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Unit 1  

FLUID PROPERTIES & EQUATIONS OF MOTION 

Physical Properties of Fluids 

 

Introduction: 

 

A treatment of fluid flow requires an understanding of the physical properties of a fluid which 

affect the motion, and an appreciation of the units in which these properties are measured. The three 

most important fluid properties are the density, viscosity and surface tension.  Density is a familiar 

concept and is treated briefly, although there is one subtlety that requires attention. Viscosity is a 

concept that is generally understood intuitively, but some detailed consideration is necessary in order to 

establish a precise and useful definition.  Each of these will be defined and viewed in terms of molecular 

concepts, and their dimensions will be examined in terms of mass, length and time (M, L and T). 

 

Density: 

 

The density  of a fluid is defined as its mass per unit volume and indicates its inertia or 

resistance to an accelerating force. Thus  

 

 

 

in which the notation “*=+” is consistently used to indicate the dimensions of a quantity. It is usually 

understood in Eqn. 2.1 that the volume is chosen so that it is neither so small that it has no chance of 

containing a representative selection of molecules, nor is it so large that (in the case of gases) changes 

of pressure cause significant changes of density throughout the volume. A medium characterized by a 

density is called a continuum, and follows the classical laws of mechanics – including Newton’s law of 

motion. 

 

Densities of liquids. Density depends on the mass of an individual molecule and the number of 

such molecules that occupy a unit of volume. For liquids, density depends primarily on the particular 
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liquid and, to a much smaller extent, on its temperature. Representative densities are given in table 2.1. 

The accuracy of the values given in tables 2.1 through 2.3 is adequate for the calculation needed for this 

course. However, if highly accurate values are needed, particularly at extreme conditions, then 

specialized information should be sought elsewhere. 

 

Degrees A.P.I. (American Petroleum Institute) are related to specific gravity s by the formula: 

 

 

Note that for water, oA.P.I. = 10, with correspondingly higher values for liquids that are less dense. Thus, 

for the crude oil listed in table 2.1, Eqn. 2.2 indeed gives 141.5 / 0.851 – 131.5 = 35 oA.P.I. 

 

 

 

Density of gases. For ideal gases, ρV = nRT, where p is the absolute pressure, V is the volume of 

the gas, n is the number of moles, R is the gas constant, and T is the absolute temperature. If Mw is the 

molecular weight of the gas, it follows: 

 

 

Table 2.1 
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Thus, the density of an ideal gas depends on the molecular weight, absolute pressure, and absolute 

temperature. Values of the gas constant R are given in table 2.2 for various systems of units. Note the 

degrees Kelvin, formerly represented by “oK” is now more simply donated by “K”.  

 

 

 

For a nonideal gas, the compressibility factor Z (a function of p and T) is introduced into the 

denominator of Eqn. (2.3), giving: 

 

 

 

Thus, the extent to which Z deviates from unity gives a measure of the nonideality of the gas.  

 

  The isothermal compressibility of a gas in defined as: 

 

 

Table 2.2 
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and equals – at constant temperature – the fractional decrease in volume caused by a unit increase in 

the pressure. For an ideal gas, β = 1 / p, the reciprocal of the absolute pressure. 

 

The coefficient of thermal expansion α of a material is its isobaric fractional increase in volume 

per unit rise in temperature: 

 

 

 

Since, for a given mass, density is inversely proportional to volume, it follows that for moderate 

temperature ranges (over which α is essentially constant) the density of most liquids is approximately a 

linear function of temperature: 

 

 

 

whereρo is the density at a reference temperature To. For an ideal gas, α = 1 / T, the reciprocal of the 

absolute temperature. 

 

 

The specific gravity s of a fluid is the ratio of the density ρ to the density ρsc of a reference fluid 

at some standard condition: 

 

 

 

For liquids, ρsc is usually the density of water at 4oC, which equals 1.000 g / ml or 1,000 kg / m3. For 

gases, ρsc is sometimes taken as the density of air at 60oFand 14.7 psia, which is approximately 0.0759 

lbm / ft3, and sometimes at 0oC and one atmosphere absolute; since there is no single standard for gases, 

care must obviously be taken when interpreting published values. For natural gas, consisting primarily 
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of methane and other hydrocarbons, the gas gravity is defined as the ratio of the molecular weight of 

the gas to that of air (28.8 lbm / lb-mole). 

 

Values of the molecular weight Mw are listed in the table 2.3 for several commonly occurring 

gases, together with their densities at standard conditions of atmospheric pressure and 0oC. 

 

 

 

2.3. Continuum Hypothesis: 

 

 The density provides a convenient means of illustrating the continuum hypothesis, which is one 

of the fundamental principles utilized in fluid mechanics. Density is defined as mass per unit volume, and 

it is commonly determined by measuring either the mass of a known volume or the volume displaced by 

a known mass. We recognize, however that density can vary with position in a process, and a more 

precise definition is to consider a series of small volumes , with corresponding small masses , and 

to define the density  by the limiting process. 

 

 

 

Alternatively, if the density  is a function of position, , then the mass contained in a specified 

volume is the integral of the density over that volume: 

Table 2.3 



I-6 

 

 

 

Now, Eqns. 2.9 and 2.10 have implicitly used the continuum hypothesis, for they assume that the 

density is a concept that has meaning for any volume, no matter how small. Yet we know that when the 

volume is of molecular dimensions we have very rapid spatial variations between dense and non-dense 

regions, depending on how close we are to a molecule. Hence, the notion of a density function that can 

be defined by a limiting process such as that of Eqn. 2.9 is questionable. The continuum hypothesis 

assumes that mathematical limits for volumes tending to zero are reached over a scale that remains 

large compared to molecular dimensions. Thus, variations on a molecular scale can be ignored, since 

they average out over all length scales of interest. Clearly, no result derived using the continuum 

hypothesis should be expected to apply a rarified gas, where the distance between molecules may be 

large. 

 

2.4. Viscosity: 

 

The viscosity is a measure of resistance to flow. It we tip over a glass of water on the table, the 

water will spill out before we can stop it. If we tip over a jar of honey, we probably can set it upright 

again before much honey flow out; this is because the honey has much greater resistance to flow, more 

viscosity, than water. A more precise definition of viscosity is possible in terms of following experiment: 

 

Consider two long, solid plates separated by a thin film of fluid (see Fig 2.1). If we slide the upper 

plate steadily in the x direction with velocity Vo, a force is needed to overcome the friction in the fluid 

between the plates. This force is different for different velocities, plate sizes, fluids, and distances 

between the plates. We can eliminate the effect of different plate sizes, however, by measuring the 

force per unit area of the plate, which we define as the shear stress τ. 
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It has been demonstrated experimentally that at low values of Vo the velocity profile in the fluid 

between the plates is linear, i.e., 

 

so that 

 

 

It has also been demonstrated experimentally that for most fluids the results of this experiment 

can be shown most conveniently on a plot τ versus dV / dy (see Fig. 2.2). As shown here, dV / dy is 

simply is velocity divided by a distance. In more complex geometries, it is the limiting value of such a 

ratio at a point. It is commonly called the shear rate, rate of strain, and rate of shear deformation, which 

all means exactly the same thing. Four different kinds of curve are shown as experiment results in the 

figure. All four are observed in nature. The behavior most common in nature is that represented by the 

straight line through the origin. This line is called Newtonian because it is described by Newton’s law of 

viscosity 

 

 

 

Fig. 2.1 
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This equation says that the shear stress τ is linearly proportional to the velocity gradient dV / dy. It is 

also the definition of viscosity, because we can rearrange it as  

 

 

Here μ is called the viscosity or the coefficient of viscosity. 

 

 

 

For fluids such as air, the value of μ is very low; therefore, their observed behavior is 

represented in Fig 2.2 by a straight line through the origin, very close to thedV / dy axis. For fluid such as 

corn syrup, the value of μ is very large, and the straight line through the origin is close to the τ axis. 

 

Fluids that exhibit this behavior in the sliding plate experiment (i.e., fluids that obey Newton’s 

law of viscosity) are called Newtonian fluids. All others are called nonnewtonian fluids. Which fluids are 

Newtonian? All gases are Newtonian. All liquids for which we can write a simple chemical formula are 

Newtonian, such as water, benzene, ethyl alcohol, carbon tetrachloride, and hexane. Most solutions of 

simple molecules are Newtonian, such as aqueous solutions of inorganic salts and of sugar. Which fluids 

are nonnewtonian? Generally, nonnewtonian fluids are complex mixtures: slurries, pastes, gels, polymer 

solutions, etc. Most nonnewtonian fluids are composed of molecules or particles that are much larger 

Fig. 2.2 
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than water molecules, such as the sand grains in a mud or the collagen molecules in gelatin, which are 

thousands or millions of times larger than water molecules. 

 

In discussing nonnewtonian fluids, we must agree on what we mean by viscosity. If we retain the 

definition given by Eqn. 2.12, then the viscosity can no longer be considered a constant independent of 

dV/dy for a given temperature, but must be considered a function of dV/dy. This is shown in figure 2.3.  

 

 

 

Here each of lines OA, OB, and OC have slope μ, so the viscosity is decreasing with increasing dV 

/ dy. Using this definition, we can observe that there are three common types of nonnewtonian fluid (Fig 

2.2): 

 

1. Bingham fluids, sometimes called bingham plastics, resist a small shear stress indefinitely 
but flow easily under larger shear stresses. One may say that at low stresses the viscosity is 
infinite and that at higher stresses the viscosity decreases with increasing velocity gradient. 
Examples are bread dough, tooth paste, jellies, and some slurries. 

2. Pseudoplastic fluids show a viscosity that decreases with increasing velocity gradient. 
Examples are most slurries, muds, polymer solutions, solutions of natural gums, and blood. 

3. Dilatant fluids show a viscosity that increases with increasing velocity gradient. They are 
uncommon, but starch suspensions behave in this way. 

 

The basic unit of viscosity is the poise, where 1P = 1g / (cm.s) = 0.1 Pa.s = 6.72 x 10-2lbm / (ft.s). 

It is widely used for materials such as high-polymer solutions and molten polymers. However, it is too 

large a unit for most common fluids. By sheer coincidence the viscosity of pure water at about 68oF is 

Fig. 2.3 
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0.01 P; for that reason the common unit of viscosity in the United States is the centipoises, where 1 cP = 

0.01 P = 0.01 g / (cm.s) = 6.72 x 10-4lbm / (ft.s) = 0.001Pa.s. Hence, the viscosity of a fluid, expressed in 

centipoises, is the same as the ratio of its viscosity to that of water at room temperature. 

 

 Kinematic Viscosity: 

 

In many engineering problems, viscosity appears only in the relation of viscosity divided by density. 

Therefore, to save writing, we define 

 

 

The most common unit of kinematic viscosity is the centistokes (cSt): 

 

 

 

(The kinematic viscosity of water at room temperature is 1cSt.) To avoid confusion over which viscosity 

is being used , some writers refer to the viscosity μ as the absolute viscosity. 

Surface Tension: 

Surface tension is the tendency of the surface of a liquid to behave like a stretched elastic membrane. 

There is a natural tendency for liquids to minimize their surface area. The obvious case is that of a liquid 

droplet on a horizontal surface that is not wetted by the liquid – mercury on glass, or water on a surface 

that also has a thin oil film on it. For small droplets, such as those on the left of the Fig. 2.4 the droplet 

adopts a shape that is almost perfectly spherical, because in this configuration there is the least surface 

area for a given volume. 

 

 

Fig. 2.4 
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For larger droplets, the shape becomes somewhat flatter because of the increasingly important 

gravitational effect, which is roughly proportional to , where a is the approximate droplet radius, 

whereas the surface area is proportional only to . Thus, the ratio of gravitational to surface tension 

effects depends roughly on the value of , and is therefore increasingly important for the 

larger droplets, as shown to the right in the Fig 2.4. Overall, the situation is very similar to that of a 

water-filled balloon, in which the water accounts for the gravitational effect and the balloon acts like the 

surface tension. 

 

 A fundamental property is the surface energy, which is defined with reference to the Fig2.5a. A 

molecule I, situated in the interior of the liquid, is attracted equally in all directions by its neighbors. 

However, a molecule S, situated in the surface, experiences a net attractive force into the bulk of the 

liquid. (The molecule S.) Therefore, work has to be done against such a force in bringing an interior 

molecule to the surface. Hence, an energy , called the surface energy, can be attributed to a unit area 

of the surface. 

 

 

 

An equivalent viewpoint is to consider the surface tension T existing per unit distance of a line 

drawn in the surface, as shown in the Fig 2.5b. Suppose that such a tension has moved a distance L, 

thereby creating an area WL of fresh surface. The work done is the product of the force, TW, and the 

distance L through which it moves, namely TWL, and this must equal the newly acquired surface energy 

. Therefore, ; both quantities have units of force per unit distance, such as N / m, which is 

equivalent to energy per unit area, such as . 

 

Units and Systems of Units: 

Fig. 2.5 
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 Mass, weight, and force.The mass M of an object is a measure of the amount of matter it 

contains and will be constant, since it depends on the number of constituent molecules and their 

masses. On the other hand, the weight w of the object is the gravitational force on it , and is equal to 

Mg, where g is the local gravitational acceleration. Mostly, we shall be discussing phenomena occurring 

at the surface of the earth, where g is approximately 32.174  = 9.807  = 980.7 . 

These values are simply taken as 32.2, 9.81 and 981, respectively. 

 

 

 

Newton’s second law of motion states that a force F applied to a mass M will give it an acceleration a : 

 

 

from which is apparent that force has dimensions . Table 2.4 gives the corresponding units of 

force in the SI (meter / kilogram / second), CGS (centimeter /  gram / second), and FPS (foot / pound / 

second) systems. 

 

 The poundal is now an archaic unit, hardly ever used. Instead, the pound force, , is much 

more common in the English system; it is defined as the gravitational force on 1 , which , if left to 

fall freely, will do so with an acceleration of 32.2  . Hence: 

 

 

When using  in the ft, , s (FPS) system, the following conversion factor, commonly called “ ”, 

will almost invariably be needed: 

 

Table 2.4 
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Some writers incorporate  into their equations, but this approach may be confusing since it virtually 

implies that one particular set of units is being use, and hence tends to rob the equations of their 

generality. Why not, for example, also incorporate the conversion factor of 144  into equations 

where pressure is expressed in ? We prefer to omit all conversion factors in equations, and 

introduce them only as needed in evaluating expressions numerically. If the reader is in any doubt, units 

should always be checked when performing calculations. 

 

SI Units.The most systematically developed and universally accepted set of units occurs in the SI units or 

Systĕme International d’Unitĕs; the subset we mainly need is shown in table2.5 

 

 The basic units are again the meter, kilogram, and second (m, kg, and s); from these, certain 

derived units can also be obtained. Force (kg m / ) has already been discussed; energy is the product 

of force and length; power amounts to energy per unit time; surface tension is energy per unit area or 

force per unit length, and so on. Some of the units have names, and these, together with their 

abbreviations, are also given in table 2.5 
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Tradition dies hard, and certain other “metric” units are so well established that they may be used as 

auxiliary units; these are shown in table 2.6. The gram is the classic example. Note that the basic SI unit 

of mass (kg) is even represented in terms of the gram, and has not yet been given a name of its own! 

 

Table 2.5 

Table 2.6 
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Table 2.7 shows some of the acceptable prefixes that can be used for accommodating both 

small and large quantities. For example, to avoid an excessive number of decimal places, 0.000001 s is 

normally better expressed as 1  (one microsecond). Note also , for example, that 1  should be 

written as 1 mg-one prefix being better than two. 

 

 

 

Some of the more frequently used conversion factors are given in the table 

 

Example 2.1 – Units Conversion 

 

Part 1.Express 65 mph in (a) , and (b)  

 

Table 2.7 
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Solution: 

 

(a)  

(b)  

 

Part 2. The density of 35  crude oil is 53.1 l  at 68 and its viscosity is 32.8 . 

What are its density, viscosity, and kinematic viscosity in SI units? 

 

Solution: 

  

  

 

 

 

 

Or, converting to SI units, noting that P is the symbol for poise, and evaluating v: 

 

  

 

 

 

 

 

Example 2.2 – Mass of Air in a Room 

 



I-17 

 Estimate the mass of air in your classroom, which is 80 ft wide, 40 ftdeep, and 12 ft high. The gas 

constant is R = 10.73 psia  

 

Solution: 

 The volume of the classroom is: 

 

 

 

 

If the air is approximately 20% oxygen and 80% nitrogen, its mean molecular weight is 

 From the gas law, assuming an absolute 

pressure of  and a temperature of 70  = 530 , the density is: 

 

 

 

Hence the mass of air is: 

 

 

 

 

 

I.  FLUID MECHANICS 
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I.1 Basic Concepts & Definitions: 

 

 

Fluid Mechanics - Study of fluids at rest, in motion, and the effects of fluids on 

boundaries. 

 

Note: This definition outlines the key topics in the study of fluids: 
 

(1)  fluid statics (fluids at rest),  (2)  momentum and energy analyses (fluids in motion), and  (3)  
viscous effects and all sections considering pressure forces (effects of fluids on boundaries). 

 

 

Fluid - A substance which moves and deformscontinuously as a result of an applied shear stress. 

 

The definition also clearly shows that viscous effects are not considered in the study of fluid statics. 

 

 

Two important properties in the study of fluid mechanics are: 

 

Pressure   and   Velocity 
 

These are defined as follows: 

 

 

Pressure - The normal stress on any plane through a fluid element at rest. 

 

Key Point:  The direction of pressure forces will always be perpendicular to the 
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surface of interest. 

 

Velocity  - The rate of change of position at a point in a flow field.  It is used not only to specify 

flow field characteristics but also to specify flow rate, momentum, and viscous 

effects for a fluid in motion. 
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I.4  Dimensions and Units 
 

 

This text will use both the International System of Units (S.I.) and British Gravitational System 

(B.G.). 

 

A key feature of both is that neither system uses gc.  Rather, in both systems the combination of 

units for mass * acceleration yields the unit of force, i.e. Newton’s second law yields 

 

 

S.I. -  1  Newton (N)  =  1 kg m/s2 B.G. - 1 lbf  =  1 slug ft/s2 

 

 

This will be particularly useful in the following: 

 

Concept Expression Units 

momentum Vm  kg/s * m/s = kg m/s2 = N 

   slug/s * ft/s = slug ft/s2 = lbf 

manometry g h kg/m3*m/s2*m = (kg m/s2)/ m2 =N/m2 

   slug/ft3*ft/s2*ft = (slug ft/s2)/ft2 = lbf/ft2 

dynamic viscosity  N s /m2 = (kg m/s2)s /m2 = kg/m s 

   lbf s /ft2 = (slug ft/s2) s /ft2 = slug/ft s 

 

Key Point:  In the B.G. system of units, the unit used for mass is the slug and not the lbm. and 
1 slug = 32.174 lbm.  Therefore, be careful not to use conventional values for fluid density in 
English units without 
appropriate conversions, e.g., for water: w = 62.4 lb/ft3 (do not use this 
value).   Instead, use  w = 1.94 slug/ft3 . 

 



I-21 

For a unit system using gc, the manometer equation would be written as 

xample: 

 

Given:  Pump power requirements are given by 

pW =fluid density*volume flow rate*g*pump head  =   Q g hp 

For  = 1.928 slug/ft3,  Q = 500 gal/min,  and hp = 70 ft, 

Determine:  The power required in kW. 

 

pW = 1.928 slug/ft3* 500 gal/min*1 ft3/s /448.8 gpm*32.2 ft/s2 * 70 ft 

 

pW =  4841ft–lbf/s  *  1.3558*10-3 kW/ft–lbf/s  =  6.564 kW 

 

Note:  We used the following, 1 lbf = 1 slug ft/s2, to obtain the desired units 

 

 

Recommendation: In working with problems with complex or mixed system units, at the start 

of the problem convert all parameters with units to the base units being 

used in the problem, e.g. for S.I. problems, convert all parameters to kg, m, 

& s; for B.G. problems, convert all parameters to slug, ft, & s.  Then convert 

the final answer to the desired final units. 

 

Review examples on unit conversion in the text. 

 

 

1.5 Properties of the Velocity Field 
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Two important properties in the study of fluid mechanics are:   

 

  Pressure and Velocity 

 

 

The basic definition for velocity has been given previously.  However, one of its most important 

uses in fluid mechanics is to specify both the volume and mass flow rate of a fluid. 



I-23 

Volume flow rate: 

 

 
cs cs

n dAVdAnVQ  

 

where  Vn is the normal component of velocity at 

a point on the are a across which fluid flows. 

 

Key Point:  Note that only the normal component 

of velocity contributes to flow rate across a 

boundary. 

 

 

 
 

 

Mass flow rate: 

 

 

 

dAV
cs

n  
cs

dAnVm      

 

 

NOTE:  While not obvious in the basic equation, Vn 

must also be measured relative to any motion at 

the flow area boundary, i.e.,  if the flow boundary is 

moving,  Vn is measured relative to the moving 

boundary. 
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1.6  Thermodynamic Properties 
 

All of the usual thermodynamic properties are important in fluid mechanics 

 

P - Pressure     (kPa,  psi) 

T- Temperature (oC, oF) 

 – Density (kg/m3, slug/ft3) 

 

Alternatives for density 
 

   -   specific weight  =  weight per unit volume  (N/m3,  lbf/ft3) 

 

 = g H2O: = 9790 N/m3 = 62.4 lbf/ft3 

  Air: = 11.8 N/m3 = 0.0752 lbf/ft3
 

S.G. -  specific gravity  =  / (ref)  where (ref) is usually at 4˚C, but some references will use  

(ref) at 20˚C 

liquids(ref) =(water at 1 atm, 4̊C) for liquids = 1000 kg/m3 

gases(ref) =  (air at 1 atm, 4˚C) for gases = 1.205 kg/m3 

 

Example:  Determine the static pressure difference indicated by an 18 cm column of fluid (liquid) 

with a specific gravity of 0.85. 

 

P =  g h  =  S.G. ref h  = 0.85* 9790 N/m3 0.18 m  = 1498 N/m2 = 1.5 kPa 
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Ideal Gas Properties 
 

Gases at low pressures and high temperatures have an equation-of-state ( the relationship between 

pressure, temperature, and density for the gas) that is closely approximated by the ideal gas equation-

of-state. 

 

The expressions used for selected properties for substances behaving as an ideal gas are given in the 

following table. 



I-26 

Ideal Gas Properties and Equations 

Property Value/Equation 

1. Equation-of-state P =  R T 

2. Universal gas constant  = 49,700 ft2/(s2 ˚R) = 8314 m2/(s2 ˚K) 

3. Gas constant R =  / Mgas 

4. Constant volume specific 

heat 

 

5. Internal energy 
d u = Cv(T) dT      u = f(T) only 

6. Constant Pressure specific 

heat  
1











k

Rk
TC

Td

hd

T

h
C p

p

p  

7. Enthalpy 
h = u + P v,   d h  =  Cp(T) dT    h = f(T) only 

8. Specific heat ratio 
k = Cp / Cv  = k(T) 

 

 

Properties for Air 

(Rair = 1716 ft2/(s2 ˚R) =  287 m2/(s2 ˚K)  

at 60˚F, 1 atm,   = P/R T  = 2116/(1716*520) = 0.00237 slug/ft3 = 1.22 kg/m3 

Mair = 28.97 k = 1.4 

Cv = 4293 ft2/(s2 ˚R) = 718 m2/(s2 ˚K) 

Cp = 6009 ft2/(s2 ˚R) = 1005 m2/(s2 ˚K) 
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I.7  Transport Properties 

Certain transport properties are important as they relate to the diffusion of momentum due to shear 

stresses.  Specifically: 

 

    coefficient of viscosity (dynamic viscosity)    {M / L  t } 

 

   kinematic viscosity=   /  , L
2
 / t } 

 

This gives rise to the definition of a Newtonian fluid. 

 

 

Newtonian fluid:  A fluid which has a linear 

relationship between shear stress and 

velocity gradient. 

 

 

The linearity coefficient in the equation is the 

coefficient of viscosity    

 

 

 

 

 

Flows constrained by solid surfaces can typically be divided into two regimes: 

 

 a.  Flow near a bounding surface with 

  1.  significant velocity gradients 

  2.  significant shear stresses 
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 This flow region is referred to as a "boundary layer." 

 

 b.  Flows far from bounding surface with 

  1.  negligible velocity gradients 

  2.  negligible shear stresses 

  3.  significant inertia effects 

 

 

This flow region is referred to as "free stream" or "inviscid flow region." 
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An important parameter in identifying the characteristics of these flows is the 

 

Reynolds number  =  Re   

 

This physically represents the ratio of inertia forces in the flow to viscous forces.  For most flows 

of engineering significance, both the characteristics of the flow and the important effects due to 

the flow, e.g., drag, pressure drop, aerodynamic loads, etc.,  are dependent on this parameter. 

 

 

Surface Tension 

 

Surface tension, Y, is a property important to the description of the interface between two fluids.  The 

dimensions of Y are F/L with units typically expressed as newtons/meter or pounds-force/foot.  Two 

common interfaces are water-air and mercury-air.  These interfaces have the following values for 

surface tension for clean surfaces at 20˚C (68˚F): 

 

 

 

 

 

Contact Angle 

For the case of a liquid interface intersecting a solid surface, the contact angle, , is a second important 

parameter.  For < 90˚, the liquid is said to ‘wet’ the surface;  for> 90˚, this liquid is ‘non-wetting.’  For 

example, water does not wet a waxed car surface and instead ‘beads’ the surface.  However, water is 

extremely wetting to a clean glass surface and is said to ‘sheet’ the surface.   

 

 

Liquid Rise in a Capillary Tube 

The effect of surface tension, Y, and contact angle,  , can result in a liquid either rising or falling in a 

capillary tube.  This effect is shown schematically in the Fig. E 1.9 on the following page.  
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A force balance at the liquid-tube-air interface 

requires that the weight of the vertical column, 

h, must equal the vertical component of the 

surface tension force.  Thus: 

 

 R2 h = 2  R Y cos 

 

Solving for h we obtain 

 
 

Fig. E 1.9  Capillary Tube Schematic 

 

Thus, the capillary height increases directly with surface tension, Y, and inversely with tube radius, R.  

The increase, h , is positive for < 90˚ (wetting liquid) and negative (capillary depression ) for > 90˚ 

(non-wetting liquid). 

 

Example: 

Given a water-air-glass interface ( ˚,  Y = 0.073 N/m, and  = 1000 kg/m3) with R = 1 mm, 

determine the capillary height, h. 

 

 

   
cm

msmmkg

mN
h 5.1

001.0/81.9/1000

0cos/073.02
23




 

 

For a mercury-air-glass interface with   = 130˚, Y = 0.48 N/m and  = 13,600 kg/m3, the capillary rise 

will be 

 

 

   
cm

msmmkg

mN
h 46.0

001.0/81.9/600,13

130cos/48.02
23



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GOVERNING EQUATIONS OF FLUID DYNAMICS 
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1. GOVERNING EQUATIONS 

 

 

 

 

1.1  Introduction 
 

We are all familiar with fluids and we have all been fascinated at some time by fluid behavior: 
pouring, flowing, splashing and so on.  At some level we have all built an intuitive understanding on how 
fluids behave. 

Understanding fluid dynamics has been one of the major advances of physics, applied mathematics 
and engineering over the last hundred years. Starting with the explanations of aerofoil theory (i.e., why 
aircraft wings work), the study of fluids continues today with looking at how internal and surface waves, 
shock waves, turbulent fluid flow and the occurrence of chaos can be described mathematically. At the same 
time, it is important to realize how much of engineering depends on a proper understanding of fluids: from 
flow of water through pipes, to studying effluent discharge into the sea; from motions of the atmosphere, to 
the flow of lubricants in a car engine.  
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Fluid dynamics is also the key to our understanding of some of the most important phenomena in 
our physical world: ocean currents and weather systems, convection currents such as the motions of molten 
rock inside the Earth and the motions in the outer layers of the Sun, the explosions of supernovae and the 
swirling of gases in galaxies. 

Like many fascinating subjects, understanding is not always easy. In particular, for fluid dynamics 
there are many terms and mathematical methods which will probably be unfamiliar. Although the basic 
concepts of velocity, mass, linear momentum, forces, etc., are the building blocks, the slippery nature of 
fluids means that applying those basic concepts sometimes takes some work.  

Fluids can fascinate us exactly because they sometimes do unexpected things, which means we have 
to work harder at their mathematical explanation. 
 

 

1.2  The continuity assumption 
 

There are basically two ways of deriving the equations which governs the motion of a fluid. One of 
these methods approaches the question from the molecular point of view. The alternative method which is 
used to derive the equations which govern the motion of a fluid uses the continuum concept. 

The continuity assumption considers fluids to be continuos. That is, properties such as density, 
pressure, temperature, and velocity are taken to be well-defined at infinitely small points, and are assumed 
to vary continuously from one point to another. The discrete, molecular nature of a fluid is ignored. 

Those problems for which the continuity assumption does not give answers of desired accuracy are 
solved using statistical mechanics. In order to determine whether to use conventional fluid dynamics (a 
subdiscipline of continuum mechanics) or statistical mechanics, the Knudsen number: 

 
where 

T, temperature (K)  

kB, Boltzmann's constant 

P, total pressure (Pa)  

is evaluated for the problem. Problems with Knudsen numbers at or above unity must be evaluated using 
statistical mechanics for reliable solutions.  
  The vast majority of  phenomena encoutered in fluid mechanics fall well within the continuum 
domain and may involve liquids as well as gases. The continuum method is generaly used to describe fluid 
dynamics. 
 

1.3 Modeling fluids 

When it comes to deducing the equations that govern fluid motion, there are two 

fundamentally different approaches: the Eulerian description and the Lagrangian description. The two 
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viewpoints have been named in honor of the Swiss mathematician Leonhard Euler (1707–1783) and the 

French mathematician and mathematical physicist Joseph-Louis Lagrange (1736-1813), respectively. 

 
1.3.1 Eulerian description 

 
In the Eulerian description a fixed reference frame is employed relative to which a fluid is in 

motion. Time and spatial position in this reference frame, {t, r} are used as independent variables. The fluid 

variables such as mass, density, pressure and flow velocity which describe the physical state of the fluid flow 

in question are dependent variables as they are functionsof the independent variables. Thus their 

derivatives are partial with respect to {t, r}. For example, the flow velocity ata spatial position and timeis 

given by: u(r, t) and the corresponding acceleration at this position and time is then: 

  
tan

( , )
a=

r cons t

u t r

t 




 

 

1.3.2 Lagrangian description 

 

In the Lagrangian description the fluid is described in terms of its constituent fluid elements. 

Different fluid elements have different “labels”, e.g., their spatial positions at a certain fixed time t say q. 

The independent variables are thus {t, q} and the particle position r{t, q} is a dependent variable. One can 

then ask about the rate of change in time in a reference frame commoving with the fluid element, and this 

then depends on time and particle label, which particular fluid element is being followed. 

For example, if a fluid element has some velocity u(t, q) then the acceleration 

it feels will be: 

  
tan

( , )
a=

q cons t

u t q

t 




 

 
1.3.3 Reynold’s Transport Theorem 

 

The method used to derive the basic equations of motion from the conservation laws is to use 
the continuum concept and to follow an arbitrarily shaped control volume in a lagrangian frame of 
reference. The combination of the arbitrary control volume and the lagrangian coordinate system means 
that material derivative of volume integrals will be encountered. Though it is necessary to transform such 
terms into equivalent expressions involving volume integrals of eulerian derivatives. The theorem which 
permits such transformation is called Reynolds’ transport theorem. 
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Consider a specific mass of fluid and follow it for a short period of  time 

dt as it flows. Let be any property of the fluid such as mass, momentum in some 
direction or its energy. Since a specific mass of fluid is being considered and since x, 
y, z and t are the independent variables in the lagrangian framework, the quantity 

 will be a function of t only as the control volume moves with the fluid. That gives 
the preferred form of Reynolds’ transport theorem: 

( )
V V

D
dV u dV

Dt t


 

 
   

   

It is conventional in fluid mechanics to use D instead of d in time derivatives if it is the derivative of a 

Lagrangian quantity. 

  Having established the method to be used to derive the basic conservation equations it remains 

actually to invoke the various conservation principles. 

  
1.4 Governing equations  

The mathematical modeling of flows is described by the theory of continuum mechanics. The 
governing equations consist of conservation equations and constitutive equations. The conservation 
equations are derived from the principle of conservation of mass, the principle of balance of linear 
momentum, and the principle of balance of energy.  

Constitutive equations are relating the stresses in the fluid to the deformation history.  

Whereas conservation equations apply whatever the material studied, the constitutive equations 
depend from the material. The conservation and constitutive equations are used to calculate flows in 
complex geometries. For such problems, it is generally not possible to obtain an analytical solution of the 
governing equations. 

 

1.4.1 Conservation of mass 

 

Consider a specific mass of  fluid whose volume V is arbitrarily chosen. If this given mass is followed 

as it flows, its size and shape will be observed to change but the mass will remain unchanged. This is the 

principle of mass conservation which applies to fluids in which no nuclear reactions are taking place. 

The equation which express conservation of mass is: 

  
( ) 0k

k

u
t x




 
 

     

 

Typical Volume 
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The above equation express more than the fact that mass is conserved. Since it is a partial 

differential equation, the implication is that the velocity is continuous. For this reason is usually called the 

continuity equation. 

 In many practical cases of fluid flow the variation of density of the fluid may be ignored, for example 

in most cases of the flow of liquids. In such cases the fluid is said to be incompressible, which means that as 

a given mass of fluid is followed, not only will its mass be observed to remain constant but it’s volume and 

hence its density. 

Mathematically this special simplification of the continuity equation can be written as: 

 0
D

Dt


   or 

0
k

k

u

t x




 
 

   

Equation of continuity, either in the general form or the incompressible form is the first condition 

which has to be satisfied by the velocity and the density of the fluid. 

  

1.4.2 Conservation of momentum 

 

The principle of conservation of momentum is in fact an application of Newton’s second law of 

motion to an element of fluid. That is, when considering a given mass of fluid in a lagrangian frame of 

reference, it is stated that the rate at which the momentum of the fluid mass is changing is equal to the net 

external force acting on the mass. Thus the mathematical equation which results from imposing the physical 

law of conservation of momentum is: 

 

j j ij
k i

k i

u u
u f

t x x


  
  

  
    

where the left-hand side represents the rate of change of momentum of a unit the volume of fluid. The first 

term is the familiar temporal acceleration term, while the second term is a convective acceleration and 

allows for local accelerations (around obstacles) even when the flow is steady. This second term is also 

nonlinear since the velocity appears quadratically. On the right hand side are the forces which are causing 

the acceleration. 

Fluid Forces 
There are two types: 

 surface forces (proportional to area) 

 body forces(proportional to volume) 

Surface forces are usually expressed in terms of stress (= force per unit area): 
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force=stressarea 

The major surface forces are: 

 pressure p: always acts normal to a surface 

 viscous stresses ij: frictional forces arising from relative motion of fluid layers. 
Body forces 

The main body forces are: 

 gravity: the force per unit volume is 

 g= (0,0,-g) 

(For constant-density fluids the effects of pressure and weight can be combined 

in the governing equations as a piezometric pressure p* = p +gz) 

 Coriolis forces (in rotating reference frames). 
Separating surface forces (determined by a stress tensor ) and body forces (f per unit 

volume), the integral equation for the i component of momentum may be written: 

 
i i ij j i

V V V V

d
u dV u dA dA f dV

dt
  

 
        

 

       surface forces  body forces 

 
1.4.3 Conservation of energy 

 

The principle of conservation energy amounts to an application of the first law of 
thermodynamics to a fluid element as it flows. When applying the first law of thermodynamics to a flowing 
fluid the instantaneous energy of the fluid is considered to be the sum of the internal energy per unit mass 
and the kinetic energy per unit mass. In this way the modified form of the first law of thermodynamics which 
will be applied to an element of fluid states that the rate of change in the total energy (intrinsic plus kinetic) 
of the fluid as it flows is equal to the sum of the rate at which work is being done on the fluid by external 
forces and the rate on which heat is being added by conduction. In this way the mathematical expression 
becomes: 

 

1
( )

2V S V S

D
e u u dV uPdS u fdV q ndS

Dt
            
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1.4.4 Constitutive equations 
 

  The basic conservation laws discussed in the previous section represent five scalar equations 

which the fluid properties must satisfy as the fluid flows. The continuity and the energy equation are scalar 

equations while the momentum equation is a vector which represents three scalar equations. But our basic 

conservation laws have introduced seventeen unknowns: the scalars  and e, the density and internal 

energy respectively, the vectors uj and qj, the velocity and heat flux respectively, each vector having three 

components and the stress tensor ij, which has in general nine independent components.  

In order to obtain a complete set of equations the stress tensor ij and the heat-flux vector qj 

must be further specified. This leads to so-called “constitutive equations” in which the stress tensor is 

related to the deformation tensor and the heat-flux vector is related to the temperature gradients. 

In order to achieve this end the postulates for a newtonian fluid are used. It should pointed out that 

some fluid do not behave in a newtonian manner and their special characteristic are among the topics of 

current research. One example is the class of fluids called viscoelastic fluids whose properties may be used 

to reduce the drag of a body. 

The stress tensor is supposed to satisfy the following condition: when the fluid is at rest the 

stress is hydrostatic and the pressure exerted by the fluid is the thermodynamic pressure. 

 

The above figure represents stress acting on a small cube, where ij are the components of the 

shear-stress tensor which depends upon the motion of the fluid only. 

Using that condition the constitutive relation for stress in a newtonian fluid becomes: 

k j i
ij ij ij

k i j

u u u
p

x x x
   

   
     

   
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The nine elements of the stress tensor have now been expressed in terms of the pressure and 

the velocity gradients and two coefficients and . These coefficients cannot be determined analytically and 

must be determined empirically. They are the viscosity coefficients of the fluid. 

The second constitutive relation is Fourier’s Law for heat conduction: 

j

j

T
q k

x


 

  

where qj is the heat-flux vector, k is the thermal conductivity of the fluid and T is the temperature. 

 

1.4.5 Navier-Stokes Equations    
 

The equation of momentum conservation together with the constitutive relation for a Newtonian 

fluid yield the famous Navier-Stokes equations, which are the principal conditions to be satisfied by a fluid as 

it flows: 

j j k i j
k

k j j k i j i

u u p u u u
u f

t x x x x x x x
    

           
         

          
 

The Navier-Stokes equations for an incompressible fluid of constant density is: 

2

2

j j j
k i

k j i

u u p u
u f

t x x x
   
   

    
   

 

In the special case of negligible viscous effects, Navier-Stokes equations become: 

  

j j
k i

k j

u u p
u f

t x x
  
  

   
  

 

known as Euler equations. 

 

1.4.6 In conclusion 

 

the equations which govern the motion of a Newtonian fluid are: 
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The continuity equation: 

0
k

k

k k

u
u

t x x

 


  
  

  
 

The Navier-Stokes equations: 

j j k i j
k

k j j k i j i

u u p u u u
u f

t x x x x x x x
    

           
         

          
 

The energy equation 

2
k k j i j

k

k k k i j jj j

e e u T u u u u
u p k

t x x x x x x x x
   

           
                        

 

The thermal equation of state: 

 ,p p T  

The caloric equation of state: 

  ( , )e e T  

 

The above set of equations represents seven equation which are to be satisfied by seven 

unknowns. Each of the continuity, energy and state equations supplies one scalar equation, while the 

Navier-Stokes equation supplies three scalar equations. The seven unknowns are: the pressure (p), density 

(), internal energy (e), temperature (T) and velocity components (uj). The parameters ,  and k are 

assumed to be known from experimental data, and they may be constants or specified functions of the 

temperature and pressure. 

 

 

Useful concepts associated with the Bernoulli equation 

- Static, Stagnation, and Dynamic Pressures 
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Bernoulli eq. along a streamline 

 constant   (Unit of Pressure) 

 

 

 

 

 

 

 Physical meaning of each term  

 

i) 1st term (Static pressure, p) 

: Only due to the fluid weight 

 

 

 where  (h4-3: Piezometer reading)  

 

ii) 2nd term (Dynamic pressure,) 

 : Pressure increase or decrease due to fluid motion  

 

iii) 3rd term (Gravitational potential,) 

 : Pressure change due to elevation change 

 

Between Point (1) and Point (2) on the same streamline, 

 Difference in p between piezometer and tube inserted into a flow 

   

 (Stagnation pressure) 

Piezometer 

tube 

Velocity of  

stream 

Static 

(Thermodynamic) 

Dynamic Hydrostatic 
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(Elevation change,: Due to dynamic pressure) 

 

 

 Point (2): Stagnation point  () 

    Line through point (2): Stagnation streamline 

 

 

 

 

iv) Total pressure = constant   (Along a streamline)  

 

 

 Special application of Static and Stagnation Pressure  

 - Determination of fluid speed (Pitot-static tube) 

 

By measuring pressure at points (3) and (4) 

and neglecting the elevation effect (e.g. gases) 

 

At point (3), (Stagnation Pressure) 

   wherep and V: Static pressure and fluid velocity at (2) 

 

At ponit (4) (Small holes), (Static pressure ~ Piezometer) 

 

Then,   :Pitot-static tube 
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Wheel Photo-detector 

Here 

Here 
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 How to use the Bernoulli equation (Examples) 

 

Choose 2 points (1) and (2) along a streamline 

 

: 6 variables  

 5 more conditions from the problem description 

 

 

E.g. 1 Free Jets (A jet of liquid from large reservoir) 

 

Question: Find  V of jet stream from a nozzle of container  

 

Consider a situation shown 

 

Step 1. Select one streamline  

between (1) & (2) 
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Step 2. Apply the Bernoulli eq.  

between (1) & (2) 

 

 = 0 (Large container  Negligible change of fluid level) 

 p2= 0 (Why?)  [p2= p4 (Normal Bernoulli eq.)] 

Then,  

 (If we choose z1 as h and z2 as 0) 

or 

  


h
V

2
gh2   : Velocity at the exit plane of nozzle 

 

 Velocity at any point [e.g. (5) in the figure] outside the nozzle,  

 

 (H: Distance from the nozzle) 

 : Conversion of P. E. to K.E. without viscosity (friction) 

 

cf. Free body falling from rest without air resistance.  

 

• In case of horizontal nozzle shown,  

 

 (Elevation difference) 

 

By assuming d<<h,  

 : Average velocity at the nozzle 
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E.g. 2 Confined Flows  

   - Fluid flowing withina container connected with nozzles and pipes 

 

 What to know 

     - We can’t use the atmospheric p as a standard 

     - But, we have one more useful concept of conservation of mass   

 : No change of fluid mass in fixed volume (continuity equation) 

 

 Mass flow rate, (kg/s or slug/s) for a steady flow  

 

Mass of fluid entering the container across inlet per unit time 

= Mass of fluid leaving the container across outlet per unit time, 

 

 

 

 

 

 

   

 

 (Q: Volume flowrate, m3/s) 
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For a incompressible fluid,  

 

  or Q1 = Q2 

 

 

 Change in area  

 

       → Change in fluid velocity ( 2211 VAVA  )  

 

               → Change in pressure 

   

 

 Increase in velocity → Decrease in pressure 

     : Blow off the roof by hurricane, Cavitation damage, etc. 
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E.g. 3  Flowrate Measurement  

 

Case 1: Determine Q in pipes and conduits(Closed container) 

 

Consider three typical devices (Depend on the type of restriction) 

 

Step 1. At section (1) 

: Low V, High p 

 

   At section (2) 

: High V, Low p 

 

Step 2. Apply the Bernoulli Eq.  

 

    For a horizontal flow (z1 = z2) 

 

 

Step 3. Use the continuity Eq.  
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Case 2: Determine Q in flumes and irrigation ditches (Open channer) 

 

Typical devices: Sluice gate (Open bottom)  

& Sharp-crested weir (Open top) 

 

 Consider a sluice gate shown 

 

Bernoulli Eq. & Continuity Eq. [(1)  (2)] 

 

 ( p1 = p2 = 0)                                                             

and 

   

 

Finally, the flowrate,  

 

 In case of or  or  

 

 or 

 

 

 The sharp-crested weir (Open top) 

     (If similar to horizontal free stream)  
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Then, Average velocity across the top of the weir  gH2  

   Flow area for the weir Hb  

 

 Q = C1Hb gH2 = C1b H3/2 g2  

 Energy Line (EL) and the Hydraulic Grade Line (HGL) 

 - Geometrical Interpretation of the Bernoulli Eq.  

 

Bernoulli eq.: Conserved total energy along streamline, i.e. 

constant on a streamline = H   (Unit of Length) 

 Heads: : Pressure head,    : Velocity head,   z: Elevation head  

  H: Total head 

 

Energy line (EL): Representation of Energy versus Heads 

 

 

 

 

 

 

 

 

 

 

(1) → (2): Elevation head↑ 

                  Pressure head↓ 

                  Velocity head↑ 

 

 

(2) → (3): Elevation head ↑ 

                  Pressure head ↓ 

                  Velocity head ↑ 
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e.g. Flow from tank 

 

 

 

(1) 

(2) (3) 


