
SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Unit-I

Databases and Databases users - Database system concepts and architecture - Data modeling

using Entity Relationship (ER) Model. Relational Model - The Relational Data Model and

Relational Database Constraints - The Relational Algebra and Relational Calculus.

Database

A database is a collection of related data. For example, name, telephone number and

address of the people who are coming from foreign countries.

Implicit Properties of Database:

1. A database represents some aspect of the real world, sometimes called the miniworld

or the Universe of Discourse (UoD). Changes to the miniworld are reflected in the

database.

2. A database is a logically coherent collection of data with some inherent meaning. A

random assortment of data cannot correctly be referred to as a database.

3. A database is designed, built, and populated with data for a specific purpose. It has an

intended group of users and some preconceived applications in which these users are

interested.

Database Management System

 A database management system (DBMS) is a collection of programs that enables users

to create and maintain a database.

The DBMS is a general-purpose software system that facilitates the processes of defining,

constructing, and manipulating databases for various applications.

Defining a database involves specifying the data types, structures, and constraints for the

data to be stored in the database.

Constructing the database is the process of storing the data itself on some storage medium

that is controlled by the DBMS.

Manipulating a database includes such functions as querying the database to retrieve

specific data, updating the database to reflect changes in the miniworld, and generating

reports from the data.

Data Element

 Each fields of the record. For example, each STUDENT record includes data to represent

the student’s Name, Student Number(, Major (MATH, computer science or CS, . . .).

Characteristics of the Database Approach

1. Self-Describing Nature of a Database System

2. Insulation between Programs and Data, and Data Abstraction

3. Support of Multiple Views of the Data

4. Sharing of Data and Multiuser Transaction Processing

1

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

1. Self-Describing Nature of a Database System:

database system contains a complete definition or description of the database

structure and constraints. This definition is stored in the system catalog

CataLog : Information about the structure of each file, the type and storage

format of each data item, and various constraints on the data. The catalog is used

by the DBMS software and also by database users who need information about

the database structure.

Meta Data: The Information stored in the catalog and it describes the structure

of the primary database.

In traditional file processing, data definition is typically part of the application

programs themselves. Hence, these programs are constrained to work with only

one specific database, whose structure is declared in the application programs.

2. Insulation between Programs and Data, and Data Abstraction

In traditional file processing, the structure of data files is embedded in the access

programs, so any changes to the structure of a file may require changing all

programs that access this file. But in DBMS access program do not need to

changes I the most cases, the structure of data files are stored in the catalog.

This property program –data independence.

In object-oriented and object-relational databases, users can define operations

on data as part of the database definitions. An operation is specified in two parts:

a. The interface (or signature) of an operation includes the operation name

and the data types of its arguments.

b. The implementation (or method) of the operation is specified separately

and can be changed without affecting the interface.

c. User application programs can operate on the data by invoking these

operations through their names and arguments, regardless of how the

operations are implemented. This may be termed program-operation

independence.

The characteristic that allows program-data independence and program-

operation independence is called data abstraction.

A DBMS provides users with a conceptual representation of data that does

not include the details of how the data is stored or how the operations are

implemented.

A data model is a type of data abstraction that is used to provide this conceptual

representation. The data model uses logical concepts, such as objects, their

properties, and their interrelationships, that may be easier for most users to

understand than computer storage concepts.

For Example, A conceptual representation of the STUDENT records is shown

data of the name of the student , number of the student, Course of the student.

Many other details like how the data is stored and what is the access paths

specified on a file can be hidden from database users by the DBMS.

2

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

3. Support of Multiple Views of the Data

A database typically has many users, each of whom may require a different

perspective or view of the database. A view may be a subset of the database or

it may contain virtual data that is derived from the database files but is not

explicitly stored.

4. Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the

database at the same time. This is essential if data for multiple applications is to

be integrated and maintained in a single database.

The DBMS must include concurrency control software to ensure that several

users trying to update the same data do so in a controlled manner so that the

result of the updates is correct.

 For example, when several reservation clerks try to assign a seat on an airline

flight, the DBMS should ensure that each seat can be accessed by only one clerk

at a time for assignment to a passenger. These types of applications are generally

called on-line transaction processing (OLTP) applications.

Actors on the Scene

1. Database Administrators

2. Database Designers

3. End Users

4. System Analysts and Application Programmers (Software Engineers)

1. Database Administrators

In a database environment, the primary resource is the database itself and the

secondary resource is the DBMS and related software.

Database administrator (DBA): Responsible and Administering the database

resources. The DBA is responsible for authorizing access to the database, for

coordinating and monitoring its use, and for acquiring software and hardware

resources as needed.

The DBA is accountable for problems such as breach of security or poor system

response time. In large organizations, the DBA is assisted by a staff that helps

carry out these functions.

2. Database Designers

Database designers are responsible for identifying the data to be stored in the

database and for choosing appropriate structures to represent and store this data.

These tasks are mostly undertaken before the database is actually implemented

and populated with data. It is the responsibility of database designers to

communicate with all prospective database users, in order to understand their

requirements, and to come up with a design that meets these requirements.

The designers are on the staff of the DBA and may be assigned other

staff responsibilities after the database design is completed. Database designers

typically interact with each potential group of users and develop a view of the

database that meets the data and processing requirements of the group. These

views are then analyzed and integrated with the views of other user groups. The

3

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

final database design must be capable of supporting the requirements of all user

groups.

3. End Users

End users are the people who access to the database for querying, updating, and

generating reports.

Catagories :

1. Casual end users

2. Naive or parametric end users

3. Sophisticated end users

4. Stand-alone users

1. Casual end users - occasionally access the database, but they may need

different information each time. They use a sophisticated database query

language to specify their requests.

They are typically middle or high-level managers or other occasional

browsers.

2. Naive or parametric end users - make up a sizable portion of database end

users. Their main job is constantly querying and updating the database,

using standard types of queries and updates that have been carefully

programmed and tested is called canned transactions.

The tasks that such users perform are varied: Bank tellers check account

balances and post withdrawals and deposits.

Reservation clerks for airlines, hotels, and car rental companies check

availability for a given request and make reservations

3. Sophisticated end users - include engineers, scientists, business analysts,

and others who thoroughly familiarize themselves with the facilities of the

DBMS and to implement their applications to meet their complex

requirements.

4. Stand-alone users - maintain personal databases by using ready-made

program packages that provide easy-to-use menu- or graphics-based

interfaces.

An example is the user of a tax package that stores a variety of personal

financial data for tax purposes

4. System Analysts and Application Programmers (Software Engineers)

System analysts determine the requirements of end users, especially naive and

parametric end users, and develop specifications for canned transactions that

meet these requirements.

Application programmers implement these specifications as programs; then

they test, debug, document, and maintain these canned transactions. Such

analysts and programmers.

4

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Software Engineers should be familiar with the full range of capabilities

provided by the DBMS to accomplish their tasks.

Workers behind the Scene

 The people who are associated with the design, development, and operation of the

DBMS software and system environment. These persons are typically not interested in the

database itself. We call them the "workers behind the scene,".

Catagories:

1. DBMS system designers and implementers

2. Tool developers

3. Operators and maintenance personnel

1. DBMS system designers and implementers

The persons who design and implement the DBMS modules and interfaces as a software

package. A DBMS is a complex software system that consists of many components or

modules, including modules for implementing the catalog, query language, interface

processors, data access, concurrency control, recovery, and security. The DBMS must

interface with other system software, such as the operating system and compilers for

various programming languages.

2. Tool developers

The persons who design and implement tools—the software packages that facilitate

database system design and use, and help improve performance. Tools are optional

packages that are often purchased separately. They include packages for database

design, performance monitoring, natural language or graphical interfaces, prototyping,

simulation, and test data generation.

3. Operators and maintenance personnel

The people who are the system administration personnel who are responsible for the

actual running and maintenance of the hardware and software environment for the

database system.

Advantages of Using a DBMS

1. Controlling Redundancy

2. Restricting Unauthorized Access

3. Providing Persistent Storage for Program Objects and Data Structures

4. Permitting Inferencing and Actions Using Rules

5. Providing Multiple User Interfaces

6. Representing Complex Relationships Among Data

7. Enforcing Integrity Constraints

8. Providing Backup and Recovery

5

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

1. Controlling Redundancy

In File Processing System, duplicate data is created in many places because all the

programs have their own files. This creates data redundancy which in turns wastes

labor and space. In Database Management System, all the files are integrated in a

single database. The whole data is stored only once at a single place so there is no

chance of duplicate data.

For example: A student record in library or examination can contain duplicate values,

but when they are converted into a single database, all the duplicate values are

removed.

2. Restricting Unauthorized Access

Data security means protecting your precious data from unauthorized access. Data in

database should be kept secure and safe to unauthorized modifications. Only authorized

users should have the grant to access the database. There is a username set for all the

users who access the database with password so that no other guy can access these

information. DBMS always keep database tamperproof, secure and theft free.

3. Providing Persistent Storage for Program Objects and Data Structures

Databases can be used to provide persistent storage for program objects and data

structures. This is one of the main reasons for the emergence of the object-oriented

database systems. The persistent storage of program objects and data structures is an

important function of database systems. Traditional database systems often suffered

from the so-called impedance mismatch problem, since the data structures provided by

the DBMS were incompatible with the programming language’s data structures.

Data loss is a very big problem for all the organizations. In traditional file processing

system, a user needs to back up the database after a regular interval of time that wastes

lots of time and resources. If the volume of data is large then this process may take a

very long time.

DBMS solves this problem of taking back up again and again because it allows

automatic backup and recovery of database. For examples, if a system fails in the

middle of any process then DBMS stores the values of that state in which database were

before query execution.

4. Permitting Inferencing and Actions Using Rules

Some database systems provide capabilities for defining deduction rules for inferencing

new information from the stored database facts. Such systems are called deductive

database systems.

For example, there may be complex rules in the miniworld application for determining

when a student is on probation. These can be specified declaratively as rules, which

when compiled and maintained by the DBMS can determine all students on probation.

5. Providing Multiple User Interfaces

Many types of users with varying levels of technical knowledge use a database, a

DBMS should provide a variety of user interfaces. These include query languages for

casual users; programming language interfaces for application programmers; forms and

6

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

command codes for parametric users; and menu-driven interfaces and natural language

interfaces for stand-alone users. Both forms-style interfaces and menu-driven interfaces

are commonly known as graphical user interfaces (GUIs).

6. Representing Complex Relationships Among Data

A database may include numerous varieties of data that are interrelated in many ways.

A DBMS must have the capability to represent a variety of complex relationships

among the data as well as to retrieve and update related data easily and efficiently.

For example, The record for Brown in the student file is related to four records in the

GRADE_REPORT file. Similarly, each section record is related to one course record

as well as to a number of GRADE_REPORT records—one for each student who

completed that section.

7. Enforcing Integrity Constraints

Data integrity means that the data is accurate and consistent in the database. Data

Integrity is very important as there are multiple databases in a DBMS. All of these

databases contain data that is visible to multiple users. So it is necessary to ensure that

the data is correct and consistent in all the databases and for all the users.

8. Providing Backup and Recovery

Database Management System automatically takes care of backup and recovery. The

users don't need to backup data periodically because this is taken care of by the DBMS.

Moreover, it also restores the database after a crash or system failure to its previous

condition.

Database System Concepts and Architecture

Data Models, Schemas, and Instances

Data Model

It defines the logical design and structure of a database and defines how data will be

stored, accessed and updated in a database management system.

Categories of Data Models

1. High-level or conceptual data models

2. Low-level or physical data models

3. Representational (or implementation) data model

1. High-level or Conceptual Data Models

The conceptual data model is a structured business view of the data required to support

business processes, record business events, and track related performance measures.

7

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

This model focuses on identifying the data used in the business but not it’s processing

flow or physical characteristics.

2. Low-level or physical data models

To provide concepts that describe the details of how data is stored in the computer.

3. Representational (or implementation) data model

To provide concepts that may be understood by end users but that are not too far

removed from the way data is organized within the computer.

Entity: it represents a real-world object or concept, such as an employee or a project,

that is described in the database.

Attribute: It represents some property of interest that further describes an entity, such

as the employee’s name or salary.

Relationship: Two or more entities represents an interaction among the entities.

 for example, a works-on relationship between an employee and a project.

Schemas, Instances, and Database State

Database schema - The description of a database.

Schema diagram - Diagrammatical representation of database.

Database state or Snapshot - The data in the database at a particular moment in time.

It is also called the current set of occurrences or instances in the database.

DBMS Architecture and Data Independence

The Three-Schema Architecture

3 levels,

1. The internal level has an internal schema, which describes the physical storage

structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the

whole database for a community of users. The conceptual schema hides the details

of physical storage structures and concentrates on describing entities, data types,

relationships, user operations, and constraints. A high-level data model or an

implementation data model can be used at this level.

3. The external or view level includes a number of external schemas or user views.

Each external schema describes the part of the database that a particular user group

is interested in and hides the rest of the database from that user group. A high-level

data model or an implementation data model can be used at this level.

Data Independence

The three-schema architecture can be used to explain the concept of data independence,

1. Logical data independence is the capacity to change the conceptual schema without

having to change external schemas or application programs.

8

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

2. Physical data independence is the capacity to change the internal schema without

having to change the conceptual (or external) schemas.

Database Languages and Interfaces

 DBMS Language: Data Definition Language (DDL)

 Storage Definition Language(SDL)

 View Definition Language (VDL)

 Data Manipulation Language (DML)

DBMS Interfaces

1. Menu-Based Interfaces for Browsing

2. Forms-Based Interfaces

3. Graphical User Interfaces

4. Natural Language Interfaces

5. Interfaces for Parametric Users

6. Interfaces for the DBA

1. Menu-Based Interfaces for Browsing

These interfaces present the user with lists of options, called menus that lead the user

through the formulation of a request. Menus do away with the need to memorize the

specific commands and syntax of a query language; rather, the query is composed step

by step by picking options from a menu that is displayed by the system. Pull-down

menus are becoming a very popular technique in window-based user interfaces.

2. Forms-Based Interfaces

A forms-based interface displays a form to each user. Users can fill out all of the form

entries to insert new data, or they fill out only certain entries, in which case the DBMS

will retrieve matching data for the remaining entries. Forms are usually designed and

programmed for naive users as interfaces to canned transactions.

3. Graphical User Interfaces

A graphical interface (GUI) typically displays a schema to the user in diagrammatic

form. The user can then specify a query by manipulating the diagram. In many cases,

GUIs utilize both menus and forms. Most GUIs use a pointing device, such as a mouse,

to pick certain parts of the displayed schema diagram.

4. Natural Language Interfaces

These interfaces accept requests written in English or some other language and attempt

to "understand" them. A natural language interface usually has its own "schema," which

is similar to the database conceptual schema. The natural language interface refers to

the words in its schema, as well as to a set of standard words, to interpret the request.

5. Interfaces for Parametric Users

Parametric users, such as bank tellers, often have a small set of operations that they

must perform repeatedly. Systems analysts and programmers design and implement a

9

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

special interface for a known class of naive users. Usually, a small set of abbreviated

commands is included, with the goal of minimizing the number of keystrokes required

for each request.

6. Interfaces for the DBA

Most database systems contain privileged commands that can be used only by the

DBA’s staff. These include commands for creating accounts, setting system parameters,

granting account authorization, changing a schema, and reorganizing the storage

structures of a database.

The Database System Environment

DBMS Component Modules

The DDL compiler processes schema definitions, specified in the DDL, and stores descriptions

of the schemas (meta-data) in the DBMS catalog. The catalog includes information such as the

names of files, data items, storage details of each file, mapping information among schemas,

and constraints, in addition to many other types of information that are needed by the DBMS

modules.

The run-time database processor handles database accesses at run time; it receives retrieval

or update operations and carries them out on the database. Access to disk goes through the

stored data manager. The query compiler handles high-level queries that are entered

interactively. It parses, analyzes, and compiles or interprets a query by creating database access

code, and then generates calls to the run-time processor for executing the code.

Database System Utilities

Loading: A loading utility is used to load existing data files such as text files or

sequential files into the database.

Backup: A backup utility creates a backup copy of the database, usually by dumping

the entire database onto tape.

File reorganization: This utility can be used to reorganize a database file into a

different file organization to improve performance.

Performance monitoring: Such a utility monitors database usage and provides

statistics to the DBA.

Data Modeling Using the Entity Relationship Model

Entity Types, Entity Sets, Attributes, and Keys

Entities and Attributes

An entity, which is a "thing" in the real world with an independent existence. An entity

may be an object with a physical existence—a particular person, car, house, or

employee.

Attributes—the particular properties that describe it. For example, an employee entity

may be described by the employee’s name, age, address, salary, and job.

10

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Composite versus Simple (Atomic) Attributes

Composite attributes can be divided into smaller subparts, which represent more basic

attributes with independent meanings. For example, the Address attribute of the

employee entity.

Single-valued Versus Multivalued Attributes

Most attributes have a single value for a particular entity; such attributes are called

single-valued. For example, Age is a single-valued attribute of person. In some cases

an attribute can have a set of values.

Stored Versus Derived Attributes

The Age attribute is hence called a derived attribute and is said to be derivable from the

BirthDate attribute, which is called a stored attribute.

Null Values

 The attribute not having values.

For Example, a person with no college degree would have null for College Degrees.

Complex Attributes

Arbitrary nesting by grouping components of a composite attribute between

parentheses () and separating the components with commas, and by displaying

multivalued attributes between braces {}. Such attributes are called complex attributes.

Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets

An Entity type defines a collection (or set) of entities that have the same attributes. Each entity

type in the database is described by its name and attributes.

Entity Set - The collection of all entities of a particular entity type in the database at any point

in time is called an entity set.

Key Attributes - An entity type usually has an attribute whose values are distinct for each

individual entity in the collection. Such an attribute is called a key attribute.

Value Set - Each simple attribute of an entity type is associated with a value set (or domain of

values), which specifies the set of values that may be assigned to that attribute for each

individual entity.

In the ER model, these references should not be represented as attributes but as relationships,

which are discussed in this section. The COMPANY database schema will be refined to

represent relationships explicitly. In the initial design of entity types, relationships are

typically captured in the form of attributes. As the design is refined, these attributes get

converted into relationships between entity types.

Relationship Types, Sets, and Instances

11

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

A relationship type R among n entity types E1, E2, ..., En defines a set of associations—or

a relationship set—among entities from these entity types. As for the case of entity types and

entity sets, a relationship type and its corresponding relationship set are customarily referred

to by the same name, R.

Mathematically, the relationship set R is a set of relationship instances ri , where each

ri associates n individual entities (e1, e2, ..., en), and each entity ej in ri is a member of entity

set Ej , 1 ? j ? n. Hence, a relationship set is a mathematical relation on E1, E2, ..., En;

alternatively, it can be defined as a subset of the Cartesian product of the entity sets E1 × E2

× ... × En.

Relationships

When an Entity is related to another Entity, they are said to have a relationship. For example,

A Class Entity is related to Student entity, because students study in classes, hence this is a

relationship.

Depending upon the number of entities involved, a degree is assigned to relationships.

For example, if 2 entities are involved, it is said to be Binary relationship, if 3 entities are

involved, it is said to be Ternary relationship, and so on.

ER Diagram is a visual representation of data that describes how data is related to each other.

In ER Model, we disintegrate data into entities, attributes and setup relationships between

entities, all this can be represented visually using the ER diagram.

For example, in the below diagram, anyone can see and understand what the diagram wants

to convey: Developer develops a website, whereas a Visitor visits a website.

Components of ER Diagram

Entitiy, Attributes, Relationships etc form the components of ER Diagram and there are

defined symbols and shapes to represent each one of them.

Entity

Simple rectangular box represents an Entity.

Relationships between Entities - Weak and Strong

Rhombus is used to setup relationships between two or more entities.

12

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Attributes for any Entity

Ellipse is used to represent attributes of any entity. It is connected to the entity.

Weak Entity

A weak Entity is represented using double rectangular boxes. It is generally connected to

another entity.

Key Attribute for any Entity

To represent a Key attribute, the attribute name inside the Ellipse is underlined.

Derived Attribute for any Entity

Derived attributes are those which are derived based on other attributes, for example, age can

be derived from date of birth.

To represent a derived attribute, another dotted ellipse is created inside the main ellipse.

Multivalued Attribute for any Entity

Double Ellipse, one inside another, represents the attribute which can have multiple values.

Composite Attribute for any Entity

A composite attribute is the attribute, which also has attributes.

13

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

ER Diagram: Entity

An Entity can be any object, place, person or class. In ER Diagram, an entity is represented

using rectangles. Consider an example of an Organisation- Employee, Manager, Department,

Product and many more can be taken as entities in an Organisation.

The yellow rhombus in between represents a relationship.

ER Diagram: Weak Entity

Weak entity is an entity that depends on another entity. Weak entity doesn't have anay key

attribute of its own. Double rectangle is used to represent a weak entity.

ER Diagram: Attribute

An Attribute describes a property or characterstic of an entity. For

example, Name, Age, Address etc can be attributes of a Student. An attribute is represented

using eclipse.

ER Diagram: Key Attribute

Key attribute represents the main characterstic of an Entity. It is used to represent a Primary

key. Ellipse with the text underlined, represents Key Attribute.

ER Diagram: Composite Attribute

An attribute can also have their own attributes. These attributes are known

as Composite attributes.

14

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

ER Diagram: Relationship

A Relationship describes relation between entities. Relationship is represented using

diamonds or rhombus.

There are three types of relationship that exist between Entities.

1. Binary Relationship

2. Recursive Relationship

3. Ternary Relationship

ER Diagram: Binary Relationship

Binary Relationship means relation between two Entities. This is further divided into three

types.

One to One Relationship

This type of relationship is rarely seen in real world.

The above example describes that one student can enroll only for one course and a course

will also have only one Student. This is not what you will usually see in real-world

relationships.

One to Many Relationship

The below example showcases this relationship, which means that 1 student can opt for many

courses, but a course can only have 1 student. Sounds weird! This is how it is.

15

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Many to One Relationship

It reflects business rule that many entities can be associated with just one entity. For example,

Student enrolls for only one Course but a Course can have many Students.

Many to Many Relationship

The above diagram represents that one student can enroll for more than one courses. And a

course can have more than 1 student enrolled in it.

ER Diagram: Recursive Relationship

When an Entity is related with itself it is known as Recursive Relationship.

ER Diagram: Ternary Relationship

Relationship of degree three is called Ternary relationship.

A Ternary relationship involves three entities. In such relationships we always consider two

entites together and then look upon the third.

16

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

For example, in the diagram above, we have three related

entities, Company, Product and Sector. To understand the relationship better or to define

rules around the model, we should relate two entities and then derive the third one.

A Company produces many Products/ each product is produced by exactly one company.

A Company operates in only one Sector / each sector has many companies operating in it.

The Enhanced ER Model

As the complexity of data increased in the late 1980s, it became more and more difficult to

use the traditional ER Model for database modelling. Hence some improvements or

enhancements were made to the existing ER Model to make it able to handle the complex

applications better.

Hence, as part of the Enhanced ER Model, along with other improvements, three new

concepts were added to the existing ER Model, they were:

1. Generalization

2. Specialization

3. Aggregration

Let's understand what they are, and why were they added to the existing ER Model.

Generalization

Generalization is a bottom-up approach in which two lower level entities combine to form a

higher level entity. In generalization, the higher level entity can also combine with other

lower level entities to make further higher level entity.

It's more like Superclass and Subclass system, but the only difference is the approach, which

is bottom-up. Hence, entities are combined to form a more generalised entity, in other words,

sub-classes are combined to form a super-class.

17

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

For example, Saving and Current account types entities can be generalised and an entity

with name Account can be created, which covers both.

Specialization

Specialization is opposite to Generalization. It is a top-down approach in which one higher

level entity can be broken down into two lower level entity. In specialization, a higher level

entity may not have any lower-level entity sets, it's possible.

Aggregration

Aggregration is a process when relation between two entities is treated as a single entity.

In the diagram above, the relationship between Center and Course together, is acting as an

Entity, which is in relationship with another entity Visitor. Now in real world, if a Visitor or

a Student visits a Coaching Center, he/she will never enquire about the center only or just

about the course, rather he/she will ask enquire about both.

Relational Model Concepts

1. Attribute: Each column in a Table. Attributes are the properties which define a

relation. e.g., Student_Rollno, NAME,etc.

2. Tables – In the Relational model the, relations are saved in the table format. It is

stored along with its entities. A table has two properties rows and columns. Rows

represent records and columns represent attributes.

3. Tuple – It is nothing but a single row of a table, which contains a single record.

4. Relation Schema: A relation schema represents the name of the relation with its

attributes.

5. Degree: The total number of attributes which in the relation is called the degree of the

relation.

6. Cardinality: Total number of rows present in the Table.

7. Column: The column represents the set of values for a specific attribute.

18

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

8. Relation instance – Relation instance is a finite set of tuples in the RDBMS system.

Relation instances never have duplicate tuples.

9. Relation key - Every row has one, two or multiple attributes, which is called relation

key.

10. Attribute domain – Every attribute has some pre-defined value and scope which is

known as attribute domain

Relational Integrity constraints

Relational Integrity constraints is referred to conditions which must be present for a valid

relation. These integrity constraints are derived from the rules in the mini-world that the

database represents.

There are many types of integrity constraints. Constraints on the Relational database

management system is mostly divided into three main categories are:

1. Domain constraints

2. Key constraints

3. Referential integrity constraints

19

https://www.guru99.com/images/1/091318_0803_RelationalD1.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Domain Constraints

Domain constraints can be violated if an attribute value is not appearing in the corresponding

domain or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each attribute must be

unique. This is specified as data types which include standard data types integers, real

numbers, characters, Booleans, variable length strings, etc.

Example:

Create DOMAIN CustomerName

CHECK (value not NULL)

The example shown demonstrates creating a domain constraint such that CustomerName is

not NULL

Key constraints

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The

value of the attribute for different tuples in the relation has to be unique.

Example:

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have

a single key for one customer, CustomerID =1 is only for the CustomerName =" Google".

Referential integrity constraints

Referential integrity constraints is base on the concept of Foreign Keys. A foreign key is an

important attribute of a relation which should be referred to in other relationships. Referential

integrity constraint state happens where relation refers to a key attribute of a different or same

relation. However, that key element must exist in the table.

CustomerID CustomerName Statu

s

1 Google Acti

ve

2 Amazon Acti

ve

3 Apple Inact

ive

20

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Example:

In the above example, we have 2 relations, Customer and Billing.

Tuple for CustomerID =1 is referenced twice in the relation Billing. So we know

CustomerName=Google has billing amount $300

Operations in Relational Model

Four basic update operations performed on relational database model are

Insert, update, delete and select.

• Insert is used to insert data into the relation

• Delete is used to delete tuples from the table.

• Modify allows you to change the values of some attributes in existing tuples.

• Select allows you to choose a specific range of data.

Whenever one of these operations are applied, integrity constraints specified on the relational

database schema must never be violated.

Insert Operation

The insert operation gives values of the attribute for a new tuple which should be inserted

into a relation.

Update Operation

You can see that in the below-given relation table CustomerName= 'Apple' is updated from

Inactive to Active.

21

https://www.guru99.com/images/1/091318_0803_RelationalD2.png
https://www.guru99.com/images/1/091318_0803_RelationalD3.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Delete Operation

To specify deletion, a condition on the attributes of the relation selects the tuple to be deleted.

In the above-given example, CustomerName= "Apple" is deleted from the table.

The Delete operation could violate referential integrity if the tuple which is deleted is

referenced by foreign keys from other tuples in the same database.

Select Operation

In the above-given example, CustomerName="Amazon" is selected

Relational Algebra Operations

Relational Algebra devided in various groups

Unary Relational Operations

• SELECT (symbol: σ)

• PROJECT (symbol: π)

• RENAME (symbol:)

Relational Algebra Operations From Set Theory

• UNION (υ)

• INTERSECTION (),

• DIFFERENCE (-)

• CARTESIAN PRODUCT (x)

Binary Relational Operations

• JOIN

• DIVISION

Let's study them in detail:

22

https://www.guru99.com/images/1/091318_0803_RelationalD4.png
https://www.guru99.com/images/1/091318_0803_RelationalD5.png
https://www.guru99.com/images/1/091318_0803_RelationalD6.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

SELECT (σ)

The SELECT operation is used for selecting a subset of the tuples according to a given

selection condition. Sigma(σ)Symbol denotes it. It is used as an expression to choose tuples

which meet the selection condition. Select operation selects tuples that satisfy a given

predicate.

σp(r)

σ is the predicate

r stands for relation which is the name of the table

p is prepositional logic

Example 1

σ topic = "Database" (Tutorials)

Output - Selects tuples from Tutorials where topic = 'Database'.

Example 2

σ topic = "Database" and author = "guru99"(Tutorials)

Output - Selects tuples from Tutorials where the topic is 'Database' and 'author' is guru99.

Example 3

σ sales > 50000 (Customers)

Output - Selects tuples from Customers where sales is greater than 50000

Projection(π)

The projection eliminates all attributes of the input relation but those mentioned in the

projection list. The projection method defines a relation that contains a vertical subset of

Relation.

This helps to extract the values of specified attributes to eliminates duplicate values. (pi) The

symbol used to choose attributes from a relation. This operation helps you to keep specific

columns from a relation and discards the other columns.

Example of Projection:

Consider the following table

23

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

CustomerID CustomerName Status

1 Google Active

2 Amazon Active

3 Apple Inactive

4 Alibaba Active

Here, the projection of CustomerName and status will give

Π CustomerName, Status (Customers)

CustomerName Status

Google Active

Amazon Active

Apple Inactive

Alibaba Active

Union operation (υ)

UNION is symbolized by ∪ symbol. It includes all tuples that are in tables A or in B. It also

eliminates duplicate tuples. So, set A UNION set B would be expressed as:

The result <- A ∪ B

For a union operation to be valid, the following conditions must hold -

• R and S must be the same number of attributes.

• Attribute domains need to be compatible.

• Duplicate tuples should be automatically removed.

Example

24

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Consider the following tables.

Table A

Table B

column 1 column 2

column 1 column 2

1 1

1 1

1 2

1 3

A ∪ B gives

Table A ∪ B

column 1 column 2

1 1

1 2

1 3

Set Difference (-)

- Symbol denotes it. The result of A - B, is a relation which includes all tuples that are in A

but not in B.

• The attribute name of A has to match with the attribute name in B.

• The two-operand relations A and B should be either compatible or Union compatible.

• It should be defined relation consisting of the tuples that are in relation A, but not in

B.

Example

A-B

Table A - B

25

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

column 1 column 2

1 2

Intersection

An intersection is defined by the symbol ∩

A ∩ B

Defines a relation consisting of a set of all tuple that are in both A and B. However, A and B

must be union-compatible.

Example:

A ∩ B

Table A ∩ B

column 1 column 2

1 1

Cartesian product(X)

This type of operation is helpful to merge columns from two relations. Generally, a Cartesian

product is never a meaningful operation when it performs alone. However, it becomes

meaningful when it is followed by other operations.

Example – Cartesian product

σ column 2 = '1' (A X B)

Output – The above example shows all rows from relation A and B whose column 2 has

value 1

26

https://www.guru99.com/images/1/100518_0535_RelationalA4.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

σ column 2 = '1' (A X B)

column 1 column 2

1 1

1 1

Join Operations

Join operation is essentially a cartesian product followed by a selection criterion.

Join operation denoted by ⋈.

JOIN operation also allows joining variously related tuples from different relations.

Types of JOIN:

Various forms of join operation are:

Inner Joins:

• Theta join

• EQUI join

• Natural join

Outer join:

• Left Outer Join

• Right Outer Join

• Full Outer Join

Inner Join:

In an inner join, only those tuples that satisfy the matching criteria are included, while the rest

are excluded. Let's study various types of Inner Joins:

Theta Join:

The general case of JOIN operation is called a Theta join. It is denoted by symbol θ

Example

27

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

A ⋈θ B

Theta join can use any conditions in the selection criteria.

For example:

A ⋈ A.column 2 > B.column 2 (B)

A ⋈ A.column 2 > B.column 2 (B)

column 1 column 2

1 2

EQUI join:

When a theta join uses only equivalence condition, it becomes a equi join.

For example:

A ⋈ A.column 2 = B.column 2 (B)

A ⋈ A.column 2 = B.column 2 (B)

column 1 column 2

1 1

EQUI join is the most difficult operations to implement efficiently in an RDBMS and one

reason why RDBMS have essential performance problems.

NATURAL JOIN (⋈)

Natural join can only be performed if there is a common attribute (column) between the

relations. The name and type of the attribute must be same.

Example

Consider the following two tables

28

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

C

Num Square

2 4

3 9

D

Num Cube

2 8

3 27

C ⋈ D

C ⋈ D

Num Square Cube

2 4 4

3 9 27

OUTER JOIN

In an outer join, along with tuples that satisfy the matching criteria, we also include some or

all tuples that do not match the criteria.

Left Outer Join(A B)

In the left outer join, operation allows keeping all tuple in the left relation. However, if there

is no matching tuple is found in right relation, then the attributes of right relation in the join

result are filled with null values.

29

https://www.guru99.com/images/1/100518_0535_RelationalA5.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Consider the following 2 Tables

A

Num Square

2 4

3 9

4 16

B

Num Cube

2 8

3 18

5 75

A B

A ⋈ B

Num Square Cube

2 4 4

30

https://www.guru99.com/images/1/100518_0535_RelationalA6.png
https://www.guru99.com/images/1/100518_0535_RelationalA5.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

3 9 9

4 16 -

Right Outer Join: (A B)

In the right outer join, operation allows keeping all tuple in the right relation. However, if

there is no matching tuple is found in the left relation, then the attributes of the left relation in

the join result are filled with null values.

A B

A ⋈ B

Num Cube Square

2 8 4

3 18 9

5 75 -

Full Outer Join: (A B)

In a full outer join, all tuples from both relations are included in the result, irrespective of the

matching condition.

A B

A ⋈ B

Num Cube Square

31

https://www.guru99.com/images/1/100518_0535_RelationalA7.png
https://www.guru99.com/images/1/100518_0535_RelationalA8.png
https://www.guru99.com/images/1/100518_0535_RelationalA7.png
https://www.guru99.com/images/1/100518_0535_RelationalA9.png
https://www.guru99.com/images/1/100518_0535_RelationalA9.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

2 4 8

3 9 18

4 16 -

5 - 75

Operation Purpose

Select(σ) The SELECT operation is used for selecting a

subset of the tuples according to a given

selection condition

Projection(π) The projection eliminates all attributes of the

input relation but those mentioned in the

projection list.

Union Operation(∪) UNION is symbolized by symbol. It includes

all tuples that are in tables A or in B.

Set Difference(-) - Symbol denotes it. The result of A - B, is a

relation which includes all tuples that are in A

but not in B.

Intersection(∩) Intersection defines a relation consisting of a

set of all tuple that are in both A and B.

Cartesian Product(X) Cartesian operation is helpful to merge

columns from two relations.

Inner Join Inner join, includes only those tuples that

satisfy the matching criteria.

Theta Join(θ) The general case of JOIN operation is called a

Theta join. It is denoted by symbol θ.

EQUI Join When a theta join uses only equivalence

condition, it becomes a equi join.

32

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Natural Join(⋈) Natural join can only be performed if there is

a common attribute (column) between the

relations.

Outer Join In an outer join, along with tuples that satisfy

the matching criteria.

Left Outer Join() In the left outer join, operation allows keeping

all tuple in the left relation.

Right Outer join() In the right outer join, operation allows

keeping all tuple in the right relation.

Full Outer Join() In a full outer join, all tuples from both

relations are included in the result irrespective

of the matching condition.

Relational Calculus

Relational Calculus in non-procedural query language and has no description about how the

query will work or the data will b fetched. It only focusses on what to do, and not on how to

do it.

Relational Calculus exists in two forms:

1. Tuple Relational Calculus (TRC)

2. Domain Relational Calculus (DRC)

Tuple Relational Calculus (TRC)

In tuple relational calculus, we work on filtering tuples based on the given condition.

Syntax: { T | Condition }

In this form of relational calculus, we define a tuple variable, specify the table(relation) name

in which the tuple is to be searched for, along with a condition.

We can also specify column name using a . dot operator, with the tuple variable to only get a

certain attribute(column) in result.

A lot of information, right! Give it some time to sink in.

A tuple variable is nothing but a name, can be anything, generally we use a single alphabet

for this, so let's say T is a tuple variable.

To specify the name of the relation(table) in which we want to look for data, we do the

following:

Relation(T), where T is our tuple variable.

For example if our table is Student, we would put it as Student(T)

33

https://www.guru99.com/images/1/100518_0535_RelationalA10.png
https://www.guru99.com/images/1/100518_0535_RelationalA11.png
https://www.guru99.com/images/1/100518_0535_RelationalA12.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Then comes the condition part, to specify a condition applicable for a particular

attribute(column), we can use the . dot variable with the tuple variable to specify it, like in

table Student, if we want to get data for students with age greater than 17, then, we can write

it as,

T.age > 17, where T is our tuple variable.

Putting it all together, if we want to use Tuple Relational Calculus to fetch names of students,

from table Student, with age greater than 17, then, for T being our tuple variable,

T.name | Student(T) AND T.age > 17

Domain Relational Calculus (DRC)

In domain relational calculus, filtering is done based on the domain of the attributes and not

based on the tuple values.

Syntax: { c1, c2, c3, ..., cn | F(c1, c2, c3, ... ,cn)}

where, c1, c2... etc represents domain of attributes(columns) and F defines the formula

including the condition for fetching the data.

For example,

{< name, age > | ∈ Student ∧ age > 17}

Again, the above query will return the names and ages of the students in the

table Student who are older than 17.

Unit II

Overview of the QBE Language - Overview of the Hierarchical Data Model - Overview of the Network

Data Model - SQL-99: Schema Definition, Constraints, Queries, and Views- Functional Dependencies

and Normalization for Relational Databases.

Database Language

o A DBMS has appropriate languages and interfaces to express database queries and

updates.

o Database languages can be used to read, store and update the data in the database.

34

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Types of Database Language

1. Data Definition Language

o DDL stands for Data Definition Language. It is used to define database structure or

pattern.

o It is used to create schema, tables, indexes, constraints, etc. in the database.

o Using the DDL statements, you can create the skeleton of the database.

o Data definition language is used to store the information of metadata like the number

of tables and schemas, their names, indexes, columns in each table, constraints, etc.

Here are some tasks that come under DDL:

o Create: It is used to create objects in the database.

o Alter: It is used to alter the structure of the database.

o Drop: It is used to delete objects from the database.

o Truncate: It is used to remove all records from a table.

o Rename: It is used to rename an object.

o Comment: It is used to comment on the data dictionary.

These commands are used to update the database schema that's why they come under Data

definition language.

35

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

2. Data Manipulation Language

DML stands for Data Manipulation Language. It is used for accessing and manipulating data

in a database. It handles user requests.

Here are some tasks that come under DML:

o Select: It is used to retrieve data from a database.

o Insert: It is used to insert data into a table.

o Update: It is used to update existing data within a table.

o Delete: It is used to delete all records from a table.

o Merge: It performs UPSERT operation, i.e., insert or update operations.

o Call: It is used to call a structured query language or a Java subprogram.

o Explain Plan: It has the parameter of explaining data.

o Lock Table: It controls concurrency.

3. Data Control Language

o DCL stands for Data Control Language. It is used to retrieve the stored or saved data.

o The DCL execution is transactional. It also has rollback parameters.

(But in Oracle database, the execution of data control language does not have the feature

of rolling back.)

Here are some tasks that come under DCL:

o Grant: It is used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

There are the following operations which have the authorization of Revoke:

CONNECT, INSERT, USAGE, EXECUTE, DELETE, UPDATE and SELECT.

4. Transaction Control Language

TCL is used to run the changes made by the DML statement. TCL can be grouped into a logical

transaction.

Here are some tasks that come under TCL:

o Commit: It is used to save the transaction on the database.

o Rollback: It is used to restore the database to original since the last Commit.

Overview of Hierarchical Data Model:

36

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Hierarchical Model

This database model organises data into a tree-like-structure, with a single root, to which all

the other data is linked. The heirarchy starts from the Root data, and expands like a tree, adding

child nodes to the parent nodes.

In this model, a child node will only have a single parent node.

This model efficiently describes many real-world relationships like index of a book, recipes

etc.

In hierarchical model, data is organised into tree-like structure with one one-to-many

relationship between two different types of data, for example, one department can have many

courses, many professors and of-course many students.

Network Model

This is an extension of the Hierarchical model. In this model data is organised more like a

graph, and are allowed to have more than one parent node.

Network Model of database

In this database model data is more related as more relationships are established in this database

model. Also, as the data is more related, hence accessing the data is also easier and fast. This

database model was used to map many-to-many data relationships.

This was the most widely used database model, before Relational Model was introduced.

37

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

SQL:

Structure Query Language(SQL) is a database query language used for storing and managing

data in Relational DBMS. SQL was the first commercial language introduced for E.F

Codd's Relational model of database. Today almost all RDBMS(MySql, Oracle, Infomix,

Sybase, MS Access) use SQL as the standard database query language. SQL is used to perform

all types of data operations in RDBMS.

SQL Command

SQL defines following ways to manipulate data stored in an RDBMS.

DDL: Data Definition Language

This includes changes to the structure of the table like creation of table, altering table, deleting

a table etc.

All DDL commands are auto-committed. That means it saves all the changes permanently in

the database.

Command Description

create to create new table or database

alter for alteration

truncate delete data from table

drop to drop a table

rename to rename a table

DML: Data Manipulation Language

DML commands are used for manipulating the data stored in the table and not the table itself.

DML commands are not auto-committed. It means changes are not permanent to database, they

can be rolled back.

Command Description

insert to insert a new row

38

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

update to update existing row

delete to delete a row

merge merging two rows or two tables

TCL: Transaction Control Language

These commands are to keep a check on other commands and their affect on the database.

These commands can annul changes made by other commands by rolling the data back to its

original state. It can also make any temporary change permanent.

Command Description

commit to permanently save

rollback to undo change

savepoint to save temporarily

DCL: Data Control Language

Data control language are the commands to grant and take back authority from any database

user.

Command Description

grant grant permission of right

revoke take back permission.

DQL: Data Query Language

Data query language is used to fetch data from tables based on conditions that we can easily

apply.

39

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Command Description

select retrieve records from one or more table

Schema Definition:

Database systems comprise of complex data structures. Thus, to make the system efficient for

retrieval of data and reduce the complexity of the users, developers use the method of Data

Abstraction.

There are mainly three levels of data abstraction:

1. Internal Level: Actual PHYSICAL storage structure and access paths.

2. Conceptual or Logical Level: Structure and constraints for the entire database

3. External or View level: Describes various user views

Internal Level/Schema

The internal schema defines the physical storage structure of the database. The internal schema

is a very low-level representation of the entire database. It contains multiple occurrences of

multiple types of internal record. In the ANSI term, it is also called "stored record'.

Facts about Internal schema:

• The internal schema is the lowest level of data abstraction

• It helps you to keeps information about the actual representation of the entire database.

Like the actual storage of the data on the disk in the form of records

• The internal view tells us what data is stored in the database and how

40

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

• It never deals with the physical devices. Instead, internal schema views a physical

device as a collection of physical pages

Conceptual Schema/Level

The conceptual schema describes the Database structure of the whole database for the

community of users. This schema hides information about the physical storage structures and

focuses on describing data types, entities, relationships, etc.

This logical level comes between the user level and physical storage view. However, there is

only single conceptual view of a single database.

Facts about Conceptual schema:

• Defines all database entities, their attributes, and their relationships

• Security and integrity information

• In the conceptual level, the data available to a user must be contained in or derivable

from the physical level

External Schema/Level

An external schema describes the part of the database which specific user is interested in. It

hides the unrelated details of the database from the user. There may be "n" number of external

views for each database.

Each external view is defined using an external schema, which consists of definitions of various

types of external record of that specific view.

An external view is just the content of the database as it is seen by some specific particular

user. For example, a user from the sales department will see only sales related data.

Facts about external schema:

• An external level is only related to the data which is viewed by specific end users.

• This level includes some external schemas.

• External schema level is nearest to the user

• The external schema describes the segment of the database which is needed for a certain

user group and hides the remaining details from the database from the specific user

group

Goal of 3 level/schema of Database

Here, are some Objectives of using Three schema Architecture:

41

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

• Every user should be able to access the same data but able to see a customized view of

the data.

• The user need not to deal directly with physical database storage detail.

• The DBA should be able to change the database storage structure without disturbing

the user's views

• The internal structure of the database should remain unaffected when changes made to

the physical aspects of storage.

Advantages Database Schema

• You can manage data independent of the physical storage

• Faster Migration to new graphical environments

• DBMS Architecture allows you to make changes on the presentation level without

affecting the other two layers

• As each tier is separate, it is possible to use different sets of developers

• It is more secure as the client doesn't have direct access to the database business logic

• In case of the failure of the one-tier no data loss as you are always secure by accessing

the other tier

Disadvantages Database Schema

• Complete DB Schema is a complex structure which is difficult to understand for every

one

• Difficult to set up and maintain

• The physical separation of the tiers can affect the performance of the Database

Constraints in DBMS-

Relational constraints are the restrictions imposed on the database contents and operations.

They ensure the correctness of data in the database.

Types of Constraints in DBMS-

In DBMS, there are following 5 different types of relational constraints-

42

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

1. Domain constraint

2. Tuple Uniqueness constraint

3. Key constraint

4. Entity Integrity constraint

5. Referential Integrity constraint

1. Domain Constraint-

• Domain constraint defines the domain or set of values for an attribute.

• It specifies that the value taken by the attribute must be the atomic value from its domain.

Example-

Consider the following Student table-

STU_ID Name Age

S001 Akshay 20

43

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

S002 Abhishek 21

S003 Shashank 20

S004 Rahul A

Here, value ‘A’ is not allowed since only integer values can be taken by the age attribute.

3. Key Constraint-

Key constraint specifies that in any relation-

• All the values of primary key must be unique.

• The value of primary key must not be null.

Example-

Consider the following Student table-

STU_ID Name Age

S001 Akshay 20

S001 Abhishek 21

S003 Shashank 20

S004 Rahul 20

This relation does not satisfy the key constraint as here all the values of primary key are not

unique.

44

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

4. Entity Integrity Constraint-

• Entity integrity constraint specifies that no attribute of primary key must contain a null value

in any relation.

• This is because the presence of null value in the primary key violates the uniqueness

property.

Example-

Consider the following Student table-

STU_ID Name Age

S001 Akshay 20

S002 Abhishek 21

S003 Shashank 20

 Rahul 20

This relation does not satisfy the entity integrity constraint as here the primary key contains a

NULL value.

5. Referential Integrity Constraint-

• This constraint is enforced when a foreign key references the primary key of a relation.

• It specifies that all the values taken by the foreign key must either be available in the relation

of the primary key or be null.

mportant Results-

The following two important results emerges out due to referential integrity constraint-

• We can not insert a record into a referencing relation if the corresponding record does not

exist in the referenced relation.

45

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

• We can not delete or update a record of the referenced relation if the corresponding record

exists in the referencing relation.

Example-

Consider the following two relations- ‘Student’ and ‘Department’.

Here, relation ‘Student’ references the relation ‘Department’.

Student

STU_ID Name Dept_no

S001 Akshay D10

S002 Abhishek D10

S003 Shashank D11

 S004 Rahul D14

Department

Dept_no Dept_name

D10 ASET

46

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

D11 ALS

D12 ASFL

D13 ASHS

Here,

• The relation ‘Student’ does not satisfy the referential integrity constraint.

• This is because in relation ‘Department’, no value of primary key specifies department no.

14.

• Thus, referential integrity constraint is violated.

Queries and views:

Views in SQL

o Views in SQL are considered as a virtual table. A view also contains rows and columns.

o To create the view, we can select the fields from one or more tables present in the

database.

o A view can either have specific rows based on certain condition or all the rows of a

table.

Sample table:

47

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

1. Creating view

A view can be created using the CREATE VIEW statement. We can create a view from a

single table or multiple tables.

Syntax:

1. CREATE VIEW view_name AS

2. SELECT column1, column2.....

3. FROM table_name

4. WHERE condition;

2. Creating View from a single table

In this example, we create a View named DetailsView from the table Student_Detail.

Query:

1. CREATE VIEW DetailsView AS

2. SELECT NAME, ADDRESS

3. FROM Student_Details

4. WHERE STU_ID < 4;

Just like table query, we can query the view to view the data.

1. SELECT * FROM DetailsView;

Output:

NAME ADDRESS

Stephan Delhi

Kathrin Noida

48

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

David Ghaziabad

3. Creating View from multiple tables

View from multiple tables can be created by simply include multiple tables in the SELECT

statement.

In the given example, a view is created named MarksView from two tables Student_Detail and

Student_Marks.

Query:

1. CREATE VIEW MarksView AS

2. SELECT Student_Detail.NAME, Student_Detail.ADDRESS, Student_Marks.MARKS

3. FROM Student_Detail, Student_Mark

4. WHERE Student_Detail.NAME = Student_Marks.NAME;

To display data of View MarksView:

1. SELECT * FROM MarksView;

NAME ADDRESS MARKS

Stephan Delhi 97

Kathrin Noida 86

David Ghaziabad 74

Alina Gurugram 90

4. Deleting View

A view can be deleted using the Drop View statement.

Syntax

1. DROP VIEW view_name;

Example:

If we want to delete the View MarksView, we can do this as:

1. DROP VIEW MarksView;

49

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Functional Dependency

 Functional Dependency (FD) determines the relation of one attribute to another attribute in a

database management system (DBMS) system. Functional dependency helps you to maintain

the quality of data in the database. A functional dependency is denoted by an arrow →. The

functional dependency of X on Y is represented by X → Y. Functional Dependency plays a

vital role to find the difference between good and bad database design.

Types Of Functional Dependencies-

There are two types of functional dependencies-

1. Trivial Functional Dependencies

2. Non-trivial Functional Dependencies

Example:

Employee number Employee Name Salary City

1 Dana 50000 San Francisco

2 Francis 38000 London

3 Andrew 25000 Tokyo

50

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

In this example, if we know the value of Employee number, we can obtain Employee Name,

city, salary, etc. By this, we can say that the city, Employee Name, and salary are functionally

depended on Employee number.

Rules of Functional Dependencies

Below given are the Three most important rules for Functional Dependency:

• Reflexive rule –. If X is a set of attributes and Y is_subset_of X, then X holds a value

of Y.

• Augmentation rule: When x -> y holds, and c is attribute set, then ac -> bc also holds.

That is adding attributes which do not change the basic dependencies.

• Transitivity rule: This rule is very much similar to the transitive rule in algebra if x ->

y holds and y -> z holds, then x -> z also holds. X -> y is called as functionally that

determines y.

Types of Functional Dependencies

• Multivalued dependency

• Trivial functional dependency

• Non-trivial functional dependency

• Transitive dependency

Multivalued dependency in DBMS

Multivalued dependency occurs in the situation where there are multiple independent

multivalued attributes in a single table. A multivalued dependency is a complete constraint

between two sets of attributes in a relation. It requires that certain tuples be present in a relation.

Example:

Car_model Maf_year Color

H001 2017 Metallic

H001 2017 Green

H005 2018 Metallic

H005 2018 Blue

51

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

H010 2015 Metallic

H033 2012 Gray

In this example, maf_year and color are independent of each other but dependent on car_model.

In this example, these two columns are said to be multivalue dependent on car_model.

This dependence can be represented like this:

car_model -> maf_year

car_model-> colour

Trivial Functional dependency:

The Trivial dependency is a set of attributes which are called a trivial if the set of attributes are

included in that attribute.

So, X -> Y is a trivial functional dependency if Y is a subset of X.

For example:

Emp_id Emp_name

AS555 Harry

AS811 George

AS999 Kevin

Consider this table with two columns Emp_id and Emp_name.

{Emp_id, Emp_name} -> Emp_id is a trivial functional dependency as Emp_id is a subset of

{Emp_id,Emp_name}.

Non trivial functional dependency in DBMS

Functional dependency which also known as a nontrivial dependency occurs when A->B holds

true where B is not a subset of A. In a relationship, if attribute B is not a subset of attribute A,

then it is considered as a non-trivial dependency.

52

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Example:

(Company} -> {CEO} (if we know the Company, we knows the CEO name)

But CEO is not a subset of Company, and hence it's non-trivial functional dependency.

Transitive dependency:

A transitive is a type of functional dependency which happens when t is indirectly formed by

two functional dependencies.

Example:

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Alibaba Jack Ma 54

{Company} -> {CEO} (if we know the compay, we know its CEO's name)

{CEO } -> {Age} If we know the CEO, we know the Age

Therefore according to the rule of rule of transitive dependency:

{ Company} -> {Age} should hold, that makes sense because if we know the company name,

we can know his age.

53

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Note: You need to remember that transitive dependency can only occur in a relation of three or

more attributes.

Advantages of Functional Dependency

• Functional Dependency avoids data redundancy. Therefore same data do not repeat at

multiple locations in that database

• It helps you to maintain the quality of data in the database

• It helps you to defined meanings and constraints of databases

• It helps you to identify bad designs

• It helps you to find the facts regarding the database design

Normalization

o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of relations.

It is also used to eliminate the undesirable characteristics like Insertion, Update and

Deletion Anomalies.

o Normalization divides the larger table into the smaller table and links them using

relationship.

o The normal form is used to reduce redundancy from the database table.

Types of Normal Forms

There are the four types of normal forms:

54

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

First Normal Form (1NF)

o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only

single-valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute

EMP_PHONE.

EMPLOYEE table:

55

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Second Normal Form (2NF)

o In the 2NF, relational must be in 1NF.

o In the second normal form, all non-key attributes are fully functional dependent on the

primary key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In

a school, a teacher can teach more than one subject.

56

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Third Normal Form (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial

dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must be

in third normal form.

A relation is in third normal form if it holds atleast one of the following conditions for every

non-trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

57

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Super key in the table above:

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}....so on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-

prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent

on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively

dependent on super key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key

58

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Boyce Codd normal form (BCNF)

o BCNF is the advance version of 3NF. It is stricter than 3NF.

o A table is in BCNF if every functional dependency X → Y, X is the super key of the

table.

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one

department.

EMPLOYEE table:

In the above table Functional dependencies are as follows:

59

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

60

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Fourth normal form (4NF)

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued

dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then

the relation will be a multi-valued dependency.

So to make the above table into 4NF, we can decompose it into two tables:

STUDENT_COURSE

61

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

62

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

UNIT III

Algorithms for Query Processing and Optimization - Introduction to Transaction Processing

Concepts and Theory - Concurrency control techniques.

QUERY PROCESSING

3.1 Algorithms for Query Processing and Optimization

 Query Processing refers to the range of activities involved in extracting data from a

database. The activities include translation of queries in high-level database languages into

expressions that can be used at the physical level of the file system, a variety of query-

optimizing transformations, and actual evaluation of queries.

The steps involved in processing a query appear in Figure 3.1.1. The basic steps are:

1. Parsing and translation.

2. Optimization.

3. Evaluation.

Fig. 3.1.1 Typical steps when processing a high level query.

1. Parsing and translation

• Translate the query into its internal form. This is then translated into relational

algebra.

• Parser checks syntax, verifies relation.

2. Optimization

• SQL is a very high level language:

o The users specify what to search for - not how the search is actually done

63

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

o The algorithms are chosen automatically by the DBMS.

• For a given SQL query there may be many possible execution plans.

• Amongst all equivalent plans choose the one with lowest cost.

• Cost is estimated using statistical information from the database catalog.

3. Evaluation

• The query evaluation engine takes a query evaluation plan, executes that plan and

returns the answer to that query.

As an illustration, consider the query:

 select salary from instructor where salary < 75000;

This query can be translated into either of the following relational-algebra expressions:

 (or)

 Further, each relational-algebra operation can be executed by one of several different

algorithms. For example, to implement the preceding selection, we can search every tuple in

instructor to find tuples with salary less than 75000. If a B+ tree index is available on the

attribute salary, we can use the index instead to locate the tuples. To specify fully how to

evaluate a query, providing the relational-algebra expression will not be anought, but also to

annotate it with instructions specifying how to evaluate each operation.

Figure 3.1.2 A query-evaluation plan

 A sequence of primitive operations that can be used to evaluate a query is a query-

execution plan or query-evaluation plan. Figure 3.1.2 illustrates an evaluation plan for our

example query. The query-execution engine takes a query-evaluation plan, executes that plan,

and returns the answers to the query. The different evaluation plans for a given query can have

different costs. It is the responsibility of the system to construct a query evaluation plan that

minimizes the cost of query evaluation; this task is called query optimization. Once the query

plan is chosen, the query is evaluated with that plan, and the result of the query is output. In

order to optimize a query, a query optimizer must know the cost of each operation.

Measures of Query Cost

64

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

 The cost of query evaluation can be measured in terms of a number of different

resources, including disk accesses, CPU time to execute a query and in a distributed or parallel

database system, the cost of communication.

 The response time for a query-evaluation plan could be used as a good measure of the

cost of the plan. In large database systems, however, disk accesses are usually the most

important cost, since disk accesses are slow compared to in-memory operations. Most people

consider the disk accesses cost a reasonable measure of the cost of a query-evaluation plan.

 The number of block transfers from disk is also used as a measure of the actual cost. It

takes more time to write a block to disk than to read a block from disk. For more accurate

measure, find:

i. The number of seek operations performed

ii. The number of blocks read

iii. The number of blocks written

and then add up these numbers after multiplying them by average seek time, average transfer

time for reading a block and average transfer time for writing a block respectively.

3.1.1 Using Heuristics in Query Optimization

Query Optimization - Heuristics

Query Trees and Graphs

select P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate

from Project as P, Department as D, Employee as E

where P.Dnum=D.Dnumber and D.Mgr_ssn=E.Ssn and P.Plocation='Stafford';

65

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

πPnumber, Dnum, Lname, Address, Bdate[[(σPlocation='Stafford'(Project)) ⋈Dnum=Dnumber (Department)]

⋈Mgr_ssn=Ssn (Employee)]

Optimizing Them

In actuality the initial translation is simplistic:

From ×

Where σ

Select π

Then optimizations transform the query tree into something more efficient based on

reordering and transforming the extended relational operations. After that the tree is

converted to a query execution plan that chooses the best algorithms to implement the

portions of the tree. πPnumber, Dnum, Lname, Address, Bdate(σP.Dnum=D.Dnumber ∧ D.Mgr_ssn=E.Ssn ∧

P.Plocation='Stafford'((Project × Department) × Employee))

1. Find the last names of employees born after 1957 who work on a project named

‘Aquarius’.

2. select Lname

3. from Employee, Works_On, Project

66

http://www.cs.montana.edu/~halla/csci440/n19/figure-19-4.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

4. where Pname='Aquarius' and Pnumber=Pno and Essn=Ssn

5. and Bdate > '1957-12-31';

67

http://www.cs.montana.edu/~halla/csci440/n19/figure-19-5a.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

General Transformation Rules

68

http://www.cs.montana.edu/~halla/csci440/n19/figure-19-5b.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Generally, perform σ and π (which tend to reduce the size of the intermediate

tables) before any &bowie; operations (which tend to multiply their sizes). .

1 Cascade σ σc₁ ∧ c₂ ∧ … ∧ cn ≡

σc₁(σc₂(…σcn(R)))

2 Commutativity

of σ

σa(σb(R)) ≡ σb(σa(R))

3 Cascade π πa(πb(…(R))) ≡ πa(R)

4 Commute σ

with π

πa,b,…(σc(R)) ≡

σc(πa,b,…(R))

Only if c only depends on the attributes of

π

5 Commutativity

of ⋈

R ⋈ S ≡ S ⋈ R Also true of ×

6 Commuting σ

with ⋈

σc(R ⋈ S) ≡ (σc(R)) ⋈ S Only if c involves only the attributes of R.

Also applies to ×.

6a Commuting σ

with ⋈,

conjunction

version

σc₁ ∧ c₂(R ⋈ S) ≡ (σc₁(R))

⋈ (σc₂(S))

Where c₁ and c₂ involve the attributes of

R and S, respectively.

7 Commuting π

with ⋈

πL (R ⋈c S) ≡

(πA₁,…,An(R))

⋈c (πB₁,…,Bm(S))

So long as the projection attributes L =

{A₁,…,An,B₁,…,Bm} where A ∈ Attr(R),

B ∈ Attr(S), and the join condition c only

dependes on attributes in L.

7a Commuting π

with ⋈, extra

join attributes

version

πL (R ⋈c S) ≡

πL [(πA₁,…,An,…,An+k(R))

⋈c (πB₁,…,Bm,…,Bm+p(S))]

Here the projection attributes in L are the

same, but the join condition c depends on

additional attributes from R and S. These

attributes are shown

as An+1…An+k and Bm+1…Bm+p. The

original πL must be wrapped around the

right-side expression to remove those

extra join atttributes one they're

unneeded.

8 Commutativity

of set operations

 ∩ and ∪ are commutative but – is not

9 Associativity of

⋈, ×, ∪, and ∩

(R × S) × T ≡ R × (S ×

T)

Also true for each of the other three

69

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

10 Commute σ

with set

operations

σc (R θ S) ≡ (σc(R)) θ

(σc(S))
Where θ is any of the set operations ∪, ∩,

–

11 Commute π

with ∪

πL(R ∪ S) ≡ (πL(R)) ∪

(πL(S))

12 Convert a (σ,×)

sequence into ⋈

σc(R × S) ≡ R ⋈c S

DeMorgan's laws:

• ¬(A ∧ B) ≡ (¬A) ∨ (¬B)

• ¬(A ∨ B) ≡ (¬A) ∧ (¬B)

General approach:

• Start with the canonical tree.

• Move σs as low as possible.

• Merge operations when possible (×,σ → ⋈ is classic).

• Move πs down, but not probably not below σs.

Example query optimization

select Fname, Lname, Address

from Employee as E, Department as D

where D.Super_ssn=E.Ssn and D.Dname like 'Plan%';

Converting Query Trees to Execution Plans

(Up to algorithms sections)

• If there is an index on Department.Dname, use it for an index search to implement the

σDname='Research'.

• If there is an index on Employee.Dno, implement the ⋈Dnumber=Dno by a J2 (Single-

loop join).

• Lastly a simple π over those results.

70

http://www.cs.montana.edu/~halla/csci440/n19/n19.html#select-join
http://www.cs.montana.edu/~halla/csci440/n19/figure-19-6.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

• Ideally all these algorithms would be pipelined as a single step without writing

intermediate files.

Using Selectivity and Cost Estimates in Query Optimization

The DBMS attempts to form a good cost model of various query operations as applied to the

current database state, including the attribute value statistics (histogram), nature of indices,

number of block buffers that can be allocated to various pipelines, selectivity of selection

clauses, storage speed, network speed (for distributed databases in particular), and so on.

Access cost to secondary storage

Reading and writing blocks between storage and ram. (time)

Disk storage cost

Cost of temporary intermediate files in storage. (time/space)

Computation cost

Usually slower than storage, but sometimes not, the cpu cost of evaluating the query.

(time)

Memory usage cost

The amount of ram needed by the query. (space)

Communication cost

The cost to transport query data over a network between database nodes. (time)

“Typical” databases emphasize access cost, the usual limiting factor. In-memory databases

minimize computation cost, while distributed databases put increasing emphasis on

communication cost.

Catalog Information Used in Cost Functions

• Basic file data: number of records (r), record size (R), number of blocks (b).

• Primary file organization (heap file, ordered, ordered with index, hashed, overflow?)

• Other indices, if present.

• Number of levels (x) for multilevel indices, top-level block count (bI1).

• Number of distinct values (d) of an attribute. If the values are uniformly distributed,

the selectivity (sl) is (1/d), and the selection cardinality (s = sl·r). If the attribute values

are skewed this isn't a good estimate, and a more detailed histogram of sl is

appropriate.

Examples of Cost Functions for Select

S1. linear search

On average half the blocks must be accessed for an equality condition on the key, all

the blocks otherwise.

S2. binary search

lg b for the search, plus more if it's nonkey.

S3a. primary index for a single record

One more than the number of index levels.

S3b. hash index for a single record

Average of 1 or 2 depending on the type of hash.

S4,.ordered index for multiple records

CS4=x+b/2 as a rough estimate.

71

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

S5. clustering index for multiple records

x for the index search to get the cluster block, then ⌈s/bfr⌉ file blocks pointed to by the

cluster.

S6. B+-Tree

Tree height + 1 if its key, that plus the selectivity (s) if not.

S7. conjunctive selection

The sum of the costs of the subconditions, if the set intersection fits in memory.

S8,.conjunctive selection with composite index

The same as above for whichever type of index.

Examples of Cost Functions for Join

A join selectivity (js) is the ratio of the number of tuples produced by a join to the number of

tuples produced by a cross product of the underlying relations, or js = |(R ⋈c S)| / |(R×S)| =

|(R ⋈c S)| / (|R|·|S|).

Multiple Relation Queries and Join Ordering

Unit-IV

Recovery Techniques

Database Recovery Techniques - Database Security – Debate on the distributed

databases and Client- Server Architecture with reference to Indian Railway Reservation

System.

 a. Database Recovery

1 Purpose of Database Recovery

 To bring the database into the last consistent state, which existed prior

72

http://www.cs.montana.edu/~halla/csci440/n19/figure-19-7.png

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

to the failure.

 To preserve transaction properties (Atomicity, Consistency, Isolation and

Durability).

Example:

 If the system crashes before a fund transfer transaction completes its execution,

then either one or both accounts may have incorrect value. Thus, the database

must be restored to the state before the transaction modified any of the accounts

2. Types of Failure

 The database may become unavailable for use due to

 Transaction failure: Transactions may fail because of incorrect input,

deadlock, incorrect synchronization.

 System failure: System may fail because of addressing error,

application error, operating system fault, RAM failure, etc.

 Media failure: Disk head crash, power disruption, etc.

 Transaction Log

 For recovery from any type of failure data values prior to modification (BFIM

 BeFore Image) and the new value after modification (AFIM – AFter Image) are

required.

 These values and other information is stored in a sequential file called Transaction

log.

 Data Update

 Immediate Update: As soon as a data item is modified in cache, the disk copy is

updated.

 Deferred Update: All modified data items in the cache is written either after a

transaction ends its execution or after a fixed number of transactions have completed

their execution.

73

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

 Shadow update: The modified version of a data item does not overwrite its disk

copy but is written at a separate disk location.

 In-place update: The disk version of the data item is overwritten by the cache

version.

 Data Caching

 Data items to be modified are first stored into database cache by the Cache Manager

(CM) and after modification they are flushed (written) to the disk.

 The flushing is controlled by Modified and Pin-Unpin bits.

 Pin-Unpin: Instructs the operating system not to flush the data item.

 Modified: Indicates the AFIM of the data item.’

 Transaction Roll-back (Undo) and Roll-Forward (Redo)

 To maintain atomicity, a transaction’s operations are redone or undone.

 Undo: Restore all BFIMs on to disk (Remove all AFIMs).

 Redo: Restore all AFIMs on to disk.

 Database recovery is achieved either by performing only Undos or only Redos or

by a combination of the two. These operations are recorded in the log as they

happen.

74

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Roll-back: One execution of T1, T2 and T3 as recorded in the log

 Write-Ahead Logging

75

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

 When in-place update (immediate or deferred) is used then log is necessary for

recovery and it must be available to recovery manager. This is achieved by Write-

Ahead Logging (WAL) protocol. WAL states that

o For Undo: Before a data item’s AFIM is flushed to the database disk

(overwriting the BFIM) its BFIM must be written to the log and the log must

be saved on a stable store (log disk).

o For Redo: Before a transaction executes its commit operation, all its AFIMs

must be written to the log and the log must be saved on a stable store.

 Checkpointing

 Time to time (randomly or under some criteria) the database flushes its buffer

to database disk to minimize the task of recovery. The following steps defines

a checkpoint operation:

 Suspend execution of transactions temporarily.

 Force writes modified buffer data to disk.

 Write a [checkpoint] record to the log, save the log to disk.

 Resume normal transaction execution.

 During recovery redo or undo is required to transactions appearing

after [checkpoint] record.

Steal/No-Steal and Force/No-Force

 Possible ways for flushing database cache to database disk:

 Steal: Cache can be flushed before transaction commits.

 No-Steal: Cache cannot be flushed before transaction commit.

 Force: Cache is immediately flushed (forced) to disk.

 No-Force: Cache is deferred until transaction commits

These give rise to four different ways for handling recovery:

76

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

 Steal/No-Force (Undo/Redo)

 Steal/Force (Undo/No-redo)

 No-Steal/No-Force (Redo/No-undo)

 No-Steal/Force (No-undo/No-redo)

8 . Recovery Scheme

a. Deferred Update (No Undo/Redo)

 The data update goes as follows:

 A set of transactions records their updates in the log.

 At commit point under WAL scheme these updates are saved on

database disk.

After reboot from a failure the log is used to redo all the transactions affected by this failure.

No undo is required because no AFIM is flushed to the disk before a transaction commits.

b. Deferred Update with concurrent users

77

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

This environment requires some concurrency control mechanism to guarantee isolation

property of transactions. In a system recovery transactions which were recorded in the

log after the last checkpoint were redone. The recovery manager may scan some of the

transactions recorded before the checkpoint to get the AFIMs

78

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Deferred Update with concurrent users

Two tables are required for implementing this protocol:

 Active table: All active transactions are entered in this table.

 Commit table: Transactions to be committed are entered in this table.

During recovery, all transactions of the commit table is redone and all transactions of

active tables are ignored since none of their AFIMs reached the database. It is possible

that a commit table transaction may be redone twice but this does not create any

inconsistency because of a redone is

“idempotent”, that is, one redone for an AFIM is equivalent to multiple redone for

the same AFIM.

c. Recovery Techniques Based on Immediate Update

Undo/No-redo Algorithm

 In this algorithm AFIMs of a transaction are flushed to the database disk under

WAL before it commits. For this reason the recovery manager undoes all transactions

during recovery.No transaction is redone. It is possible that a transaction might have

completed execution and ready to commit but this transaction is also undone.

Undo/Redo Algorithm (Single-user environment)

Recovery schemes of this category apply undo and also redo for recovery. In a single-user

environment no concurrency control is required but a log is maintained under WAL.Note

79

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

that at any time there will be one transaction in the system and it will be either in the commit

table or in the active table.

The recovery manager performs:

Undo of a transaction if it is in the active table.

Redo of a transaction if it is in the commit table.

Undo/Redo Algorithm (Concurrent execution)

Recovery schemes of this category applies undo and also redo to recover the database

from failure.

In concurrent execution environment a concurrency control is required and log is

maintained under WAL.

Commit table records transactions to be committed and active table records active

transactions. To minimize the work of the recovery manager check pointing is used.

The recovery performs:

Undo of a transaction if it is in the active table.

Redo of a transaction if it is in the commit table.

d.Shadow Paging

The AFIM does not overwrite its BFIM but recorded at another place on the disk. Thus, at

any time a data item has AFIM and BFIM (Shadow copy of the data item) at two

different places on the disk.

X and Y: Shadow copies of data items

X' and Y': Current copies of data items

To manage access of data items by concurrent transactions two directories (current

and shadow) are used.

80

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

The directory arrangement is illustrated below. Here a page is a data item.

e. The ARIES Recovery Algorithm

The ARIES Recovery Algorithm is based on:

WAL (Write Ahead Logging)

Repeating history during redo:

ARIES will retrace all actions of the database system prior to the crash

to reconstruct the database state when the crash occurred.

Logging changes during undo:

It will prevent ARIES from repeating the completed undo operations

if a failure occurs during recovery, which causes a restart of the

recovery process.

The ARIES recovery algorithm consists of three steps:

 Analysis: step identifies the dirty (updated) pages in the buffer and the set of

transactions active at the time of crash. The appropriate point in the log where

redo is to start is also determined.

 Redo: necessary redo operations are applied.

 Undo: log is scanned backwards and the operations of transactions active

at the time of crash are undone in reverse order.

The Log and Log Sequence Number (LSN)

A log record is written for:

81

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

 data update

 transaction commit

 transaction abort

 undo

 transaction end

 In the case of undo a compensating log record is written.

The Log and Log Sequence Number (LSN) (contd.)

 A unique LSN is associated with every log record.

 LSN increases monotonically and indicates the disk address of the

log record it is associated with.

 In addition, each data page stores the LSN of the latest log

record corresponding to a change for that page.

 A log record stores

 (a) the previous LSN of that transaction

 (b) the transaction ID

 A log record stores:

 Previous LSN of that transaction: It links the log record of each

transaction. It is like a back pointer points to the previous record of the

same transaction

 Transaction ID

 Type of log record

 For a write operation the following additional information is logged:

 Page ID for the page that includes the item

Length of the updated item

Its offset from the beginning of the page

BFIM of the item

AFIM of the item

 The Transaction table and the Dirty Page table

82

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

 For efficient recovery following tables are also stored in the log

during check pointing:

Transaction table: Contains an entry for each active

transaction, with information such as transaction ID,

transaction status and the LSN of the most recent log

record for the transaction.

Dirty Page table: Contains an entry for each dirty page in the buffer, which includes the

page ID and the LSN corresponding to the earliest update to that page.

e. Checkpointing

A checkpointing does the following:

Writes a begin checkpoint record in the log Writes an end checkpoint record in the log. With

this record the contents of transaction table and dirty page table are appended to the end of the

log.Writes the LSN of the begin_checkpoint record to a special file. This special file is accessed

during recovery to locate the last checkpoint information.

To reduce the cost of checkpointing and allow the system to continue to execute

transactions, ARIES uses “fuzzy checkpointing”.

The following steps are performed for recovery

Analysis phase: Start at the begin_checkpoint record and proceed to the end_checkpoint

record. Access transaction table and dirty page table are appended to the end of the log. Note

that during this phase some other log records may be written to the log and transaction table

may be modified. The analysis phase compiles the set of redo and undoes to be performed

and ends.

Redo phase: Starts from the point in the log up to where all dirty pages have been flushed, and

move forward to the end of the log. Any change that appears in the dirty page table is redone.

Undo phase: Starts from the end of the log and proceeds backward while performing

appropriate undo. For each undo it writes a compensating record in the log. The recovery

completes at the end of undo phase.

83

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

f. Recovery in multidatabase system

A multi database system is a special distributed database system where one node may be running

relational database system under UNIX, another may be running object-oriented system under

Windows and so on.

A transaction may run in a distributed fashion at multiple nodes. In this execution scenario the

transaction commits only when all these multiple nodes agree to commit individually the part of the

transaction they were executing.

This commit scheme is referred to as “two-phase commit” (2PC). If any one of these nodes fails or

cannot commit the part of the transaction,

then the transaction is aborted.Each node recovers the transaction under its own recovery protocol.

Distributed Database:

Distributed databases bring the advantages of distributed computing to the database management

domain. A distributed computing system consists of a number of processing elements, not necessarily

homogeneous, that are interconnected by a computer network, and that cooperate in performing certain

assigned tasks.

84

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

A distributed database (DDB) is a collection of multiple, logically interrelated databases distributed

over a computer network • A distributed database management system (DDBMS) is the software that

manages the DDB and provides an access mechanism that makes this distribution transparent to the

users.

Data stored at a number of sites each site logically consists of a single processor at different sites are
interconnected by a computer network (we do not consider multiprocessors in DDBMS, cf. parallel
systems).

 DDBS is a database, not a collection of files (cf. relational data model).Placement and query of data
is impacted by the access patterns of the user DDBMS is a collections of DBMSs (not a remote file
system).

Distributed System

85

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Distributed Databases

Applications of Distributed Databases

86

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Advantages of Distributed Databases

a)Management of distributed data with different levels of transparency:

Distribution or network transparency: This refers to freedom for the user from the operational details

of the network. It may be divided into location transparency and naming transparency. Location

transparency refers to the fact that the command used to perform a task is independent of the location

of data and the location of the system where the command was issued. Naming transparency implies

that once a name is specified, the named objects can be accessed unambiguously without additional

specification.

b)Replication transparency:

Copies of data may be stored at multiple sites for better availability, performance, and reliability.

Replication transparency makes the user unaware of the existence of copies.

c) Fragmentation transparency:

Two types of fragmentation are possible.

1)Horizontal fragmentation distributes a relation into sets of tuples (rows).

 2)Vertical fragmentation distributes a relation into subrelations where each subrelation is defined

by a subset of the columns of the original relation. A global query by the user must be transformed

into several fragment queries. Fragmentation transparency makes the user unaware of the existence of

fragments.

d) Increased reliability and availability:

These are two of the most common potential advantages cited for distributed databases.

Reliability is broadly defined as the probability that a system is running (not down) at a certain time

point, whereas availability is the probability that the 1 Page 658 of 893 system is continuously available

during a time interval. When the data and DBMS software are distributed over several sites, one site

may fail while other sites continue to operate. Only the data and software that exist at the failed site

cannot be accessed. This improves both reliability and availability.

87

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

e)Improved performance:

f.)Easier expansion: In a distributed environment, expansion of the system in terms of adding more

data, increasing database sizes, or adding more processors is much easier.

Data Fragmentation

Split a relation into logically related and correct parts. A relation can be fragmented in two ways:

Horizontal Fragmentation

Vertical Fragmentation

Horizontal fragmentation:

It is a horizontal subset of a relation which contains those of tuples which satisfy selection conditions.

Consider the Employee relation with selection condition (DNO = 5). All tuples satisfy this condition

will create a subset which will be a horizontal fragment of Employee relation. A selection condition

may be composed of several conditions connected by AND or OR. Derived horizontal fragmentation:

It is the partitioning of a primary relation to other secondary relations which are related with foreign

keys.

Vertical fragmentation

It is a subset of a relation which is created by a subset of columns. Thus a vertical fragment of a relation

will contain values of selected columns. There is no selection condition used in vertical fragmentation.

Consider the Employee relation. A vertical fragment of can be created by keeping the values of Name,

Bdate, Sex, and Address. Because there is no condition for creating a vertical fragment, each fragment

must include the primary key attribute of the parent relation Employee. In this way all vertical

fragments of a relation are connected.

Fragmentation Representation

Horizontal fragmentation

1. Each horizontal fragment on a relation can be specified by a sCi

88

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

(R) operation in the relational algebra.

2. Complete horizontal fragmentation

3. A set of horizontal fragments whose conditions C1, C2, …, Cn

include all the tuples in R- that is, every tuple in R satisfies (C1

OR C2 OR … OR Cn).

4. Disjoint complete horizontal fragmentation: No tuple in R

satisfies (Ci AND Cj) where i ≠ j.

5. To reconstruct R from horizontal fragments a UNION is applied.

Vertical fragmentation

1. A vertical fragment on a relation can be specified by a PLi(R)

operation in the relational algebra.

2. Complete vertical fragmentation

3. A set of vertical fragments whose projection lists L1, L2, …, Ln

include all the attributes in R but share only the primary key of

R. In this case the projection lists satisfy the following two

conditions:

4. L1 » L2 » ... » Ln = ATTRS (R)

5. Li « Lj = PK(R) for any i j, where ATTRS (R) is the set of

attributes of R and PK(R) is the primary key of R.

6. To reconstruct R from complete vertical fragments a OUTER

UNION is applied.

Mixed (Hybrid) fragmentation

89

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

1. A combination of Vertical fragmentation and Horizontal

fragmentation.

2. This is achieved by SELECT-PROJECT operations which is

represented by PLi(sCi (R)).

3. If C = True (Select all tuples) and L ≠ ATTRS(R), we get a

vertical fragment, and if C ≠ True and L ≠ ATTRS(R), we get a

mixed fragment.

4. If C = True and L = ATTRS(R), then R can be considered a

fragment

Fragmentation schema

A definition of a set of fragments (horizontal or vertical or horizontal and vertical) that includes all

attributes and tuples in the database that satisfies the condition that the whole database can be

reconstructed from the fragments by applying some sequence of UNION (or OUTER JOIN) and

UNION operations.

Allocation schema

It describes the distribution of fragments to sites of distributed databases. It can be fully or partially

replicated or can be partitioned

Data Replication

Database is replicated to all sites. In full replication the entire database is replicated and in partial

replication some selected part is replicated to some of the sites.

Data replication is achieved through a replication schema.

Data Distribution (Data Allocation)

This is relevant only in the case of partial replication or partition.

The selected portion of the database is distributed to the database sites.

Types of Distributed Database Systems

90

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Homogeneous

1)All sites of the database system have identical setup, i.e., same database system software.

2)The underlying operating system may be different.

For example, all sites run Oracle or DB2, or Sybase or some other database system.

The underlying operating systems can be a mixture of Linux, Window, Unix, etc.

Homogeneous System

91

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Heterogeneous

1) Federated: Each site may run different database system but the data access is managed through a

single conceptual schema.

This implies that the degree of local autonomy is minimum. Each site must adhere to a centralized

access policy. There may be a global schema.

2) Multidatabase: There is no one conceptual global schema. For data access a schema is constructed

dynamically as needed by the application software.

Heterogeneous System

Query processing in Distributed Databases:

Issues:

1) Cost of transferring data (files and results) over the network. This cost

is usually high so some optimization is necessary. Example relations:

Employee at site 1 and Department at Site 2

Example: Employee at site 1. 10,000 rows. Row size = 100 bytes. Table size = 106 bytes.

92

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Fname Minit Lname SSN Bdate Address Sex Salary Superssn Dno

Department at Site 2. 100 rows. Row size = 35 bytes. Table size = 3,500 bytes.

For each employee, retrieve employee name and department name Where the employee works.

A: PFname, Lname, Dname (Employee Dno = Dnumber Department)

The result of this query will have 10,000 tuples, assuming that every employee is related to a

department. Suppose each result tuple is 40 bytes long. The query is submitted at site 3 and the

result is sent to this site.

Problem: Employee and Department relations are not present at site 3.

Strategies:

1. Transfer Employee and Department to site 3. Total transfer bytes = 1,000,000 + 3500 =

1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send the result to site 3 Query result
size = 40 * 10,000 = 400,000 bytes. Total transfer size = 400,000 + 1,000,000 = 1,400,000
bytes.

3. Transfer Department relation to site 1, executes the join at site 1, and sends the result to
site 3.

Total bytes transferred = 400,000 + 3500 = 403,500 bytes. Optimization criteria: minimizing

data transfer.

Preferred approach: strategy 3.

Concurrency Control and Recovery

Distributed Databases encounter a number of concurrency control and recovery problems which

are not present in centralized databases. Some of them are listed below.

1) Dealing with multiple copies of data items

93

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

The concurrency control must maintain global consistency. Likewise the recovery mechanism must

recover all copies and maintain consistency after recovery.

2) Failure of individual sites

Database availability must not be affected due to the failure of one or two sites and the recovery

scheme must recover them before they are available for use

3) Communication link failure

This failure may create network partition which would affect database availability even though all

database sites may be running

4) Distributed commit

A transaction may be fragmented and they may be executed by a number of sites. This require a

two or three-phase commit approach for transaction commit

1) Distributed deadlock

Since transactions are processed at multiple sites, two or more sites may get involved in

deadlock. This must be resolved in a distributed manner.

Concurrency Control and Recovery

Distributed Concurrency control based on a distributed copy of a data item

94

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Primary site technique: A single site is designated as a primary site which serves as a coordinator for

transaction management

Primary site technique

Transaction management:

Concurrency control and commit are managed by this site.In two phase locking, this site manages locking and

releasing data items. If all transactions follow two-phase policy at all sites, then serializability is guaranteed

Primary Copy Technique:

In this approach, instead of a site, a data item partition is designated as primary copy. To lock a data item just
the primary copy of the data item is locked.

Advantages:

Since primary copies are distributed at various sites, a single site is not overloaded with locking and unlocking

requests.

Disadvantages:

Identification of a primary copy is complex. A distributed directory must be maintained, possibly at all sites.

95

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Recovery from a coordinator failure

In both approaches a coordinator site or copy may become unavailable. This will require the selection
of a new coordinator.

Primary site approach with no backup site

Aborts and restarts all active transactions at all sites. Elects a new coordinator and initiates transaction
processing.

Primary site approach with backup site:

Suspends all active transactions, designates the backup site as the primary site and identifies a new back up
site. Primary site receives all transaction management information to resume processing.

Primary and backup sites fail or no backup site:

Use election process to select a new coordinator site.

Concurrency control based on voting:

There is no primary copy of coordinator.

Send lock request to sites that have data item.

If majority of sites grant lock then the requesting transaction gets the data item.

Locking information (grant or denied) is sent to all these sites.

To avoid unacceptably long wait, a time-out period is defined. If the requesting transaction does not get any

vote information then the transaction is aborted.

Architectural Models

Some of the common architectural models are −

• Client - Server Architecture for DDBMS

• Peer - to - Peer Architecture for DDBMS

• Multi - DBMS Architecture

Client - Server Architecture for DDBMS

This is a two-level architecture where the functionality is divided into servers and clients. The server functions

primarily encompass data management, query processing, optimization and transaction management. Client

96

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

functions include mainly user interface. However, they have some functions like consistency checking and

transaction management.

The two different clients - server architecture are −

• Single Server Multiple Client

• Multiple Server Multiple Client (shown in the following diagram)

Peer- to-Peer Architecture for DDBMS

In these systems, each peer acts both as a client and a server for imparting database services. The peers share

their resource with other peers and co-ordinate their activities.

This architecture generally has four levels of schemas −

• Global Conceptual Schema − Depicts the global logical view of data.

• Local Conceptual Schema − Depicts logical data organization at each site.

• Local Internal Schema − Depicts physical data organization at each site.

• External Schema − Depicts user view of data.

97

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Multi - DBMS Architectures

This is an integrated database system formed by a collection of two or more autonomous database systems.

Multi-DBMS can be expressed through six levels of schemas −

• Multi-database View Level − Depicts multiple user views comprising of subsets of the integrated

distributed database.

• Multi-database Conceptual Level − Depicts integrated multi-database that comprises of global logical

multi-database structure definitions.

• Multi-database Internal Level − Depicts the data distribution across different sites and multi-database

to local data mapping.

• Local database View Level − Depicts public view of local data.

• Local database Conceptual Level − Depicts local data organization at each site.

• Local database Internal Level − Depicts physical data organization at each site.

There are two design alternatives for multi-DBMS −

• Model with multi-database conceptual level.

• Model without multi-database conceptual level.

98

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Database Security

Types of Security

– Legal and ethical issues

– Policy issues

– System-related issues

– The need to identify multiple security levels

A DBMS typically includes a database security and authorization subsystem that is responsible for ensuring the

security portions of a database against unauthorized access.

99

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Two types of database security mechanisms:

Discretionary security mechanisms

The typical method of enforcing discretionary access control in a database system is based on the

granting and revoking privileges.

Mandatory security mechanisms

In many applications, and additional security policy is needed that classifies data and users based on

security classes. This approach as mandatory access control, would typically be combined with the

discretionary access control mechanisms.

Security Issues in Databases

• The security mechanism of a DBMS must include provisions for restricting access to the database as a

whole; this function is called access control and is handled by creating user accounts and passwords to

control login process by the DBMS.

• The security problem associated with databases is that of controlling the access to a statistical database,

which is used to provide statistical information or summaries of values based on various criteria.

• The counter measures to statistical database security problem is called inference control measures.

• Another security is that of flow control, which prevents information from flowing in such a way that it

reaches unauthorized users.

• Channels that are pathways for information to flow implicitly in ways that violate the security policy of

an organization are called covert channels.

• A final security issue is data encryption, which is used to protect sensitive data (such as credit card

numbers) that is being transmitted via some type communication network.

• The data is encoded using some coding algorithm. An unauthorized user who access encoded data will

have difficulty deciphering it, but authorized users are given decoding or decrypting algorithms (or keys)

to decipher data.

Database Security and the DBA

The database administrator (DBA) is the central authority for managing a database system. The DBA’s

responsibilities include granting privileges to users who need to use the system and classifying users and data in

100

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

accordance with the policy of the organization. The DBA has a DBA account in the DBMS, sometimes called a

system or superuser account, which provides powerful capabilities :

1. Account creation

2. Privilege granting

3. Privilege revocation

4. Security level assignment

The DBA is responsible for the overall security of the database system.

Action 1 is access control, whereas 2 and 3 are discretionary and 4 is used to control mandatory authorization.

Whenever a person or group of person s need to access a database system, the individual or group must first apply

for a user account. The DBA will then create a new account number and password for the user if there is a

legitimate need to access the database.

If any tampering with the database is suspected, a database audit is performed, which consists of reviewing the

log to examine all accesses and operations applied to the database during a certain time period.

A database log that is used mainly for security purposes is sometimes called an audit trail.

Types of Discretionary Privileges

The account level: At this level, the DBA specifies the particular privileges that each account holds

independently of the relations in the database.

The privileges at the account level apply to the capabilities provided to the account itself and can include

the CREATE SCHEMA or CREATE TABLE privilege, to create a schema or base relation; the CREATE

VIEW privilege; the ALTER privilege,

To apply schema changes such adding or removing attributes from relations; the DROP privilege, to delete

relations or views; the MODIFY privilege, to insert, delete, or update tuples; and the SELECT privilege,

to retrieve information from the database by using a SELECT query.

101

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

The relation (or table level): At this level, the DBA can control the privilege to access each individual

relation or view in the database.

To control the granting and revoking of relation privileges, each relation R in a database is assigned an

owner account, which is typically the account that was used when the relation was created in the first

place.

The owner of a relation is given all privileges on that relation. In SQL2, the DBA can assign an owner to

a whole schema by creating the schema and associating the appropriate authorization identifier with that

schema, using the CREATE SCHEMA command.

The owner account holder can pass privileges on any of the owned relation to other users by granting

privileges to their accounts.

In SQL the following types of privileges can be granted on each individual relation R:

• SELECT (retrieval or read) privilege on R: Gives the account retrieval privilege. In SQL this gives

the account the privilege to use the SELECT statement to retrieve tuples from R.

• MODIFY privileges on R: This gives the account the capability to modify tuples of R. In SQL

this privilege is further divided into UPDATE, DELETE, and INSERT privileges to apply the

corresponding SQL command to R. In addition, both the INSERT and UPDATE privileges can

specify that only certain attributes can be updated by the account.

** Note that to create a view, the account must have SELECT privilege on all relations involved in the view

definition.

The mechanism of views is an important discretionary authorization mechanism in its own right.

For example, if the owner A of a relation R wants another account B to be able to retrieve only some fields of R,

then A can create a view V of R that includes only those attributes and then grant SELECT on V to B. The same

applies to limiting B to retrieving only certain tuples of R; a view V’ can be created by defining the view by

means of a query that selects only those tuples from R that A wants to allow B to access.

Revoking Privileges

102

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

For example, the owner of a relation may want to grant the SELECT privilege to a user for a specific task and

then revoke that privilege once the task is completed. Hence, a mechanism for revoking privileges is needed.

 In SQL, a REVOKE command is included for the purpose of canceling privileges.

Example of Grant and Revoke Commands in SQL

Suppose that the DBA creates four accounts --A1, A2, A3, and A4-- and wants only A1 to be able to create base

relations; then the DBA must issue the following GRANT command in SQL:

 GRANT CREATETAB TO A1;

In SQL2 the same effect can be accomplished by having the DBA issue a CREATE SCHEMA command as

follows:

CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

GRANT privilege_name

ON object_name

TO {user_name |PUBLIC |role_name}

[WITH GRANT OPTION];

For eg:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2

The REVOKE command removes user access rights or privileges to the database objects.

The Syntax for the REVOKE command is:

REVOKE privilege_name

ON object_name

103

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

FROM {user_name |PUBLIC |role_name}

REVOKE SELECT ON EMPLOYEE FROM A3

Privilege for Views

Suppose that A1 wants to give back to A3 a limited capability to SELECT from the EMPLOYEE relation and

wants to allow A3 to be able to propagate the privilege. The limitation is to retrieve only the NAME, BDATE,

and ADDRESS attributes and only for the tuples with DNO=5.

A1 then create the view:

CREATE VIEW A3EMPLOYEE AS

SELECT NAME, BDATE, ADDRESS

FROM EMPLOYEE

WHERE DNO = 5;

After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to A3 as follows:

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Mandatory Access Control and Role-Based Access Control for Multilevel Security

** The discretionary access control techniques of granting and revoking privileges on relations has traditionally

been the main security mechanism for relational database systems.

This is an all-or-nothing method: A user either has or does not have a certain privilege.

In many applications, and additional security policy is needed that classifies data and users based on security

classes. This approach as mandatory access control, would typically be combined with the discretionary access

control mechanisms.

Typical security classes are

Top secret (TS), secret (S), confidential (C), and unclassified (U), where TS is the highest level and U the lowest:

TS ≥ S ≥ C ≥ U

The commonly used model for multilevel security, known as the Bell-LaPadula model.

104

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

Classifies each subject (user, account, program) and object (relation, tuple, column, view, operation) into one of

the security classifications, T, S, C, or U.

Clearance (classification) of a subject S as class(S) and to the classification of an object O as class(O).

Two restrictions are enforced on data access based on the subject/object classifications:

1. A subject S is not allowed read access to an object O unless class(S) ≥ class(O). This is known as the

simple security property.

2. A subject S is not allowed to write an object O unless class(S) ≤ class(O). This known as the star property

(or * property).

3. To incorporate multilevel security notions into the relational database model, it is common to consider

attribute values and tuples as data objects. Hence, each attribute A is associated with a classification

attribute C in the schema, and each attribute value in a tuple is associated with a corresponding security

classification.

4. In addition, in some models, a tuple classification attribute TC is added to the relation attributes to provide

a classification for each tuple as a whole. Hence, a multilevel relation schema R with n attributes would

be represented as

R(A1,C1,A2,C2, …, An,Cn,TC)

where each Ci represents the classification attribute associated with attribute Ai.

The value of the TC attribute in each tuple t – which is the highest of all attribute classification values

within t – provides a general classification for the tuple itself, whereas each Ci provides a finer security

classification for each attribute value within the tuple.

A multilevel relation will appear to contain different data to subjects (users) with different clearance levels.

In some cases, it is possible to store a single tuple in the relation at a higher classification level and produce

the corresponding tuples at a lower-level classification through a process known as filtering.

In general, the entity integrity rule for multilevel relations states that all attributes that are members of

the apparent key must not be null and must have the same security classification within each individual

tuple.

Comparing Discretionary Access Control and Mandatory Access Control

105

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

• Discretionary Access Control (DAC) policies are characterized by a high degree of flexibility, which

makes them suitable for a large variety of application domains.

• The main drawback of DAC models is their vulnerability to malicious attacks, such as Trojan horses

embedded in application programs.

• By contrast, mandatory policies ensure a high degree of protection in a way, they prevent any illegal

flow of information.

• Mandatory policies have the drawback of being too rigid and they are only applicable in limited

environments.

• In many practical situations, discretionary policies are preferred because they offer a better trade-off

between security and applicability.

Role-Based Access Control

Role-based access control (RBAC) emerged rapidly in the 1990s as a proven technology for managing and

enforcing security in large-scale enterprisewide systems. Its basic notion is that permissions are associated with

roles, and users are assigned to appropriate roles. Roles can be created using the CREATE ROLE and DESTROY

ROLE commands.

The GRANT and REVOKE commands discussed under DAC can then be used to assign and revoke privileges

from roles.

CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

With the above syntax, a role with role_name is created and immediately assigned to the current user or the

currently active role is passed on to other users. The default usage is WITH ADMIN CURRENT_USER.

• RBAC appears to be a viable alternative to traditional discretionary and mandatory access controls; it

ensures that only authorized users are given access to certain data or resources.

• Many DBMSs have allowed the concept of roles, where privileges can be assigned to roles.

106

SCS1306 – DATABASE MANAGEMENT SYSTEM

SOC CSE/IT

• Role hierarchy in RBAC is a natural way of organizing roles to reflect the organization’s lines of authority

and responsibility.

• Another important consideration in RBAC systems is the possible temporal constraints that may exist on

roles, such as time and duration of role activations, and timed triggering of a role by an activation of

another role.

• Using an RBAC model is highly desirable goal for addressing the key security requirements of Web-based

applications.

In contrast, discretionary access control (DAC) and mandatory access control (MAC) models lack capabilities

needed to support the security requirements emerging enterprises and Web-based applications.

107

UNIT 5 OBJECT DATABASE

Concepts for Object Database - Enhanced Data Models for Advanced Application

Emerging Database Technologies and Application

CONCEPTS FOR OBJECT DATABASE

OBJECT-ORIENTED DATABASE (OODB)

• Object-Oriented Language Features:

o abstract data types

o inheritance

o object identity

• Object-Oriented Database Features:

o Persistence

o support of transactions

o simple querying of bulk data

o concurrent access

o resilience

o security

WHY OBJECT-ORIENTED DATABASE?

• Industry Trends:

• Integration and Sharing

• Seamless integration of operating systems, databases, languages,

spreadsheets, word processors, AI expert system shells.

• Sharing of data, information, software components, products, computing

environments.

• Referential sharing:

o Multiple applications, products, or objects share common sub-

objects. (Hypermedia links are then used to navigate from one object to another)

Object-oriented databases allows referential sharing through the support of object identity

and inheritance.

Fundamentals of Object-Oriented Approach

108

The object-oriented paradigm is illustrated below:

Objects and
Identity

The following figure shows object with state and behavior. The state is represented by

the values of the object's attributes, and the behavior is defined by the methods acting

on the state of the object. There is a unique object identifier OID to identify the object.

Complex Objects

Complex objects are built by applying constructors to simpler objects including: sets,

lists and tuples. An example is illustrated below:

Encapsulation

Encapsulation is derived from the notion of Abstract Data Type (ADT). It is motivated by

the need to make a clear distinction between the specification and the implementation

of an operation. It reinforces modularity and provides a form of logical data

independence.

109

Class

A class object is an object which acts as a

template. It specifies:

A structure that is the set of attributes of the

instances A set of operations

A set of methods which implement the operations

Instantiation means generating objects, Ex. 'new' operation in

C++ Persistence of objects: Two approaches

An implicit characteristic of all objects

An orthogonal characteristic - insert the object into a persistent collection of objects

Inheritance

110

A mechanism of reusability, the most powerful concept of OO programming

Association

Association is a link between entities in an application

In OODB, associations are represented by means of references between objects

a representation of a binary association

a representation of a ternary association

reverse reference

111

Representation of a binary Association

ADVANTAGES OF OODB

• An integrated repository of information that is shared by multiple users, multiple

products, multiple applications on multiple platforms.

• It also solves the following problems:

1. The semantic gap: The real world and the Conceptual model is very similar.

2. Impedance mismatch: Programming languages and database systems must be

interfaced to solve application problems. But the language style, data structures,

of a programming language (such as C) and the DBMS (such as Oracle) are

different. The OODB supports general purpose programming in the OODB

framework.

3. New application requirements: Especially in OA, CAD, CAM, CASE, object-

orientation is the most natural and most convenient.

112

COMPLEX OBJECT DATA MODELS

Complex object data model is non-1NF data model. It allows the following extensions:

1. Sets of atomic values

2. Tuple-valued attributes

3. Sets of tuples (nested relations)

4. General set and tuple constructors

5. Object identity

Formal definition:

1. Every atomic value in A is an object.

2. If a1, ..., an are attribute names in N, and O1, ..., On are objects, then T = [a1:O1, ...,

an:On] is also an object, and T.ai retrieves the value Oi.

3. If O1, ..., On are objects, then S = {O1, ..., On} is an abject.

Example: {[Name:John, Age: 30], [Name:Mary, Friends:{Mark, Vicki}]}

An object is defined by a triple (OID, type constructor, state) where OID is the unique

object identifier, type constructor is its type (such as atom, tuple, set, list, array, bag,

etc.) and state is its actual value.

Example:

(i1, atom, 'John')

(i2, atom, 30)

(i3, atom,

'Mary')

(i4, atom, 'Mark')

(i5, atom 'Vicki')

(i6, tuple, [Name:i1, Age:i3])

(i7, set, {i4, i5})

(i8, tuple, [Name:i3,

Friends:i7]) (i9, set, {i6, i8})

Semantic Data Models

The following figure shows different types of nodes in GSM.

113

The different types of links (relationships) in GSM are shown below.

A semantic model for the sales office automation example is shown below.

114

An entity-relationship model for the sales office automation example is shown below.

OBJECT-ORIENTED DATABASES

OODB = Object Orientation + Database

Capabilities FEATURES TO BE CONSIDERED:

115

Persistence

support of transactions

simple querying of bulk

data concurrency control

resilience and recovery

security

versioning integrity

performance

issues

DATA MODELS TO BE CONSIDERED:

Complex object model

Semantic data model such as Extended ER (EER) model, OPM model

NOT ALL OODB SUPPORTS SAME OBJECT-ORIENTATION, SAME DATA MODEL

AND SAME SET OF FEATURES

RESEARCH PROTOTYPES

• ORION: Lisp-based system, built at MCC 1987. Handles schema evolution and

complex object locking.

• IRIS: Built at HP 1987. Functional data model, version control, object-SQL.

• Galileo: Built at Univ Pisa 1985. Strong typed language, complex objects.

• PROBE: CCA 1986.

• POSTGRES: Univ. California, Berkeley 1990.

Extended relational database supporting objects.

COMMERCIAL OODB

• O2: O2 Technology. Language O2C to define classes, methods and types.

Supports multiple inheritance. C++ compatible. Supports an extended SQL

language O2SQL which can refer to complex objects.

• G-Base: Graphael 1987. Lisp-based system, supports ADT, multiple inheritance

of classes.

• CORBA: Standards for distributed objects.

• GemStone: Servio Logic 1987, Beaverton, Oregon. Earliest OODB supporting

object identity, inheritance, encapsulation. Language OPAL is based upon

Smalltalk.

• Ontos: Ontologic, 1988, Berlington, Mass. C++ based system, offers C++ clients

library. Ontos has a predecessor called Vbase. Ontos model supports

encapsulation, inheritance, ability to construct complex objects.

116

• Object Store: Object Design Inc. C++ based sustem. A good feature is that it

supports the creation of indexes.

• Statics: Symbolics 1988. Supports entity types, set valued attributes, and

inheritance of entity types and methods.

• SIM: Semantic Information Manager, UNISYS 1987. Supports semantic data

model. Core system of the InfoExec Environment of UNISYS. Uses the Semantic

Data Model of Hammer and McLeod 1981. User can define entity types that can

inherit from one another. Attributes of entities are like functions from one entity to

another.

• Relational DB Extensions: Many relational systems support OODB extensions.

1. User-defined functions (dBase).

2. User-defined ADTs (POSTGRES)

3. Very-long multimedia fields (BLOB or Binary Large Object). (DB2 from IBM, SQL

from SYBASE, Informix, Interbase)

ALTERNATIVE OODB STRATEGIES

1. Develop novel database data model or data language (SIM)

2. Extend an existing database language with object-oriented capabilities. (IRIS, O2 and

VBASE/ONTOS extended SQL)

3. Extend existing object-oriented programming language with database capabilities

(GemStone OPAL extended SmallTalk)

4. Extendable object-oriented DBMS library (ONTOS)

OODB QUERY LANGUAGE

ONTOS (from Ontologic), O2 (from O2 Technology) and IRIS (from HP) all offer object-

oriented extension of SQL.

IRIS has Object SQL. Each entity type specifies one or more properties. Properties are

functions that apply to the instances of the type. Entity types have extensions and can

inherit from one another.

Example: The type PERSON can be created by:

Create Type Person (

Name char(20),

Age integer

Address address)

where address is another type. In IRIS, Name, Age and Address are called properties

(functions) and apply to instances of type Person.

Object SQL Query: retrieve the name and state of all people who are older than 21:

117

Select Name(p), State(Address(p)

for each Person p

where Age(p) > 21

(Here we assume address has another property called "state")

The user can compose the function application: P5(P4(...P1(P))...)in the select statement.

EXAMPLE:

Employee is a subtype of Person

SalesPerson is a subtype of

Employee Addresses have street

names Salespeople have sales

managers sales managers have

secretaries secretaries are

employees

Retrieve the street name of the address of the secretary of the manager of each

salesperson whose salary is more than 50,000:

Select

StreetName(Address(Secretary(Manager(0))))

for each SalesPerson p

where Salary(p) > $50,000

118

WHY EXTENDING SQL?

• SQL is the most popular relational query language

• SQL is also the only relational language that has a standard.

• SQL is being promoted by many companies as the interface language for

database engines and database servers. New applications developed in SQL

extensions can easily call these servers for remote access.

ENHANCED DATA MODELS FOR ADVANCED

APPLICATION EMERGING DATABASE

TECHNOLOGIES AND APPLICATION

Active Database Concepts and Triggers

Generalized Model for Active Databases and Oracle Triggers

◼ Triggers are executed when a specified condition occurs

during insert/delete/update

◼ Triggers are action that fire automatically based on these conditions

Event-Condition-Action (ECA) Model

Generalized Model (contd.)

◼ Triggers follow an Event-condition-action (ECA) model

◼ Event:

◼ Database modification

◼ E.g., insert, delete, update),

◼ Condition:

◼ Any true/false expression

◼ Optional: If no condition is specified then condition is

always true

◼ Action:

◼ Sequence of SQL statements that will be automatically executed

Trigger Example

◼ When a new employees is added to a department, modify the Total_sal

of the Department to include the new employees salary

◼ Logically this means that we will CREATE a TRIGGER, let us call the

trigger Total_sal1

◼ This trigger will execute AFTER INSERT ON Employee table

◼ It will do the following FOR EACH ROW

◼ WHEN NEW.Dno is NOT NULL

◼ The trigger will UPDATE DEPARTMENT

◼ By SETting the new Total_sal to be the sum of

119

Example
:

◼ old Total_sal and NEW. Salary

◼ WHERE the Dno matches the NEW.Dno;

CREATE or ALTER TRIGGER

◼ CREATE TRIGGER <name>

◼ Creates a trigger

◼ ALTER TRIGGER <name>

◼ Alters a trigger (assuming one exists)

◼ CREATE OR ALTER TRIGGER <name>

◼ Creates a trigger if one does not exist

◼ Alters a trigger if one does exist

◼ Works in both cases, whether a trigger exists or not

Conditions

◼ AFTER

◼ Executes after the event

◼ BEFORE

◼ Executes before the event

◼ INSTEAD OF

◼ Executes instead of the event

◼ Note that event does not execute in this case

◼ E.g., used for modifying views

Row-Level versus Statement-level

◼ Triggers can be

◼ Row-level

◼ FOR EACH ROW specifies a row-level trigger

◼ Statement-level

120

◼ Default (when FOR EACH ROW is not specified)

◼ Row level triggers

◼ Executed separately for each affected row

◼ Statement-level triggers

◼ Execute once for the SQL statement,

Condition

◼ Any true/false condition to control whether a trigger is activated on not

◼ Absence of condition means that the trigger will always execute for the even

◼ Otherwise, condition is evaluated

◼ before the event for BEFORE trigger

◼ after the event for AFTER trigger

Action

◼ Action can be

◼ One SQL statement

◼ A sequence of SQL statements enclosed between a BEGIN and an END

◼ Action specifies the relevant modifications

Triggers on Views

◼ INSTEAD OF triggers are used to process view modifications

Active Database Concepts and Triggers

Design and Implementation Issues for Active Databases

◼ An active database allows users to make the following changes to triggers (rules)

◼ Activate

◼ Deactivate

◼ Drop

Design and Implementation Issues for Active Databases

◼ An event can be considered in 3 ways

◼ Immediate consideration

◼ Deferred consideration

◼ Detached consideration

121

Design and Implementation Issues (contd.)

◼ Immediate consideration

◼ Part of the same transaction and can be one of the following

depending on the situation

◼ Before

◼ After

◼ Instead of

◼ Deferred consideration

◼ Condition is evaluated at the end of the transaction

◼ Detached consideration

◼ Condition is evaluated in a separate

transaction Potential Applications for Active Databases

◼ Notification

◼ Automatic notification when certain condition occurs

◼ Enforcing integrity constraints

◼ Triggers are smarter and more powerful than constraints

◼ Maintenance of derived data

◼ Automatically update derived data and avoid anomalies due

to redundancy

◼ E.g., trigger to update the Total_sal in the earlier example

Triggers in SQL-99

◼ Can alias variables inside the REFERENCINFG

clause Trigger examples

122

Temporal Database Concepts

Time Representation, Calendars, and Time Dimensions

◼ Time is considered ordered sequence of points in some granularity

◼ Use the term choronon instead of point to describe minimum granularity

◼ A calendar organizes time into different time units for convenience.

◼ Accommodates various calendars

◼ Gregorian (western)

◼ Chinese

◼ Islamic

◼ Hindu

◼ Jewish

◼ Etc.

◼ Point events

◼ Single time point event

◼ E.g., bank deposit

◼ Series of point events can form a time series data

◼ Duration events

◼ Associated with specific time period

◼ Time period is represented by start time and end time

◼ Transaction time

◼ The time when the information from a certain transaction becomes valid

123

◼ Bitemporal database

◼ Databases dealing with two time dimensions

Incorporating Time in Relational Databases Using Tuple

Versioning

◼ Add to every tuple

◼ Valid start time

◼ Valid end time

124

Incorporating Time in Object-Oriented Databases Using Attribute Versioning

◼ A single complex object stores all temporal changes of the object

◼ Time varying attribute

◼ An attribute that changes over time

◼ E.g., age

◼ Non-Time varying attribute

◼ An attribute that does not changes over time

◼ E.g., date of birth

Introduction to Deductive Databases

Overview of Deductive Databases

◼ Declarative Language

◼ Language to specify rules

◼ Inference Engine (Deduction Machine)

◼ Can deduce new facts by interpreting the rules

◼ Related to logic programming

◼ Prolog language (Prolog => Programming in logic)

◼ Uses backward chaining to evaluate

◼ Top-down application of the rules

◼ Speciation consists of:

125

◼ Similar to relation specification without the necessity of

including attribute names

◼ Rules

◼ Similar to relational views (virtual relations that are not stored)

Prolog/Datalog Notation

◼ Predicate has

◼ a name

◼ a fixed number of arguments

◼ Convention:

◼ Constants are numeric or character strings

◼ Variables start with upper case letters

◼ E.g., SUPERVISE(Supervisor, Supervisee)

◼ States that Supervisor SUPERVISE(s) Supervisee

◼ Rule

◼ Is of the form head :- body

◼ where :- is read as if and only iff

◼ E.g., SUPERIOR(X,Y) :- SUPERVISE(X,Y)

◼ E.g., SUBORDINATE(Y,X) :- SUPERVISE(X,Y)

◼ Query

◼ Involves a predicate symbol followed by y some variable arguments

to answer the question

◼ where :- is read as if and only iff

◼ E.g., SUPERIOR(james,Y)?

◼ E.g., SUBORDINATE(james,X)?

◼ (a) Prolog notation (b) Supervisory tree

126

Datalog Notation

◼ Datalog notation

◼ Program is built from atomic formulae

◼ Literals of the form p(a1, a2, … an) where

◼ p predicate name

◼ n is the number of arguments

◼ Built-in predicates are included

◼ E.g., <, <=, etc.

◼ A literal is either

◼ An atomic formula

◼ An atomic formula preceded by not

Clausal Form and Horn Clauses

◼ A formula can have quantifiers

◼ Universal

◼ Existential

◼ In clausal form, a formula must be transformed into another formula with

the following characteristics

◼ All variables are universally quantified

◼ Formula is made of a number of clauses where each clause is made

up of literals connected by logical ORs only

◼ Clauses themselves are connected by logical ANDs only.

◼ Any formula can be converted into a clausal form

127

◼ A specialized case of clausal form are horn clauses that can contain no

more than one positive literal

◼ Datalog program are made up of horn clauses

Interpretation of Rules

◼ There are two main alternatives for interpreting rules:

◼ Proof-theoretic

◼ Model-theoretic

◼ Proof-theoretic

◼ Facts and rules are axioms

◼ Ground axioms contain no variables

◼ Rules are deductive axioms

◼ Deductive axioms can be used to construct new facts from existing facts

◼ This process is known as theorem proving

Proving a new fact

◼ Figure 24.12

Interpretation of Rules

◼ Model-theoretic

◼ Given a finite or infinite domain of constant values, we assign the

predicate every combination of values as arguments

◼ If this is done fro every predicated, it is called interpretation

◼ Model

◼ An interpretation for a specific set of rules

◼ Model-theoretic proofs

◼ Whenever a particular substitution to the variables in the rules is applied,

if all the predicated are true under the interpretation, the predicate at the

head of the rule must also be true

◼ Minimal model

128

◼ Cannot change any fact from true to false and still get a model for these
rules

◼ Figure 24.13

Datalog Programs and Their Safety

◼ Two main methods of defining truth values

◼ Fact-defined predicates (or relations)

◼ Listing all combination of values that make a predicate true

◼ Rule-defined predicates (or views)

◼ Head (LHS) of 1 or more Datalog rules, for example Figure 24.15

129

◼ A program is safe if it generates a finite set of facts

◼ Fact-defined predicates (or relations)

◼ Listing all combination of values that make a predicate true

◼ Rule-defined predicates (or views)

◼ Head (LHS) of 1 or more Datalog rules, for example Figure 24.15

Use the Relational Operations

◼ Many operations of relational algebra can be defined in the for of Datalog rules

that defined the result of applying these operations on database relations (fact

predicates)

◼ Relational queries and views can be easily specified in Datalog

Evaluation of Non-recursive Datalog Queries

◼ Define an inference mechanism based on relational database query

processing concepts

◼ See Figure 24.17 on predicate dependencies for Figs 24.14 and 24.15

130

Emerging Database Technologies and Application

1. Mobile Databases

A. Mobile Computing Architecture

It is distributed architecture where a number of computers generally referred to as Fixed
Hosts and Base Stations are interconnected through a high-speed wired network. Fixed
hosts are general-purpose computers configured to manage mobile units. Base stations
function as gateways to the fixed network for the Mobile Units.

Wireless Communications

The wireless medium have bandwidth significantly lower than those of a wired network.

The current generation of wireless technology has data rates range from the tens to
hundreds of kilobits per second (2G cellular telephony) to tens of megabits per second
(wireless Ethernet, popularly known as WiFi).

Modern (wired) Ethernet, by comparison, provides data rates on the order of hundreds of
megabits per second.

131

The other characteristics distinguish wireless connectivity options:

➢ Interference,

➢ Locality of access,

➢ Range,

➢ Support for packet switching,

➢ Seamless roaming throughout a geographical region.

Some wireless networks, such as WiFi and Bluetooth, use unlicensed areas of the
frequency spectrum, which may cause interference with other appliances, such as cordless
telephones. Modern wireless networks can transfer data in units called packets, that are
used in wired networks in order to conserve bandwidth.

Client/Network Relationships

Mobile units can move freely in a geographic mobility domain, an area that is
circumscribed by wireless network coverage. To manage entire mobility domain is divided
into one or more smaller domains, called cells, each of which is supported by at least one
base station. In a MANET, co-located mobile units do not need to communicate via a fixed
network, but instead, form their own using cost- effective technologies such as Bluetooth.
In a MANET, mobile units are responsible for routing their own data, effectively acting as
base stations as well as clients. Moreover, they must be robust enough to handle changes
in the network topology, such as the arrival or departure of other mobile units.

MANET applications can be considered as peer-to-peer, meaning that a mobile unit is
simultaneously a client and a server. Transaction processing and data consistency control
become more difficult since there is no central control in this architecture. Resource
discovery and data routing by mobile units make computing in a MANET even more
complicated. Sample MANET applications are multi-user games, shared whiteboard,
distributed calendars, and battle information sharing. Mobile units be unrestricted
throughout the cells of domain, while maintaining information access contiguity.

The communication architecture described earlier is designed to give the mobile unit the
impression that it is attached to a fixed network, emulating a traditional client-server
architecture. Wireless communications, however, make other architectures possible. One
alternative is a mobile ad-hoc network (MANET).

In a MANET, co-located mobile units do not need to communicate via a fixed network, but
instead, form their own using cost- effective technologies such as Bluetooth. In a MANET,
mobile units are responsible for routing their own data, effectively acting as base stations
as well as clients. Moreover, they must be robust enough to handle changes in the network
topology, such as the arrival or departure of other mobile units.

MANET applications can be considered as peer-to-peer, meaning that a mobile unit is
simultaneously a client and a server. Transaction processing and data consistency control
become more difficult since there is no central control in this architecture. Resource
discovery and data routing by mobile units make computing in a MANET even more

132

complicated. Sample MANET applications are multi-user games, shared whiteboard,
distributed calendars, and battle information sharing.

B. Characteristics of Mobile Environments

The characteristics of mobile computing include:

➢ Communication latency

➢ Intermittent connectivity

➢ Limited battery life

➢ Changing client location

The server may not be able to reach a client. A client may be unreachable because it is
dozing – in an energy- conserving state in which many subsystems are shut down – or
because it is out of range of a base station. In either case, neither client nor server can
reach the other, and modifications must be made to the architecture in order to
compensate for this case. Proxies for unreachable components are added to the
architecture.

For a client (and symmetrically for a server), the proxy can cache updates intended for the
server. Mobile computing poses challenges for servers as well as clients. The latency
involved in wireless communication makes scalability a problem. Since latency due to
wireless communications increases the time to service each client request, the server can
handle fewer clients.

One way servers relieve this problem is by broadcasting data whenever possible. A server
can simply broadcast data periodically. Broadcast also reduces the load on the server, as
clients do not have to maintain active connections to it. Client mobility also poses many
data management challenges. Servers must keep track of client locations in order to
efficiently route messages to them.

Client data should be stored in the network location that minimizes the traffic necessary to
access it. The act of moving between cells must be transparent to the client.

The server must be able to gracefully divert the shipment of data from one base to another,
without the client noticing. Client mobility also allows new applications that are location-
based.

C. Data Management Issues

Data management issues as it is applied to mobile databases:

➢ Data distribution and replication

➢ Transactions models

➢ Query processing

➢ Recovery and fault tolerance

➢ Mobile database design

➢ Location-based service

➢ Division of labor

133

➢ Security

D. Application: Intermittently Synchronized Databases

Whenever clients connect – through a process known in industry as synchronization of
a client with a server – they receive a batch of updates to be installed on their local
database. The primary characteristic of this scenario is that the clients are mostly
disconnected; the server is not necessarily able reach them. This environment has
problems similar to those in distributed and client-server databases, and some from
mobile databases. This environment is referred to as Intermittently Synchronized
Database Environment (ISDBE).

The characteristics of Intermittently Synchronized Databases (ISDBs) make them
distinct from the mobile databases are:

➢ A client connects to the server when it wants to exchange updates.

➢ The communication can be unicast –one-on-one communication between the server
and the client– or multicast– one sender or server may periodically communicate to
a set of receivers or update a group of clients.

➢ A server cannot connect to a client at will.

➢ Issues of wireless versus wired client connections and power conservation are
generally immaterial.

➢ A client is free to manage its own data and transactions while it is disconnected. It
can also perform its own recovery to some extent.

➢ A client has multiple ways connecting to a server and, in case of many servers, may
choose a particular server to connect to based on proximity, communication nodes
available, resources available, etc.

2. Multimedia Databases

A. The Nature of Multimedia Data and Applications

In the years ahead multimedia information systems are expected to dominate our daily
lives. Our houses will be wired for bandwidth to handle interactive multimedia applications.
Our high-definition TV/computer workstations will have access to a large number of
databases, including digital libraries, image and video databases that will distribute vast
amounts of multisource multimedia content. DBMSs have been constantly adding to the
types of data they support. Today many types of multimedia data are available in current
systems.

Types of multimedia data are available in current systems

Text: May be formatted or unformatted. For ease of parsing structured documents,
standards like SGML and variations such as HTML are being used.

Graphics: Examples include drawings and illustrations that are encoded using some
descriptive standards (e.g. CGM, PICT, postscript).

Images: Includes drawings, photographs, and so forth, encoded in standard formats such
as bitmap, JPEG, and MPEG. Compression is built into JPEG and MPEG.

134

These images are not subdivided into components.

Hence querying them by content (e.g., find all images containing circles) is nontrivial.

Animations: Temporal sequences of image or graphic data.

Video: A set of temporally sequenced photographic data for presentation at specified
rates– for example, 30 frames per second.

Structured audio: A sequence of audio components comprising note, tone, duration, and
so forth.

Audio: Sample data generated from aural recordings in a string of bits in digitized form.
Analog recordings are typically converted into digital form before storage.

Composite or mixed multimedia data: A combination of multimedia data types such as
audio and video which may be physically mixed to yield a new storage format or logically
mixed while retaining original types and formats. Composite data also contains additional
control information describing how the information should be rendered.

Nature of Multimedia Applications:

Multimedia data may be stored, delivered, and utilized in many different ways.

Applications may be categorized based on their data management characteristics.

B. Data Management Issues

Characterization of applications based on their data management characteristics:

Repository applications: A large amount of multimedia data as well as metadata is
stored for retrieval purposes. Examples include repositories of satellite images,
engineering drawings and designs, space photographs, and radiology scanned pictures.

Presentation applications: A large amount of applications involve delivery of multimedia
data subject to temporal constraints; simple multimedia viewing of video data, for
example, requires a system to simulate VCR-like functionality. Complex and interactive
multimedia presentations involve orchestration directions to control the retrieval order of
components in a series or in parallel. Interactive environments must support capabilities
such as real-time editing analysis or annotating of video and audio data.

Collaborative work using multimedia information: This is a new category of
applications in which engineers may execute a complex design task by merging drawings,
fitting subjects to design constraints, and generating new documentation, change
notifications, and so forth. Intelligent healthcare networks as well as telemedicine will
involve doctors collaborating among themselves, analyzing multimedia patient data and
information in real time as it is generated. Multimedia applications dealing with thousands
of images, documents, audio and video segments, and free text data depend critically on

➢ Appropriate modeling of the structure and content of data

➢ Designing appropriate database schemas for storing and retrieving multimedia
information.

➢ Multimedia information systems are very complex and embrace a large set of issues:

135

➢ Modeling

➢ Complex objects

➢ Design

➢ Conceptual, logical, and physical design of multimedia has not been addressed fully.

➢ Storage

Multimedia data on standard disklike devices presents problems of representation,
compression, mapping to device hierarchies, archiving, and buffering during the
input/output operation.

Queries and retrieval

“Database” way of retrieving information is based on query languages and internal index
structures.

Performance

Multimedia applications involving only documents and text, performance constraints are
subjectively determined by the user. Applications involving video playback or audio-video
synchronization, physical limitations dominate.

C. Multimedia Database Applications

Large-scale applications of multimedia databases can be expected encompasses a large

number of disciplines and enhance existing capabilities.

➢ Documents and records management

➢ Knowledge dissemination

➢ Education and training

➢ Marketing, advertising, retailing, entertainment, and travel

➢ Real-time control and monitoring

 3. Geographic Information Systems (GIS)

Geographic information systems (GIS) are used to collect, model, and analyze information
describing physical properties of the geographical world.

The scope of GIS broadly encompasses two types of data:

Spatial data, originating from maps, digital images, administrative and political boundaries,
roads, transportation networks, physical data, such as rivers, soil characteristics, climatic
regions, land elevations, and

Non-spatial data, such as socio-economic data (like census counts), economic data, and
sales or marketing information. GIS is a rapidly developing domain that offers highly
innovative approaches to meet some challenging technical demands.

136

A. GIS Applications

 It is possible to divide GISs into three categories:

➢ Cartographic applications

➢ Digital terrain modeling applications

➢ Geographic objects applications

B. Data Management Requirements of GIS

The functional requirements of the GIS applications above translate into the following
database requirements.

Data Modeling and Representation

GIS data can be broadly represented in two formats:

➢ Vector data represents geometric objects such as points, lines, and polygons.

➢ Raster data is characterized as an array of points, where each point represents the

value of an attribute for a real-world location.

Informally, raster images are n-dimensional array where each entry is a unit of the image

and represents an attribute. Two-dimensional units are called pixels, while three-

dimensional units are called voxels. Three-dimensional elevation data is stored in a raster-

137

based digital elevation model (DEM) format. Another raster format called triangular

irregular network (TIN) is a topological vector-based approach that models surfaces by

connecting sample points as vector of triangles and has a point density that may vary with

the roughness of the terrain.

Rectangular grids (or elevation matrices) are two- dimensional array structures.

In digital terrain modeling (DTM), the model also may be used by substituting the
elevation with some attribute of interest such as population density or air temperature.

GIS data often includes a temporal structure in addition to a spatial structure.

Data Analysis

GIS data undergoes various types of analysis.

For example, in applications such as soil erosion studies, environmental impact studies, or
hydrological runoff simulations,

DTM data may undergo various types of geomorphometric analysis – measurements such

as slope values, gradients (the rate of change in altitude), aspect (the compass direction of

the gradient), profile convexity (the rate of change of gradient), plan convexity (the

convexity of contours and other parameters).

Data Integration

GISs must integrate both vector and raster data from a variety of sources.

Sometimes edges and regions are inferred from a raster image to form a vector model, or

conversely, raster images such as aerial photographs are used to update vector models.

Several coordinate systems such as Universal Transverse Mercator (UTM),

latitude/longitude, and local cadastral systems are used to identify locations.

Data originating from different coordinate systems requires appropriate transformations.

Data Capture

The first step in developing a spatial database for cartographic modeling is to capture the
two-dimensional or three-dimensional geographical information in digital form

This process that is sometimes impeded by source map characteristics such as resolution,
type of projection, map scales, cartographic licensing, diversity of measurement
techniques, and coordinate system differences.

Spatial data can also be captured from remote sensors in satellites such as Landsat,
NORA, and Advanced Very High Resolution Radiometer(AVHRR) as well as SPOT HRV
(High Resolution Visible Range Instrument.

C. Specific GIS Data Operations

GIS applications are conducted through the use of special operators such as the following:

138

➢ Interpolation

➢ Interpretation

➢ Proximity analysis

➢ Raster image processing

➢ Analysis of network

The functionality of a GIS database is also subject to other considerations:

➢ Extensibility

➢ Data quality control

➢ Visualization

Such requirements clearly illustrate that standard RDBMSs or ODBMSs do not meet the

special needs of GIS. Therefore it is necessary to design systems that support the vector

and raster representations and the spatial functionality as well as the required DBMS

features.

4. GENOME Data Management

A. Biological Sciences and Genetics

The biological sciences encompass an enormous variety of information.

➢ Environmental science gives us a view of how species live and interact in a world

filled with natural phenomena.

➢ Biology and ecology study particular species.

➢ Anatomy focuses on the overall structure of an organism, documenting the physical

aspects of individual bodies.

Traditional medicine and physiology break the organism into systems and tissues and

strive to collect information on the workings of these systems and the organism as a whole.

Histology and cell biology delve into the tissue and cellular levels and provide knowledge

about the inner structure and function of the cell. This wealth of information that has been

generated, classified, and stored for centuries has only recently become a major

application of database technology.

Genetics has emerged as an ideal field for the application of information technology.

In a broad sense, it can be taught of as the construction of models based on information

about genes and population and the seeking out of relationships in that information.

Genes can be defined as units of heredity. The study of genetics can be divided into three
branches:

Mendelian genetics is the study of the transmission of traits between generations.

139

Molecular genetics is the study of the chemical structure and function of genes at the

molecular level.

Population genetics is the study of how genetic information varies across populations of

organisms.

The origins of molecular genetics can be traced to two important discoveries:

In 1869 when Friedrich Miescher discovered nuclein and its primary component,

deoxyribonucleic acid (DNA). In subsequent research DNA and a related compound,

ribonucleic acid, were found to be composed of nucleotides (a sugar, a phosphate, and a

base combining to form nucleic acid) linked into long polymers via the sugar and

phosphate.

The second discovery was the demonstration in 1944 by Oswald Avery that DNA was

indeed the molecular. Genes were shown to be composed of chains of nucleic acids

arranged linearly on chromosomes and to serve three primary functions:

➢ Replicating genetic information between generations,

➢ Providing blueprints for the creation of polypeptides, and

➢ Accumulating changes– thereby allowing evolution to occur.

Watson and Crick found the double-helix structure of the DNA in 1953, which gave

molecular biology a new direction.

Characteristics of Biological Data
1. Biological data exhibits many special characteristics that make management of

biological information a particularly challenging problem.

2. The characteristics related to biological information, and focusing on a

multidisciplinary field called bioinformatics that has emerged.

3. Bioinformatics addresses information management of genetic information with

special emphasis on DNA sequence analysis.

4. Applications of bioinformatics span design of targets for drugs, study of mutations

and related diseases, anthropological investigations on migration patterns of tribes

and therapeutic treatments.

5. Biological data is highly complex when compared with most other domains or

applications.

6. The amount and range of variability in data is high.

7. Schemas in biological databases change at a rapid pace.

8. Representations of the same data by different biologists will likely be different (even

using the same system).

9. Most users of biological data do not require write access to the database; read-only

access is adequate.

140

10. Most biologists are not likely to have knowledge of the internal structure of the

database or about schema design.

11. The context of data gives added meaning for its use in biological applications.

12. Defining and representing complex queries is extremely important to the biologist.

13. Users of biological information often require access to “old” values of the data –

particularly when verifying previously reported results.

141

