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UNIT 1 CONCEPTOF SIMPLE STRESSES AND STRAINS

Stress

Stress is the internal resistance offered by the body to the external load applied to it per unit
cross sectional area. Stresses are normal to the plane to which they act and are tensile or
compressive in nature.
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As we know that in mechanics of deformable solids, externally applied forces acts on a body
and body suffers a deformation. From equilibrium point of view, this action should be
opposed or reacted by internal forces which are set up within the particles of material due to
cohesion. These internal forces give rise to a concept of stress. Consider a rectangular rod
subjected to axial pull P. Let us imagine that the same rectangular bar is assumed to be cut
into two halves at section XX. The each portion of this rectangular bar is in equilibrium under
the action of load P and the internal forces acting at the section XX has been shown.

Now stress is defined as the force intensity or force per unit area. Here we use a

symbol ¢ to represent the stress.
o =p/a

Where A is the area of the X —X section

Here we are using an assumption that the total force or total load carried by the rectangular
bar is uniformly distributed over its cross — section. But the stress distributions may be for
from uniform, with local regions of high stress known as stress concentrations. If the force
carried by a component is not uniformly distributed over its cross — sectional area, A, we
must consider a small area, ‘6A’ which carries

a small load ‘6P’, of the total force ‘P', Then definition of stress is

o=
5A

As a particular stress generally holds true only at 3 point, therefore it is defined
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Mathematically as

5A-0 84

Units :

The basic units of stress in S.I units i.e. (International system) are N / m? (or Pa) MPa =
109 Pa

GPa=10’ Pa

KPa = 103 Pa

Sometimes N / mm? units are also used, because this is an equivalent to MPa. While

US customary unit is pound per square inch psi.

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) shear
stress. Other stresses either are similar to these basic stresses or are a combination of this
e.g. bending stress is a combination tensile, compressive and shear stresses. Torsional
stress, as encountered in twisting of a shaft is a shearing stress. Let us define the normal
stresses and shear stresses in the following sections.

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to
the areas concerned, then these are termed as normal stresses. The normal stresses are
generally denoted by a Greek letter (o)

This is also known as uniaxial state of stress, because the stresses acts only in one direction
however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses
where either the two mutually perpendicular normal stresses acts or three mutually

perpendicular normal stresses acts as shown in the figures below : (v st of s
Tensile or compressive Stresses:

The normal stresses can be either tensile or compressive whether the stresses acts out of the
area or into the area
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(Tensile stress)

a9 (Compressive stress)

Bearing Stress: When one object presses against another, it is referred to a bearing stress

( They are in fact the compressive stresses ).

Forces

Bearing siresses at
the contact surface

Sign convections for Normal stress

Direct stresses or normal stresses

- tensile +ve

- compressive —ve

Shear Stresses:

Let us consider now the situation, where the cross — sectional area of a block of material is
subject to a distribution of forces which are parallel, rather than normal, to the area concerned.
Such forces are associated with a shearing of the material, and are referred to as shear forces.
The resulting stress is known as shear stress.

Forces acting parallel
to the area concerned

/

The resulting force intensities are known as shear stresses, the mean
shear stress being equal to
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T:E
A

Where P is the total force and A the area over which it acts. As we know that the particular
stress generally holds good only at a point therefore we can define shear stress at a point as
= lim &

5A-0 5A
The Greek symbol 1 (tau, suggesting tangential) is used to denote shear stress.
Complementary shear stresses:
The existence of shear stresses on any two sides of the element induces
complementary shear stresses on the other two sides of the element to maintain

Equilibrium. As shown in the figure the shear stress T in sides AB and CD induces a

Complimentary shear stress t

A_ZF>> o

A
4
'

0 L
:
"
'
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in sides AD and BC.

Sign convections for shear stresses:
- tending to turn the element C.W +ve.

- tending to turn the element C.C.W — ve.

Deformation of a Body due to Self Weight
Consider a bar AB hanging freely under its own weight as shown in the figure.

4 A

4#

— A —

Let
L= length of the bar
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A= cross-sectional area of the bar
E= Young’s modulus of the bar material

w= specific weight of the bar material
Then deformation due to the self-weight of the bar is

DELTA=
Members in Uni — axial state of stress
Introduction: [For members subjected to uniaxial state of stress]

For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can
be determined as

Suppose the bar is loaded at one or more intermediate positions, then equation (1) can
be readily adapted to handle this situation, i.e. we can determine the axial force in each part of
the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each part
separately, finally, these changes in lengths can be added algebraically to obtain the total
charge in length of the entire bar.

LLLL FIFITFFTIF IV A

When either the axial force or the cross — sectional area varies continuosly along
the axis of the bar, then equation (1) is no longer suitable. Instead, the elongation can be found
by considering a deferential element of a bar and then the equation (1) becomes

46 = P dx
EA,
LR, dx

6=[=
JE%,

6
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i.e. the axial force Pxand area of the cross — section Ax must be expressed as functions
of x. If the expressions for Pxand Ax are not too complicated, the integral can be evaluated
analytically, otherwise Numerical methods or techniques can be used to evaluate these
integrals.

Principle of Superposition
The principle of superposition states that when there are numbers of loads are acting together

on an elastic material, the resultant strain will be the sum of individual strains caused
by each load acting separately.

Example 1: Now let us for example take a case when the bar tapers uniformly from d
atx=0toDatx=1

X / '

——]

t
>

— OX |-——

In order to compute the value of diameter of a bar at a chosen location let us
determine the value of dimension k, from similar triangles
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D-d)/2 _k
| X
D-d)x
Thusk= 0-d)
21

therefore, the diameter 'y' at the X-section is or =
d+2k
(D - d)x

I

Hence the cross —section area at section X- X will be

=d+

_M o2
A =2
L ora 4y

2
m X
_Z[d"'[:D-d:lT:l

hence the total extension of the bar will be given by expression

m| ™

(i
5a
subsititutingthe value of 'a'to getthe
totalextentionof thebar

_nP| Bx
ETTT 7
“ld+(o—d)lil

aftercarryingoutthe int ergrationwe get

__API[1 1
7 D d
_ 4Pl
#ED.d
- 4.p.
h the totalst thebar=
encetnetotalstrainint ne bar D

An interesting problem is to determine the shape of a bar which would have a uniform
stress in it under the action of its own weight and a load P.
Example 2: stresses in Non — Uniform bars

Consider a bar of varying cross section subjected to a tensile force P as shown below.

—

— N ——
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Let
a = cross sectional area of the bar at a chosen section XX
then

Stress< =p/a

If E = Young's modulus of bar then the strain at the section XX can be

calculated

<=</E

Then the extension of the short element < x. =<< .original length = < / E. <*

- P
E a
Thusthe extensionforthe entire baris
I
P &x
§==——
I'][E a
|
or totalextension =E 6_}(
Ep a

let us consider such a bar as shown in the figure below:

::::: 2, P2 VTP IF TP IIIITIIIII T

- !
]

Area'a'

xX=0
Frderd

Area 'a;' I P

The weight of the bar being supported under section XX is
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X
= [pgadx
0

where p isdensityof the bar.
thusthe stressatXXis

X
P+ J'pgadx
g=—2
a
x
oroa =P+ [pgadx
0

Differentiating the above equation with respect to x we get

cld_a:pga
-d}( . 4.
d_a:@d}{
a a

intergratingthe above equationwe get
Id—a = [2 94y
a a

log,® = £:8% , constant
o

Inordertodet ermine theconstantof int egration
letusapplythe boundary conditions

at x=0;a=3,

thus,constant = log,

ar

£.9.%
0

al_pgx
| 2=

pg.x
orje ¢ =

+log 2

log,? =

a
4p
alsoat x=0
_P
J = —
4

Thus,

Example 1: Calculate the overall change in length of the tapered rod as shown in figure
below. It carries a tensile load of 10kN at the free end and at the step change in section a
compressive load of 2 MN/m evenly distributed around a circle of 30 mm diameter take the

value of E = 208 GN / m*.
This problem may be solved using the procedure as discussed earlier in this

section 10
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2 MN/m

60D mm

= 12Zmm

l 10kN

Example 2: A round bar, of length L, tapers uniformly from radius r] at one end to radius
r2at the other. Show that the extension produced by a tensile axial load P

PL
=l

If r2 = 2r]1 , compare this extension with that of a uniform cylindrical bar having a
radius equal to the mean radius of the tapered bar.

Solution:

£
»

' {

£

\
-
X

11
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consider the above figure let r] be the radius at the smaller end. Then at a X
crosssection XX located at a distance x from the smaller end, the value of radius is equal to

X
=+ —=(fp -r
1 L(z 1)
=11+ kx)
wherek = [r2 ~h ]1_
L N
stressatsectionxXX = loid
area
_ P
e (1+ k)
stress

hence strain atthissection =

- P
E {1+ kx)?

P.dx
Em?(1+ kx)*
Totalextension of the bar can be found by integrating the above expression within
the limits fram x=0 to =L

Thus,forasmall length dx of the bar at this section the extention is

L
E)densinn=f%
D Emi (14 kx)
L
P2J1+kx'2dx
Eﬂr1El

(1+kx)"
Em,

(k)™ _ 1
Eﬂn _k -k
__P [
Emik| 1+kL
- PL
Em {1+ kL)
sinc:ek=u

rL
Thus, 1+k|_='2/
k

Therefore, the extension = PL

iz

12
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Comparing of extensions
For the case when 12 = 2.r], the value of computed extension as above

PL
2nEr?

becomes equal to
The mean radius of taper bar
=1/2(r1 +12)
=1/2(r] +¥212)
=3/2.r]
Therefore, the extension of uniform bar

= Orginal length . strain

I
ml<

ﬂ(%q I|2
4PL
g;rzEm'f
hencethe

L.
L P
E

4PL

Extensionofuniform _| gnEmr?
Extensionof tapered ) FL
2nEr?

w2 | 40

13
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strain:

When a single force or a system force acts on a body, it undergoes some deformation. This
deformation per unit length is known as strain. Mathematically strain may be defined as
deformation per unit length.

So,

Strain=Elongation/Original length

Elasticity:

The property of material by virtue of which it returns to its original shape and size upon
removal of load is known as elasticity.

Hooks Law

It states that within elastic limit stress is proportional to strain. Mathematically

E= Stress

Strain
Where E = Young’s Modulus
Hooks law holds good equally for tension and compression.
Poisson’s Ratio:
The ratio lateral strain to longitudinal strain produced by a single stress is known as
Poisson’s ratio. Symbol used for poisson’s ratiois p or 1/m.

Modulus of Elasticity (or Young’s Modulus)

Young’s modulus is defined as the ratio of stress to strain within elastic limit.

Deformation of a body due to load acting on it

St
We know that young’s modulus E= ress i

Strain

) c P
Or, strain, €= —=

E AE

14
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Shear Strain

The distortion produced by shear stress on an element or rectangular block is shown in the
figure. The shear strain or ‘slide’ is expressed by angle ¢ and it can be defined as the change
in the right angle. It is measured in radians and is dimensionless in nature.

v /-

For elastic materials it is found that shear stress is proportional to the shear strain within
elastic limit. The ratio is called modulus rigidity. It is denoted by the symbol ‘G’
or ‘C’.= shear stress/shear strain

Modulus of Rigidity

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the
volumetric strain. It is denoted by the symbol K.

stress intensit ]
K (] Y -

volumetric strain v

Relation between elastic constants:

Elastic constants: These are the relations which determine the deformations produced by a
given stress system acting on a particular material. These factors are constant within elastic
limit, and known as modulus of elasticity £, modulus of rigidity G, Bulk modulus K and
Poisson’s ratio pu.

15
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Relationship between modulus of elasticity (E) and bulk modulus (K):

E=3K(1-2p)

Relationship between modulus of elasticity (E) and modulus of rigidity (G):

E=2G(1+p)

Relation among three elastic constants:

9KG G+

E:
3K

Numerical problems on, relation between elastic constants.

Stress — Strain Relationship

Stress — strain diagram for mild steel

Standard specimen are used for the tension test.
There are two types of standard specimen's which are generally used for this purpose,
which have been shown below:

Specimen 1:
This specimen utilizes a circular X-section.

()
7

lg

[
/

L

A
L ]

[specimen with circular X-section)

Specimen 11:

This specimen utilizes a rectangular X-section.

16
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[specimen with rectangular X-section]

lg = gauge length i.e. length of the specimen on which we want to determine the
mechanical properties.The uniaxial tension test is carried out on tensile testing machine and
the following steps are performed to conduct this test.

(1) The ends of the specimen are secured in the grips of the testing machine.

(i1) There is a unit for applying a load to the specimen with a hydraulic or mechanical drive.

(ii1) There must be some recording device by which you should be able to measure the final
output in the form of Load or stress. So the testing machines are often equipped with the
pendulum type lever, pressure gauge and hydraulic capsule and the stress Vs strain diagram is
plotted which has the following shape.

A typical tensile test curve for the mild steel has been shown below

GJ\

PARTIALLY PLASTIC | /
Ultimate [ELASTC = @ __.-=-= -

_ True stress-
stress - E S
— strain diagram
Yield 5
stress B|C : 3
A conventional stress-strain

D diagram or nominal stress-
strain diagram

rupture strength
(it is the stress at
failure)

stress
—

r

cn—q strain —> €

Linear range

SALIENT POINTS OF THE GRAPH:

(A) So it is evident form the graph that the strain is proportional to strain or

elongation is proportional to the load giving a st.line relationship. This law of proportionality
17
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is valid upto a point A.

or we can say that point A is some ultimate point when the linear nature of the graph ceases
or there is a deviation from the linear nature. This point is known as the limit of
proportionality or the proportionality limit.

(B) For a short period beyond the point A, the material may still be elastic in the sense
that the deformations are completely recovered when the load is removed. The limiting
point B is termed as Elastic Limit .

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally
recoverable. There will be thus permanent deformation or permanent set

when load is removed. These two points are termed as upper and lower yield points
respectively. The stress at the yield point is called the yield strength.

A study a stress — strain diagrams shows that the yield point is so near the proportional limit
that for most purpose the two may be taken as one. However, it is much easier to locate the
former. For material which do not posses a well define yield points, In order to find the
yield point or yield strength, an offset method is applied.

In this method a line is drawn parallel to the straight line portion of initial stress diagram by
off setting this by an amount equal to 0.2% of the strain as shown as below and this happens
especially for the low carbon steel.

A
o
yield strength (or Proof stress)
J! C
f.f
/
/
,«!
0.2 % or .002 €

(E) A further increase in the load will cause marked deformation in the whole volume of the
metal. The maximum load which the specimen can with stand without failure is called the
load at the ultimate strength.

The highest point ‘E' of the diagram corresponds to the ultimate strength of a
material.

su = Stress which the specimen can with stand without failure & is known as Ultimate

Strength or Tensile Strength.

su is equal to load at E divided by the original cross-sectional area of the bar.

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum until

18
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fracture occurs at F. Beyond point E, the cross-sectional area of the specimen begins to
reduce rapidly over a relatively small length of bar and the bar is said to form a neck. This
necking takes place whilst the load reduces, and fracture of the bar finally occurs at point F.

Nominal stress — Strain OR Conventional Stress — Strain diagrams:

Stresses are usually computed on the basis of the original area of the specimen;

such stresses are often referred to as conventional or nominal stresses.

True stress — Strain Diagram:

Since when a material is subjected to a uniaxial load, some contraction or expansion always
takes place. Thus, dividing the applied force by the corresponding actual area of the
specimen at the same instant gives the so called true stress.

Percentage Elongation: 'd ':

The ductility of a material in tension can be characterized by its elongation and by the
reduction in area at the cross section where fracture occurs.

It is the ratio of the extension in length of the specimen after fracture to its initial gauge
length, expressed in percentage.

|-
5=(‘| g)xmu
1

IT = gauge length of specimen after fracture(or the distance between the gage marks at
fracture)
lg= gauge length before fracture(i.e. initial gauge length)

For 50 mm gage length, steel may here a % elongation d of the order of 10% to
40%.
Ductile and Brittle Materials:

Based on this behaviour, the materials may be classified as ductile or brittle
materials

Ductile Materials:

It we just examine the earlier tension curve one can notice that the extension of the materials
over the plastic range is considerably in excess of that associated with elastic loading. The
Capacity of materials to allow these large deformations or large extensions without failure is
termed as ductility. The materials with high ductility are termed as ductile materials.

19
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Brittle Materials:

A brittle material is one which exhibits a relatively small extensions or deformations to
fracture, so that the partially plastic region of the tensile test graph is much reduced.

This type of graph is shown by the cast iron or steels with high carbon contents or concrete.

Composite Bars In Tension & Compression:-Temperature stresses in composite rods
statically indeterminate problem.

Thermal stresses, Bars subjected to tension and Compression

Compound bar: In certain application it is necessary to use a combination of
elements or bars made from different materials, each material performing a different function.
In over head electric cables or Transmission Lines for example it is often convenient to carry
the current in a set of copper wires surrounding steel wires. The later being designed to
support the weight of the cable over large spans. Such a combination of materials is generally
termed compound bars.

Consider therefore, a compound bar consisting of n members, each having a different
length and cross sectional area and each being of a different material. Let all member have
a common extension ‘X' i.e. the load is positioned to produce the same extension in each
member.

20



SATHYABAMA UNIVERSITY DEPARTMENT OF AERONAUTICAL ENGINEERING

SEMESTER I SAE1204 INTRODUCTION TO AIRCRAFT STRUCTURES 2015 REGULATIONS
A P o
' i Lyl I|
L
n" member
, / Length Ln
First member | Area An
Modulus En
Length L1 Load Fn
Area A1
Modulus E1 | | |
loadF+ """ ----”--°°10 Common
extension
w

Forthe'n' the members

Fn
stress _ E = A
strain " x,.,/ﬁ

A
Aoy
or F, = En Ay EnAnx (1)
L, L

Where Fn 1s the force in the nth member and An and Lp are its cross - sectional area
and length.

Let W be the total load, the total load carried will be the sum of all loads for all the
members.

E A x
sz n''n
L
-
oo n (2)
L,
Fromegquation (1),forceinmembert isgivenas
F = E,.A.x
fromequation(2)
%= W
‘ZEI'I'AI'I
|_I'I
ThusF, = BA W
L1 3 En"”\
L,

21
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Therefore, each member carries a portion of the total load W proportional of EA
/ L value.

E, A,
L
F = — W
'SEA
The above expression may be writen as L
F = Suf
' JEA

if the length of each individual member in same then, we may write
Thus, the stress in member '1' may be determined as <] =F] / A]

Determination of common extension of compound bars: In order to
determine the common extension of a compound bar it is convenient to consider it as a single
bar of an imaginary material with an equivalent or combined modulus Ec.

Assumption: Here it is necessary to assume that both the extension and original
lengths of the individual members of the compound bar are the same, the strains in all
members will than be equal.

Total load on compound bar = F1 + F2+ F3 +......... + Fn
where F1 , F 2 ,.....,etc are the loads in members 1,2 etc But
force = stress . area,therefore

c (Al1+A2+...... +An)=0c1Al +topA2 +.... +op,
An

Where cA is the stress in the equivalent single bar

22
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Dividing throughout by the common strain<< .
o _ 0y 03 on
—(Ay+ Ay A A A —
E(1+2++n)ei+e2+ EAn
e E (A + Ay + v A EEA CEA L BA
SEACEA L EVA

E =
e Arr g+ v A
SEA
E. ==——
or E, SA

with an external load W applied stress in the equivalent bar may be computed as

stress =ﬂ
TA
. . X Wy
strain inthe equivalent bar=—=
9 L ZAE,
hence commen extension x = W
E.ZA

Compound bars subjected to Temp. Change : Ordinary materials expand when
heated and contract when cooled, hence , an increase in temperature produce a positive
thermal strain. Thermal strains usually are reversible in a sense that the member returns to
its original shape when the temperature return to its original value. However, there here
are some materials which do not behave in this manner. These metals differs from ordinary
materials in a sence that the strains are related non linearly to temperature and some times are
irreversible .when a material is subjected to a change in temp. is a length will change by an

amount.
Af = (X.L.t
Or Ay =E.a.t
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I
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I
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o = coefficient of linear expansion for the material

L = original Length t
= temp. change
Thus an increase in temperature produces an increase in length and a decrease in

temperature results in a decrease in length except in very special cases of materials with zero
or negative coefficients of expansion which need not to be considered here.

If however, the free expansion of the material is prevented by some external force, then
a stress is set up in the material. They stress is equal in magnitude to thatwhich would be

produced in the bar by initially allowing the bar to its free length and then applying sufficient
force to return the bar to its original length.

Change in Length=a Lt
Therefore, strain=ao Lt/L

=at

Therefore, the stress generated in the material by the application of sufficient force to

remove this strain
=strain X E

or Stress=E a t

Consider now a compound bar constructed from two different materials rigidly joined

together, for simplicity.

Let us consider that the materials in this case are steel and brass.
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Steel

Brass

If we have both applied stresses and a temp. change, thermal strains may be added to
those given by generalized hook's law equation —e.g.

ex=1E[oI-)(oy+Uz]]+o:m
ex=1E[o‘,-)(ox +UZ)]+o:m
e,s%[oz - o, + U‘,)]+o;m

While the normal strains a body are affected by changes in temperatures, shear strains
are not. Because if the temp. of any block or element changes, then its size changes not its
shape therefore shear strains do not change.

In general, the coefficients of expansion of the two materials forming the compound bar
will be different so that as the temp. rises each material will attempt to expand by different
amounts. Figure below shows the positions to which the

individual materials will expand if they are completely free to expand (i.e not joined rigidly
together as a compound bar). The extension of any Length L is given by [ L t

Assume O, > Ol

N
{a) Orignal bar N Steel
3 Brass
3 Steel
3 A On L.t
- L Al
oL
) —
N
(b) Expanded position members ] Steel I B c
free 1o expand inrepently 3 Brass |
R Steel |
N
Extpnsion of = :
Compression
steel
N of brass
3 D
(6) Expanded position of the : Steel
Compound har Brass
3 Steel
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In general, changes in lengths due to thermal strains may be calculated form
equation A ; = o Lt, provided that the members are able to expand or contract freely,

a situation that exists in statically determinates structures. As a consequence no stresses are
generated in a statically determinate structure when one or more members undergo a uniform
temperature change. If in a structure (or a compound bar), the free expansion or contraction is
not allowed then the member becomes s statically indeterminate, which is just being discussed
as an example of the compound bar and thermal stresses would be generated.

If the two materials are now rigidly joined as a compound bar and subjected to the same
temp. rise, each materials will attempt to expand to its free length position but each will be
affected by the movement of the other. The higher coefficient of expansion material (brass)
will therefore, seek to pull the steel up to its free length position and conversely, the lower
coefficient of expansion martial (steel) will try to hold the brass back. In practice a
compromised is reached, the compound bar extending to the position shown in fig (c),
resulting in an effective compression of the brass from its free length position and an effective
extension of steel from its free length position.

Two Dimensional State of Stress and Strain: Principal stresses. Numerical examples

Stresses on oblique plane: Till now we have dealt with either pure normal direct stress or
pure shear stress. In many instances, however both direct and shear stresses acts and the
resultant stress across any section will be neither normal nor tangential to the plane. A plane
stse of stress is a 2 dimensional stae of stress in a sense that the stress components in one
direction are all zero i.e
cz="T yz = T zx
=0

3)

Now resolving parallal to AC
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sq-AC.1=<<xy..cos<.AB.1+<< Xy.BC.sin< .1

The — ve sign appears because this component is in the same direction as that of AC.
Again converting the various quantities in terms of AC so that the AC cancels

out from the two sides.
Tg.AC1=[1,cosfsing - o, sinficos@ JAC
Ts = (04 -0 )sinfcost

= —(ox ; 7y) sin28

- l:ox - U\,r:l
2

or |7, =

sin26

Conclusions :
The following conclusions may be drawn from equation (3) and (4)

(i) The maximum direct stress would be equal to <x or <y which ever is the

greater, when < = 00 or 900
(i) The maximum shear stress in the plane of the applied stresses occurs when

<<=450

(o, - 0y)
Tmax = -

Material subjected to combined direct and shear stresses:

Now consider a complex stress system shown below, acting on an element of material.

The stresses <x and <y may be compressive or tensile and may be the result of direct
forces or as a result of bending.The shear stresses may be as shown or completely reversed
and occur as a result of either shear force or torsion as shown in the figure below:

A
Oy
Tx
B
A B
P Tx
(4]
0 Ox
an
D —++  C
Txy
y Oy

As per the double subscript notation the shear stress on the face BC should be notified
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as <yx , however, we have already seen that for a pair of shear stresses there is a set of
complementary shear stresses generated such that <yx = <xy
By looking at this state of stress, it may be observed that this state of stress is

combination of two different cases:

(1) Material subjected to pure stae of stress shear. In this case the various formulas
deserved are as follows
<< =<yx sin2<<

<< =<<<yx cos 2< <

(i1) Material subjected to two mutually perpendicular direct stresses. In this case the
various formula's derived are as follows.
. - (o, +0y) . (o, -0y)
i 2

g, - a
Ty =£-1§-ilsmze

cos2f

To get the required equations for the case under consideration,let us add the respective
equations for the above two cases such that

2

d, -0
Tg = %sirﬂ& - T L0828

cos28+ 1, sin2f

Ty = y

These are the equilibrium equations for stresses at a point. They do not depend on
material proportions and are equally valid for elastic and inelastic behaviour

This eqn gives two values of 2< that differ by 1800 .Hence the planes on which

maximum and minimum normal stresses occurate 900apart.
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_ . do
Forogto be a maximum or minimum d—; =0

Mow
a, +a a, - ad
oe=( . lr)+|: . y)cus29+ Ty SIN28E
2 2
do, _ 1 .
d_; = -EI:O'I - ov)sm2ﬁ'_2 * Ty €O 5282

=0
ie.-(0, - 0,)sin28+ 1, c0s262=0
T 008282 = (0, - 0,)sin28

2T,
Thus, tan28 = — ¥
Oy ~ C'}r)

From the triangle it may be determined

cos28 = (9 _:“)
J(oJt -0 ) +ar
2
sin26 = Dy

'J(ox - ay)z * 412:3;

21y

Substituting the values of cos2<< and sin2<< in equation (5) we get

29



SATHYABAMA UNIVERSITY DEPARTMENT OF AERONAUTICAL ENGINEERING

SEMESTER I SAE1204 INTRODUCTION TO AIRCRAFT STRUCTURES 2015 REGULATIONS
a_ +ad a -a
Oq 00y (o l‘)cc|526+'rm sin 28
2 2 ¥
_ (oy+ 0,},) (o - 0},) (ox - oy)
ae - + .
2 2 Jog -0, 4t
. TW'sz
Jlox o)t a4t
- (ox + av] . 1 (0: - U!,r:lz
2 2 flog-op)teary,
A A
2 .J(ox - a‘,)2 + dazn,
ar

G I G -0, ) +47,
2 2'1!(0! - Uy)z +412w
1 o -0,y +4F,y,,j(a, -0, 447,
' Jo o var,
Ty = %(01 * oy:l t %'J(ax B oy:lz * 412:3(

Hence we get the two values of g, which are designated o, as g, and respectively therefore

1 1
0y = i(ox * oy) * i'J(ox B oyjz + 4121@
1 1

g, = E(ox . cry) - 5,\,'(01 - r:r!’rjl2 . 412:@

The o, and o, are termed as the principle stresses of the system.
Substituting the values of cos28 and sin28 in equation (B) we see that

Ty = %(oJt - 0,)sin2é - 1, cos2d

1 2Ty, . Ty (Ox — 0y)

This shows that the values oshear stress is zero on the principal planes.

Hence the maximum and minimum values of normal stresses occur on planes of zero
shearing stress. The maximum and minimum normal stresses are called the principal stresses,
and the planes on which they act are called principal plane the solution of equation

27

tan2f, = —=—
(Ux - ay)
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will yield two values of 2< separated by 1800 1.e. two values of < separated by

900 .Thus the two principal stresses occur on mutually perpendicular planes termed
principal planes.

Therefore the two — dimensional complex stress system can now be reduced to the
equivalent system of principal stresses.

Principle planes L

Let us recall that for the case of a material subjected to direct stresses the value of
maximum shear stresses

T - %(or -o at 8= 45" Thus, for a 2-dimensional state of stress,subjected to principle stresses

-

= %(ol - d,), on substituting the values if o, and 0, we get

max™

1
Tmaim = i.v,(ox - Uv)z + 412!".

Alternatively this expression can also be obtained by differentiating the expression for 7, with respectto & ie.

g, - a
Ty = #sin% - T L0528
':::I_T; - -;—(Ox -0,)c0s282 + 1, sin28.2

=0
or (o, -0 )cos28 +21, sin26 =0

_ (ay -0y - _(0: - Uy)

tan2f. =
2Tm' 21,
tanzﬁs = —w
27,
Recalling that
27
tan2fp = — 2
I:ox -Uy-:l

Thus,
|tan28p tan28, = 1|
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Therefore,it can be concluded that the equation (2) is a negative reciprocal of equation

(1) hence the roots for the double angle of equation (2) are 900 away from the corresponding
angle of equation (1).

This means that the angles that angles that locate the plane of maximum or

minimum shearing stresses form angles of 450 with the planes of principal stresses.
Futher, by making the triangle we get

2
cos2f = Tx:
'-J'(Uy -0, )+ 41‘213,
(g, -0a
sin2f = (9 - %)

Jlo, -0, 47,
Therefare by substitutingthevaluesof cos28and sin28we have
Ty = %(o,t -0,)sin28- 1, cos2é
1 (oy —0y).(0y —oy) ) TW_QTW
2 Joy o eary o, -0)7 447,
1 (o, -0 ) 4t
2 o, -0 vart,

Ty = t;—_\f'(ax - [:11,)2 + 412“,

- (ox- oy)

2'(:‘,'

Because of root the difference in sign convention arises from the point of view of
locating the planes on which shear stress act. From physical point of view these sign have no
meaning.

The largest stress regard less of sign is always know as maximum shear stress.

Principal plane inclination in terms of associated principal stress:

2T
tan2é, = —

We know that the equation Oy = Oy)

yields two values of q i.e. the inclination of the two principal planes on which the
principal stresses s] and s2 act. It is uncertain,however, which stress acts on which plane
unless equation.
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a. +ad a. —-a . . .
O ! "2 v, (% 5 "':Icus?.e'r T 5in28 is used and observing which one of the

two principal stresses is obtained.
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Alternatively we can also find the answer to this problem in the following

manner
:

. /,——Unil depth
A xy

Tu=0\ ’__r.’

rC0s0 N
0
O or G;. \

(:U1 az) c

Consider once again the equilibrium of a triangular block of material of unit depth,
Assuming AC to be a principal plane on which principal stresses <p acts, and the shear stress

is zero.
Resolving the forces horizontally we get:

<x .BC.1+<xy .AB.1=<p.cos<.AC dividing the above equation through by
BC we get

J,.+ T E=0 cosf.—

¥ ¥ge P 'BC
or

gy + Teytand = g,

Thus

a. -a

tang =2 *

Ty

GRAPHICAL SOLUTION — MOHR'S STRESS CIRCLE

The transformation equations for plane stress can be represented in a graphical form
known as Mohr's circle. This grapical representation is very useful in depending the
relationships between normal and shear stresses acting on any inclined plane at a point in a

stresses body.
To draw a Mohr's stress circle consider a complex stress system as shown in the figure
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A
Oy
Ty
A B
141} P Try
) O
[s17)
D «——}—— C
vy Oy

The above system represents a complete stress system for any condition of applied
load in two dimensions

The Mohr's stress circle is used to find out graphically the direct stress < and sheer
stress<< on any plane inclined at< to the plane on which <x acts.The direction of <

here is taken in anticlockwise direction from the BC.
STEPS:

In order to do achieve the desired objective we proceed in the following manner

(1) Label the Block ABCD.

(1)) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate)

(ii1) Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign
convention.

Direct stresses<< tensile positive; compressive, negative

Shear stresses — tending to turn block clockwise, positive

— tending to turn block counter clockwise, negative

[ i.e shearing stresses are +ve when its movement about the centre of the element is
clockwise ]
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This gives two points on the graph which may than be labeled as AB and BC
respectively to denote stresses on these planes.

(iv) Join AB and BC

(v) The point P where this line cuts the s axis is than the centre of Mohr's stress

circle and the line joining AB and BC s diameter. Therefore the circle can now be drawn.

Now every point on the circle then represents a state of stress on some plane through C.
A

>
[}
Proof:
A
- //—D
’ — Q
AB ! _=/
+ ! Iy
| _ il [
I - I
Wl N 7
=" ! |
_ [
- ] I
- 20
0 -7 :K P : ¥ >
L Gy N Ox M [+
! p=264 :
N 1 Ty
2 -,\ R :
N i
1
= e (gi*02) /2 ._I BC
E
< . >
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Consider any point Q on the circumference of the circle, such that PQ makes an angle
2<<with BC, and drop a perpendicular from Q to meet the s axis at N.Then OQ represents
the resultant stress on the plane an angle < to BC. Here we have assumed that <x <<<y

Now let us find out the coordinates of point Q. These are ON and QN.

From the figure drawn earlier

ON = OP + PN
OP =0OK + KP
OP =<y +1/2 (<x<<<y)
=<y/2+<y/2+<x/2+<y/2
PN =Rcos( 2<<<<<)
hence ON = OP + PN
=(<x +<y )/ 2+ Rcos(2<<<<<<)

=(<<x *<y)/2+Rcos2< cos< + Rsin2<sin<

now make the substitutions for Rcos< and Rsin<.

a a
RcosB3 = ( ‘2 “); RsinB = T,

Thus,

ON=1/2 (<<x + <y) +1/2 (< <x < <y )0052< + <XySi1’12<< (1)
Similarly QM = Rsin( 2<<<<<)
= Rsin2<cos< - Rcos2<sin<

Thus, substituting the values of R cos< and Rsin<, we get
QM = 1/2 (<x < <y)sin2< <<<xyc0s2< (2)

If we examine the equation (1) and (2), we see that this is the same equation which we
have already derived analytically
Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at <
to BC in the original stress system.
37



SATHYABAMA UNIVERSITY DEPARTMENT OF AERONAUTICAL ENGINEERING

SEMESTER 1lI SAE1204 INTRODUCTION TO AIRCRAFT STRUCTURES 2015 REGULATIONS

N.B: Since angle BC PQ is 2< on Mohr's circle and not < it becomes obvious that
angles are doubled on Mohr's circle. This is the only difference, however, as They are
measured in the same direction and from the same plane in both figures.

Further points to be noted are :

(1) The direct stress is maximum when Q is at M and at this point obviously the sheer
stress is zero, hence by definition OM is the length representing the maximum principal
stresses < ] and 2< ] gives the angle of the plane <1 from BC. Similar OL is the other
principal stress and is represented by <2

(2) The maximum shear stress is given by the highest point on the circle and is

represented by the radius of the circle.

This follows that since shear stresses and complimentary sheer stresses have the same
value; therefore the centre of the circle will always lie on the s axis midway between <x and
<y . [ since +<xy & <<xy are shear stress & complimentary shear stress so they are

same in magnitude but different in sign. ]
(3) From the above point the maximum sheer stress i.e. the Radius of the

Mohr's stress circle would be

l:ox - Uy)
2

While the direct stress on the plane of maximum shear must be mid — may between <x

and <yi.e
(0, +9,)
2
A
T
AB / \
/N \
[ )
l'. Gy _lI ay © g
\\ \“.w/ |
(ox + ay) "“-—’/ 8C
- 2 -

(4) As already defined the principal planes are the planes on which the shear
components are zero.
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Therefore are conclude that on principal plane the sheer stress is zero.

(5) Since the resultant of two stress at 900 can be found from the parallogram of vectors
as shown in the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on
Mohr's Circle.

B A

(6) The graphical method of solution for a complex stress problems using Mohrt's
circle is a very powerful technique, since all the information relating to any plane within
the stressed element is contained in the single construction. It thus, provides a convenient
and rapid means of solution. Which is less prone to arithmetical errors and is highly
recommended.

Numericals:

Let us discuss few representative problems dealing with complex state of stress to be
solved either analytically or graphically.

Q 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is the
Value of shear stress on the planes on which the normal stress has a value of 50

MN/m2 tensile.

Solution:

Tensile stress <y=F / A =105 x 10° / < x (0.02)?

— 83.55 MN/m>

Now the normal stress on an oblige plane is given by the relation

<<<<= <ysin2<

50 x 10® = 83.55 MN/m? x 10%sin?<

< =50%g'
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The shear stress on the oblique plane is then given by

<<<=1/2 <ysin2<

—1/2 x 83.55 x 100 x sin 101.36

= 40.96 MN/m?>

Therefore the required shear stress is 40.96 MN/m2

Q2:

For a given loading conditions the state of stress in the wall of a cylinder is
expressed as follows:

(a) 85 MN/m2 tensile
(b) 25 MN/m2 tensile at right angles to (a)

(c) Shear stresses of 60 MN/m2 on the planes on which the stresses (a) and (b) act;

the sheer couple acting on planes carrying the 25 MN/m2 stress is clockwise in effect.
Calculate the principal stresses and the planes on which they act. What would be the
effect on these results if owing to a change of loading (a) becomes compressive while stresses
(b) and (c¢) remain unchanged
Solution:

The problem may be attempted both analytically as well as graphically. Let us first
obtain the analytical solution

25 MN

1 .™ somN

m

85 MN
mn’

The principle stresses are given by the formula

0,anda,

1

1
5(0, +0,) tﬁ.f(o, - cl!,r)2 “hiw
1
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For finding out the planes on which the principle stresses act us the equation

27
tan2&=[ : ]
0y = Oy

The solution of this equation will yeild two  values< i.ethey <

| and <2 giving <1=31971' & <2=121%71"
(b) In this case only the loading (a) is changed i.e. its direction had been changed. While

the other stresses remains unchanged hence now the block diagram becomes.

25 MN
m.ﬂ
[ 60 MN

Again  the principal stresses would be given by the equation.

1 1
0,80, = 5(01 +a,) ’:E.J(a,t - 0,’,)2 +412w

(-85 +25) + %,f(-aa =257 + (4x60%)

P — BRI —

(-60) + %J(-as 25 + (4x607)

- -30 :%\.’12100»'14400

=-30 +81.4

oy =514 MN/m?; o, = -111.4 MN/m?
Again for finding out the angles use the following equation.

27
tan2&=[ i ]
0, =0y

2x60 120
+

85-25 -110
_12
11

12
tan| - —
o[ -3)

= §#=-2374°

28

Thus, the two principle stresses acting on the two mutually perpendicular planes
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1.e principle planes may be depicted on the element as shown below:

A Ref.plane
G, B.C ]
—» L 1
. ‘B
h Tuy
LY
AY
L
LY
A"
\\(-. o
\\
N
-~ C

So this is the direction of one principle plane & the principle stresses acting on this
would be <1 when is acting normal to this plane, now the direction of other principal

plane would be 900 + < because the principal planes are the two mutually

perpendicular plane, hence rotate the another plane < + 900 in the same direction to

get the another plane, now complete the material element if < is negative that means we are
measuring the angles in the opposite direction to the reference plane BC .

ref‘pllane

I
+ve
-— S
@
L]
NS
S
-\E;
Q

Therefore the direction of other principal planes would be {<< + 90} since the angle
<< is always less in magnitude then 90 hence the quantity (<<< + 90 ) would be positive
therefore the Inclination of other plane with reference plane would be positive therefore if just

Ref.plane

complete the Block. It would appear as
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If we just want to measure the angles from the reference plane, than rotate this block

through 1800 so as to have the following appearance.

So whenever one of the angles comes negative to get the positive value, first
Add 900 to the value and again add 900 as in this case < = <23O74'
so<] = <23O74' + 900 = 66026' .Again adding 900 also gives the direction of

other principle planes
ie<2=66%26 + 90" = 156%26'
This is how we can show the angular position of these planes clearly.

GRAPHICAL SOLUTION:

Mohr's Circle solution: The same solution can be obtained using the
graphical solution i.e the Mohr's stress circle,for the first part, the block diagram
becomes

A 25 MN
m? B0 MN
I m?
A "
"\ 60 MN
\\ m;!

Construct the graphical construction as per the steps given earlier.
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‘ AB — ——
% ~
/1 N
/ N

‘r_Tz - \\._ e BC

Taking the measurements from the Mohr's stress circle, the various quantities
computed are

<1 =120 MN/m?

tensile
<2=10 MN/m?2 compressive
<1 = 340 counter clockwise from BC

<5 =349+ 90 = 1249 counter clockwise from BC

Part Second : The required configuration i.e the block diagram for this case is shown
along with the stress circle.
By taking the measurements, the various quantites computed are given as

<1=56.5 MN/m? tensile
<2 =106 MN/m? compressive
<] = 66015' counter clockwise from BC

<2 = 156015' counter clockwise from BC

Salient points of Mohr's stress circle:

1. complementary shear stresses (on planes 900 apart on the circle) are equal in
magnitude

2. The principal planes are orthogonal: points L and M are 1800 apart on the circle
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(900 apart in material)

3. There are no shear stresses on principal planes: point L and M lie on normal stress

axis.

4. The planes of maximum shear are 450 from the principal points D and E are 900 ,

measured round the circle from points L and M.
5. The maximum shear stresses are equal in magnitude and given by points D and
E

6. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E
both have normal stress co-ordinate which is equal to the two principal stresses.

[ )

T P

— | 1

(oy,Ty)

26

-———————— 3

As we know that the circle represents all possible states of normal and shear stress on
any plane through a stresses point in a material. Further we have seen that the co-ordinates of
the point ‘Q' are seen to be the same as those derived from
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equilibrium of the element. i.e. the normal and shear stress components on any plane
passing through the point can be found using Moht's circle. Worthy of note:

1. The sides AB and BC of the element ABCD, which are 900 apart, are represented

on the circle by ABPand BC P apd they are 1800 apart.

2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it
can be seen at a point. Thus, it, can be seen that two planes LP and PM,

1800 apart on the diagram and therefore 900 apart in the material, on which shear

stress << 1s zero. These planes are termed as principal planes and normal stresses acting on

them are known as principal stresses.
Thus, <1 =OL

<2 =OM

3. The maximum shear stress in an element is given by the top and bottom points of the circle
i.e by points J1 and J2 ,Thus the maximum shear stress would be equal to the radius of i.e. <
max= 1/2(<<1<<<2 ),the corresponding normal stress is obviously the distance OP = 1/2
(S<xt <y ) , Further it can also be seen that the planes on which the shear stress is

maximum are situated 900 from the principal planes ( on circle ), and 450 in the material.

4. The minimum normal stress is just as important as the maximum. The algebraic
minimum stress could have a magnitude greater than that of the maximum principal stress if
the state of stress were such that the centre of the circle is to the left of orgin.

ie.if <1 =20MN/m? (say)
<2 = <80 MN/m? (say)

Then <max™ = (<1 <<<2/2)=50 MN/m?

If should be noted that the principal stresses are considered a maximum or minimum
mathematically e.g. a compressive or negative stress is less than a positive stress,
irrespective or numerical value.

5. Since the stresses on perpendular faces of any element are given by the co- ordinates
of two diametrically opposite points on the circle, thus, the sum of the two normal stresses for
any and all orientations of the element is constant, i.e. Thus sum is an invariant for any
particular state of stress.
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Sum of the two normal stress components acting on mutually perpendicular planes at a
point in a state of plane stress is not affected by the orientation of these planes.

/ \
»

’ /

—————— == 3

AN

\-‘\_
h“L‘—\._

A .
//"' % = l . # “_ﬂ-
o -

-
(O Twy)

This can be also understand from the circle Since AB and BC are diametrically opposite
thus, what ever may be their orientation, they will always lie on the diametre or we can say
that their sum won't change, it can also be seen from analytical relations

a.+dad a. . -a
On ) (O "')0052%1,, sin26
We know 2 X

on plane BC; < =0

<nl = <x

on plane AB; < =2700
Thus <nl1 + <n2=<x+ <y

6. If <1 =<2, the Mohr's stress circle degenerates into a point and no shearing stresses

are developed on xy plane.
7. If <x+ <y= 0, then the center of Mohr's circle coincides with the origin of

<< < << co-ordinates.
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UNIT 2 ANALYSIS OF BEAMS

Concept of Shear Force and Bending moment in beams:
When the beam is loaded in some arbitrarily manner, the internal forces and moments

are developed and the terms shear force and bending moments come into pictures which are
helpful to analyze the beams further. Let us define these terms

Crg

A A
Rt |a) R
P P A P
I
F .
A I
\ I !
A : A
I
Ri ! R
b) A

Fig 1

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3
and is simply supported at two points creating the reactions R] and R2
respectively. Now let us assume that the beam is to divided into or imagined to be cut into two
portions at a section AA. Now let us assume that the resultant of loads and reactions to the
left of AA is ‘F' vertically upwards, and since the entire beam is to remain in equilibrium,
thus the resultant of forces to the right of AA must also be F, acting downwards. This forces
‘F' is as a shear force. The shearing force at any x- section of a beam represents the tendency
for the portion of the beam to one side of the section to slide or shear laterally relative to the
other portion.

Therefore, now we are in a position to define the shear force ‘F' to as follows:

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral

components of the forces acting on either side of the x-section.
Sign Convention for Shear Force:

48



SATHYABAMA UNIVERSITY DEPARTMENT OF AERONAUTICAL ENGINEERING

SEMESTER I SAE1204 INTRODUCTION TO AIRCRAFT STRUCTURES 2015 REGULATIONS

The usual sign conventions to be followed for the shear forces have been illustrated in
figures 2 and 3.

F

The resultant force which is in the downward
direction and is towards the R.H.S of the
X-seclion Is +ve Shear Force.

The resultant force which is in upward
direction and is towards the L.H.S of the
X-seclion is +ve Shear Force

R e

Fig 2: Positive Shear Force

F

The resultant force which are in the downward
direction and is on the L.H.S of the X-section
is -ve Shear Force.

The resultant force which are in upward
direction and is on the R.H.S of the

A
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
: X-seclion is -ve Shear Force.
A

Fig 3: Negative Shear Force

Bending Moment:
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Fig 4

Let us again consider the beam which is simply supported at the two prints, carrying loads P1,
P2 and P3 and having the reactions R] and R2 at the supports Fig 4. Now, let us imagine
that the beam is cut into two potions at the x-section AA. In a similar manner, as done for
the case of shear force, if we say that the resultant moment about the section AA of all the
loads and reactions to the left of the x-section at AA is M in C.W direction, then moment of
forces to the right of x-section AA must be ‘M' in C.C.W. Then ‘M' is called as the Bending
moment and is abbreviated as B.M. Now one can define the bending moment to be
simply as the algebraic sum of the moments about an x-section of all the forces acting on
either side of the section

Sign Conventions for the Bending Moment:
For the bending moment, following sign conventions may be adopted as indicated in

Fig 5 and Fig 6.
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J

Resultant moment on the R.H.S postion
of the X-section is C.C.W, then it may be
considered as positive B.M

\

Resultant moment on the L.H.S of
the X-section is CW, then itis a
positive B.M

A
I
|
I
|
|

M : M
|
|
|
|
|
|
I
|
|
I
I
|
|
I
|
|

A

Fig 5: Positive Bending Moment

Resultant moment on the R.H.S of
the X-section is CW, thenitis a
negalive B.M

Resultant moment on the L.H.S of
the X-section is C.C.W, theniitis a

A
1
I
I
|
1
I
I
I
I
|
I
I
I
|
I
I
I
I
1
I
I
1

negative BM I
A

Fig 6: Negative Bending Moment

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and negative
bending moments respectively.
Bending Moment and Shear Force Diagrams:

The diagrams which illustrate the variations in B.M and S.F values along the length of the
beam for any fixed loading conditions would be helpful to analyze the beam further.
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Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force ‘F'
varies along the length of beam. If x dentotes the length of the beam, then F is function x i.e.
F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the
internal bending moment ‘M' varies along the length of the beam. Again M is a function x i.e.
M(x).

Basic Relationship Between The Rate of Loading, Shear Force and Bending

Moment:

The construction of the shear force diagram and bending moment diagrams is greatly
simplified if the relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load
w/length. Let us imagine to cut a short slice of length dx cut out from this loaded beam
at distance ‘x' from the origin ‘0'".

ANNAY

X 45X

il | “ .\
.

Considered to
be detached

Let us detach this portion of the beam and draw its free body diagram.

M+iM
} F+iF

The forces acting on the free body diagram of the detached portion of this loaded beam are the
following
* The shearing force F and F+ &F at the section x and x + 6x respectively.

* The bending moment at the sections x and x + dx be M and M + dM respectively.
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» Force due to external loading, if ‘w' is the mean rate of loading per unit length then the
total loading on this slice of length dx is w. dx, which is approximately acting through
the centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly
through the centre ‘c'.

This small element must be in equilibrium under the action of these forces and couples.

Now let us take the moments at the point ‘c'. Such that

M+F_a_;+(F +5F)_%= M + i

=F O Faor) 2= o
3 7

=>F_Z_K +F.62_X+SF.%= oM [Neglecting the product of

oF and dxbeingsmallquantities ]

= F &= 6M
=F =M
&
Under the limits 6x— 0
dh
F=— 1
5 (1)

Re salvingthe forcesvertically we get
w.Ox +(F +6F)=F

= W=- ﬁ
O3
Under the limits éx— 0
= W= -ﬁur -i[w)
dx dx "dx
dF d*M
TR ()

Conclusions: From the above relations,the following important conclusions may be drawn

* From Equation (1), the area of the shear force diagram between any two points, from the
basic calculus is the bending moment diagram

M= IF. dx

* The slope of bending moment diagram is the shear force, thus

_ dM

F=""
dx

Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is
therefore constant.'
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dh
* The maximum or minimum Bending moment occurs where dx .
The slope of the shear force diagram is equal to the magnitude of the intensity of the
distributed loading at any position along the beam. The -ve sign is as a
consequence of our particular choice of sign conventions

Procedure for drawing shear force and bending moment diagram:

Preamble:

The advantage of plotting a variation of shear force F and bending moment M in a beam
as a function of ‘x' measured from one end of the beam is that it becomes easier to
determine the maximum absolute value of shear force and bending moment.

Further, the determination of value of M as a function of ‘x' becomes of paramount
importance so as to determine the value of deflection of beam subjected to a given loading.
Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In order to
draw this, first the reactions must be determined always. Then the vertical components of
forces and reactions are successively summed from the left end of the beam to preserve
the mathematical sign conventions adopted. The shear at a section is simply equal to the
sum of all the vertical forces to the left of the section. When the successive summation
process is used, the shear force diagram should end up with the previously calculated
shear (reaction at right end of the beam. No shear force acts through the beam just beyond
the last vertical force or reaction. If the shear force diagram closes in this fashion, then it
gives an important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of
beam from the left hand end and summing up the areas of shear force diagrams giving due
regard to sign. The process of obtaining the moment diagram from the shear force diagram by
summation is exactly the same as that for drawing shear force diagram from load diagram.

It may also be observed that a constant shear force produces a uniform change in the
bending moment, resulting in straight line in the moment diagram. If no shear force exists
along a certain portion of a beam, then it indicates that there is no change in moment
takes place. It may also further observe that dm/dx= F therefore, from the fundamental
theorem of calculus the maximum or minimum moment occurs where the shear is zero. In
order to check the validity of the bending moment diagram, the terminal conditions for the
moment must be satisfied. If the end is free or pinned, the computed sum must be equal to
zero. If the end is built in, the moment computed by the summation must be equal to the one
calculated initially for the reaction. These conditions must always be satisfied.

Illustrative problems:

In the following sections some illustrative problems have been discussed so as to illustrate

the procedure for drawing the shear force and bending moment diagrams
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1. A cantilever of length carries a concentrated load ‘W' at its free end.
Draw shear force and bending moment.
Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all
values of x) -ve sign means the shear force to the left of the x-section are in downward
direction and therefore negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as —ve according to the sign convention)
so that the maximum bending moment occurs at the fixed end i.e. M =-W 1

From equilibrium consideration, the fixing moment applied at the fixed end is WI and the
reaction is W. the shear force and bending moment are shown as,

W
W X 1 X

W I 7// / S.F.Diagram

% Wi —»8.M,Diagram

2. Simply supported beam subjected to a central load (i.e. load acting at the mid- way)

o T

=

.S

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any
section X-X from the left end then, the beam is under the action of following forces.
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.So the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2] If we

consider another section Y-Y which is beyond 1/2 then
W =W
SF Ly = —= W= —
o2 2 for all values greater = 1/2

Hence S.F diagram can be plotted as,

.For B.M diagram:

If we just take the moments to the left of the cross-section,

80
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Wi
BM { 74

It may be observed that at the point of application of load there is an abrupt change in the

shear force, at this point the B.M is maximum.

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

w / length

7

"
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Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given
w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we just
take the resultant of all the forces on the left of the X-section, then

S.Fxx = -Wx for all values of ‘X'. ==mmmmnmmn @
S.FXX =0

S.Fxx at x=1 = -

Wi

So if we just plot the equation No. (1), then it will give a straight line relation. Bending
Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load of
the same value acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

BMyy = - W x %

2

X
= - W
2

The above equation is a quadratic in x, when B.M 1is plotted against x this will
produces a parabolic variation.
The extreme values of this would be at x = 0 and x =1

2
BMy, . = -

2
Wi

=— -W
5 ®

Hence S.F and B.M diagram can be plotted as follows:
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X
- - w { length
NSNS "J'
L
|
X
[
SF |l.wm
y
B.M [-WIE
2

Wi Wi
¢ s

The total load carried by the span would be

= intensity of loading x length

=wxl

By symmetry the reactions at the end supports are each wl/2

If x is the distance of the section considered from the left hand end of the beam. S.F at

any X-section X-X is

=@-Wx

-]

Giving a straight relation, having a slope equal to the rate of loading or intensity of the
loading.
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w

SFax=p==— - wx
2

soat

S.F | =0 hencetheS Fiszeroatthe centre

atx= 3
Wl
3. Fat x=1"" 7

The bending moment at the section x is found by treating the distributed load as acting at its
centre of gravity, which at a distance of x/2 from the section

sothe

- X _
=W.s(l-2) @)

B.Mg = o=0
BMy, - =0

Wi
BMzy= B

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force
and bending moment can be drawn in the following way will appear as follows:

YA length

Wi
/.é

Wi
é%)\
wi F.
- \% /ZS Diagram
-—

Wiz,
4 8.M Diagram
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Pure Bending
Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a beam may
consists of a resultant normal force, a resultant shear force and a resultant couple. In
order to ensure that the bending effects alone are investigated, we shall put a constraint on the
loading such that the resultant normal and the resultant shear forces are zero on any cross-
section perpendicular to the longitudinal axis of the member,

That means F =0

w =F=0
since 4% or M = constant.

Thus, the zero shear force means that the bending moment is constant or the bending
is same at every cross-section of the beam. Such a situation may be visualized or envisaged
when the beam or some portion of the beam, as been loaded only by pure couples at its
ends. It must be recalled that the couples are assumed to be loaded in the plane of symmetry.

-<——Beam

ki '7
7’
!

Plane of Symmetry

Fig (1)

Fig (2)
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When a member is loaded in such a fashion it is said to be in pure bending. The

examples of pure bending have been indicated in EX land EX 2 as shown below :
EX 2 P P

rra s AL

zero S F

SFD

Constant B.M

BMD

EX. 1
MP’

SFD

e

77

BMD

When a beam is subjected to pure bending are loaded by the couples at the ends, certain cross-
section gets deformed and we shall have to make out the conclusion that,

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and
perpendicular to the longitudinal axis even after bending , i.e. the cross- section A'E', B'F' (
refer Fig 1(a) ) do not get warped or curved.

2. In the deformed section, the planes of this cross-section have a common intersection i.e.
any time originally parallel to the longitudinal axis of the beam becomes an arc of circle.
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Any Transverse

Saction
7
| AL
| /
| i
R ——
/'I
P N_A = Neutral axis
FA|
rd
Neutral ——t—,F - = = = = =
Surface ’
s N T
i *

We know that when a beam is under bending the fibres at the top will be lengthened while at
the bottom will be shortened provided the bending moment M acts at the ends. In between
these there are some fibres which remain unchanged in length that is they are not strained,
that is they do not carry any stress. The plane containing such fibres is called neutral surface.
The line of intersection between the neutral surface and the transverse exploratory section is
called the neutral axisNeutral axis (N A) .

Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us
consider the two cross-sections of a beamHE and GF , originally parallel as shown in
fig 1(a).when the beam is to bend it is assumed that these sections remain parallel i.e.H'E'
and G'F', the final position of the sections, are still straight lines, they then subtend some
angle <.
Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends
this will stretch to A'B'

Therefore,
change inlength

orginal length

strain in fibre AB =

_AB - AB i .
refertofigl{a) andfiglib)

. . _ AB'-CD'

Costran=s — — —

c'D’

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis
zero. Therefore, there won't be any strain on the neutral axis
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(R+y)8-R8 _RB+yB-RB _y
RA RA R
However Zitrrzisrf =E whereE =Young'sModulus of elasticity

Therefore equating the twostrains as

obtained fromthe tworelationsi.e,

E
= ¢ )

or —
R

Il
|-

o
E

= | a

A
y‘ j N.A

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a
distance ‘y' from the N.A, is given by the expression
o=Ey
R
if the shaded strip is of area'dA’
then the force on the stripis

F=g 6A=Ey 6A
R

Moment about the neutral axiswould be =F.y = = y286A

alm

The toatl moment for the whole
cross-section is therefare equal to

_<E 2.0 _ Ec 2
M=3_ oA = — G4
ZRY RZ}'

Zep . . :
Now the term =¥ & is the property of the material and is called as a second moment of area

of the cross-section and is denoted by a symbol 1.

Therefore
E
M=
= @
combining equation 1 and 2 we get
g_M_E
y T R

This equation is known as the Bending Theory Equation.The above proof has involved
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the assumption of pure bending without any shear force being present.

therefore this termed as the pure bending equation. This equation gives distribution of stresses
which are normal to cross-section i.e. in x-direction.
Section Modulus:

From simple bending theory equation, the maximum stress obtained in any cross- section
is given as

a m -

max

¥ m

max

M
T

For any given allowable stress the maximum moment which can be accepted by a particular
shape of cross-section is therefore

For ready comparison of the strength of various beam cross-section this relationship is some
times written in the form

M =Zog  where Z=|—

m
max Ymax s termed as section modulus

The higher value of Z for a particular cross-section, the higher the bending moment which it
can withstand for a given maximum stress.

Theorems to determine second moment of area: There are two theorems which are
helpful to determine the value of second moment of area, which is required to be used while
solving the simple bending theory equation.

Second Moment of Area :

Taking an analogy from the mass moment of inertia, the second moment of area is defined as
the summation of areas times the distance squared from a fixed axis. (This property arised
while we were driving bending theory equation). This is also known as the moment of inertia.
An alternative name given to this is second moment of area, because the first moment being
the sum of areas times their distance from a given axis and the second moment being the

2
square of the distance or I y' dA
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Consider any cross-section having small element of area d A then by the definition Ix(Mass

2
Moment of Inertia about x-axis) = I y" dA and Iy(Mass Moment of Inertia about y-axis)

2
Now the momenI 3t i¥fertia about an axis through ‘O' and perpendicular to the plane

of figure is called the polar moment of inertia. (The polar moment of inertia is also the area
moment of inertia).
1.e,

J = polar moment of inertia

= [1tda
= J(od + y?)0a
= [xtda+]y2da
=ly +ly
ord=1ly +1 (1

The relation (1) is known as the_perpendicular axis theorem and may be stated as follows:
The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of
inertia about an axis perpendicular to the plane, the three axes being concurrent, i.e, the three
axes exist together.

CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the
following manner
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-

Consider any circular strip of thickness <r located at a radius 't'. Than
the area of the circular strip would be dA = 2<r. <r

J=[rda
Taking the limits of intergration from 0 to d/2
d

7
J=Jﬁzm&
1]

d
2
=2nj'r36r

d
ol FE
J=27n|— = ___
”[4 2

however by perpendicular axistheorem

J=Ix+ly

But for the circular cross-section the Ixand lyare both
equal being moment of inertia about a diameter

1
lga = EJ

_—
lga = 7

forahollow circular sectionof diameterDandd,
thevaluesof Jandlare definedas

_ #pt - &
- 32
- aD* - d%)

Thus b4

J
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Parallel Axis Theorem:

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis
through the centroid plus the area times the square of the distance between the axes.

If °ZZ' 1s any axis in the plane of cross-section and ‘XX' is a parallel axis through the centroid
G, of the cross-section, then

l, = I(y +|'1:|2 dA by definition {(moment of inertia about an axis Z7)
= [[ +2yh +h?) da
= [y2da +n? [da +2n ] yda
Since | ydA= 0
= [y2dA +h?[da
= [y2dA +h2A

l, = I, +Ah? |, =I5 (since cross-section axes also pass through G)
Yhere A =Total area of the section

Rectangular Section:

For a rectangular x-section of the beam, the second moment of area may be computed as
below :
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Consider the rectangular beam cross-section as shown above and an element of area dA ,

thickness dy ,

breadth B located at a distance y from the neutral axis, which by

symmetry passes through the centre of section. The second moment of area I as defined

earlier would be

Ina = hz dA

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an axis

through the centre is given by

Iya = YE(B d}’)
2
D
7
=Bjy2d3f
-D
7
212
_aly|?
= Bl
7
_ Blp® _ (D
3|8 8
BlD®* D
_— + —
3l 8
| _ BD®
NA T DT
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Similarly, the second moment of area of the rectangular section about an axis through
the lower edge of the section would be found using the same procedure but with integral
limits of 0 to D .

31" 3
-el5] 5
Therefore 0

These standards formulas prove very convenient in the determination of INA for build up

sections which can be conveniently divided into rectangles. For instance if we just want to
find out the Moment of Inertia of an I - section, then we can use the above relation.

1 B -
| 3

| 1
[ 1
I |
1 1
1 1
[ 1
I 1
[ A _ |9 D
1 1

N.A | |
[ 1
| 1
| |
| |
I 1
| |

r
r
-— > = >
b b
N.A: of dotted rectangle B lofshadedportion
o= BDY b
CNA 2 12
_ BD? bd®

L v R
Use of Flexure Formula:
Ilustrative Problems:
An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is
20 mm is used as simply supported beam for a span of 7 m. The girder carries a distributed
load of 5 KN /m and a concentrated load of 20 KN at mid-span.
Determine the

(1). The second moment of area of the cross-section of the girder
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(i1). The maximum stress set up.
Solution:

The second moment of area of the cross-section can be determained as follows :

For sections with symmetry about the neutral axis, use can be made of standard I value for a
rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided into
convenient rectangles for each of which the neutral axis passes through the centroid. Example
in the case enclosing the girder by a rectangle

Igirder= Inectangle - Ishaded portion

_ Izun 1><23DD3I 017 o \90 % 2503‘ 102

= (45-2.64 107
=1.86 x 10°* m*

The maximum stressmaybefoundfrom 300 mm 77 77
I I I N ) |
thesimplebendingtheorybyequation % %/A .
—_ = == / 260 mm
y | R A %

] 200 mm
m

Computation of Bending Moment:

In this case the loading of the beam is of two types

(a) Uniformly distributed load

(b) Concentrated Load

In order to obtain the maximum bending moment the technique will be to consider each

loading on the beam separately and get the bending moment due to it as if no other forces
acting on the structure and then superimpose the two results.
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20MN SNy KN/m 20KN
= + ]
3.5m AN o 3.5m o
7m L 7m o - 7m _
!ESKN:m J. W

wiz2 Wiz

AN

[ this should be the

combined shear force

diagram for the above wL?

loading) B %L

B.MD B.MD

Hence

_20x10°x7  5x10°x7?
4 8

= (35.0 +30.63)10°

=B563 kNm

max™
[ ana:"'

_B563x10° x150=10°
1.06x10°4
0 =518MN/m?
ax

mi

max

Shearing Stresses in Beams

All the theory which has been discussed earlier, while we discussed the bending stresses in
beams was for the case of pure bending i.e. constant bending moment acts along the entire
length of the beam.

Thin cylinder and thin spherical shells under internal pressure and numerical examples.
Wire winding of thin cylinders. Numerical examples.
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UNIT 3 DEFLECTION OFBEAMS
Introduction:

In all practical engineering applications, when we use the different components, normally we
have to operate them within the certain limits i.e. the constraints are placed on the
performance and behavior of the components. For instance we say that the particular
component is supposed to operate within this value of stress and the deflection of the
component should not exceed beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe condition but
there may be the deflection which is the more rigid condition under operation. It is obvious
therefore to study the methods by which we can predict the deflection of members under
lateral loads or transverse loads, since it is this form of loading which will generally produce
the greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a
differential equation of elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for
beams that are not stressed beyond the elastic limit.

2. The curvature is always small.

3. Any deflection resulting from the shear deformation of the material or shear stresses is
neglected.
It can be shown that the deflections due to shear deformations are usually small and hence can

be ignored.
AY
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the
action of loads the beam deflect to a position A'B' under load or infact we say that the
axis of the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of
the beam as the elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending
moment M varies along the length of the beam and we represent the variation of bending
moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds
good.

M
T

E
R

g
¥

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every
point is different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x
and y, x-axis coincide with the original straight axis of the beam and the y

— axis shows the deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us
construct the normal which intersect at point O denoting the angle between these two normal
be di

But for the deflected shape of the beam the slope i at any point C is defined,

tani=d—y ) or i=j—y Assuming tani =i
X

dx
Futher

ds =Rdi
howeyer,
ds = dx [usually for smallcurvature]

Hence

ds = dx = Rdi

ar i:l
dx R

substitutingthevalueofi, one get
d[dy]_1 rn:Fg,z_1

— = 0
dxldx)] R &f R
Fromthe simplebendingtheory
M _E El
T R"™R
sothe basicdifferentialequation governingthe deflectionof beamsis
d?y
M=ElI
i
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This is the differential equation of the elastic line for a beam subjected to bending in the plane
of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve
as it is frequently called.

Relationship between shear force, bending moment and deflection: The
relationship among shear force,bending moment and deflection of the beam may be obtained
as

Differentiating the equation as derived

cIM=EI d*y
dxd

Thus,

Recalling ﬂ=F
o

&y
F=EI
d

Therefore, the above expression represents the shear force whereas rate of intensity of loading
can also be found out by differentiating the expression for shear force

e w= —dF
' dx
d“y
w= -El
ax*

Therefore if'y'isthe deflection of the loadedbeam,
thenthefollowingimportantrelationscanbearrivedat

dy
| =_1
slope =
dzy
B.M=El
dx?
d3y
Shearforce = El
A
|:I4},r

loaddistribution =El
dx?

Methods for finding the deflection: The deflection of the loaded beam can be obtained
various methods.The one of the method for finding the deflection of the beam is the direct
integration method, i.e. the method using the differential equation which we have derived.
Direct integration method: The governing differential equation is defined as
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dty M _ d%y
M = El o=
dx? “om dx

ohintegrating one get,
g_y= Igd}{ +A----thisequation gives the slope
X

of theloadedbeam.
Integrate once again to get the deflection.

y=”%dx +Ax+B

Where A and B are constants of integration to be evaluated from the known conditions of
slope and deflections for the particular value of x.

Illustrative examples : let us consider few illustrative examples to have a familiarty with
the direct integration method

Case 1: Cantilever Beam with Concentrated IL.oad at the end:- A cantilever beam is
subjected to a concentrated load W at the free end, it is required to determine the deflection of

the beam

 J

In order to solve this problem, consider any X-section X-X located at a distance x from
the left end or the reference, and write down the expressions for the shear force abd the

bending moment
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SF, = -W
B‘Mlx—: = =W x
Therefore M|, = -W.x
the governing equation — = dzy
q geq B ol
substituting the value of M interms of x then integrating the equation one get
M dzy
Bl o
dzy __ Wi
=
d?y W
— =] -———dx
J'dg{z J El
dy Wi
—_—=- + A
dx 2El

Integrating oncemore,

dy _ _Wx2
IE_I ﬁdxd;\dx

3
y = -Wx' +Ax+B
GEI

The constants A and B are required to be found out by utilizing the boundary
conditions as defined below
ieatx=L;y=0 (1)

atx=L;dy/dx=0 (2)

Utilizing the second condition, the value of constant A is obtained as
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_ WP
=)
While employing the first condition yields
_ Wi
T EE
B= W_I_3 - AL
GEI
_wle owie
"~ BEl 2Bl
Wl -3wl 2wl
"7 BBl TBE
_w?
3E
Substituting the values of A and B we get
1 [owed | owidx owle
CE| e e IE
The slope aswell as the deflection would be
maximum at the free end hence putting =0 we get,

A

+AL+B

__we®
Ymax IET
2
(Slo pe]maxm =+“%

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam
is subjected to U.d.l with rate of intensity varying w / length.The same procedure can also be
adopted in this case

X
I
N
b
T . Y Y Y Y Y Y Y . 4 5

Xx=0 |a x - :x-L
X \
>\
L
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SF|_, =-w
BMLI--W}{—-W[T
M _ d'y
B 9
clij,fz_wx2
dxf 2Bl
dty wi?
o
IW J B
d =_Wx3
dx  BEI
dy Wi
A=) dx+]Ad
Jr:| 5ET [
4
WK
=-__ +Ax+
y=-ogg tAHE
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Boundary conditions relevant to the problem are as follows:

I.LAtx=L;y=0
2. Atx=L;dy/dx =0

The second boundary conditions yields

3
WX
A=+—
GEI

whereasthe firstboundary conditions yields

p=¥U _w'

24El BEI
wl *
BEI

Th =_|-—_+__=
Y TEl T

S0 Ymaxm willbe at x =0

wL?

Ymaxm= ~ ﬁ

[dy] =wL3
&%) Jm BEI

Case 3: Simply_Supported beam with uniforml

/ length.

103
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w / length

D

phr %ﬁ"

In order to write down the expression for bending moment consider any cross- section
at distance of x metre from left end support.

X

2 Z
Thedifferential equation which gives the elastic curve for the deflected beam is
d'y _M_1 [Wl.x w:{?]

&Z El EIl 2 2
dy _ [ wlx Wi
= - | ——du+ A
ax I2E| g '[2EI g
:wlxz_wx3
4El  BEl
Integrating,once more one gets
whe  wod
Y= 1oEr  gam AR L

Boundary conditions which are relevant in this case are that the deflection at each support
must be zero.
le.atx=0;y=0:atx=1Ly=0

let us apply these two boundary conditions on equation (1) because the boundary
conditions are on y, This yields B = 0.
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_ wit _ wlt
12E1 24El
wi*

24El
oo the equationwhich gives the deflection curve is

1 IWL}{3 wi? WBXI

=1

Futher

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [
i.e. at the position where the load is being applied ].So if we substitute the value of x = L/2

e U )

Swl?
J84 El

Y m="

max

Conclusions

(1) The value of the slope at the position where the deflection is maximum would be zero.
(i1) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

_ 1 wh  w wlix
Elf 12 24 24

By successive differentiation one can find the relations for slope, bending moment, shear
force and rate of loading.

JEl= wla®  wx® wilix -SWL
12 24 24 " 384E
Deflection (y)

El dy _ IBWL}:2 Cdwx® WLQI

Tdx 12 24 24 105
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*wi
24
-wi'
24
Slope (dy/dx) 3" degree Polynomial
Bending Moment So the bending moment diagram would

be

wi
2
L, | L}
? 2
Single degres shear force
equation In '«

Shear Force

Shear force is obtained by
taking
third derivative.

Py _ wl
El = - WX
de 2

Rate of intensity of
loading

Case 4: The direct integration method may become more involved if the expression for
entire beam is not valid for the entire beam.Let us consider a deflection of a simply
supported beam which is subjected to a concentrated load W acting at a distance 'a' from the
left end.
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Let R1 & R2 be the reactions then,

R1

B.M for the portion AB

Mg =Rix D<x<a

B.M for the portion BC

Mg =Ryx-W(x-a)a <x <l

so the differential equation for the two caseswould be,

These two equations can be integrated in the usual way to find ‘y' but this will result in four
constants of integration two for each equation. To evaluate the four constants of integration,
four independent boundary conditions will be needed since the deflection of each support
must be zero, hence the boundary conditions (a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and
deflection at the point of application of load i.e. at x = a. Therefore four conditions required to
evaluate these constants may be defined as follows:

(a) atx =0; y =0 in the portion ABi.e.0<x<a

(b) atx =1; y =0 in the portion BCi.e.a<x <1
(c) at x = a; dy/dx, the slope is same for both portion (d)
at x = a; y, the deflection is same for both portion By

symmetry, the reaction R is obtained as
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Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence
letting

K1 K2
dy-_Wb {xlam--m--
= X 2|:e|+h:|yC *k O<x<a (3
_ Wb 2
By=—¥h , Wix-a) " RN "
Hﬁnca.(aw:' 2
Integrating a |ane tion (3)and (4) we get
\f@@ W X 0<%<@ -mmmmmmn (1
Elj,f— E;PJM D€ %< qemmnn- (5)
y o Wb 3W (% - a) PR & 4 PP (2)
Ely = \"@'dxx (BB)- 5) +hot+k g Al x| -mnnmn- (B)

mteﬁ ‘3%@(1 and (2 QME get,
Utilizing corhdftmn (‘q}bn quatmn (5) yields
E E ﬂ(j-_ad{ D i X E a """" (3:'

Utilizing cogdmun %]nm equat“,e’rt)@ gj&lds

0= B}Wb 2[ +W’{' ar +E|+|<4

(o Wb s W[I—a)3
4=" +

B(a+h) 5
Buta+b=lI,

Thus,

-kl

Wh(a +b)? 3
kg =- (Z+) +\-“\éb - k(a +b)

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the
condition (d) is that,
At x = a; y; the deflection is the same for both portion
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Therefore YI\‘rorn equation § =Y |1|'Dl'l'l equation

or
3
Wh 3 _ Wb 5 W(x-a)
— %" +kx +k,y = - +kx +k
Bla+b) 3T Bla+n) 3 T
3
Wh 4 Wb 5 W(a-a)
———a tka+tk; = - +ka +k
Ba+n). T Ela+h) 5 AT
Thus, k4=0;
OR
2 3
k4=_WI:|[a+b) + Wb ~k(a +b) =0
b b
_ Wh(a+b)® il
k(a+b)= = 5
k=_Wh(a+b)+ wh?
B B{a+b)
so the deflection equations for each portion of the beam are
Ely=_""0 3 +kx+k,

6{a+b]
_ Why®  Whi(a+b)x N W x
Bla+b) B bB(a+b)
and for other portion
Wh s W(x-a)
B(a+h) B
Substituting the value of 'k'in the above equation
_ whé _W(x-a) Wh(a +b)x  Whx
B(a+h) B 6 B{a +h)
so either of the equation (7) or (8) may be used to find the deflection at x=a
hence substituting x = a in either of the equation we get

—---for0<x<€a----- (7

Ely= +hoo+k g

Forfora<x<l----- @)

Y. =- Wa’b?
=2 3EI(a +b)
OR{fa=b=12
__owl
max™  4GE]

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a
more simpler way. Let us considering the origin at the point of application of the load,

X
('/z-xl x w
)
[ ]
I =0
-&- ) . T
w W
%2 | |72
X
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W
S'F|n =?
W

|
B'Mln = T[i - }{]

substituting the value of Min the governing equation for the deflection

W I-x
d'y _ 212
dx? El
2
dy _ 1 Wl _ Wx +A
X | 4 4
2 2
y=lWLx _ Wi +Ax +B
EI| 8 12

Boundary conditions relevant for this case are as follows

(1) at x = 0; dy/dx= 0

hence, A=0

(i1) at x =1/2; y = 0 (because now 1/ 2 is on the left end or right end support since we have
taken the origin at the centre)

Thus,
Wi wie
o=|2-_-""- 4B
Iﬂ 55 +I
_owe
a8

Hence he equation which governsthe deflection wouldbe
1Pwﬁ_wﬁ_wﬁl

=1 12 48
Hence
_ oW
Ymaxm |ah<=.;. =- I5E] At the centre
dy Lo, e
[ﬁ]m“m atx=t iﬁ Atthe ends

Hence the integration method may be bit cumbersome in some of the case. Another
limitation of the method would be that if the beam is of non uniform cross section,

B |
I

i.e. it is having different cross-section then this method also fails. So

there are other methods by which we find the deflection like

1. Macaulay's method in which we can write the different equation for bending
moment for different sections.
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2. Area moment methods
MOMENT-AREA METHODS:

The area moment method is a semi graphical method of dealing with problems of deflection
of beams subjected to bending. The method is based on a geometrical interpretation of definite
integrals. This is applied to cases where the equation for bending moment to be written is
cumbersome and the loading is relatively simple.

Let us recall the figure, which we referred while deriving the differential equation
governing the beams.

A —_— dy — B

A\

It may be noted that d< is an angle subtended by an arc element ds and M is the bending
moment to which this element is subjected.
We can assume,

ds = dx [since the curvature is small]

hence, R d< =ds

48 _ 1 _M
ds R EI
dB _ M
ds El

But for small curvature[but Bis the angle slope is tanB =¥ for small
X

2

anglestanB = B hence & = d—Yso we getd—y = Mby putting ds = dx]
dx dx*  El

Hence,

dé _ M _Mdx|

a—aor dE'-—El (1)

The relationship as described in equation (1) can be given a very simple
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graphical interpretation with reference to the elastic plane of the beam and its bending moment
diagram

A B el
Defpano .-l..—.\-T tangents drawn at the
A ", 40 end of small element ds.
Deflection curve of 1 — ndt)
— [
the beam h"">< Arc = Angle x radius
L.~ 0 we can take the radius
1 ~., to be equal 1o x
/ S B! This isalso within
Al ¥ reasonable accuracy.

Bending Moment diagram
of the beam subjected to —s| M< [ oC
arbitrary type of loading /,

—x —= B
cantroid

AII

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded
beam and A]B1is its corresponding bending moment diagram.

Let AO = Tangent drawn at A
BO = Tangent drawn at B
Tangents at A and B intersects at the point O.

Futher, AA 'is the deflection of A away from the tangent at B while the vertical
distance B'B is the deflection of point B away from the tangent at A. All these quantities are
futher understood to be very small.
Let ds = dx be any element of the elastic line at a distance x from B and an angle
between at its tangents be d<. Then, as derived earlier
h.dx

dE=—EI

This relationship may be interpreted as that this angle is nothing but the area M.dx of the
shaded bending moment diagram divided by EL

From the above relationship the total angle < between the tangents A and B may be
determined as

CBMdx 18
a-£_|-§£m|:|x
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Since this integral represents the total area of the bending moment diagram, hence we may
conclude this result in the following theorem
Theorem I:

{ slope or B } _ éxarea of B.M diagrambetween

between any two points corresponding portion of B.M diagram

Now let us consider the deflection of point B relative to tangent at A, this is nothing
but the vertical distance BB'. It may be note from the bending diagram that bending of the
element ds contributes to this deflection by an amount equal to x d<< [each of this

intercept may be considered as the arc of a circle of radius x subtended by the angle <]
B

5=J xdf
Hence the total distance B'B becomes 4
The limits from A to B have been taken because A and B are the two points on the elastic

curve, under consideration]. Let us substitute the value of d< = M dx / EI as derived earlier

5 ? Mdx Emdx [ This is infact the moment of area of the bending moment
= [x—=[—.x

“a El L E

diagram]

Since M dx is the area of the shaded strip of the bending moment diagram

and x is its distance from B, we therefore conclude that right hand side of the above equation
represents first moment area with respect to B of the total bending moment area between A
and B divided by EL

Therefore,we are in a position to state the above conclusion in the form of theorem as
follows:

Theorem II:

1 y first moment of area with respect
El | topointB, of the total B.M diagram

Deflection of point ‘B’ relative to point A

Futher, the first moment of area, according to the definition of centroid may be written

as A¥, where ¥ is equal to distance of centroid and a is the total area of bending
moment

5, = AR

Thus, El
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Therefore,the first moment of area may be obtained simply as a product of the total area of

the B.M diagram betweenthe points A and B multiplied by the distance % to its centroid C.
If there exists an inflection point or point of contreflexure for the elastic line of the loaded
beam between the points A and B, as shown below,

BM —_— +ve 1Ch
Ay 8

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M
diagram gets divide into two portions +ve and —ve portions with centroids Cland C2. Then to

find an angle < between the tangentsat the points A and B

El El
And similarly for the deflection of B away fromthe tangent at A becomes

S:TdeK_DM.dxx
El ~ 3 El

A

D B
e:IMd){_IMd}{
A D

Ilustrative Examples: Let us study few illustrative examples, pertaining to the use of these
theorems
Example 1:

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the

deflection at the free end.
Fpr a cantilever beam, the bending moment diagram may be drawn as shown below
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—
77

77

N WL B.M.Diagram

Let us workout this problem from the zero slope condition and apply the first area -
moment theorem

slope at »'-‘x:%[Area of B.M diagram between the points A and B]

1[1
= —|sL.wL
EI[2 ]
_wi?
2El

The deflection at A (relative to B) may be obtained by applying the second area -
moment theorem

NOTE: In this case the point B is at zero slope.

Thus,

6=%[ﬁrst moment of area of B.Mdiagram between AandBabout A]
1 tas

=_[A
(A7)

_1[f1 2
“bfsw ]
_wi?

3EI

Example 2: Simply supported beam is subjected to a concentrated load at the mid span
determine the value of deflection.

A simply supported beam is subjected to a concentrated load W at point C. The bending
moment diagram is drawn below the loaded beam.
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B.M digram.

Again working relative to the zero slope at the centre C.

slope atA=é[Area of B.M diagram between A and C]

T LY WL ,
= [[5][5][T]] we are taking half area of the B.Mbecause we

have towork out thisrelative to a zero slope
_ Wi
16El
Deflection of A relative to C = central deflection of C

or

BC=%[Moment of B.Mdiagram between points Aand C about A]

SR

~ 48EI

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a
intensity of loading W / length. It is required to determine the deflection.
The bending moment diagram is drawn, below the loaded beam, the wvalue of

maximum B.M is equal to le /8
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AN AWHWHN

Wi
/2 \
A B .
Cc S.F.Diagram
Wi
2

W /Ei

B.M.Diagram

L2

- -

—B{LI2)
So by area moment method,

Slope at point Cw.r.tpoint A = é[Area of B.Mdiagram between point A and C]

_ 2y wifL
EIN3)l 8 A2
_wi
24E|
Deflection atpoint C =%[A?]
relative to A
_ 1 wE ) 5YL
Elfl 24 \G)\2
5 4
= —— WL
3B4EI
Macaulay's Methods

If the loading conditions change along the span of beam, there is corresponding
change in moment equation. This requires that a separate moment equation be written
between each change of load point and that two integration be made for each such moment
equation. Evaluation of the constants introduced by each integration can become very
involved. Fortunately, these complications can be avoided by writing single moment equation
in such a way that it becomes continuous for entire length of the beam in spite of the
discontinuity of loading.
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Note : In Macaulay's method some author's take the help of unit function
approximation (i.e. Laplace transform) in order to illustrate this method, however both
are essentially the same.

For example consider the beam shown in fig below:

Let us write the general moment equation using the definition M = ( >, M )I, Which means
that we consider the effects of loads lying on the left of an exploratory section. The
moment equations for the portions AB,BC and CD are written as follows

| %

500 N ' 460 Nim
A B “Y vy ¥ 40
.. ' ~ Muyg = 480 xN.m
2m 1 Im | 2m -
Ry = 480N e Re=S20N My = [480 x-500(x-2)]N.m
. ) x Mep = [480x—SDD(x-2)—$(x—3f]N.m

It may be observed that the equation for MCD will also be valid for both MAB and
MBC(C provided that the terms (x - 2 ) and (x - 3 )2are neglected for values of x less than 2

m and 3 m, respectively. In other words, the terms (x -2 ) and (x - 3 )2 are nonexistent for
values of x for which the terms in parentheses are negative.

Y|
' 500 N 450 Nim
A B Cl f Y Y ¥ yD
A -— X
_ 2m oo Im 2m
R1=480N R2=920 N

As an clear indication of these restrictions,one may use a nomenclature in which the usual
form of parentheses is replaced by pointed brackets, namely, < >. With this change in
nomenclature, we obtain a single moment equation

M =[4E=c|x-500(x-2) - ?l:x—ﬂ?]f\l.m
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Which is valid for the entire beam if we postulate that the terms between the pointed brackets
do not exists for negative values; otherwise the term is to be treated like any ordinary
expression.

As an another example, consider the beam as shown in the fig below. Here the distributed
load extends only over the segment BC. We can create continuity, however, by assuming that
the distributed load extends beyond C and adding an equal upward-distributed load to cancel
its effect beyond C, as shown in the adjacent fig below. The general moment equation,
written for the last segment DE in the new nomenclature may be written as:

' 400 N 600 N
A BIIIiTlL [»] E

im Im | 2m | 2m

Ry =500 N R;=1300N
(a) 600 N

400 Ny

Aoy y

=]
e

e —

PP e
REEEE
im
Ry =500N
Rz=1300N
M=[500x-%(x—1)2+4g—0(x-4)2+1300(x-6)]l\l.m

It may be noted that in this equation effect of load 600 N won't appear since it is just at the
last end of the beam so if we assume the exploratary just at section at just the point of
application of 600 N than x = 0 or else we will here take the X - section beyond 600 N which
is invalid.

Procedure to solve the problems

(1). After writing down the moment equation which is valid for all values of ‘X' i.e. containing
pointed brackets, integrate the moment equation like an ordinary equation.

(i1). While applying the B.C's keep in mind the necessary changes to be made regarding the
pointed brackets.

llustrative Examples :
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1. A concentrated load of 300 N is applied to the simply supported beam as shown in
Fig.Determine the equations of the elastic curve between each change of load point and the
maximum deflection in the beam.

y
Y|

300N
A 2m B 1im C
3 — ] - x
X &
Ri=100N R:=200N

Solution : writing the general moment equation for the last portion BC of the loaded beam,
o

EIZ ) =M= (100x - 300{x - 2}))Nm (1

dx? I: { )) ( :I

Integrating twice the above equation to obtain slope and the deflection
dy .

(50}{ - 180 {x - 2¥ +C1)Nm ()

[50 X -50 {x -2 C,x+02]N.m3 n(3)

To evaluate the two constants of integration. Let us apply the following boundary
conditions:
1. At point A where x = 0, the value of deflection y = 0. Substituting these values in

Eq. (3) we find C2 = 0O.keep in mind that<x -2 >3 is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.
substituting these values in the deflection Eq. (3), we obtain

0= [5303 -50(3-2)° +3.c,]or Cy=-133N.m?

Having determined the constants of integration, let us make use of Egs. (2) and (3) to
rewrite the slope and deflection equations in the conventional form for the two portions.
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segment AB (0 € x<2m)

dy _ 2
Bl =(50%* -133]Nm ()
Ely = [530 3-133:{][\1 m’ )
segment BC (2m <€ x £3m)
EIdY (50 -150(x - 2)" -133x)Nm? ...._(6)

Ely = { x* -50(x-2) —133}<]N.m3 )

Continuing the solution, we assume that the maximum deflection will occur in the segment
AB. Its location may be found by differentiating Eq. (5) with respect to x and setting the
derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation
(4) equal to zero and solving for the point of zero slope.

We obtain

50 x2— 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the

equation does not yield a value < 2 m then we have to try the other equations which are valid
for segment BC)
Since this value of x is valid for segment AB, our assumption that the maximum deflection
occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x
=1.63 m in Eq (5), which yields

Ely |paxm = ~145Nm*  _(8)

The negative value obtained indicates that the deflection y is downward from the x axis.quite
usually only the magnitude of the deflection, without regard to sign, is desired; this is
denoted by <, the use of y may be reserved to indicate a directed value of deflection.
ifE=30Gpaand1=1.9x 10° mm* =1.9x 10 © m*
¥ lnax™ = |:3Elx1Dg]|:1 9x107°)
= -254mm

, Eq. (h) becomes

Then
Example 2:

It is required to determine the value of Ely at the position midway between the
supports and at the overhanging end for the beam shown in figure below.
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600N

! I‘ im 3m . 2m ., 2m

400 N/m
A B c D E
A= - . X
R = 500N R:=1300N
Solution:

Writing down the moment equation which is valid for the entire span of the beam and
applying the differential equation of the elastic curve, and integrating it twice, we obtain

2
E19Y = = [500x- 229 (- 17 + 209~ 47 41300 (x - B) |Nm
dx’ 2 2
1%y = f2800@ - 2 -y« 22 (- 4y v50(x-B) + €, Nm
dx 3 3
Ely :[zg_ux:’—53—0(}(-1:14+%(x—4)4+Bgu(x—6)3+01x+CE]Nm3

To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives C2
= 0.Note that the negative terms in the pointed brackets are to be ignored Next,let us use the
condition that Ely = 0 at the right support where x = 6m.This gives

250 250 oo 50

(5)4 e )#+BC, or C, = -1308Nm?

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the
deflection equation for the segment BC obtained by ignoring negative values of the

4 3

and < X - 6 <~. We obtain

Ely = @(3) (2) -1308(3) = -1941 N.m®

bracketed terms < x - 4 <

For the overhanglng end where =8 mwe have

ey = (2267 -0)° T+ Zoay -100e)|

= -1814Nm°

Example 3:

A simply supported beam carries the triangularly distributed load as shown in figure.
Determine the deflection equation and the value of the maximum deflection.
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n ==
N
]
"
x:

A C X
b~ v L -

L == -="L —x .

2 B 2
- - e

L
Ri=w.l/4 Rz=w.L/4 weLJ/d 2

(@) (b)

Solution:

Due to symmetry, the reactionsis one half the total load of 1/2w(QL, or R] = R2 =

1/4wQL.Due to the advantage of symmetry to the deflection curve from A to B is the mirror
image of that from C to B. The condition of zero deflection at A and of zero slope at B do not
require the use of a general moment equation. Only the moment equation for segment AB is
needed, and this may be easily written with the aid of figure(b).

Taking into account the differential equation of the elastic curve for the segment AB

and integrating twice, one can obtain

d? wol  owoxt x
El—L=M,, = 0 x-_0" =~ 1
T L 3 0
dy wolid  wyx?
Bl g 1oL -(2)
woL® w
Ely 5 eor oG8

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the
support A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry,
the slope dy/dx = 0 at midspan where x = L/2.Substituting these conditions in

equation (2) we get

|:]:\M_|JL EE—W_U E4+CC :—SWDL3
g 12) 12ul2 B 192

Hence the deflection equation from A to B (and also from C to B because of symmetry)

becomes
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Ely = -0 (251% - 4072 + 16x)
960L
The maximum deflection at midspanwhere x=L~2 is then found to be
wol?
ly = -
By =775

Example 4: couple acting

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from the
left end. It is required to determine using the Macauley's method.

lﬂ: =M
L

—

Pans
[ ]
&
_ _-G?‘r_a_‘
Ri=Mj L
T M|

To deal with couples, only thing to remember is that within the pointed brackets we

have to take some quantity and this should be raised to the power zero.i.e. M<< x - a < 0 .

We have taken the power 0 (zero) ' because ultimately the term M<< x - a< 0Should
have the moment units.Thus with integration the quantity<< x - a < becomes either <

x-a<10r<< x-a<2

Or
Q"'\M
Al ? )
AN N
< L

v ‘fﬁ_
m

Therefore, writing the general moment equation we get
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dty
M= Ryx —M{}( —a) or Eld_2 =M
X
Integrating twice we get
d i 1
Elﬁ= Ry 2~ M{x-a} +C,

3
Ely = RI.%-g(x-af +Cpx+ G,

Example S:simply supported beam is subjected to U.d.l in combination with couple M.
It is required to determine the deflection.

200N/m
M=1800 N-m
4~ Y YYYYyYYvyyyy
| (3]
s ~ o
R 2m . 2m 2m xR')Zm N

This problem may be attemped in the some way. The general moment equation my be
written as

200 {x - 4}{x - 4}

M(x) = Ryx-1800{x -2Y - - +R, {x-BY
200(x - 4Y
=R1x—1800(x-2}0-#ﬂ?z(x-ﬁ}
Thus,
dy _ o 200{x-4¥

Integrate twice to get the deflection of the loaded beam.
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UNIT4 STRESSES IN SHAFTS, HELICALSPRINGS AND THIN PRESSURE
VESSELS

Torsion of solid circular shafts

Torsion of circular shafts

Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other
end by a torque T = F.d applied in a plane perpendicular to the axis of the bar such a shaft is
said to be in torsion.

i ;
—

F 4 T=Fd

K
#

Effects of Torsion: The effects of a torsional load applied to a bar are

(1) To impart an angular displacement of one end cross — section with respect
to the other end. (ii) To setup shear stresses on any cross section of the bar
perpendicular to its axis.

Assumption:

(i) The materiel is homogenous i.e of uniform elastic properties exists
throughout the material. (i) The material is elastic, follows Hook's law, with
shear stress proportional to shear strain. (iii) The stress does not exceed the
elastic limit.

(iv) The circular section remains circular

(v) Cross section remain plane.
(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle.

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other
end being fixed Under the action of this torque a radial line at the free end of the shaft twists
through an angle © , point A moves to B, and AB subtends an angle ‘O ' at the fixed end.
This is then the angle of distortion of the shaft i.e the shear strain.
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Since angle in radius = arc /
Radius arc AB = RO
=L [J [since L and [] also constitute the arc AB]

Thus, 1 =R@ /L (1)

From the definition of Modulus of rigidity or Modulus of elasticity in shear

_ shear stress(7)
shear strainiy)
where 7y is the shear stress set up atradius R.

T
Then —=
G Y

Equating the equations (1) and (2) we get R—LE = é

% = %[= TT]where T'isthe shear stress at any radius r.

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear
stress['.

The force set up on each element
= stress x area
= [1"x 2] r dr (approximately)

This force will produce a moment or torque about the center axis of the shaft.

".20rdr.r

2000 . 2. dr
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R
T= IZm'r dr
The total torque T on the section, will be the sum of all the contributions. 0

Since [1' is a function of r, because it varies with radius so writing down[]' in terms of r from
the equation (1).

: ,_ Gor
e 7= =
L

R
wegetT = _[211@13&
2 L

_2aGe %,
T——L i[r dr

_ 2766 IR‘I"
L[4},
_G# 2R
L4
Gé nR*
T2
Go
T

_ G

L

T!'d4
153 now substituting R = d/2

d?
sin |:|3E = J thepolarmomentofinertia

T _ Gé

r—_—

N

if we combine the equation no.(1) and (2) we get}=

Where

T = applied external Torque, which is constant

over Length L; J = Polar moment of Inertia
-

=— for solid shaft
32

4 _ 4
=% for a hollow shaft,

[ D = Outside diameter ; d = inside
diameter | G = Modules of rigidity (or Modulus of elasticity in
shear)

] = It is the angle of twist in radians on a length L.

Tensional Stiffness: The tensional stiffness k is defined as the torque
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per radius twisti.e, k=T /[1=GJ /L
Power Transmitted by a shaft : If T is the applied Torque and (] is the angular velocity of
the shaft, then the

power transmitted by the shaft is

_ 27NT _ 2alT »
60 60.10°
where N=rpm

P=T.w

TORSION OF HOLLOW SHAFTS:

From the torsion of solid shafts of circular x — section , it is seen that only the
material at the outer surface of the shaft can be stressed to the limit assigned as an

allowable working stresses. All of the material within the shaft will work at a lower stress
and is not being used to full capacity. Thus, in these cases where the weight reduction is
important, it is advantageous to use hollow shafts. In discussing the torsion of hollow shafts
the same assumptions will be made as in the case of a solid shaft. The general torsion
equation as we have applied in the case of torsion of solid

shaft will hold good

T_71_G8

J or |
For the hollow shaft

4_ 4
J= % where Dy=0Outside diameter
d=Inside diameter
Let di=%.Dn
_ 16T
Tmax™ |oofig m0,° (M
, ‘ _ TDp /2
max™ Iy gljou n 4 4
2 D,* -
=05t - 4%
: 16T Dy
’?Dn4 1_(di;DD)4]
16T 16T
= = 1.066. (2)
a0, [1- (1 fz)“l Dy’
Hence by examining the equation (1) and (2) it may be seen that the [ max0in the
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case of hollow shaft is 6.6% larger than in the case of a solid shaft having the same outside
diameter.
Reduction in weight:

Considering a solid and hollow shafts of the same length 'I' and density ' [1"' with dj =

1/2 Do

112 Do
-_——

Weight of hollow shaft
2 2
[ng 0,12 ],XP

4

_ ﬂDnz_HDDE
'| 1 e |

D 2
= 4” [1-1/4]1xp

70

=07520 |y

2
Weight of solid shaft =R[;° lp

L Dy
Reduction inweight ={1-0.75) 2 I3p
2
=D_25ﬂ[jlﬂ | %p

Hence the reduction in weight would be just 25%.

Illustrative Examples :
Problem 1

A stepped solid circular shaft is built in at its ends and subjected to an externally

applied torque. T(Q at the shoulder as shown in the figure. Determine the angle of

rotation [(y of the shoulder section where T( is applied ?
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Closed Coiled helical Spring

Closed Coiled helical springs subjected to axial loads:

Definition: A spring may be defined as an elastic member whose primary function is to
deflect or distort under the action of applied load; it recovers its original shape when load is
released.

or

Springs are energy absorbing units whose function is to store energy and to restore it slowly
or rapidly depending on the particular application.
Important types of springs are:

There are various types of springs such as
(i) helical spring: They are made of wire coiled into a helical form, the load being applied

along the axis of the helix. In these type of springs the major stresses is torsional shear stress
due to twisting. They are both used in tension and compression.

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and
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loaded in torsion.
In this the major stresses are tensile and compression due to bending.

g

/ N\

1 LCADD)
) 1

"'-\ N/
k_’/ Pinner

/

(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together
so as to obtain greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever
types, In these type of springs the major stresses which come into picture are tensile &
compressive.

These type of springs are used in the automobile suspension system.

Uses of springs :

(a) To apply forces and to control motions as in brakes and clutches. (b) To
measure forces as in spring balance.

(c) To store energy as in clock springs.

(d) To reduce the effect of shock or impact loading as in carriage springs.

(e) To change the vibrating characteristics of a member as inflexible mounting of motors.
Derivation of the Formula :

In order to derive a necessary formula which governs the behaviour of springs,
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consider a closed coiled spring subjected to an axial load W.

Let
W = axial load
D = mean coil diameter

d = diameter of spring wire n

= number of active coils

C = spring index = D / d For circular wires |1 =

length of spring wire

G = modulus of rigidity x

= deflection of spring q =

Angle of twist

when the spring is being subjected to an axial load to the wire of the spring gets be twisted
like a shaft.

If q is the total angle of twist along the wire and x is the deflection of spring under the action
of load W along the axis of the coil, so that

x=D/2.<

again | = < D n [ consider ,one half turn of a close coiled helical spring ]

Assumptions: (1) The Bending & shear effects may be neglected
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(2) For the purpose of derivation of formula, the helix angle is considered to be so
small that it may be neglected.

Any one coil of a such a spring will be assumed to lie in a plane which is nearly <' to the
axis of the spring. This requires that adjoining coils be close together. With this limitation, a
section taken perpendicular to the axis the spring rod becomes nearly vertical. Hence to
maintain equilibrium of a segment of the spring, only a shearing force V =F and Torque T =
F. r are required at any X — section. In the analysis of springs it is customary to assume that
the shearing stresses caused by the direct shear force is uniformly distributed and is
negligible

so applying the torsion formula.

Using the torsion formula i.e

T.r_6G#
J or |
4
and substitituting J = ﬂ;T = W.E
32 2
#= %;I =qD.x
SPRING DEFLECTION
w.d/2 - G.2x/D
md? 70.n
32
Thus,
: BwD*n
Gd*

Spring striffness: The stiffness is defined as the load per unit deflection therefore

W W
k —J— 3
¥ BwD n
G.d*
Therefore
_ Gd*
80%n

Shear stress

wdi2 _ Tom

md? d/2
32
_BwD
ar Tmax'“ = ?
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WAHL'S FACTOR :

In order to take into account the effect of direct shear and change in coil curvature a

stress factor is defined, which is known as Wahl's factor

_4c-1,0B15
K = Wahl' s factor and is defined as dc-4 c

Where C = spring index
=D/d
if we take into account the Wahl's factor than the formula for the shear stress

16Tk
becomes i’

Strain Energy : The strain energy is defined as the energy which is stored within a material
when the work has been done on the material.
In the case of a spring the strain energy would be due to bending and the strain energy
due to bending is given by the expansion

= E

2E|
L=mnDn
i

64
so after substitutionwe get
T2
U= 32 EJn
Ed

Example: A close coiled helical spring is to carry a load of 5000N with a deflection of

50 mm and a maximum shearing stress of 400 N/mm2 .if the number of active turns or
active coils is 8.Estimate the following:
(1) wire diameter

(i1) mean coil diameter
(111) weight of the spring.

2 3

Assume G = 83,000 N/'mm~ ; < = 7700 kg/m
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solution :
(i) for wire diametre if W is the axial load, then

wdi2 T

md? ds2

32

_ 400 md* 2
T di2 32w
4007 2
500016
D=0.0314d

Futher, deflection is given as

- BwD® n
G.d*
oh substituting the relevant parameters we get
_8.5000.(0.03144°)° 8
83,000.d*
d=13.32mm

50

Therefore,

D =.0314 x (13.317)°mm

=74.15mm D
= 74.15 mm
Weight

massorweight = volume. density

= area.length of the spring.density of spring material
2

d
=™ son.
g e

On substituting the relevant parameters we get
Weight =1.996 kg
=2.0kgy

DEPARTMENT OF AERONAUTICAL ENGINEERING

2015 REGULATIONS

Close — coiled helical spring subjected to axial torque T or axial couple.
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In this case the material of the spring is subjected to pure bending which tends to reduce
Radius R of the coils. In this case the bending moment is constant through out the spring
and is equal to the applied axial Torque T. The stresses i.e. maximum

bending stress may thus be determined from the bending theory. o

Deflection or wind — up angle:
Under the action of an axial torque the deflection of the spring becomes the “wind —

up” angle of the spring which is the angle through which one end turns relative to the

other. This will be equal to the total change of slope along the wire, according to area

— moment theorem

L
f = J‘% butM=T
2 El
L L
_frdl _ 1 dL
s EI Elj
Thus, as'T 'remainsconstant
_TL
El
Futher
L=nDn
-
B4
Therefore, on substitution the value of & obtained is
_B4TDn
6= q
Ed

Springs in Series: If two springs of different stiffness are joined endon and carry a common
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load W, they are said to be connected in series and the combined stiffness and deflection are
given by the following equation.

Springs in parallel: If the two spring are joined in such a way that they have a
common deflection ‘x' ; then they are said to be connected in parallel.In this care the load
carried is shared between the two springs and total load W = W1 + W2

W W W
k  k  k

ThusWﬁ%

_ Wk,
k

4

W,

Futher
B

Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical

and hemispherical portion is different. While the internal diameter of both the portions is
assumed to be equal

Let the cylindrical vassal is subjected to an internal pressure p.

For the Cylindrical Portion

hoop or circumferential stress=a ¢ 'c'here synifies the cylindrical portion.
= bd
D
longitudnal stress= o -
- pd
Ay

hoop or circumferential strain €, = % - v%= 4‘:%[2-3]
1

d
or g, =£T[2-v]
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For The Hemispherical Ends:

Because of the symmetry of the sphere the stresses set up owing to internal pressure
will be two mutually perpendicular hoops or circumferential stresses of equal values.
Again the radial stresses are neglected in comparison to the hoop stresses as with this cylinder
having thickness to diametre less than1:20.

Consider the equilibrium of the half — sphere

Force on half-sphere owing to internal pressure = pressure x projected Area

—p.<d%/4

Resisting force= oy, . md
nd?
——=0y.adt
P 1 H 2

= 0y (forsphere)=%
2

similarly the hoop s1rain=%[ou - V.0, =0—[1 E v]=—d[1 - .y] or EES:@“ E v]

Fig — shown the (by way of dotted lines) the tendency, for the cylindrical portion and the
spherical ends to expand by a different amount under the action of internal pressure. So owing
to difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by a
different amount. This incompatibly of deformations causes a local bending and sheering
stresses in the neighborhood of the joint. Since there must be physical continuity between
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the ends and the cylindrical portion, for this reason, properly curved ends must be used for
pressure vessels.

Thus equating the two strains in order that there shall be no distortion of the junction

d d t 1-v
P 2-v] =25 -] orﬁ=—

atE at,E 2-v
But for general steel works v = 0.3, therefore, the thickness ratios becomes

t2/t1 =0.7/1.7 or

f 24

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the
hemispheroid ends for no distortion of the junction to occur.

SUMMARY OF THE RESULTS : Let us summarise the derived results
(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are :

(1) Circumferential or loop stress

| H = pd/2t

(i1) Longitudinal or axial stress

| L = pd/4t

Where d is the internal diametre and t is the wall thickness of the cylinder. then
Longitudinal strain [1 L, =1/E [[] L- [] []

HI

Hoopstain I H=1/E[ T H -V L
]

(B) Change of internal volume of cylinder under pressure

_pd

(C) Fro thin spheres circumferential or loop stress
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pd

o —_— —
H 4t

Thin rotating ring or cvlinder
Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p

caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a
unit length of the circumference is

p=m032r

Fig 19.1: Thin ring rotating with constant angular velocity <

Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its
own mass when rotating.

Thus considering the equilibrium of half the ring shown in the figure,
2F = p x 2r (assuming unit length), as 2r is the projected area

F=pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant
across the wall thickness.

F = mass x acceleration = m coz rxr

This tension is transmitted through the complete circumference and therefore is resisted
by the complete cross — sectional area.

hoop stress = F/A =m mz r2 /A
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Where A is the cross — sectional area of the ring.

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the
density < .

hoop stress ~ 7 = (02 l_2
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UNITS COLUMNS AND FAILURE THEORIES

Buckling of Columns
Introduction:

Structural members which carry compressive loads may be divided into two broad
categories depending on their relative lengths and cross-sectional dimensions. Columns:
Short, thick members are generally termed columns and these usually fail by crushing
when the yield stress of the material in compression is exceeded.

Struts:

Long, slender columns are generally termed as struts, they fail by buckling some time
before the yield stress in compression is reached. The buckling occurs owing to one the
following reasons.

(a). the strut may not be perfectly straight initially.

(b). the load may not be applied exactly along the axis of the Strut.

(c). one part of the material may yield in compression more readily than others owing to some
lack of uniformity in the material properties through out the strut.

In all the problems considered so far we have assumed that the deformation to be both
progressive with increasing load and simple in form i.e. we assumed that a member in simple
tension or compression becomes progressively longer or shorter but remains straight. Under
some circumstances however, our assumptions of progressive and simple deformation may no
longer hold good and the member become unstable. The term strut and column are widely
used, often interchangeably in the context of buckling of slender members. ]

At values of load below the buckling load a strut will be in stable equilibrium where the
displacement caused by any lateral disturbance will be totally recovered when the
disturbance is removed. At the buckling load the strut is said to be in a state of neutral
equilibrium, and theoretically it should than be possible to gently deflect the strut into a
simple sine wave provided that the amplitude of wave is kept small. Theoretically, it is
possible for struts to achieve a condition of unstable equilibrium with loads exceeding the
buckling load, any slight lateral disturbance then causing failure by buckling, this
condition is never achieved in practice under static load conditions. Buckling occurs
immediately at the point where the buckling load is reached, owing to the reasons stated
earlier.
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The resistance of any member to bending is determined by its flexural rigidity EI and is The

quantity I may be written as [ = Akz,
Where I = area of moment of inertia

A = area of the cross-section k =

radius of gyration.

The load per unit area which the member can withstand is therefore related to k. There will be
two principal moments of inertia, if the least of these is taken then the ratio

L length of member
k  least radius of gyration

Is called the slenderness ratio. It's numerical value indicates whether the member falls into
the class of columns or struts.

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the
following sections, different cases of the struts have been analyzed.

Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' this
load ‘P' produces a deflection ‘y' at a distance ‘x' from one end.

Assume that the ends are either pin jointed or rounded so that there is no moment at either
end.

Assumption:

The strut is assumed to be initially straight, the end load being applied axially through
centroid.

According to sign
convention
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B. M|, = -Py

Futherwe know that
dz

J
dx
di

El —5=-P.y = M
dx

In this equation ‘M’ is not a function ‘x'. Therefore this equation can not be integrated directly
as has been done in the case of deflection of beams by integration method.

Thus,
d?y

El
di?

+Py=10

Though this equation is in ‘y' but we can't say at this stage where the deflection would
be maximum or minimum.
So the above differential equation can be arranged in the following

2
dy+ﬂ:ﬂ

form d ? El

Let us define a operator
D = d/dx

24 nz) y =0 where n2 = P/EI

(D
This is a second order differential equation which has a solution of the form
consisting of complimentary function and particular integral but for the time being we are
interested in the complementary solution only[in this P.I = 0; since the R.H.S of Diff.
equation = 0]

Thus y = A cos (nx) + B sin (nx) Where

A and B are some constants.

y=AcnsJE:{ + BsinJEx
Therefore El El

In order to evaluate the constants A and B let us apply the boundary conditions, (i) at x
=0;y=0
(i)atx=L;y=0

Applying the first boundary condition yields A = 0.
Applying the second boundary condition gives
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Bsin| L E =0

IdEI

. . [P
Thuse|therB=U,orsm[L E]

if B=0 that yO for all values of x hence the strut has not buckled yet. Therefore the solution required is

Pl._ Pl_ _
[L\[g]—ﬂ or[L\’E—_I]—ernL b
E = E or P:E
VEI L |2

From the above relationship the least value of P which will cause the strut to buckle, and it is
called the ““ Euler Crippling Load ” Pefrom which w obtain.

0

sin
ar

_ 7El
T

It may be noted thatthe value of | used in this expression is the least moment of inertia
It should be noted that the other solutions exists for the equation

sin IJE =0 ie. sin nL=0
El

The interpretation of the above analysis is that for all the values of the load P, other than
those which make sin nL = 0; the strut will remain perfectly straight since
y=BsinnL =0

For the particular value of

sinnL =0 ornL=m
Therefore n = n
L

Hence y=B sin nx=B sin %

Then we say that the strut is in a state of neutral equilibrium, and theoretically any
deflection which it suffers will be maintained. This is subjected to the limitation that ‘L'
remains sensibly constant and in practice slight increase in load at the critical value will
cause the deflection to increase appreciably until the material fails by yielding. Further it
should be noted that the deflection is not proportional to load, and this applies to all strut

problems; like wise it will be found that the maximum stress is not proportional to load.
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The solution chosen of nlL =< is just one particular solution; the solutions nL= 2<,

3<, 5< etc are equally valid mathematically and they do, infact, produce values of

‘Pe' which are equally valid for modes of buckling of strut different from that of a simple
bow. Theoretically therefore, there are an infinite number of values of Pe , each
corresponding with a different mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest critical
load producing the single bow buckling condition.
The solution nLL = 2< produces buckling in two half — waves, 3< in three half-waves etc.

Py = gt El/.f.l P:=4 Py
L
| ;
| !
Py P
nLe=x nL=2x3 nL =32
Fundamental Mode Second harmonic Third harmonic
(First harmonic) (mid point bracing) {Third point bracing)

If load is applied sufficiently quickly to the strut, then it is possible to pass through the
fundamental mode and to achieve at least one of the other modes which are theoretically
possible. In practical loading situations, however, this is rarely achieved since the high stress
associated with the first critical condition generally ensures immediate collapse.

struts and columns with other end conditions: Let us consider the struts and columns
having different end conditions

Case b: One end fixed and the other free:
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X
1 (a-y) R O
rgin
a s as
| y B

T o
I
P
g
N
8
L _R
N

writing down the value of bending moment at the point C

B.M| = Pla-y)
Hence, the differential equation becomes,
dzjf
El — = P(a -
dx? ( Y)

On rearranging we get
d*y . Py _ Pa
of B E

P
Let — = n?
E'Ell"l

2 2

Hence in operator form, the differential equation reduces to ( D= + n2 )y=n"a

The solution of the above equation would consist of complementary solution and
particular solution, therefore

ygen = A cos(nx) + sin(nx) + P. I

where

P.I=the P.Iis a particular value of y which satisfies the differential equation
Hence yp.] =a

Therefore the complete solution becomes

Y = A cos(nx) + B sin(nx) + a

Now imposing the boundary conditions to evaluate the constants A and B (1)
atx=0;y=0

This yields A =-a

(i) atx=0; dy/dx =0

This yields B=0
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Hence

y=<acos(nx) +a

Futher,atx=L;y=a

Therefore a = - a cos(nx) + a or 0 = cos(nL)

Now the fundamental mode of buckling in this case would be
nL =

n
2
p - n [ H - . .
Ei L= i'T herefore the Euler's crippling load is given as

7El
T

Case 3

Strut with fixed ends:

e ([~
N

L LN e

Due to the fixed end supports bending moment would also appears at the supports, since
this is the property of the support.
Bending Moment at point C=M —P.y
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Thus,

Case 4

One end fixed. the other pinned

Ygenel‘al = Ycomplemerﬂzr}r + }fpaniwlarirﬂegml

]fl = l = E

= n’El P
Hence the general solution would be
y = B Cosnx+ A Sinnx +g

Boundry conditions relevant to this case are at »=0:y=0

M
5%
Also at x = D;d—y =0 hence
dx
A=
Therefore,

=-MCusnx +h-’|
YT E P

I
=— (1- Cosnx
y=35 )
Futher it maybenotedthatat x =L;y =0
ThenO = g (1- CosnL)

Thus'eitherg =0 or (1- Cosnl)=0

obviously,(1- Cosnl) =0
cosnL=1

Hencetheleast solutionwouldbe
nL =2n

\[g L =2n Thus the buckling load or crippling load is

_ 472 El
P, = B
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;M

e S AY

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is
necessary in this case to introduce a vertical load F at the pin. The moment of F about
the built in end then balances the fixing moment.

With the origin at the built in end, the B,M at C is given as

2
E|:T§=-Py ¢ F(L-%)
2

ey o py = F(L-x)

dx?
Hence
dzy P F
— :_L_
o' Tgltty

In the operator form the equation reduces to

F
D +nfly= —(L-x
CRICIEATE

_ F _
]"partieular - ngE'II:L_ }{:] or y=

Thefull solution istherefore

(L-x)

o™

y = ACosmx+BSinnx +g[L—x)

The boundry conditions relevants to the problem are at »=0;y=0

__FL
Hence A = =
_n 9y -
Alsoat x=0;—== 0
dx
Hence B = i
nP

ary = -ECDS nx + LSin nx +E|:L— X)
P nP P

y = %[Sin m¢ - nLCosnx + n(L- x)]

Alsowhenx=L;y=0
Therefore

nL CosnL=SinnL ortannL =nL
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The lowest value of nL ( neglecting zero) which satisfies this condition and which
therefore produces the fundamental buckling condition is nL = 4.49radian

=
— L = 449

=]

e 2 -
—ElL 202
_ 2057 EI
P, = —7

Equivalent Strut Length:

Having derived the results for the buckling load of a strut with pinned ends the Euler loads
for other end conditions may all be written in the same form.

_ 7El

Le. B, = —
2

Where L is the equivalent length of the strut and can be related to the actual length of the
strut depending on the end conditions.

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the
strut deflection curves shown. The buckling load for each end condition shown is then readily
obtained. The use of equivalent length is not restricted to the Euler's theory and it will be used
in other derivations later.

The critical load for columns with other end conditions can be expressed in terms of the
critical load for a hinged column, which is taken as a fundamental case.

For case(c) see the figure, the column or strut has inflection points at quarter points of its
unsupported length. Since the bending moment is zero at a point of inflection, the freebody
diagram would indicates that the middle half of the fixed ended is equivalent to a hinged
column having an effective length Le =L / 2.

The four different cases which we have considered so far are:
(a) Both ends pinned (c) One end fixed, other free

(b) Both ends fixed (d) One end fixed and other pinned
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(@) {b)

ls= Li2

Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight and
the end load being applied axially through centroid] reached. There is always some
eccentricity and initial curvature present. These factors needs to be accommodated in the
required formula's.

It is realized that, due to the above mentioned imperfections the strut will suffer
a deflection which increases with load and consequently a bending moment is introduced
which causes failure before the Euler's load is reached. Infact failure is by stress rather than
by buckling and the deviation from the Euler value is more marked as the slenderness-ratio
1/k is reduced. For values of 1/k < 120 approx, the error in applying the Euler theory is too
great to allow of its use. The stress to cause buckling from the Euler formula for the pin ended
strut is
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! F. _ 7El
Euler'sstress, 0, = = = —
A Al
But, | = Ak?
_ mE
d, =

(1)

A plot of <g versus 1/ k ratio is shown by the curve ABC.

Euler's curve
Ce
For structural steel,

curves coincide at Ik = 80
curves coincide

b c atWk=120
or et
—
Oc o —
exparmental
aurves
50 100 150 | k
short intermediate ——™ long column

Allowing for the imperfections of loading and strut, actual values at failure must lie within
and below line CBD.

Other formulae have therefore been derived to attempt to obtain closer agreement between
the actual failing load and the predicted value in this particular range of slenderness ratio
i.e.l/k=40 to 1/k=100.

(a) Straight — line formulae :

The permissible load is given by the formulae

()

Where the value of index ‘n' depends on the material used and the

end conditions.

154



SATHYABAMA UNIVERSITY DEPARTMENT OF AERONAUTICAL ENGINEERING

SEMESTER 1lI SAE1204 INTRODUCTION TO AIRCRAFT STRUCTURES 2015 REGULATIONS

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as

o]

(¢) Rankine Gordon Formulae :

where the value of index ‘b' depends on the end conditions.

1 1T 1

—_— et —
PR l:.e Pc

Where Pe = Euler crippling load

Pc = Crushing load or Yield point load in Compression
PR = Actual load to cause failure or Rankine load

Since the Rankine formulae is a combination of the Euler and crushing load for a strut.
1 1 1

P PR
For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be
neglected.

Thus PR = P¢ , for very large struts, P ¢ is very small so 1/ P ¢ would be large and 1/ P ¢ccan
be neglected ,hence PR = Pe

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be
fairly accurate for the intermediate values in the range under consideration. Thus rewriting the
formula in terms of stresses, we have

155



SATHYABAMA UNIVERSITY

SEMESTER IlI

a
3 ¥

Where

SAE1204 INTRODUCTION TO AIRCRAFT STRUCTURES

DEPARTMENT OF AERONAUTICAL ENGINEERING

2015 REGULATIONS

T _ 1 . 1
oA o A 0,A
1 1 1
g S
o o, 0,
1 _0et0y
a 0.0y
a,.0 a
g=_2°"¥ - _"¥
N
ae
For strutswithbothendspinned
_ #E
Oe-ﬁ
g
a
0= ¥

TEl and the value of ‘a' is found by conducting experiments on

various

materials. Theoretically, but having a value normally found by experiment for various
materials. This will take into account other types of end conditions.

Maximum Stress theory
Maximum strain theory
Maximum shear stress theory
Distortion Theory

Maximum strain energy theory

Simple problems of shaft under combined loading.

Maximum stress theory:

This theory states that the failure of a material occurs when the maximum principal (tensile)
stress reaches the elastic limit stress o of the material in simple tension or the maximum principal
stress (that is, the maximum principal compressive stress) reaches the elastic limit stress o in simple

compression.

Maximum strain theory:

This theory states that the failure of a material occurs when the maximum principal tensile
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strain in the material reaches the strain at the elastic limit in simple tension or when the minimum
principal strain (i.e. maximum principal compressive strain) reaches the elastic limit strain in simple
compression.

Maximum shear stress theory.

This theory states that the failure of a material occurs when the maximum shear stress in the
material reaches the maximum shear stress at the elastic limit in simple tension.

Distortion energy theory.

According to this theory, the elastic failure of a material occurs when the distortion energy
of the material reaches the distortion energy at the elastic limit in simple tension.

Maximum strain energy theory.

This theory states that the failure of a material occurs when the maximum strain energy in
the material reaches the maximum energy of the material t the elastic limit in simple tension.

Maximum principal stress theory.
This theory states that the failure of a material occurs when the maximum

principal (tensile) stress reaches the elastic limit stress o of the material in simple tension or the
maximum principal stress (that is, the maximum principal compressive stress) reaches the elastic
limit stress o in simple compression.

In this theory, the maximum or the minimum principal stress is taken as the criterion of
failure. Minimum principal stress is actually the maximum compressive principal stress.

Mathematically, the failure condition is

G120 (only if o7 is tensile)
o3 >0’ (only if o3 is compressive)
|o3| means the numerical values of o3
To prevent failure, 61 < o
log| <o
At the point of failure, 61 = o 2>(1)
los| = o >

The above theory is in good agreement with experimental results of brittle materials such as C.I

The above theory | contradicted in the following cases.

i) In simple, tension test on mid steel sliding occurs approximately 45° to the axis of the
specimen, showing that the failure in this case is due to maximum shear stress rather than
the direct tensile stress.

i) A material even though weak in simple compression has been found to sustain
hydrostatic pressure far in excess of the elastic limit in simple compression.

In design problems o and ¢’ in equations (1) and (2) are replaced by the safe values of stresses
obtained by diving the elastic limit stress (or the limit of proportionally or yield point stress or the
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ultimate stress) by a factor of safely. Let these safe stresses be ot and o¢(c1 = safe tensile stress and
o¢ = safe compressive stress).

.. For design purposes : o1 = 6t and
loal= oc
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