
UNIT-3 

DYNAMICS 

 Elementary Fluid Dynamics 

- Understanding the physics of fluid in motion 

- Derivation of the Bernoulli equation from Newton’s second law  

 

 Basic Assumptions of fluid stream, unless a specific comment 

 

1
st
 assumption: Inviscid fluid(Zero viscosity = Zero shearing stress) 

 No force by wall of container and boundary 

 Applied force = Only Gravity + Pressure force 

 

 

  Newton’s Second Law of Motion of a Fluid Particle 

   (Net pressure force) + (Gravity) 

           (Fluid mass)  (Acceleration) 

 

2
nd

 assumption:Steady flow (?)  

  No Change of flowing feature with time at a given location  

  Every successive particle passing though the same point 

: Same path (called streamline) & 

    Same velocity (tangential to the streamline) 

 

 

 

 

 



 

 

 

 

 

 Additional Basic Terms in Analysis of Fluid Motion 

 

Streamline (Path of a fluid particle) 

     - Position of a particle 

   = ),( vrf o


 

              where or : Initial position,  

v


: Velocity of particle 

- No streamlines intersecting each other 

 

 

 Two Components in Streamline Coordinates (See the figure) 

1. Tangential coordinate: )(tss   

: Moving distance along streamline,   

  : Related to Particle’s speed )/( dtdsv   

2. Normal coordinate:  )(tnn   

: Local radius of curvature of streamline )(sRR    

  : Related to Shape of the streamline 

 

 Two Accelerations of a fluid particle along s and n coordinates 

 

1. Streamwise acceleration  ( Change of the speed) 
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2. Normal acceleration  (  Change of the direction)  
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   (: Centrifugal acceleration) 

Q. What generate these as and an?    (Pressure force andGravity) 

 

 

Part 1. Newton’s second law along a streamline ( ŝ  direction) 

 

Consider a small fluid particle of size yns    as shown  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: Forces acting on a 

fluid particle 

sny 



 

 

 

 

 

 

 

Newton’s second law in ŝ  direction  
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  = Gravity force + Net Pressure force   

 

     where V : Volume of a fluid particle = yns    

(i) Gravity force along ŝ  direction  

 sin)(sin VWWs    

 

(ii) Pressure force along ŝ  direction  

 

Let   p: Pressure at the center of V  
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Then, Net pressure force along ŝ direction, psF (Pressure)(Area) 

yn
s

s

p
pyn

s

s

p
pFps 





 )

2
()

2
(









 yns

s

p





  V

s

p





  

  : Depends not on p itself,but on 
s

p




 (Rate of change inp) 

 

 Total force in ŝ  direction (Streamline)  
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Finally, Newton’s second law along a streamline ( ŝ  direction) 
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 Change of Particle’s speed 

     Affected by Weight and Pressure Change 

 Making this equation more familiar 
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    because  
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sin  (See the figure above)  
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By assuming a constant   (Incompressible fluid):  3
rd

 assumption 

 

  zvp  2

2

1
Constant along streamline ( ŝ  direction)           

 

: Bernoulli equation along a streamline 

Valid for (1) a steady flow of (2) incompressible fluid  

(3) without shearing stress 

 

 

c.f.  If is not constant (Compressible, e.g. Gases),  

 )(p  : Must be known to integrate 


dp
.  

 What this Bernoulli Equation means? (Physical Interpretation) 



 

For a Steady flow of Inviscid and Incompressible fluid, 

  zvp  2
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 Constant   along streamline   (1) 

  : Mathematical statements of Work-energy principle 

 

 

 Unit of Eq. (1):  [N/m
2
] = [Nm/m

3
] = [Energy per unit volume] 

 

 p   = Works on unit fluid volume done by pressure  

z    = Works on unit fluid volume done by weight 

 2
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v  Kinetic energy per unit fluid volume 

 

 

 Same Bernoulli Equations in different units 

 

1.  Eq (1)   [Nm/m
3
] [Nm/m

3
] = [m] = [Length unit]    
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 + z = Constant   (Head unit) 

 



p
:  Depth of a fluid column produce p          (Pressure head) 
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: Height of a fluid particle to reach v from rest by free falling      

             (Velocity head) 

 

z: Height corresponding to Gravitational potential  (Elevation head) 

 

Part 2. Newton’s second law normal to a streamline ( n̂  direction) 

 

Consider the same situation as Sec. 3.3 shown in figure 

 

For a small fluid particle of size yns    as shown  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: Forces acting on a 

fluid particle 

sny 



 

 

 

 

 

 

 

 

Newton’s second law in n̂  direction  
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    along n̂  direction 

 

   = Gravity force + Net Pressure force    

 

(i) Gravity force along n̂  direction  

 cos)(cos VWWn    

 

(ii) Pressure force along n̂  direction  

By the same manner in the previous case,  
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 Total force in n̂  direction (Normal to Streamline)  
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 normal to streamline( n̂  direction) 

 Change of Particle’s direction of motion 

   Affected by Weight and Pressure Change along n̂   

 

Ex.  If a fluid flow:  Steep direction change (R ) or  fast flow (v )  

    or heavy ( ) fluid  

 Generate large force unbalance   

 

 Special case: Standing close to a Tornado  

i.e. Gas flow (Negligible  ) in horizontal motion (
dn

dz
 = 0) 
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 Making this equation more familiar 

By the same manner as the previous case,  
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
 = Constant   (normal to streamline) 

 

 

By assuming a constant   (Incompressible fluid):  3
rd

 assumption 

 

 zdn
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v
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 = Constant   (normal to streamline) 

 

: Bernoulli equation normal to streamline ( n̂  direction) 

Valid for (1) a steady flow of (2) incompressible fluid  

(3) without shearing stress 

 

 

Ch4 Fluid Kinematics 

In Ch1-3: Fluid at rest (stationary or moving) in a rather elementary manner. 

Real fluids: slightly viscous shear and pressure will cause fluid to deform and move 

Objectives: The kinematics of the fluid motion 

—the velocity 

—acceleration, and 

—the description and visualization of its motion 



(The dynamics of the motion—The analysis of the specific forces necessary to produce the motion.) 

Examples: Chimney; atmosphere; waves on lake; mixing of paint in a budset…etc. 

 

4.1 The Velocity Field 

 Continuum Hypothesis: Fluid particle not molecular 

 Field Representation: The representation of fluid parameters as a function of the spatial coordinate (x, 

y, z, or r,θ, z or r, θ,φ) 

 Time (t) 
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 where i =1, 2, 3 representing x, y, z, respectively. 

u1=u; u2=v; u3=w 

)t,z,y,x(VV    direction & magnitude 
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4.1.1 (a) Eluerian description 

The velocities (or pressure, density, temperature etc.) are given at fixed points in space V (xi, t) at which 

time varies. This corresponds to the usual experimental arrangement where the measuring devices are 

fixed and the frame of reference is fixed with them. Common and easier to use. However, it would in 



some ways be better to follow a particle and see what happens near it as it moves along. For instance, in 

the atmosphere it is the history of mass of air as it moves along that determines whether it will become a 

shower, rather than the sequence of air masses that pass a weather station (though they one of course 

related). This leads to 

4.1.1(b) Lagrangian description 

Here quantities are given for a fixed particle at varying time, so that the velocity is ),( txV ii


, where 
r  

was the particle’s position at t=0. 

Unfortunately, the mathematics of the Lagrangian description is hard; but it is often useful to consider the 

particle’s life history in order to gain an understanding of a flows. Lagrangian histories can be obtained in 

the atmosphere from balloon flights, or in the Gulf Stream from just buoyant devices. 

Independent variables in the Lagrangian view point one the initial position 

ix  and time t. 

Let us use ri for the position of a material point, or fluid particle. Initially the fluid particle is at the 

position 
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x , and the particle path through space is given in the form 
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In the Lagrangian description these quantities are functions of particle identification tag 


i
x  and the time t 

as shown in the Fig. below. 



 

 

FIGURE 4.2 Eulerian and Lagrangian descriptions of temperature of a flowing fluid. 

Examples of using Lagrangian description: 

 Atmosphere 

 Oceanography 

 Bioscience 

 Fluid Machinery 



Example 4.1 A velocity field is given by V=(V0/l)(xi-yj), where V0 and l are constant. At what location in 

the flow field is the speed equal to V0? Make a sketch of the velocity field in the first quadrant (x>=0, 

y>=0) by drawing arrows representing the fluid velocity at representative locations. 

Solution: The x, y, and z components of the velocity are given by u=V0x/l, v=-V0y/l, and w=0 so that the 

fluid speed, V, is 
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The speed is V=V0 at any location on the circle of radius l centered at the origin ])[( 2
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shown in Fig. E4.1a. (Ans). 

The direction of the fluid velocity relative to the x axis is given in terms of θ=arctan(v/u) as shown in Fig. 

E4.1b. For this flow, 
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4.1.2 1-D, 2-D, and 3-D flows 

Generally, a fluid flow (real flow) is 3-D, time-dependent flow. 



)t,z,y,x(VV


  

Simplifying 1D or 2D (one or two of the velocity components) may be small compared to the other. 

 

FIG.4.3 Flow visualization of the complex three-dimensional flow past a model airfoil. 

 

 

4.1.3 Steady & Unsteady flow 

Steady 0




t

V


; almost all flows are unsteady. 

Unsteady flows: (a) Non-periodic; (b) Periodic; (c) Random. 

Examples: Faucet (loud banging of pipes); Air-gasoline injection 

4.1.4 Streamlines, Streaklines, and Pathlines 

Streamlines: A line that is everywhere tangent to the velocity field (analytical work). 

Steady: fixed lines in space; unsteady: lines may change shape. 

            2-D flow: 
u

v

dx
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Streaklines: A line that consist of all particles in a flow that have previously passed through a common 

point. 

 

Pathlines: A line traced out by a given particle as it flows from one point to another (Lagrangian 

concept). 

For steady flow, all three lines are coincide. 

 

Example 4.2: Determine the streamlines for the 2-D steady flow discussed in example 4.1, V=(V0 /l)(xi-yj) 

. 

Solution: Since and it follows that streamlines are given by solution of the equation 
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in which variables can be separated and the equation integrated to give    
x

dx

y

dy
   or   ln 

y = - ln x + constant 
Thus, along the streamline xy = C, where C is a constant. 

By using different values of the constant C, we can plot various lines in the x-y plane－the streamlines. 

The usual notation for a streamline is = constant on a streamline. Thus, the equation for the streamlines 

of this flow are xy . 

As is discussed more fully in Chapter 6, the function ),( yx   is called the stream function. 

The streamlines in the first quadrant are plotted in Fig. E4.2. A comparison of this figure with Fig. E4.1a 

illustrates the fact that streamlines are lines parallel to the velocity field. 

Streamlines can be obtained analytically by integrating the equations defining lines tangent to the velocity 

field. 

   FIGURE E4.2 

 

Example. 4.3 Water flowing from the oscillating slit shown in Fig. E4.3a produces a velocity field given 

by  



V = u0 sin[w(t－y/v0)]i + v0j, where u0,v0, and w are constants. Thus, the y component of velocity remains 

constant (v = v0) and the x component of velocity at y = 0 coincides with the velocity of the oscillating 

sprinkler head [u = u0 sin (wt) at y = 0]. 

(a) Determine the streamline that passes through the origin at t = 0; at t =  2/ . (b) Determine the 

pathline of the particle that was at the origin at t = 0: at t =  2/ . (c) Discuss the shape of the 

streakline that passes through the origin. 

Solution: 

(a) Since u = u0sin[w(t－y/v0)] and v = v0 it follows from Eq. 4.1 that streamlines are given by the 

solution of 
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in which the variables can be separated and the equation integrated (for any given time t) to give 
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where C is a constant. For the streamline at t = 0 that passes the origin (x = y = 0), the value of C is 

obtained from Eq. 1 as C=u0v0/w. Hence, the equation for this streamline is 
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FIGURE E4.3 

 

Similarity, for the streamline at t = π/2ω that passes through the origin. Eq. 1 gives C = 0. Thus, the 

equation for this streamline is
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These two streamlines, plotted in Fig. E4.3b, are not the same because the flow is unsteady. For example, 

at the origin (x = y = 0) the velocity is V = v0j at t = 0 and V = u0i + v0j at t = π/2ω. Thus, the angle of the 

streamline passing through the origin changes with time. Similarity, the shape of the entire streamline is a 



function of time. 

(b) The pathline of a particle (the location of the particle as a function of time) can be obtained from the 

velocity field and the definition of the velocity. Since u = dx/dt and v - dy/dt we obtained 
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The y equation can be integrated (since v0 = constant) to give the y coordinate of the pathline as   y = v0t + 

C1 (4) 

where C1 is a constant. With this known y = y(t) dependence, the x equation for the pathline becomes 
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This can be integrated to give the x component of the pathline as 
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where C2 is a constant. For the particle that was at the origin (x = y = 0) at time t = 0, Eqs. 4 and 5 give C1 

= C2 = 0. Thus, the pathline is 

 x = 0 and y = v0t (6)   (Ans) 

Similarity, for the particle that was at the origin at t =π/2ω. Eqs. 4 and 5 give C1 = -πv0/2ω. Thus, the 

pathline for the particle is  
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The pathline can be drawn by plotting the locus of x(t), y(t) values for t  0 or by eliminating the 

parameter t from Eq. 7 to give   
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(Ans) 

The pathlines given by Eqs. 6 and 8, shown in Fig. 4.3c. are straight lines from the origin (rays). The 

pathlines and streamlines do not coincide because the flow is unsteady. 

(c) The streakline through the origin at time t = 0 is the locus of particles at t = 0 that previously (t ＜ 0 ) 

passed through the origin. The general shape of the streaklines can be seen as follows. Each particle that 

flows through the origin travels in a straight line (pathlines are rays from the origin), the slope of which 

lies between ±v0/u0 as shown in Fig. E4.3d. Particles passing through the origin at different times are 

located on different rays from the origin and at different distances from the origin. The net result is that a 

stream of dye continually injected at the origin (a streakline) would have the shape shown in Fig. E4.3d. 

Because of the unsteadiness, the streakline will vary with time, although it will always have the 

oscillating, sinous character shown. Similar streaklines are given by the stream of water from a garden 

hose nozzle that oscillates back and forth in a direction normal to the axis of the nozzle. In this example 

neither the streamlines, pathlines, nor streaklines coincide. If the flow were steady all of these lines would 



be the same. 

 

4.2  The Acceleration Field 

Eulerian Description: Fixed pt.; different particles. 

Lagrangian Description: Following individual particles. Newton’s Second Law: amF


  

(a) Material Derivative 

 
FIGURE 4.5 Velocity and position of particle A at time t. 
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(b) Unsteady and Convective Effects 
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FIG. 4.8 Uniform, steady flow in a variable area pipe (1-D, steady flow 
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(c) Streamline Coordinates: 

  

 A coordinate system defined in terms of the streamlines of the flow. In several flow situations, it 

Steady state operation of a 
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is convenient to use streamline coordinates. 

 

FIG. 4.9 Streamline coordinate system for 2-D flow. 
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FIGURE 4.10 Relationship between the unit vector along the streamlines, S


, and the radius of curvature 

of the streamline, R. 
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where R the radius of curvature of the streamline. 
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4.3  Control Volume and System Representation 

 

System: A specific, identifiable quantity of matter. 

 

Control Volume: A volume in space through which fluid may               flow. 

 

Control Surface: surface of the control volume. 

 

 

4.4 The Reynolds Transport Theorem 
 

a. Extensive       Intensive 

Property        Property 

B              b     (B=mb) 

 

m (Mass)        1 

 

2

2

1
mv (K.E)     2

2v
 

 

mv  (Momentum) v  

 etc               etc 

 

 

Reynolds Transport Theorem is an analytical tool for control volume and system representation. 
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b. Derivation of the R.T.T (See Fig. 4.11) 

 

Fig. 4.11 Control volume and system for flow through a variable area pipe. 
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Simplified version of R.T.T.  (4.15) 

 



 

Fig. 4.13Control volume and system for flow through an arbitrary, fixed control volume. 

 

 

Fig. 4.13 Typical control volume with more than one inlet and outlet. 

 

All inlets: I = Ia + Ib + Ic + …; 

All outlets: II = IIa + IIb + IIc + … 
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Fig. 4.14 Outflow across a typical portion of the control surface. 
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Inflow across a typical portion (  cos  n ) 
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For a fixed, nondeforming C.V. 

B = mb; b = 1 (mass); b = v (momemtun); b = 0.5v
2
 (energy) 

 



 

Fig. 16Possible velocity configurations on portions of the control surface: (a) inflow, (b) no flow across 

the surface, (c) outflow. 

 

 

c. Relationship to Material Derivative. 
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Following a fluid particle or system. The material derivative is essentially the infinitesimal (or derivative) 

equivalent of the finite size (or integral) Reynolds transport theorem. 



d. Steady effects: 0
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Fig. 4.17 Steady flow through a control volume 
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Fig. 

4.18Unsteady flow through a constant diameter pipe. 
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Fig. 4.20 

Flow through a variable area pipe 
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e. Moving Control Volume 

 

 

Fig. 4.21 Example of a moving control volume 
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（僅考慮C.V.以等速變形）Vr= W= Vabs- Vc.v. 
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Fig. 4.21 Typical moving control volume and system 

 

 

Fig. 4.22 Relationship between absolute and relative velocities 

 

f. Selection of a C.V. 



Any volume in space can be considered as a C.V.. The selection of an appropriate C.V. in fluid mech. is 

very similar to the selection of an appropriate free-body diagram in static or dynamics. 

 

Fig. 4.24 Control volume and system as seen by an observer moving with the control volume 

 

Fig. 4.25 

Various control volumes for flow through a pipe. 
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Problems 4.60 and 4.61 

 



Review Ch 1 ~ Ch 4 

 

Potential Function (): 

 

 Definition:  
x

u






and 

y
v







 

 

 Characteristic: It always satisfies the irrotationality  (i.e., 0










y

u

x

v
z ) 

 

 Physical meaning:  = constant is a potential line 

 

Streamline and potential line are orthogonal to each other 

 

 

Potential Flow: 

 

 Governing equation: 02    or 02    

 

 

To Solve Potential Flow Problems: 

 

 Superposition of Elementary Flows 

 

o Basic elementary flows: 

 

 Uniform flow 

 Free vortex 

 Source/Sink 

 Doublet 

 

 Method of Image 

 



 

Superposition: 

 

For example: Flow over a circular cylinder = Uniform flow + Doublet 

 

Uniform flow:    sincos xyUuniform   

Doublet:  
r

doublet




sin
  

 

Flow over a circular cylinder: doubletuniform    



Method of Image: 

 

 Used to simulate ground effects 

 

 

Solution Procedure:  

 

Step 1: Draw image vortices so that resultant velocity normal to wall is zero 

 

 Image vortices are constructed as: 

 

 Same distance below the wall 

 Opposite rotation  

 

 

 

 

 

 

 

 

 

 

Step 2: Find induced velocity at location B (point of interested) by all vortices (original +  

images) 

 

 
2

K
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r r
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
  , > 0 if  
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wall 
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 For example, BV


 induced by vortex 1 (original vortex): 

 

        Magnitude Sign 

 

      x – comp: Vcos  (+) 

 

      y – comp: Vsin   (+) 

 

      )sin,cos(1,   VVVB 


 

 

 

Step 3: Find stream function  at any location (x, y) 

 

 
2ln

4
ln

2
rr








  where > 0 is in the counter-clockwise direction 
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r 
V 

 

wall 
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Example: 

 

A positive line vortex with strength  is located at a distance (x, y) = (a, 2a) from the corner. 

 

1) Compute the total induced velocity at point B, where (x, y) = (2a, a). 

2) Find the stream function  at any location (x, y). 

 

 

 

 

 

 

Summary of Basic Elementary Flows: 

 

 
Stream Function  Potential Function  

Velocity 

Components 

Uniform flow at 

angle  with the x 

axis 

(Eq. 8.14) 

 cos sinU y x      cos sinU x y     
cosu U   

sinv U   

(a, 2a) 

 

B = (2a, a) 

x 

y 



Source or Sink 

(Eq. 4.131) 

m>0: Source 

m<0: Sink 

m   lnm r   
r

m
v

r
  

0v   

Vortex 

(Eq. 4.132) 

>0: ccw motion 

<0: cw motion 

lnK r    

2
K




  (Eq. 8.16) 

K   

0rv   

K
v

r
   

Doublet 

(Eq. 8.28) 
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Velocity components are related to the stream function and potential function through the relationships: 
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Elementary Singularities 

 

We explore some special flows now, which satisfy the Laplace equation, but are physically 

unrealistic. The interesting fact about these is, although they are singular in nature, they can 

provide physically meaningful flows when they are combined with other flows. We will use the flows 

mostly in cylindrical coordinates.  

 

Source Flow: A source flow is defined at a point as the flow that creates new fluid particles 

continuously. In 2-dimensions a source located at the origin will create fluid streamlines as shown 

below: 



Since the streamlines are all radial, the source flow velocity components may be written as 

0,0 


VV
r

. We define the strength of a source, q, as the volumetric flow per unit depth 

through any closed circuit enclosing the source. Volumetric flux by definition is  
A

AdVQ


.  

Let us choose the circuit as a circle of radius, E.  

 

Let DepthW   
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Because of the symmetry about the origin, Vr will not be a function of . Thus, )2( 
r

Vq  or, 

E

q
V

r

)2( 


 through the circle of radius E. In general, 
r)2(

q
Vr


  through a circle of radius r. 

Note that the appearance of Vr indicates the flow has an infinite Vr as r . Thus, a source flow is 

considered as singular at the origin. We may define a sink flow in the same manner as a “negative 

source” (q < 0). 
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Let us find the stream function for a source (or, sink) flow.  
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It’s easy to show by integration: 


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q
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Note that we have omitted the constant of integration in the formula above. First, if the constant is 

dropped it does not change the velocity field at all (velocity components involve derivatives of ). 

Moreover, to plot streamlines, we must set the  constant





2

q
, and select different values of the 

constant.  

Henceforth the remaining singularity functions will be presented without additional constants in 

their representation. 

 

 

 

 

Vortex Flow: A counterclockwise vortex located at the origin has circular streamlines as shown.  

In cylindrical coordinates, this means 0V,0Vr   . Furthermore, we define the strength of the 

vortex, , as the circulation around any closed curve 

enclosing the vortex. 

 

 

 As before, let the closed curve be a circle of radius E. 

Since circulation  
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or, 

E2
V
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 around circle of radius, E. 

[
V is not a function of , by symmetry] 

 

 

 

In general, 
E2

V



 , 0Vr  for a counterclockwise vortex located at the origin. It yields a 

stream function given by: 

rln
2

vortex



  

Similarly, a clockwise vortex will give rln
2


 . Again, these are singular at the origin (as 0r 

). 

 

Doublet Flow:A doublet (or, dipole) is like an electric magnet. It produces a streamline pattern 

same as what you have seen in physics by spreading “iron dust” on a piece of paper with a magnet 

underneath.    

 

 

A doublet is obtained by bringing a source and a 

sink close together. Assume that a source and sink 

of strength “q” and”-q” are placed at a distance “l” 

apart. As the two singularities are brought closer to 

each other (i.e., l  0), suppose we hold ql

constant. Then we will create the flow field given by 

the streamline pattern to the left. A doublet (unlike 

source or vortex) has no symmetry at the origin. 

Also it has an axis as shown (directed from the sink 

to the source inside the doublet). The relevant 

velocity component and stream function 

representation is given below: 
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The above formulae hold for a doublet axis along the positive x-axis. 

         Continue 

 

Sources, Sinks and Doublets - the Building Blocks of Potential Flow 

 

In the previous handout we developed the following equation for the velocity potential: 
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(1) 

where the operator 
2 is called the Laplacian operator. This equation holds for 2-D and 3-D inviscid 

irrotational flows. If we are only interested in 2-D irrotational inviscid flows, we may also solve for: 

02    

(2) 

 

where   is the stream function.  

 

After we have solved for the velocity potential or the stream function, we can compute the velocities. In a 

Cartesian coordinate system, for 2-D flows,  we will use: 
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(3) 

In a polar coordinate system, for 2-D flows we will use: 
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In 3-D, the velocities are given only in terms of the velocity potential, as follows: 
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Once the velocity is known, we can find pressure from the Bernoulli's equation.  

In this section, we consider some simple solutions to the Laplace's equation (1 or 2). Since 

equation 91) and 92) are linear, we can superpose many such simple solutions to arrive at a more complex 

flow field. This is like building a complex configuration using Lego blocks. The individual simple 

solutions are the individual Lego pieces, which on their own, are not very interesting. Together, however, 

they can solve some very interesting flows, including flow over airfoils and wings. 

 

Building Block #1: 2-D Sources and Sinks:  A source is like a lawn sprinkler. It sprays the water (or air) 

radially, and equally, in all the directions, at the rate of Q units per unit time. If this is a sink (e.g. a drain 

hole on a concrete pavement) the velocity vectors will still be radial, but directed inwards towards the 

center. The sign of Q will be positive for a source, and negative for a sink. 

 



 

Consider a circle of radius r enclosing this source. Let vr be the radial component of velocity associated 

with this source (or sink). Then, form conservation of mass, for a cylinder of radius r, and unit height 

perpendicular to the paper, 
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(6) 

Solving equation (6) for the velocity potential and the stream function we get, for a source or a sink: 
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plus a constant. The constants appear as we integrate the velocity to get the velocity potential or stream 

function. Every simple solution we consider will be an analytical function (like equation 7) plus a 

constant to be determined later. 

 

Exercise: Verify for yourselves that (7) satisfies Laplace's equation in polar coordinates: 
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Building Block #2: Uniform Flow: 

u

v

 

 

 This is also, by itself, an uninteresting flow. It represents a uniform flow with the velocity 

components u and v along the x- and y- axes. The stream function and the velocity potential associated 

with this flow are: 

xvyu

yvxu
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Flow Uniform
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(8) 

If we use equation (3) on the definitions given in equation (8), we recover the Cartesian components of 

velocity.  Notice that these functions shown on (8) are simple straight lines. It is also easy to see that these 

functions given in equation (8) satisfy the Laplace's equation. 

 

Superposition of a Source and a Uniform Flow: 

 

 Let us try to superpose the uniform flow and the flow field due to a source. All we have to do is 

add the flow field given in equations (8) to equation (9). The result is given below: 
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(10) 

 

We can take x and y- derivatives of this flow field to get the velocity field. Note that the quantity 'r' 

represents the distance between where the source (xs,ys), and a general point (x,y) where the distance is 

being computed. That is, 
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Thus, the velocity potential in Cartesian form, taking into account where the source has been placed, is: 
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and the velocities are: 
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 These velocities may be plugged into the Bernoulli's equation: 
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(14) 

where p is the pressure value far away from the source. 

 



We can also plot the flow field and the streamlines. The easiest way to accomplish this is using built-in 

functions such as the MATLAB function "contour". Here is an example. In this example, a source of 

strength Q equal to unity is placed at the origin. The freestream velcoity is UINF= 1, and VINF=0. Here 

is the MATLAB script for modeling this flow. 

 

X=-1:.1:1; 

Y=X; 

        [x,y] = meshgrid(X,Y);      

 

 Q=1; 

 UINF=1.; 

 VINF=0.; 

 z=Q/(2.*3.14158)*atan2(y,x)+UINF*y-VINF*x; 

 contour(z,20); 

 

 This example produces the contours shown below. Note that this looks like flow around the nose of a 

body. This body is called "Rankine's Half-Body." 



 

Superposition of Uniform flow, source and a sink: 

We can superpose a source placed at (X1,Y1), a sink of equal strength placed at (X2,Y2), and a 

uniform velocity. Let us say, for the sake of illustration, that the source is placed at x=-0.3, and the sink is 

placed at x= +0.3. on the x- axis. Let us assume that Q=1, UINF=1 and VINF=0.0. Then we can look at 

the contours by executing the following MATLAB script: 

 

%Contours of  Stream function caused by a source of strength Q placed in a 

%         uniform stream with Cartesian components u=UINF and v=VINF. 

% The source is placed in this example at X= -0.3, and the sink is 

% placed at x= +.3 

 

X=-1:.1:1; 

Y=X; 

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20



        [x,y] = meshgrid(X,Y);      

 

 Q=1; 

 UINF=1.; 

 VINF=0.; 

 z=Q/(2.*3.14158)*atan2(y,x+.3)-Q/(2.*3.14158)*atan2(y,x-.3)+UINF*y-VINF*x; 

 contour(z,20); 

Here are the contours from the resulting plot. This flow resembles flow over an oval shaped 

object, called ―Rankine’s full body‖. It is similar to the shape made popular in Ford commercials.  

Doublets: 

 Doublets are source-sink pairs, initially separated by a distance , which are brought close 

together by making the separation distance  0. To keep them from annihilating each other, their 

strength Q is progressively increased so that Q times  remains a constant. This constant is given the 

symbol , called the strength of the doublet. 
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 We can derive expressions for the stream function (and the velocity potential) for a doublet from 

the known expressions for sources and sinks. Consider a source of strength Q placed on the x-axis at a 

point A, and a sink of strength –Q placed on the x- axis at point B. The points A and B are placed a 

distance  apart. Then, the stream function at a general point P in the flow field is given by: 
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
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Q
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where 1 is the angle formed by the line AP with respect to the x- axis, and 2 is the angle formed by the 

line BP with respect to the x- axis. See the figure below. 

 

 

In the figure above, the angle EPB is (1)=. 

 

 

The distance BP  The distance EP = r. Then, for small values of , EB rsin(r 

 

Consider next the right angle triangle ABE. For this triangle, EB/AB = sin. Using 

 

EB = r, and AB =  we get 

 

   sin / r  

 

Thus, stream function associated with the doublet, in the limit as  goes to zero, is given by: 
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If we superpose the doublet, and a uniform flow we get: 

 

If the uniform flow is parallel to the x- axis,  using y=rsin and defining a
2
=V we get:   
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Notice that the stream function   is zero on the surface r=a. In other words, r=a, a cylinder is a 

streamline. Thus, the superposition of a doublet and a uniform flow, for some special situations, becomes 

flow over a circular cylinder. We can plot this function using MATLAB. We will find that this function 

does yield flow over a circular cylinder of radius a. 

 

 

Magnus Effect 

What you need 

 Two polystyrene cups.  

 Sticky tape.  

 Two large rubber bands. 

What you do 

1. Use sticky tape to fix the bottoms of the polystyrene cups together.  

2. Knot the rubber bands together.  

3. Hold the rubber band in the centre of the cups and wrap the bands around about twice. Finish 

with the end of the elastic bands on the bottom pointing away from you.  

4. Hold the cup in one hand and the end of the elastic in your other hand.  

5. Pull back the cups and let go.  

6. With enough practice you should be able to make the flying cups loop in the air. 
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What's going on? 

This is known as the Magnus effect, and it is the reason why top footballers can make balls curve in the 

air and how golfers can make golf balls perform some amazing aerodynamics. 

The cups are fired forward because of the stretched elastic band. If we ignore the fact the cups are 

spinning we can see that air will flow over the cups from front to back in a fairly uniform way. 

However, in this system, when the cups are released the bands unwind and the cups are forced to spin. If 

the bands are wound correctly the cups will be given back spin; the bottom of the cups move forwards 

while the top is moving backwards. Because of the rough surface of the cups, air is trapped near the 

surface and moves with the cups as they spin.  

The top of the cups has air moving from front to back as they spins, and the cups also have air flowing 

over them from front to back because they are flying through the air. The bottom of the cups also have air 

moving from the front to the back because they are flying through the air, but, crucially, the bottom also 

has air moving back to the front because of the direction of the spinning cups. Therefore, the cups are 

sitting in air which is moving very differently at different parts: there is fast moving air at the top while 

the air is close to being stationary at the bottom. 

Faster air has a lower pressure, so the cups have low pressure above them and higher pressure underneath. 

The cups are forced upwards. 

As improbable as it seems, it is possible to make the cups travel backwards. To understand how you have 

to realise that the force making the cups lift is at right angles to the cups' forward motion. As the cups 

starts to rise vertically they also experience a force at right angles to their new 'forward' motion. This lift 

force actually makes the cup move back towards you. On this return part of the loop the flow at the top 

and bottom of the cups are reversed, the cup is forced down, and then eventually forward along its 

original path.  

The air resistance which allows the layer of air to stick to the surface of the cups also slows the cups 

down. It slowly stops the cups from spinning and as the spin is reduced so the lift vanishes. The cups start 

to drop and eventually hit the floor. 

 

 

 

Solutions of Boundary Layer Equations 

 

Now we develop the solution strategies for the boundary layer equations given by Prandtl.  Remember in 

his 2 equations of continuity and x-momentum, the pressure gradient term is assumed to be known. 
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x-momentum: 
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Thus this set becomes mathematically solvable.  There are two approaches to solve boundary layer 

equations.  We shall present both here.  However the emphasis will be in the second approach since it is 

easier to work with and gives an insight to the behavior of fluid particles in the boundary layer.  The 

standard approaches are: 

 

(i) Exact solution method (Blasius’ Solution) 

(ii) Approximate Solution Method (Karman-Pohlhausen Method) 

 

The second approach is also called the momentum integral method.  We begin with the exact solution 

method given by Blasius. 

 

 

Exact Solution Method 

 

Blasius performed a transformation technique to change the set of two partial differential equations (A 

and B) into a single ordinary differential equation.  He solved the boundary layer over a flat plate in 

external flows.  If we assume the plate is oriented along the x-axis, we may neglect the pressure gradient 

term, i.e., 0
x

p





.  The traditional approach before Blasius was to drop out the continuity equation from 

the set by the introduction of the stream function (x,y).  With this definition: 
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However, Blasius used this equation in non-dimensional variables.  Let us define (x,y) as a single 

variable by: 

U
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  or 

x

U
y


.  It is easy to verify that  will be non-dimensional by substituting the 

units of , U,   and y.  He also introduced the non-dimensional stream function given by:  (Correction: 

Please replace  by x in the section below) 
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Using mathematical manipulation from calculus, we may write: 
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Therefore, the original x-momentum can be written as 0fff 2  upon simplifications.  Note that 

this is an ordinary differential equation with as the independent variable and f is the dependent variable.  

To solve this third order equation we need three boundary conditions. Let us check the figure below. 

 

We may write at y = 0, u = v = 0 into a different form:  0 ff  ,0At .   Similarly as y , u = 

U may be written as 

1f, At  

Using these three boundary conditions the solution of the governing equation may be obtained by the use 

of power series solution and shown in the table below.  The important things to note are the points 

corresponding to the edge of the boundary layer.  Since u  U,  f 1, (we choose the value of .9915, since 

 is defined at u = .99U).  Thus 0.5
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   from the table below: 

 

(x) 

At y = , u = U 

At x = 0, (x) = 0 At y = 0 (on wall),  

u = v = 0 (no slip 

condition) 

U 
y 

x 



 

 

Using the alternate definition, 
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Therefore, the wall shear stress, w, may be written as  

 

x

2

0y

w
Re

U332.

y

u 









 

We define  Skin Friction Coefficient as the non-dimensional wall shear stress, given by: 
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In this case both 
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C f   are claimed to be exact solution of steady, laminar 

boundary layer over a flat plate oriented along the x-axis.   

 

We notice from the above expressions that both (x) and Cf change along the plate.  While (x) increases 

(boundary layer grows) with , Cf 0 as x.  Both quantities depend on the variable Reynolds 
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.  If the plate length is not infinite, how do we obtain the shear force on it?  We may 



do this by integrating directly or, the use of the concept of ―overall Skin Friction Coefficient‖.  For 

example, for a finite length, L, of the plate, the shear force  
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Alternately, define fC = Overall Skin Effect Coefficient 
L
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1
f .  Thus the fC  is nothing but 

―length-averaged‖ friction coefficient.  Unlike Cf(x), fC is a constant value for the whole plate.  

Similarly the average shear stress for the plate may be defined as  
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0
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1
.   Finally, the 

shear force on the plate may be written as the product of w and the plate area. 

 

 

Approximate Solution Method 

 

Unlike the Blasius solution, which is exact, approximate solution method assumes an approximate 

shape of the velocity profile.  This velocity profile is then utilized to evaluate quantities related to the 

governing differential equation, given below by Karman and Pohlhausen.  This method, which is called 

the momentum integral method, changes the two equations given by Prandtl into a single differential 

equation.  This equation over a flat plate may be written as: 
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where,  x =Wall shear stress 

  = Density of fluid 

 U = Free stream velocity 

and,   = Momentum thickness of the boundary layer 
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The above equation is applicable only when the pressure gradient term is zero. For the case of non-

zero pressure gradients you should use 
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Velocity Profiles 

 

Since the Karman-Pohlhausen method requires an assumed velocity profile, let us explore some 

velocity profiles and their characteristics (see example problem 1). For example, suppose we assume the 

velocity profile to be a second order polynomial 
2CyByA)y(u  where A, B, and C are constants.  

 

To evaluate velocity profile constants A, B, and C, we must use boundary conditions. The following three 

conditions may be used: 

 

1) No-slip: y = 0, u = 0 

2) B.L. Edge Velocity: y = , u = U 

3) B.L. Edge Shear: y = , 
dy

du
 = 0 

 

Note that at the edge of the definededgeoftheboundarylayer u = .99U and 0
dy

du
 . However we 

approximate them with the rounded values. This is the reason the solution method by Momentum Integral 

Method is considered an approximate one. 

 

With the above profile, 
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 Subtracting the second condition from the third,  

  
2

U
C

U
C





  

 Using this in the second condition, 








U2
B

U
B

U
 

 



   
2

2
y

U
y

U2
)y(u





  

   or, 

2
yy

2)y(
U

u





















  Parabolic Profile (see plot in the example) 

 

Remember the use of the boundary layer velocity profile is only meaningful when  y0 . The use of 

this velocity profile may now be made to obtain  and w 

 

 




























 y
d

U

u
1

U

u
dy

U

u
1

U

u 1

00
 

 or,  























































 y
d

yy
21

yy
2

2
1

0

2

  

Note that defining a new variable 



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 makes the evaluation much easier.  
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Similiarly, 
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 for the parabolic profile 

Using the above results for  and w in the momentum integral equation for a flat plate gives  
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Separating the variables  and x, and integrating 
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To express the boxed equation in a non-dimensional form divide both sides by x
2
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Compare this result with the earlier exact solution obtained under the Blasius method. 
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We therefore see the popularity of the parabolic velocity profile. Although the solution by Karman-

Pohlhausen method is approximate it gives less than 10% error when compared with the exact solution is 

laminar flows over a flat plate.  

 

Now that we have obtained (x), the shear stress, w, and skin friction coefficient, Cf, may be obtained for 

the parabolic profile.  
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This is comparable with 

x

f
Re

664.
)x(C   obtained earlier in the exact solution method.  

To summarize, we have obtained the growth of the boundary layer (x) and the skin friction characteristic 

Cf(x) as a solution of the boundary layer equations by the exact and approximate methods. Once Cf(x) is 

known, the shear stress and skin friction force may be evaluated (see examples).  

 

As stated before, the frictional forces are not the dominant forces in high-speed flows. The component 

of drag due to skin friction is called the friction drag. Thus friction drag is significantly lower than 

pressure drag in boundary layers of high Reynolds number flows. However, Prandtl found a very 
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important influence of these small frictional forces in controlling the pressure drag. To understand 

this we must investigate the phenomenon of flow separation.  

 

 

 

 

 

 

 

Flow Separation and Boundary Layer Control 

 

Earlier we noted that as the boundary layer over a flat plate grows, the value of the skin friction 

coefficient goes down. This may be explained from the fact that as more fluid layers are decelerated due 

to shear at the plate shear values near the plate need to be as large compared to the entrance region of the 

plate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compare the station (2) ( = 2) with station (1) ( = 1). The shear on the plate at (2) is smaller since the 

shear angle 
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
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


. Mathematically, we know Cf(x)  0 as Rex. But can the shear go to zero 

on the flat plate, and if so, what are the physical implications? The answer depends on the physical 

configurations. For a flat plate, shear may never go to zero as Cf  0 only when Rex or x . 

However if we get some assistance from the pressure gradient, Cf can be zero much earlier. Consider, for 

this purpose, flow over a circular cylinder.  
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The figure above shows a circular cylinder in steady, ideal flow, U. The stagnation points are A and C, 

while the maximum velocity points are B and D. Since the regions A to B and A to D accelerate the flow, 

0
dx

dp
 (note x is in the tangential direction along the cylinder). Similiarly the regions B to C and D to C 

are the adverse pressure gradient regions ( 0
dx

dp
 ).  Now imagine if this cylinder was placed in a real 

flow, viscous boundary layer will start to grow from the front stagnation point A, slowing the fluid 

particles.  

 

 

 

 

 

 

 

 

 

 

 

However, fluid pressure field still naturally pushes the particles near the surface to 

proceed toward B. This is not the case between B and C though, where the natural tendency of the fluid is 

to flow C to B due to the adverse pressure gradient. Thus the boundary layer slow down that started in the 

region A to B due to viscous effects bringing Cf toward 0, gets compounded by the “reverse push” due 

to the adverse pressure gradient in the region B to C. This brings the flow to separation.Flow 

separation point is defined as the point on the surface where Cf = 0, or, w = 0, or 0
y

u

0y








.  

 

At flow separation, fluid particles rest on the solid surface but there is nohold on them due to shear from 

the surface. There is however shearing action from the high-speed flow a little away from the 

surface, which drags these stagnant particles away into the main flow stream due to viscosity. This 

U x 
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creates a partial void inside the boundary layer, which is promptly filled by particles traveling upstream 

creating a ―reverse flow‖ near the surface.  

 

 

 

 

 

The figure shows real flow separation over a circular cylinder with the separation point and reverse flow 

after separation. Due to symmetry, the exact same processes are repeated on the lower surface ADC. The 

reverse flow near the surface is the cause of vortex formation. Two symmetric vortices appear first in 

the downstream of the cylinder following flow separation.  

 

 

 

 

 

Real Flow Over the Cylinder 
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Vortex formation 



 

These vortices occupy the wake region since they are shed behind the cylinder due to the forward fluid 

motion. As that process happens the shed vortices grow in size and start interacting with each other 

creating an alternating vortex pattern known as the Karman Vortex Street. These create oscillatory 

flows behind the cylinder.  

 

 

 

 

Eventually all the vortices break down due to viscous interactions creating a region of chaos, which is 

characteristic of a turbulent mixing. 

 

In the initial phase a laminar separated flow is not necessarily turbulent. It creates a large region of 

low pressure behind the body called the wake region. Due to the separation process, the pressure never 

recovers its stagnation value in laminar separated flows. If instead of a laminar follow, we had placed the 

cylinder in a turbulent flow, separation will occur with a much narrower wake behind the body. This is 

due to the fact that turbulent flows have flatter velocity profileswith rapid mixing and a lot more 

momentum in the boundary layer. This gives turbulent flows much better chance to resist separation 

in the region behind the body (B to C or, D to C). The late separation gives a much smaller wake size 

with a much better pressure recovery as shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symmetric 

Vortices 
Karman Vortex Street 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus the drag calculated in the turbulent flows will be much smaller compared to laminar flows (Recall 

that ideal flow drag is zero due to 100% pressure recovery). This is the reason a turbulent flow separation 

is preferred over a laminar flow separation (see example of flow momentum calculation). The drag 

coefficient versus Reynolds number for the flow over a sphere is shown below.  
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The figure shows that drag coefficient drops as the Reynolds number increases in the low speed range. In 

this range, drag on the sphere is directly proportional to the diameter of the sphere (FD = 3VD) 

as was shown by Stokes. On the other hand, for high-speed flows, DCbA2U
2

1
DF  . Thus, if CD is 

constant, 2UDF  . In the low speed range, drag on the sphere is mostly due to friction, whereas in the 

high-speed range drag is mostly (due to flow separation) from the pressure drag. The sharp drop in the 

CD curve around ReD = 2x10
5
 is due to the transition from laminar to turbulent flows. As we saw 

earlier, transition into turbulence brings smaller wake size and a lower overall drag. This feature is often 

incorporated into design. For example, golf balls are dimpled to take advantage of this fact.  The dimples 

cause early tripping of the flow into turbulence. This would reduce the drag and will produce longer 

flights of the ball.  

 

Drag reduction is an active design topic for aerodynamicists and fluid mechanists. A major controlling 

feature of laminar flow separation is by removal of stagnant fluid particles near the walls by suction. 

Similarly by blowing into boundary layer, we may be able to energize the stagnant particles and 

prevent separation. Control of separation and drag reduction in various applied problems is an active 

area of research.  

 

 

 

 

 

Turbulent Boundary Layers 

 

We know that turbulent flow occurs if the flow velocity is large enough (or, viscosity is small enough) to 

create a Reynolds number greater than the critical Reynolds number over an object. For spheres or 

circular cylinders this critical Reynolds number is between 2 to 4x10
5
. For flat plate flows this is around 

500,000. We also discussed the implications of turbulent flows in drag reduction. What characterizes such 

flow is a flatter, fuller velocity profile. It is important to recognize that turbulent flows have two 

components:  (i) a mean, u , and (ii) a random one, u. uuu  . Similarly, vvv   and 

www  . The random u cannot be determined without statistical means. Therefore for turbulent 

fluid flows, we usually work with a timeaveraged mean flow u . Remember that when we speak of 

turbulent velocity profiles it is this u that we are considering. To avoid confusion with this rotation (we 



earlier indicated v as areaaveraged velocity, not time average velocity), we shall write turbulent flow 

velocities without the bars.  

 

You understand that whenever we speak about turbulent flows here, we are representing the mean flow. 

Turbulent flows in boundary layers over flat plates may be represented by the power law velocity profile: 

 n
1n

1

y
)y(

U

u











  [where, 




y
] 

This profile covers a fairly broad range of turbulent Reynolds numbers for 6 < n <10. The most popular 

one is n = 7. Although this velocity profile is an excellent representation of the real turbulent flow, this 

may not be used to calculate skin friction coefficient in the approximate solution method seen earlier 

(since 

0y
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
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will be negligible for this profile). For the purpose of calculating shear stress we use an 

experimental result:
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 for the 1/7 power law profile. To obtain the skin friction 

coefficient, we must first evaluate (x) from the solution of Karman-Pohlhausen: 

  
x

U2
w




  (A) 

 dy
U

u
1

U

u
dy

U

u
1

U

u 1

00



























Q  

 Using 
7

1

U

u
 ,  







 



d1 7

11

0

7
1

 

  
72

7

9

7

8

7
d

1

0

7

2

7

1

 












  

 )A(
dx

d

72

7
U

U
U0233.0 2

4
1

2
w























  

 or, dx
U

24.d
x

0x

4
1

)x(

0

4
1

 






 
 







 

 
51

xRe

382.

x



 (Skipping the integral evaluation) 

 

Terms for the 1/7 power law velocity profile gives: 
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Stokes Flows 

 

We have so far discussed very high-speed flows in which the boundary layers are very thin regions near 

the body. However for very low speed flows boundary layers don’t exist. Viscous effects are felt 

everywhere (recall the heat transfer analogy). External flow applications at very slow speeds (or, 

highly viscous flows) may be solved by neglecting the inertia force term in the Newton’s second law. For 

example, if you drop a steel ball into glycerin, how can you calculate drag on it? In this context, let us 

introduce the concept of terminal velocity. When any object starts its motion in any fluid medium, there 

may be a period of acceleration of motion. However, if we are interested in steady flows, if one exists in 

such configurations, there must be a time when the fluid forces around the body are balanced 

providing it a constant velocity. We call this velocityterminal velocity of the body. For the ball 

dropped in glycerin, the free body diagram shows 

 

 

 

 

 

 

 

Note that the Vt (Terminal velocity) is not a force, and shown on the sketch (just for reference) using 

dashed lines. Since the body is traveling at constant speed, the inertia force term is zero. Thus, all external 

forces are balanced and in the Newton’s second law in the y-direction: 
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  D = Diameter,  = Density of glycerin 

  g = Acceleration due to gravity 
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Vt 

FB 

FD 

FD = Drag on the body 

 

FB = Buoyancy force on the body 

 

w = weight of the ball 
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We may only use the above equation to calculate the terminal velocity Vt.  

 

In the above drag representation of Stokes flow, FD  Vt. This behavior is in contrast with high-

speed flows, where drag is usually proportional to the square of velocity.  

 

Terminal velocity concept is similar to fully developed flows in internal flow configuration. Notice that 

before the terminal velocity is developed (in the internal flow case, in the entrance length region), the 

inertia force term in the above equation (A) is not negligible. In that case, the only way to solve the 

equation will be by integration or, using differential equations approach  

 

For engineering design purposes, handbooks list a large variety of objects in different orientations and 

their drag coefficients. Rather than solving each problem from first principles, you may be able to utilize 

these tables and charts. Just make sure that you note the range of applicability of these. They need to be 

verified during problem solving.  
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