, C; -- statement 1
wait until (A = B); -- statement 2

wait for 10ns; -- statement 3
wait on CLOCK for 20ns; -- statement 4
wait until (SUM > 100) for 50 ms; -- statement 5

In statement 1, the execution of the wait statement causes the process to suspend and

then it waits for an event to occur on signals A, B, or C. Once that happens, the

process resumes execution from the next statement onwards. In statement 2, the

process is suspended until the specified condition becomes true. When an event

occurs on signal A or B, the condition is evaluated and if it is true, the process

resumes execution from the next statement onwards, otherwise, it suspends again.

When the wait statement in statement 3 is executed, say at time T, the process

suspends for 10 ns and when simulation time advances to T+10 ns, the process

resumes execution from the statement following the wait statement.
The execution of statement 4 causes the process to suspend and then it waits for an

event to occur on the signal CLOCK for 20 ns. If no event occurs within 20 ns, the

process resumes execution with the statement following the wait. In the last statement,

the process suspends for a maximum of 50 ms until the value of signal SUM is greater

than 100. The boolean condition is evaluated every time there is an event on signal

SUM. If the boolean condition is not satisfied for 50 ms, the process resumes from the

statement following the wait statement.
It is possible for a process not to have an explicit sensitivity list. In such a case, the

process may have one or more wait statements. It must have at least one wait

statement, otherwise, the process will never get suspended and would remain in an

infinite loop during the initialization phase of simulation. It is an error if both the

sensitivity list and a wait statement are present within a process. The presence of a

sensitivity list in a process implies the presence of an implicit "wait on sensitivity-

list" statement as the last statement in the process. An equivalent process statement for

the process statement in the AOLSEQUENTIAL architecture body is

process -- No sensitivity list.
variable TEMP1 ,TEMP2: BIT;

begin
TEMP1 :=A and B:

TEMP2 := C and D;
TEMP1 := TEMP1 or TEMP2;

Z<= not TEMP1;

wait on A, B, C, D; -- Replaces the sensitivity list.
end process;

Therefore, a process with a sensitivity list always suspends at the end of the process

and when reactivated due to an event, resumes execution from the first statement in

the process.

If Statement

An if statement selects a sequence of statements for execution based on the value of a

condition. The condition can be any expression that evaluates to a boolean value. The

general form of an if statement is

if boolean-expressionthen
sequential-statements

[elsifboolean-expressionthen -- elsif clause; if stmt can have 0

or

sequential-statements] -- more elsif clauses.

[else -- else clause.

sequential-statements]

end if;

The if statement is executed by checking each condition sequentially until the first

true condition is found; then, the set of sequential statements associated with this

condition is executed. The if statement can have zero or more elsif clauses and an

optional else clause. An if statement is also a sequential statement, and therefore, the

previous syntax allows for arbitrary nesting of if statements. Here are some examples.

if SUM<=100 then

-- This is a less-than-or-equal-to

operator.
SUM := SUM+10;
end if;

if NICKEL_IN then
DEPOSITED
<=TOTAL_10;

--This"<=" is a signal
assignment

elsif DIME_IN then -- operator.

DEPOSITED <=

TOTAL_15; elsif

QUARTERJN then

DEPOSITED <= TOTAL_30;

else
DEPOSITED <= TOTAL_ERROR;

end if;

if CTRLI='1' then
if CTRL2 = '0' then

MUX_OUT<= "0010";

else
MUX_OUT<= "0001";

end if;

else
if CTRL2 ='0' then

MUX_OUT <= "1000";
else

MUX_OUT <= "0100";

end if;

end if;

A complete example of a 2-input nor gate entity using an if statement is shown next.

entity NOR2 is
port (A, B: in BIT; Z:

out BIT); end NOR2;

architecture NOR2 of NOR2 is -- Architecture body

can have-- same name

as entity.
begin

PI: process (A, B)

constant RISE_TIME: TIME

:= 10 ns; constant

FALL_TIME: TIME := 5 ns:

variable TEMP: BIT;

begin
TEMP := A nor

B; if (TEMP =

'1') then

Z <= TEMP after RISE_TIME;

else
Z <= TEMP after FALLJIME;

end

if; end

process PI;

end NOR2;

Case Statement

The format of a case statement is

case expression is
when choices=>sequential-statements -- branch #1
when choices=>sequential-statements -- branch #2

-- Can have any number of branches.

[when others =>sequential-statements] -- last branch

end case;

The case statement selects one of the branches for execution based on the value of the

expression. The expression value must be of a discrete type or of a one-dimensional

array type. Choices may be expressed as single values, as a range of values, by using I

(vertical bar: represents an "or"), or by using the others clause. All possible values of

the expression must be covered in the case statement. "The others clause can be used

as a choice to cover the "catch-all" values and, if present, must be the last branch in

the case statement. An example of a case statement is

type WEEK_DAY is (MON, TUE, WED, THU,

FRI, SAT, SUN); type DOLLARS is range 0 to 10;

variable DAY: WEEK_DAY;
variable POCKET_MONEY: DOLLARS;

case DAY is
when TUE => POCKET_MONEY := 6; -- branch 1

when MON I WED =>POCKET_MONEY := 2; -- branch 2
when FRI to SUN=>POCKET_MONEY := 7; -- branch 3

when others =>POCKET_MONEY := 0; -- branch 4
end case;

Branch 2 is chosen if DAY has the value of either MON or WED. Branch 3 covers the

values FRI, SAT, and SUN, while branch 4 covers the remaining value, THU. The

case statement is also a sequential statement and it is, therefore, possible to have

nested case statements. A model for a 4*1 multiplexer using a case statement is shown

next.

entity MUX is
port (A, B, C, D: in BIT; CTRL: in BIT_VECTOR(0 to 1);

Z: out BIT);
end MUX;

architecture MUX_BEHAVIOR of

MUX is constant

MUX_DELAY: TIME := 10 ns;

begin
PMUX: process (A, B, C, D,

CTRL) variable

TEMP: BIT;

begin
case CTRL is

when "00" => TEMP

:= A: when "01" =>

TEMP := B; when

"10" => TEMP := C;

when "11" => TEMP

:= D;

end case;

Z <= TEMP after

MUX_DELAY; end process

PMUX;

end MUX_BEHAVIOR;

Null Statement

The statement
null;

is a sequential statement that does not cause any action to take place and execution

continues with the next statement. One example of this statement's use is in an if

statement or in a case statement where for certain conditions, it may be useful or

necessary to explicitly specify that no action needs to be performed.

Loop Statement

A loopstatement is used to iterate through a set of sequential statements.Thesyntax of

a loop statement is

[loop-label :] iteration-

schemeloopsequential

-statements
end loop [loop-label] ;

There are three types of iteration schemes. The first is the for iteration scheme that has

the form

for identifier in range

An example of this iteration scheme is

FACTORIAL := 1;
for NUMBER in 2 to N loop

FACTORIAL := FACTORIAL *

NUMBER; end loop;

The body of the for loop is executed (N-1) times, with the loop identifier, NUMBER,

being incremented by I at the end of each iteration. The object NUMBER is implicitly

declared within the for loop to belong to the integer type whose values are in the range

2 to N. No explicit declaration for the loop identifier is, therefore, necessary. The loop

identifier, also, cannot be assigned any value inside the for loop. If another variable

with the same name exists outside the for loop, these two variables are treated

separately and the variable used inside the for loop refers to the loop identifier.
The range in a for loop can also be a range of an enumeration type such as

type HEXA is ('0', '1', '2', '3', '4', ' 5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E',

'F'):
. . .
for NUM in HEXA'('9') downto HEXA'('0') loop

-- NUM will take values in type HEXA from '9' through '0'.
. . .

end loop;

for CHAR in HEXA loop
-- CHAR will take all values in type HEXA from '0' through 'F'.

. . .
end loop;

Notice that it is necessary to qualify the values being used for NUM [e.g., HEXA'('9')]

since the literals '0' through '9' are overloaded, once being defined in type HEXA and

the second time being defined in the predefined type CHARACTER. Qualified

expressions are described in Chap. 10.
The second form of the iteration scheme is the while scheme that has the form

while boolean-expression

An example of the while iteration scheme is

J:=0;SUM:=10;
WH-LOOP: while J < 20 loop - This loop has a label,

WH_LOOP. SUM := SUM * 2;
J:=J+

3; end loop;

The statements within the body of the loop are executed sequentially and repeatedly

as long as the loop condition, J < 20, is true. At this point, execution continues with

the statement following the loop statement.
The third and final form of the iteration scheme is one where no iteration

scheme is specified. In this form of loop statement, all statements in the loop body are

repeatedly executed until some other action causes it to exit the loop. These actions

can be caused by an exit statement, a next statement, or a return statement. Here is an

example.

SUM:=1;J:=0;
L2: loop -- This loop also has a label.
J:=J+21;

SUM := SUM* 10;

exit when SUM > 100;
end loop L2; -- This loop label, if present, must be the same

-- as the initial loop label.
In this example, the exit statement causes the execution to jump out of loop L2 when

SUM becomes greater than 100. If the exit statement were not present, the loop would

execute indefinitely.

Exit Statement

The exit statement is a sequential statement that can be used only inside a loop. It

causes execution to jump out of the innermost loop or the loop whose label is

specified. The syntax for an exit statement is

exit [loop-label][when condition]:

If no loop label is specified, the innermost loop is exited. If the when clause is used,

the specified loop is exited only if the given condition is true, otherwise, execution

continues with the next statement. An alternate form for loop L2 described in the

previous section is

SUM := 1; J

:= 0; L3: loop
J:=J+21;
SUM := SUM*

10; if (SUM >

100) then

exit L3; -- "exit;" also would have been sufficient.
end

if; end loop

L3;

Next Statement

The next statement is also a sequential statement that can be used only inside a loop.

The syntax is the same as that for the exit statement except that the keyword next

replaces the keyword exit. Its syntax is

next [loop-label][when condition];

The next statement results in skipping the remaining statements in the current

iteration of the specified loop and execution resumes with the first statement in the

next iteration of this loop. If no loop label is specified, the innermost loop is assumed.

In contrast to the exit statement that causes the loop to be terminated (i.e., exits the

specified loop), the next statement causes the current loop iteration of the specified

loop to be prematurely terminated and execution resumes with the next iteration. Here

is an example.

for J in 10 downto 5 loop
if (SUM <

TOTAL_SUM)

then SUM :=

SUM +2;

elsif (SUM =

TOTAL_SUM)

then next;

else

null;
end if;

K:=K

+1; end loop;

When the next statement is executed, execution jumps to the end of the loop (the last

statement, K := K+1, is not executed), decrements the value of the loop identifier, J,

and resumes loop execution with this new value of J.
The next statement can also cause an inner loop to be exited. Here is such an

example.

L4: for K in 10 downto 1 loop
--statements

section 1 L5: loop

-- statements section 2
next L4 when WR_DONE = '1';
-- statements

section 3end loop L5;
-- statements section 4

end loop L4;

When WR_DONE = 1' becomes true, statements sections 3 and 4 are skipped and

execution jumps to the beginning of the next iteration of loop L4. Notice that the loop

L5 was terminated because of the result of next statement.

 Assertion Statement

Assertion statements are useful in modeling constraints of an entity. For example, you

may want to check if a signal value lies within a specified range, or check the setup

and hold times for signals arriving at the inputs of an entity. If the check fails, an error

is reported. The syntax of an assertion statement is

assert boolean-

expression[

reportstring-

expression] [

severityexpression]:

If the value of the boolean expression is false, the report message is printed along with

the severity level. The expression in the severity clause must generate a value of type

SEVERTTY_ LEVEL (a predefined enumerated type in the language with values

NOTE, WARNING, ERROR, and FAILURE). The severity level is typically used by

a simulator to initiate appropriate actions depending on its value. For example, if the

severity level is ERROR, the simulator may abort the simulation process and provide

relevant diagnostic information. At the very least, the severity level is displayed.
Here is a model of a D-type rising-edge-triggered flip-flop that uses assertion

statements to check for setup and hold times.

entity DFF is
port (D, CK: in BIT: Q, NOTQ:

out BIT); end DFF;

architecture CHECK_TIMES of DFF

is constant HOLD_TIME:

TIME := 5 ns; constant

SETUP_TIME: TIME := 3 ns;
begin

process (D, CK)
variable LastEventOnD, LastEventOnCk: TIME;

begin
--Check for hold

time: if D'

EVENT then
assert (NOW = 0ns) or

((NOW - LastEventOnCk) >=

HOLD_TIME) report "Hold time too

short!"
severity

FAILURE;LastEventO

nD := NOW;

end if;

-- Check for setup time:
if (CK = '1') and

CK'EVENT then

assert (NOW =

0ns) or
((NOW - LastEventOnD) >=

SETUP_TIME) report "Setup time too

short!"
severity

FAILURE;LastEventO

nCk := NOW;

end if;
-- Behavior of FF:

if (CK = '1') and

CK'EVENT then

Q<=D;

NOTQ <= not D;
end

if; end

process;

end CHECK_TIMES;

EVENT is a predefined attribute of a signal and is true if an event (a change of

value) occurred on that signal at the time the value of the attribute is determined.

Attributes are described in greater detail in Chap. 10. NOW is a predefined function

that returns the current simulation time. In the previous example, the process is

sensitive to signals D and CK. When an event occurs on either of these signals, the

first if statement is executed. This checks to see if an event occurred on D. If so, the

assertion is checked to make sure that the difference between the current simulation

time and the last time an event occurred on signal CK is greater than a constant

HOLD_TIME delay. If not, a report message is printed and the severity level is

returned to the simulator. Similarly, the next if statement checks for the setup time.

The last if statement describes the latch behavior of the D-type flip-flop. The setup

and hold times have been modeled as constants in this example. These could also be

modeled as generic parameters of the flip-flop. Generics are discussed in Chap. 7.
Here is another example that uses an assertion statement to check for spikes at

the input of an inverter.

package PACK1 is
constant MIN_PULSE: TIME := 5

ns; constant PROPAGATE_DLY:

TIME := 10 ns;

end PACK1;

use

WORK.PACK1.a

ll; entity INV is
port (A: in BIT; NOT_A:

out BIT): end INV;

architecture CHECK_INV

of INV is begin
process (A)

variable LastEventOnA: TIME := 0 ns;

begin
assert (NOW = 0ns) or

((NOW - LastEventOnA) >=

MIN_PULSE) report "Spike detected on

input of inverter" severity WARNING;

LastEventOnA := NOW:
NOT_A <= not A after

PROPAGATE_DLY; end process;

end CHECK_INV;

Some other examples of assertion statements are

assert (DATA <= 255)
report "Data out of range.';

assert (CLK = '0') or (CLK = '1'); --CLK is of type ('X', '0', 'I ', 'Z').

In the last assertion statement example, the default report message "Assertion

violation" is printed. The default severity level is ERROR if the severity clause is not

specified as in the previous two examples.

Dataflow Modeling
This chapter presents techniques for modeling the dataflow of an entity. A dataflow

model specifies the functionality of the entity without explicitly specifying its

structure. This functionality shows the flow of information through the entity, which

is expressed primarily using concurrent signal assignment statements and block

statements. This is in contrast to the behavioral style of modeling described in the

previous chapter, in which the functionality of the entity is expressed using procedural

type statements that are executed sequentially. This chapter also describes resolution

functions and their usage.

Concurrent Signal Assignment Statement
One of the primary mechanisms for modeling the dataflow behavior of an entity is by

using the concurrent signal assignment statement. An example of a dataflow model

for a 2-input or gate, shown in Fig.2.1, follows.

 Fig 2.1 An or gate

entity OR2 is
port (signal A, B: in BIT; signal Z:

out BIT); end OR2;

architecture OR2 of

OR2 is begin
Z <= A or B after

9 ns; end OR2;

The architecture body contains a single concurrent signal assignment statement that

represents the dataflow of the or gate. The semantic interpretation of this statement is

that whenever there is an event (a change of value) on either signal A or B (A and B

are signals in the expression for Z), the expression on the right is evaluated and its

value is scheduled to appear on signal Z after a delay of 9 ns. The signals in the

expression, A and B, form the "sensitivity list" for the signal assignment statement.
There are two other points to mention about this example. First, the input and output

ports have their object class "signal" explicitly specified in the entity declaration. If it

were not so, the ports would still have been signals, since this is the default and the

only object class that is allowed for ports. The second point to note is that the

architecture name and the entity name are the same. This is not a problem since

architecture bodies are considered to be secondary units while entity declarations are

primary units and the language allows secondary units to have the same names as the

primary units.

An architecture body can contain any number of concurrent signal assignment

statements. Since they are concurrent statements, the ordering of the statements is not

important. Concurrent signal assignment statements are executed whenever events

occur on signals that are used in their expressions. An example of a dataflow model

for a 1-bit full-adder, whose external view is shown in Fig. 5.2, is presented next.

entity FULL_ADDER is
port (A, B, CIN: in BIT; SUM,

COUT: out BIT); end FULL_ADDER;

architecture FULL_ADDER of

FULL_ADDER is begin SUM<=(A

xor B) xor CIN after 15 ns;

COUT <= (A and B) or (B and CIN) or (CIN and

A) after 10 ns; end FULL_ADDER;

Concurrent versus Sequential Signal Assignment

In the previous chapter, we saw that signal assignment statements can also appear

within the body of a process statement. Such statements are called sequential signal

assignment statements, while signal assignment statements that appear outside of a

process are called concurrent signal assignment statements. Concurrent signal

assignment statements are event triggered, that is, they are executed whenever there is

an event on a signal that appears in its expression, while sequential signal assignment

statements are not event triggered and are executed in sequence in relation to the other

sequential statements that appear within the process. To further understand the

difference between these two kinds of signal assignment statements, consider the

following two architecture bodies.

architecture SEQ_SIG_ASG of

FRAGMENT1 is - A, B and Z

are signals.

begin
process (B)
begin -- Following are sequential signal assignment

statements:A<=B;
Z<=

A; end

process;
end;

architecture CON_SIG_ASG of FRAGMENT2 is
begin -- Following are concurrent signal assignment

statements:A<=B;
Z<=A;

end;

In architecture SEQ_SIG_ASG, the two signal assignments are sequential signal

assignments. Therefore, whenever signal B has an event, say at time T, the first signal

assignment statement is executed and then the second signal assignment statement is

executed, both in zero time. However, signal A is scheduled to get its new value of B

only at time T+∆ (the delta delay is implicit), and Z is scheduled to be assigned the

old value of A (not the value of B) at time T+∆ also.
In architecture CON_SIG_ASG, the two statements are concurrent signal assignment

statements. When an event occurs on signal B, say at time T, signal A gets the value

of B after delta delay, that is, at time T+∆. When simulation time advances to T+∆,

signal A will get its new value and this event on A (assuming there is a change of

value on signal A) will trigger the second signal assignment statement that will cause

the new value of A to be assigned to Z after another delta delay, that is, at time T+2∆.

The delta delay model is explored in more detail in the next section.
Aside from the previous difference, the concurrent signal assignment statement is

identical to the sequential signal assignment statement.

For every concurrent signal assignment statement, there is an equivalent process

statement with the same semantic meaning. The concurrent signal assignment

statement:

CLEAR <= RESET or PRESET

after 15 ns; -- RESET and PRESET

are signals.

is equivalent to the following process statement:.

proces

begin

CLEAR <= RESET or PRESET

after 15 ns; wait on RESET,

PRESET;

end process;

An identical signal assignment statement (this is now a sequential signal assignment)

appears in the body of the process statement along with a wait statement whose

sensitivity list comprises of signals used in the expression of the concurrent signal

assignment statement.

Conditional Signal Assignment Statement

The conditional signal assignment statement selects different values for the target

signal based on the specified, possibly different, conditions (it is like an if statement).

A typical syntax for this statement is

Target - signal <=[waveform-elements when

condition else][waveform-

elementswhenconditionelse]
. . .
waveform-elements;

The semantics of this concurrent statement are as follows. Whenever an event occurs

on a signal used either in any of the waveform expressions (recall that a waveform

expression is the value expression in a waveform element) or in any of the conditions,

the conditional signal assignment statement is executed by evaluating the conditions

one at a time. For the first true condition found, the corresponding value (or values) of

the waveform is scheduled to be assigned to the target signal. For example,

Z <= IN0 after 10ns when S0 = '0' and S1 = '0' else
IN1 after 10ns when S0 = '1' and S1 = '0' else

IN2 after 10ns when S0 = '0' and S1 = '1' else

IN3 after 10 ns;

In this example, the statement is executed any time an event occurs on signals

IN0, IN1, IN2, IN3, S0, or S1. The first condition (S0='0' and S1='0') is checked; if

false, the second condition (S0='1' and S1='0') is checked; if false, the third condition

is checked; and so on. Assuming S0='0' and S1='1', then the value of IN2 is scheduled

to be assigned to signal Z after 10 ns.
For a given conditional signal assignment statement, there is an equivalent

process statement that has the same semantic meaning. Such a process statement has

exactly one if statement and one wait statement within it. The signals in the sensitivity

list for the wait statement is the union of signals in all the waveform expressions and

the signals referenced in all the conditions. The equivalent process statement for these

conditional signal assignment statement example is

proces

begin

if S0 = '0' and S1 = '0'

then Z<= IN0

after 10 ns;

elsif S0='1'and S1='0' then

Z<= IN1 after 10ns;
elsif S0='0' and S1 = '1' then Z<= IN2 after 10 ns;

else
Z<= INS after 10 ns;

end if;

wait on IN0, IN1, IN2, IN3,

S0, S1; end process;

Selected Signal Assignment Statement

The selected signal assignment statement selects different values for a target signal

based on the value of a select expression (it is like a case statement). A typical syntax

for this statement is

with expression select —This is the select

expression.target-signal <= waveform-

elements when choices,
waveform-elements when choices,

…
waveform-elements when choices ;

The semantics of a selected signal assignment statement are very similar to

that of the conditional signal assignment statement. Whenever an event occurs on a

signal in the select expression or on any signal used in any of the waveform

expressions, the statement is executed. Based on the value of the select expression that

matches the choice value specified, the value (or values) of the corresponding

waveform is scheduled to be assigned to the target signal. Note that the choices are

not evaluated in sequence. All possible values of the select expression must be

covered by the choices that are specified not more than once. Values not covered

explicitly may be covered by an "others" choice, which covers all such values. The

choices may be a logical "or" of several values or may be specified as a range of

values.
Here is an example of a selected signal assignment statement.

type OP is (ADD, SUB,

MUL, DIV); signal

OP_CODE: OP;

. . .
with OP_CODE select

Z <= A+B after ADD_PROP_DLY

when ADD, A - B after

SUB_PROP_DLY when SUB,
A * B after MUL_PROP_DLY

when MUL, A / B after

DIV_PROP_DLY when DIV;

In this example, whenever an event occurs on signals, OP_CODE, A, or B, the

statement is executed. Assuming the value of the select expression, OP_CODE, is

SUB, the expression "A - B" is computed and its value is scheduled to be assigned to

signal Z after SUB_PROP_DLY time.
For every selected signal assignment statement, there is also an equivalent process

statement with the same semantics. In the equivalent process statement, there is one

case statement that uses the select expression to branch. The list of signals in the

sensitivity list of the wait statement comprises of all signals in the select expression

and in the waveform expressions. The equivalent process statement for the previous

example is

proces

begin

case OP_CODE is

when ADD => Z<= A +B after

ADD_PROP_DLY; when SUB =>Z <=

A-B after SUB_PROP_DLY; when

MUL =>Z<= A * B after

MUL_PROP_DLY; when DIV => Z <=

A /B after DIV_PROP_DLY;

end case;
wait on OP_CODE,

A, B; end process;

Structural Modeling
This chapter describes the structural style of modeling. An entity is modeled as a set

of components connected by signals, that is, as a netlist. The behavior of the entity is

not explicitly apparent from its model. The component instantiation statement is the

primary mechanism used for describing such a model of an entity.

An Example

Consider the circuit shown in Fig. 2.2 and its VHDL structural model.

entity GATING is
port (A, CK, MR, DIN: in BIT; RDY,

CTRLA: out BIT); end GATING;

architecture STRUCTURE_VIEW of

GATING is component AND2
port (X, Y: in BIT; Z:

out BIT); end component;

component DFF \
port (D, CLOCK: in BIT; Q,

QBAR: out BIT); end component;
component NOR2

port (A, B: in BIT; Z:

out BIT); end component;

signal SI, S2: BIT;

begin
D1: DFF port map (A, CK, SI, S2);

A1: AND2 port map (S2, DIN,

CTRLA); N1: NOR2 port map

(SI, MR, RDY);

end STRUCTURE_VIEW

 Fig 2.2: A circuit generating control signals

Three components, AND2, DFF, and NOR2, are declared. These components are

instantiated in the architecture body via three component instantiation statements, and

the instantiated components are connected to each other via signals SI and S2. The

component instantiation statements are concurrent statements, and therefore, their

order of appearance in the architecture body is not important. A component can, in

general, be instantiated any number of times. However, each instantiation must have a

unique component label; as an example, A1 is the component label for the AND2

component instantiation.

Component Declaration
A component instantiated in a structural description must first be declared using a

component declaration. A component declaration declares the name and the interface

of a component. The interface specifies the mode and the type of ports. The syntax of

a simple form of component declaration is

component component-name
port (list-of-interface-

ports) ; end component;

The component-name may or may not refer to the name of an already ex-isfing entity

in a library. If it does not, it must be explicitly bound to an entity; otherwise, the

model cannot be simulated. This is done using a configuration. Configurations are

discussed in the next chapter.
The list-of-interface-ports specifies the name, mode, and type for each port of the

component in a manner similar to that specified in an entity declaration. "The names

of the ports may also be different from the names of the ports in the entity to which it

may be bound (different port names can be mapped in a configuration). In this

chapter, we will assume that an entity of the same name as that of the component

already exists and that the name, mode, and type of each port matches the

corresponding ones in the component. Some examples of component declarations are

component NAND2
port (A, B: in MVL; Z:

out MVL); end component;

component MP
port (CK, RESET, RON, WRN: in BIT;

DATA_BUS: inout INTEGER range

0 to 255; ADDR_BUS: in

BIT_VECTOR(15 downto 0));

end component;

component RX
port (CK, RESET, ENABLE, DATAIN, RD:

in BIT;DATA_OUT: out INTEGER

range 0 to (2**8 - 1);

PARITY_ERROR, FRAME_ERROR,

OVERRUN_ERROR: out BOOLEAN);

end component;

Component Instantiation

A component instantiation statement defines a subcomponent of the entity in which it

appears. It associates the signals in the entity with the ports of that subcomponent. A

format of a component instantiation statement is

component-label: component-name port map(association-list) ',

The component-label can be any legal identifier and can be considered as the name of

the instance. The component-name must be the name of a component declared earlier

using a component declaration. The association-list associates signals in the entity,

called actuals, with the ports of a component, called locals. An actual must be an

object of class signal. Expressions or objects of class variable or constant are not

allowed. An

actual may also be the keyword open to indicate a port

that is not connected. There are two ways to perform the

association of locals with actuals:

1. positional association,
2. named association.

In positional association, an association-list is of the form

actuali, actualg, actual3, . . ., actual

Each actual in the component instantiation is mapped by position with each port in the

component declaration. That is, the first port in the component declaration

corresponds to the first actual in the component instantiation, the second with the

second, and so on. Consider an instance of a NAND2 component.

-- Component

declaration:

component NAND2

port (A, B: in BIT; Z:

out BIT); end component;

-- Component instantiation:
N1: NAND2 port map (S1, S2, S3);

N1 is the component label for the current instantiation of the NAND2 component.

Signal S1 (which is an actual) is associated with port A (which is a local) of the

NAND2 component, S2 is associated with port B of the NAND2 component, and S3

is associated with port Z. Signals S1 and S2 thus provide the two input values to the

NAND2 component and signal S3 receives the output value from the component. The

ordering of the actuals is, therefore, important.
If a port in a component instantiation is not connected to any signal, the

keyword open can be used to signify that the port is not connected. For example,

N3: NAND2 port map (S1, open, S3);

The second input port of the NAND2 component is not connected to any signal. An

input port may be left open only if its declaration specifies an initial value. For the

previous component instantiation statement to be legal, a component declaration for

NAND2 may appear like

component NAND2
port (A, B: in BIT := '0'; Z: out BIT);

1 Both A and B have an initial value of '0'; however, only

2 the initial value of B is necessary in this case.
end component;

A port of any other mode may be left unconnected as long as it is not

an unconstrained array. In named association, an association-

list is of the form

locale => actual1, local2 => actual2, ..., localn => actualn

For example, consider the component NOR2 in the entity GATING described in the

first section. The instantiation using named association may be written as

N1: NOR2 port map (B=>MR, Z=>RDY, A=>S1);

In this case, the signal MR (an actual), that is declared in the entity port list, is

associated with the second port (port B, a local) of the NOR2 gate, signal RDY is

associated with the third port (port Z) and signal S1 is associated with the first port

(port A) of the NOR2 gate. In named association, the ordering of the associations is

not important since the mapping between the actuals and locals are explicitly

specified. An important point to note is that the scope of the locals is restricted to be

within the port map part of the instantiation for that component; for example, the

locals A, B, and Z of component NOR2 are relevant only within the port map of

instantiation of component NOR2.
For either type of association, there are certain rules imposed by the language. First,

the types of the local and the actual being associated must be the same. Second, the

modes of the ports must conform to the rule that if the local is readable, so must the

actual and if the local is writable, so must the actual. Since a signal locally declared is

considered to be both readable and writable, such a signal may be associated with a

local of any mode. If an actual is a port of mode in, it may not be associated with a

local of mode out or inout; if the actual is a port of mode out, it may not be associated

with a local of mode in or inout; if the actual is a port of mode inout, it may be

associated with a local of mode in, out, or inout.

Generate Statements
Concurrent statements can be conditionally selected or replicated during the

elaboration phase using the generate statement. There are two forms of the generate

statement.
1. Using the for-generaHon scheme, concurrent statements can be

replicated a predetermined number of times.
2. With the if-generation scheme, concurrent statements can be

conditionally selected for execution.

The generate statement is interpreted during elaboration, and therefore, has no

simulation semantics associated with it. It resembles a macro expansion. The generate

statement provides for a compact description of regular structures such as memories,

registers, and counters.
The format of a generate statement using the for-generation scheme is

generate-label: for generale-identifierin discrete-

range generate concurrent-statements end

generate[generate-label];

The values in the discrete range must be globally static, that is, they must be

computable at elaboration time. During elaboration, the set of concurrent statements

are replicated once for each value in the discrete range. These statements can also use

the generate identifier in their expressions and its value would be substituted during

elaboration for each replication. There is an implicit declaration for the generate

identifier within the generate statement, and therefore, no declaration for this

identifier is required. The type of the identifier is defined by the discrete range.
Consider the following representation of a 4-bit full-adder, shown in Fig. 2.3, using

the generate statement.

entity FULL_ADD4 is
port (A, B: in BIT_VECTOR(3 downto 0); CIN: in BIT;

SUM: out BIT_VECTOR(3 downto 0); COUT: out

BIT);
end FULL_ADD4:

architecture FOR_GENERATE of

FULL_ADD4 is component

FULL_ADDER

port (A, B, C: in BIT; COUT,

SUM: out BIT); end component;
signal CAR: BIT_VECTOR(4 downto 0);

begin
CAR(0) <= CIN;
GK: for K in 3 downto 0 generate
FA: FULL_ADDER port map (CAR(K),

A(K), B(K),

CAR(K+1),SUM(

K));
end generate

GK;COUT <=

CAR(4);
end FOR_GENERATE

Fig.2.3: A 4-bit full-adder.

After elaboration, the generate statement is expanded to

FA(3): FULL_ADDER port map (CAR(3), A(3), B(3), CAR(4),

SUM(3));
FA(2): FULL_ADDER port map (CAR(2), A(2), B(2), CAR(3),

SUM(2));
FA(1): FULL_ADDER port map (CAR(1), A(1), B(1), CAR(2),

SUM(1));
FA(0): FULL_ADDER port map (CAR(0), A(0), B(0), CAR(1),

SUM(0));

Components in a generate statement can be bound to entities using a generate block

configuration. A block configuration is defined for each range of generate labels. Here

is an example of such a binding using a configuration declaration.

configuration GENERATE_BIND of FULL_ADD4 is
use WORK.all; -- Example of a declaration in the

-- configuration declarative part.

for FOR_GENERATE -- An architecture body block

configuration.
forGK(1) --A generate block configuration.

for FA: FULL_ADDER
use configuration

WORK.FA_HA_CON;
end for;

end for;
for GK(2 to 3)

for FA: FULL_ADDER - No explicit binding.
-- Use defaults, i.e., use entity

FULL_ADDER -- in working

library.
end for;

end

for; for

GK(0)

for FA: FULL_ADDER
use entity

WORK.FULL_ADDER(FA_DA

TAFLOW); end for;
end for;

end for;
end GENERATE_BIND;

There are three generate block configurations, one each for GK(1), GK(2 to 3), and

for GK(0). Each of these block configurations define the bindings for the components

valid for that generate index.
The body of the generate statement can also have other concurrent statements.

For example, in the previous architecture body, the component instantiation statement

could be replaced by signal assignment statements like this

G2: for M in 3 downto 0 generate
SUM(M) <= (A(M) xor B(M)) xor

CAR(M); CAR(M+1) <= (A(M) and

B(M)) and CAR(M);
end generate G2;

The second form of the generate statement uses the if-generation scheme. The

format for this type of generate statement is

genarate-label: H expression

generate concurrent-

statements

end generate [generete-label] ;

The if-generate statement allows for conditional selection of concurrent

statements based on the value of an expression. This expression must be a globally

static expression, that is, the value must be computable at elaboration time.
Here is an example of a 4-bit counter, that is modeled using the if-generate

statement.

entity COUNTER4 is

port (COUNT, CLOCK: in BIT; Q: buffer

BIT_VECTOR(0 to 3)); end COUNTER4;

architecture IF_GENERATE of

COUNTER4 is component

D_FLIP_FLOP

port (D, CLK: in BIT; Q:

out BIT); end component;
begin

GK: for K in 0 to 3

generate GKO: if K

= 0 generate
DFF: D_FLIP_FLOP port map (COUNT,

CLOCK, Q(K)); end generate GK0;
GK1_3: if K > 0 generate

DFF: D_FLIP_FLOP port map (Q(K-1),

CLOCK, Q(K)); end generate GK1_3;
end generate

GK; end

IF_GENERATE;

Guarded Signals
A guarded signal is a special type of a signal that is declared to be of a register or a

bus kind in its declaration. A general form of a signal declaration is

signal list-of-signals: resolution-function

signal-typesignal-kind [

:= expression];

A guarded signal must be a resolved signal, that is, it must have a resolution

function associated with it. Also, the signal can only be assigned values under the

control of a guard expression, for example, using a guarded assignment (guarded

option used in a concurrent signal assignment statement). This implies that guarded

signals can only be assigned values within block statements.
A guarded signal behaves differently from other signals in that when the guard

expression is false, the driver to the guarded signal becomes disconnected after a

specific time, called the disconnect time. On the other hand, in an unguarded signal, if

the guard expression is false, any new events on the signals appearing in the

expression do not influence the value of the target signal; the driver continues to drive

the target signal with the old value. To understand this difference better, consider the

following guarded block BL

architecture GUARDED_EX of EXAMPLE is
signal GUARD_SIG: WIRED_OR

BIT register; signal

UNGUARD_SIG: WIRED_AND BIT;

begin
B1: block (guard-

expression)begin
GUARD_SIG <=

guardedexpression1 ;

UNGUARD_SIG <=

guardedexpression2;

end block

B1; end

GUARDED_EX;

Transforming the guarded signal assignment statement into its equivalent process

statement, the block B1 now looks like this

B1: block (guard-

expression)begin

proces

s

begin

if GUARD then
GUARD_SIG <=expression1;

else
GUARD_SIG<=null;

end if;
wait on signals-in-

expressioni1,GUARD; end process;
proces

s

begin

If GUARD then
UNGUARD_SIG <= expression2;

end if;
wait on signals-in-

expressionS,GUARD; end process;
end block B1;

The process statement for the guarded signal, GUARD_ SIG, has an explicit signal

assignment statement that disconnects its driver, while there is no such statement for

the unguarded signal, UNGUARD_SIG. As this example shows, a driver of a guarded

signal can be explicitly disconnected by assigning a null value to the signal. Such a

statement is called a disconnection statement.
Let us now explore the differences between a register and a bus signal. A bus

signal represents a hardware bus in that when all drivers to the signal become

disconnected (as might be the case on a real hardware bus), the value of the signal is

determined by calling the resolution function with all the drivers off. A register signal,

on the other hand, models a storage component (that is multiply driven) in which if all

drivers to the signal become disconnected, the resolution function is not called and the

value of the last active driver is retained. With a bus signal, the previous value is lost.

Also, bus signals may either be ports of an entity or locally declared signals, whereas

register signals can only be locally declared signals.
The disconnect time for a guarded signal can be specified using a

disconnection specification. The syntax of a disconnection specification is

disconnect guarded-signal-name: signal-type after time-expression;

This is an example of a disconnection specification.

disconnect GUARD_SIG: BIT after 8 ns;

This implies that the driver of signal GUARD_SIG will get disconnected 8 ns after the

corresponding GUARD goes false.
The disconnection specification is useful in modeling decay times, for

example, capacitance delay on buses. An alternate way of specifying disconnect time

is by assigning a value null to the signal in a disconnection statement as shown.

S1 <= null after 10 ns;

This statement specifies that the driver of SI will be disconnected after 10 ns.

Thereafter, this driver does not contribute to the resolved value of the signal.

However, such a statement can appear only as a sequential statement and the target

signal must be a guarded signal.
Here is a more comprehensive example.

use WORK.RF.PACK.all;
-- Package RF_PACK contains functions WIRED_AND

and WIRED_OR. entity GUARDED_SIGNALS is
port (CLOCK: in BIT; N: in INTEGER);

end;

architecture EXAMPLE of GUARDED_SIGNALS is
signal REG_SIG: WIRED_AND

INTEGER register; signal BUS_SIG:

WIRED_OR INTEGER bus; disconnect

REG_SIG: INTEGER after 50 ns;

disconnect BUS_SIG: INTEGER after 20

ns;
begin

BX: block (CLOCK='1' and (not

CLOCK'STABLE)) begin
REG_SIG <= guarded N

after 15 ns; BUS_SIG <=

guarded N after 10 ns;

end block

BX; end

EXAMPLE;

