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Unit 2 

DIMENSIONAL ANALYSIS AND FLUID FLOW IN CLOSED CONDUICTS 

 
TYPICAL MODEL STUDIES 

Flow through Closed Conduits 

When there is a fluid flow through closed conduits (such as pipe flows), the dominant 

forces are inertial and viscous because there is no fluid interface. Compressibility effects 

can be neglected for low Mach numbers (less than 0.3). In these class of problems, 

geometric similarity between the model and prototype must be maintained. Geometric 

similarity characteristics are described by series of length terms 1 2 3, , ......., andil l l l l , 

where l  is some particular length dimension of the system. It leads to series of pi terms of 

the form as, 
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 In addition, other parameter of importance is the surface roughness   . The 

corresponding pi term representing the surface roughness is l . 

 For low Mach number flows, Reynolds number must also match. Complete similarity 

requirements are as follows. 
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 In order to find the pressure differential per unit length, the other dependent pi term is 

expressed as, 
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The prototype pressure drop can be obtained from the relation as, 
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Flow around Immersed Bodies 

Typical examples that fall under this category are the flow around aircraft, automobiles 

etc. The general formulations for these classes of problems are expressed in terms of 

dependent pi terms i.e. 
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For complete similarity requirements Eq. (1) must be satisfied. The parameter of interest 

in this type of problems is the drag coefficient  DC  and is defined by, 
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If the similarity conditions are met, then 
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Flow with a Free Surface 

The flows in canals, rivers, spillways, around ships are some of the examples involving a 

free surface. In these flow patterns, following forces and numbers are of important. They 

are, 

 Gravitational force (Froude number) 

 Surface tension (Weber number) 

 Inertia force (Reynolds number) 

Thus general formulation for problems involving the flow with a free surface is expressed 

as, 
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Since gravity is the driving force, Froude number similarity must be maintained i.e. 
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The model and prototype is expected to operate in same gravitational field. So, 
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 In many of the practical problems, involving free surface flows, both surface tension 

and viscous effects are small and strict adherence to Weber and Reynolds number is not 

required.  

 

Turbo-machinery models 

There are certain situations of practical interest in which there may be more than one 

dependent parameter. So, scaling is done for the dimensional groups with multiple 

dependent parameters. A typical example is centrifugal pump. The performance 

parameters of interest for a centrifugal pump include the pressure rise (or head) 

developed, the power input, and machine efficiency measured under specific operating 

conditions. These performance curves are usually generated by varying independent 

parameters. The independent variables are volume flow rate  Q , angular speed   , 

impeller diameter  D , and fluid properties like density   , viscosity   . Dependent 

variables include the performance quantities.  

 The dependence of head  h  developed and power  P  can be written in terms of 

independent parameters as, 
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Using Pi theorem, the dimensionless parameters can be written as, 
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The dimensionless parameters are, 
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 Complete similarity in pump performance tests requires identical flow coefficients 

and Reynolds number. Thus form Eqs. (19) and (20), when 
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It follows that,  
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These useful scaling relationships are known as “pump laws”. If operating conditions of 

one pump are known, the operating conditions for any geometrically similar machine can 

be found by changing ,D   in Eqs. (21) to (23).  

 Another dimensionless parameter is the “specific speed” which is defined as the 

speed required for a pump to produce unit head at unit volume flow rate i.e.  
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A constant specific speed describes all operating conditions of geometrically similar 

pumps with similar flow conditions.   

 

Example 1 

Water flows through a large valve having 0.8m diameter at a rate 85m
3
/s. It is to be tested 

in a geometrically similar model of 10cm diameter with water as working fluid. 

Determine the required flow rate in the model.  

Solution 

In order to ensure the dynamic similarity, the Reynolds number must match for the model 

and the prototype i.e.   

   
model prototypee eR R  

p pm m

m p

V DV D

 
  



 

 5 

Since, water is used as the working fluid for the model and the prototype, so m p  . 

Hence, 
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The flow rate for the model and prototype can be related as, 
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Hence,  

30.1
85 10.6m s

0.8

m
m p

p

D
Q Q

D

 
    

 
 

Example-2 

In order to estimate the drag force on an airplane that cruises at 100m/s, wind-tunnel test 

is carried out on a 1: 15 scale model. The airplane cruises at an altitude where there is 

10% drop in standard atmospheric pressure. The wind tunnel test is also carried out at 

100m/s and the measured drag force in one of the test is 5N. Determine the required air 

pressure in the tunnel and drag force on the prototype (assuming the same air temperature 

for the model and prototype). 

Solution 

For a geometrically similar model and prototype, the Reynolds number must match i.e. 

   
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It shows that same fluid with ;
p pm m      cannot be used to maintain the Reynolds 

number similarity. However, one possible solution is to use same fluid (air) for which 
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pm  , but increase the pressure to increase the density to a limit such that variation in 

viscosity is not significant. In that case,  

15m

p




  

Using the ideal gas equation of state, . .p R T , we get, 
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p p

p

p




  (Assuming constant temperature) 

The prototype cruises at an altitude where there is 10% drop in standard atmosphere i.e. 

at a pressure of 0.9atm. So, required pressure in the wind tunnel will be, 

15 0.9 13.5atm.mp     

Using Eq. (4), the drag force on the prototype is estimated as,  
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Example 3 

A sonar transducer is a prototype sphere of 0.3m-diameter towing at 9km/hr in seawater 

at 5
0
C. The drag on this transducer is to be predicted from wind tunnel data on a model of 

15cm diameter. Determine the required test speed in the wind tunnel. If the drag of the 

model at test condition is 25N, estimate the drag on the prototype.  

Solution 

    0.3mpD             15cmmD   

9km/hrpV        pF       mV      

                  25NmF   

    Water at 5
0
C            Air 

In order to estimate test speed and drag on the prototype, the following condition must be 

satisfied, i.e. 
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For ensuring the dynamic similarity, the test should run such that 
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   
model prototypee eR R  

For seawater at 5
0
C, 3 6 21000kg m , 1.57 10 m sp p     ; At prototype conditions, 

9km hr 2.5m spV   . So, 
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The model must be tested at same Reynolds number, i.e. 
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Now, for air at standard temperature and pressure conditions (STP), 

3 5 21.2kg m , 1.5 10 m sm m     . So, 
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At these conditions, the model and prototype are dynamic similar. Hence, 
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Example 4 

A spillway model of 1:10 scale is constructed to study the flow characteristics for a 

prototype dam of width 10m and to carry water at a flow rate of 60m
3
/s. Determine the 

required model width and flow rate. What operating time for the model corresponds to a 

24hr period in prototype? The effects of surface tension and viscosity may be neglected.  

 

Solution 

If ,m pw w  are the width of the model and prototype respectively, then 

1 10
, i.e. 0.67m

15 15

m
m

p

w
w

w
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Since surface tension and viscosity are insignificant, so there is no need for considering 

Weber number and Reynolds number. However, the Froude number must match i.e. 

m m

p p

V l
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The flow rate is given by, 
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so that, 
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The time scale can be obtained as,  
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i.e.  
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so that 

1
24hr 7.6hr

10
mt     

Example 5 

A centrifugal pump has a specific speed of 5000 when operated at 1170rpm and volume 

flow rate of 300gallons/min. In order to increase flow rate, it is fitted with same size 

motor operating at 1750rpm. Determine the flow rate, head developed, power required by 

the pump at this conditions. Show that specific speed remains constant at this speed.  

Solutions 

From “pump laws”, 
1 2
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3 3
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Q Q
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 , 
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The pump head can be calculated from specific speed, i.e. 
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Again from “pump laws” for head developed, 
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Pump power at 1170rpm is given by, 

5

1 1 1 1000 9.81 300 6.309 10 6.462 1.2kWP g Q H          

(1gallon/min = 6.30910
-5

m
3
/s) 

From pump laws, pump power at 1750rpm is, 
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Specific speed at 1750rpm is given by, 
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EXERCISES 

1. The capillary rise  h  of a liquid in a tube varies with the tube diameter  d , gravity 

 g , fluid density   , surface tension    and contact angle   . Find the 

dimensionless relation. If h = 9cm in a given experiment, then what will be the h  in a 

similar case for which the diameter and surface tension is halved, density being twice and 

contact angle being the same.       

2. A large hydraulic turbine is to generate 300kW at 1000rpm under a head of 40m. For 

initial testing, a 1:4 scale model of the turbine operates under a head of 10m. Find the 

power generated by the model.  
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