SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

MICROPROCESSOR AND MICROCONTROLLER BASED
SYSTEMS (FOR CSE & IT)

UNIT 2

8085 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING 9 Hrs. Instruction
classifications, Writing and executing simple programs - Arithmetic and logic operations - Data transfer -
Branching - Looping — Indexing - Counter and time delays - Writing subroutine - Conditional call and return
instruction, simple programs.

Instruction Set Classification

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The
entire group of instructions, called the instruction set, determines what functions the microprocessor can
perform. These instructions can be classified into the following five functional categories: data transfer
(copy) operations, arithmetic operations, logical operations, branching operations, and machine-
control operations.

1. Data Transfer (Copy) Operations

This group of instructions copy data from a location called a source to another location called a destination,
without modifying the contents of the source. In technical manuals, the term data transfer is used for this
copying function. However, the term transfer is misleading; it creates the impression that the contents of the
source are destroyed when, in fact, the contents are retained without any modification. The various types of
data transfer (copy) are listed below together with examples of each type:

Types Examples

1. Between Registers. 1. Copy the contents of the register B into
register D.

2. Specific data byte to a register or a 2. Load register B with the data byte 32H.
memory location.
3. Between a memory location and a 3. From a memory location 2000H to register
register. B.
4. Between an I/O device and the 4.From an input keyboard to the
accumulator. accumulator.

SEC1312
UNIT 2
Opcode
Copy from source to destination
MOV

Move immediate 8-bit
MVI

Load accumulator
LDA

Load accumulator indirect

LDAX

Store accumulator direct
SA

Store accumulator indirect
S AX

Operand

Rd, Rs
M, Rs
Rd, M

Rd, data
M, data

16-bit
address

B/D Reg.
pai

16-bit
address

Reg. pair

MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

Description

This instruction copies the contents of the source
register into the destination register; the contents
of the source register are not altere . If one of the
operands is a memory ocation, its ocation is
specified by the contents of the HL registers.

Example: MOV B, C or MOV B, M

The 8-bit data is sto ed in the destination register
or memory. If the ope andisamemoy ocation, its
location is specified by the contents of the HL
registers.

Example: MVI B, 57 MVI M, 57

The ¢ ntents fa mem ry location, specified by
a16-bit address in the perand, are copied to the
accumulator. The contents of the source are not
altered.

Example: LDA 2034 or LDA XYZ

The contents of the designated register pair point to a
memory location. This instruction copies the
contents of that memory location into the
accumulator. The contents of either the register

pair or the memory location are not altered.
Example: LDAX B

The contents of the accumulator are copied into the
memory location specified by the operand.
This is a 3-byteinstruction, the second byte
specifies the low-order address and the third byte
specifies the high-order address.

Example: STA 4350 or STA XYZ

The contents of the accumulator are copied into the
memory location specified by the contents of the
operand (register pair). The contents of the
accumulator are not altered.

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

LXI Reg. pair, 16-bit data The instruction loads 16-bit data in the register pair
designated in the operand.
Example: LXI H, 2034

. World Thecontertso fremsterHareexchange dwiththe cortents fremster D
Load Hand L registers and the corterts ofregister L are Exu:gﬁanged
direct LHLD 16-bit address The instruction copies the contents of the memory

location pointed out by the 16-bit a ress into register L
and copies the contents of the next memory location
into register H. The contents of source memory ocations
are not altered.

Example: LHLD 2040

Store H and L registers

direct SHLD 16-bit address The contents fregiste Lae sto ed into the memory
location specified by the 16-bit add ess in the operand and
the contents f H register are stored into the next memory
location by incrementing the perand. The contents of
registers HL are not altered. This is a 3-byvte mstruction, the
second byte specifies the | w- rder address and the third
byte specifies the high-order address.

Example: SHLD 2470

Exchange Hand L with D and
EXCHG none

with the contents of register E.
Example: XCHG

2. Arithmetic Operations

These instructions perform arithmetic operations such as addition, subtraction, increment, and
decrement.

Addition - Any 8-bit number, or the contents of a register or the contents of a memory location can be
added to the contents of the accumulator and the sum is stored in the accumulator. No two other 8-bit
registers can be added directly (e.g., the contents of register B cannot be added directly to the contents
of the register C). The instruction DAD is an exception; it adds 16-bit data directly in register pairs.

Subtraction - Any 8-bit number, or the contents of a register, or the contents of a memory location can
be subtracted from the contents of the accumulator and the results stored in the accumulator. The
subtraction is performed in 2's compliment, and the results if negative, are expressed in 2's
complement. No two other registers can be subtracted directly.

Increment/Decrement - The 8-bit contents of a register or a memory location can be incremented or

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

decrement by 1. Similarly, the 16-bit contents of a register pair (such as BC) can be incremented or
decrement by 1. These increment and decrement operations differ from addition and subtraction in an
important way; i.e., they can be performed in any one of the registers or in a memory location.

Opcode Operand

Description

Add register or memory to accumulator

ADD R
M

WWarld
The contents of the operand (register or memory) are added to

the contents of the accumulator and the result is store in the
accumulator. If the operand is a memory location, its location
is specified by the contents of the HLregisters. A fagsare
modified to reflect the result of the addition.

Example: ADD B or ADD M

Add register to accumulator with carry

ADC R
M

Add immediate to accumulator
ADI 8-bit data

The contents of the ope and (registe o memo v)and the
Carry flag are added to the contents of the accumulator and the
resultis stored in the accumulat _If the peandisa memory
location, its 1 catin is specified by the contents of the HL.
registers. All flags are m dified t reflect the result of the
addition.

Example: ADCB r ADC M

The 8-bit data (operand)is added to the contents of the

accum ulator and the result is stored m the accumulator. All flags
are modified to reflect the result of the addition.
Example: ADI 45

Add immediate to accumulator with carry

ACI 8-bit data

Add register par to H and L registers
DAD Reg_ pair

The 8-bit data (operand) and the Carrv flag are added to the
contents of the accumulator and the result is stored in the
accumulator. All flags are modified to reflect the result of

the addition.

Example: ACI 45

The 16-bit contents of the specified register pair are added
to the contents of the HL register and the sum is stored in
the HL register. The contents of the source register pair are
not altered. If the result is larger than 16 bits, the CY flag is
set. No other flags are affected.

Example: DAD H

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE
I "
SUB R The contents of the operand (register or memory) are
| subtracted from the contents of the accumulator, and the

resultis stored in the accumulator. If the operandisa

memorv location, its location is specified by the contents of the

HL registers. All flags are modified to reflect the result of the
subtraction.

Example: SUB B or SUB M

Subtract source and borrow from accumulator
SBB R The contents of the operand (register or memorv) and the

M Borrow flag are subtracted from the contents of the
accumulator and the resultis placed in the accumulator. If the
operand is a memory location, its location is specifie by the
contents of the HL registers. All flags are moifie to reflect
the resultin accumulator.
Example: SBB B or SBBE M

Subtract immediate from accumulator
SUI 8-bit data The 8-bit data (perand)is subtacted f m the contents of the
accumulator and the resultis sto ed in the accumulator. All
flags are modified t reflect the esult fthe subt action.
Example: SUL 45

Subtract immediate from accumulator with borrow
SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted
from the contents of the accumulator and the result is stored
in the accumulator. All flags are modified to reflect the result
of the subtracion.
Example: SBI 45

Increm ent register or memory by 1 . .
INE. E The contents of the designated register or memory) are

M incWorldementedbylandtheresultisstoredinthesameplace.

Fic cpomd & 3 oy kot @ kason o aposiad
by the contents of the HL registers.
Example: INR B or INR M

Increment register pair by 1
IXER The contents of the designated register pair are mcremented by

1and the result 15 stored m the same place.
Example: INX H .

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

Decrem ent register or memorv by 1
DCRR
M

Decrementregister pair bv 1
DCXER

Decimal adjust accumulator
DAA none

3. Logical Operations

The contents of the designated register or memory are
decremented bv 1 and the resultis stored in the same place.
If the operand isa memory location, its location is
specified by the contents of the HL registers.
Example: DCR B or DCR M

The contents of the designate register pair are
decremented by 1 and the resultis store in the same place.
Example: DCX H

The contents of the accumulato a e change fom abinary
value to two 4-bit binarv coded decima (BCD) digits. This is
the onlv instruction that uses the auxiia v f ag to perform the
binary to BCD conversion, and the conve sion p ocedure is
described below. 5, Z, AC_ P, CY flags a e alte ed to reflect
the results of the peratin.

If the walue f the low- rder 4-bits in the accumulator is
greater than 9 rif AC flagis set, the instruction adds 6 to the

low-order four bits.

If the value of the high-order 4-bits in the accumulator is
greate than 9 orif the Carry flagis set, the instruction adds 6

to the high-order four bits.
Example: DAA

These instructions perform various logical operations with the contents of the accumulator.

AND, OR Exclusive-OR - Any 8-bit number, or the contents of a register, or of a memory location can be
logically ANDed, Ored, or Exclusive-ORed with the contents of the accumulator. The results are stored in

the accumulator.

Rotate- Each bit in the accumulator can be shifted either left or right to the next position.

Compare- Any 8-bit number, or the contents of a register, or a memory location can be compared for

equality, greater than, or less than, with the contents of the accumulator.

Complement - The contents of the accumulator can be complemented. All Os are replaced by 1s and all 1s

are replaced by Os.

Opcode Operand

Description

Compare register or memory with accumulator

CMP R
M

The contents of the operand (register or memory) are
compared with the contents of the accumulator. Both
contents are preserved . The result of the comparison
is

shown by setting the flags of the PSW as follows:

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

if (A) < (reg/mem): carry flag is set, s=1

if (A) = (reg/mem): zero flag is set, s=0

if (A) > (reg/mem): carry and zero flags are reset, s=0
Example: CMP B or CMP M

Compare immediate with accumulator
The second byte (8- bit data) is compared with the contents

CPI 8-bit data of
the accumulator. The values being compared remain

unchanged. The result of the comparison is shown by setting
the flags of the PSW as follows:

if(A) < data: carry flag is set, s=1
if (A) = data: zero flag is set, s=0
if (A) > data: carry and zero flags are reset, s=0

Example: CPI 89

Logical AND register or memory with accumulator

ANA R The contents of the accumulator are logically ANDed with
the contents of the operand (register or memory), and
M the

result is placed in the accumulator. If the operandis a
memory location, its address is specified by the contents
of
HL registers. S, Z, P are modified to reflect the result of
the operation. CY is reset. AC is set.
Example: ANA B or ANA M

Logical AND immediate with accumulator
ANI 8-bit data The contents of the accumulator are ogica y ANDe with
the 8-bit data (operand) and the esutis pace inthe
ef ect the esult of

accumulator. S, Z, P are modified to the
operation. CY is reset. AC is set.
Example: ANI 86

Exclusive OR register or memory with accumulator
XRA R The contents fthe accumulator are Exclusive ORed with
M the contents fthe perand (register r memory), and the
result is placed in the accumulator. If the operand is a
n, its address is specified by the contents
memory locati of
HL registers. S, Z, P are modified to reflect the result of
the operation. CY and AC are reset.
Example: XRA B or XRA M

Logical OR register or memory with accumulator
ORA R The contents of the accumulator are logically ORed with
M the contents f the operand (register/memory), and the

SEC1312
UNIT 2

MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

Examp e: JZ 2034 or JZ XYZ
Result is placed in the accumulator. If the operand is a
n, its address is specified by the contents
mem y cati of
operation. CY and AC are reset.
Example: ORA B or ORA M

Exclusive OR immediate with accumulator

XRI 8-bit data The contents of the accumulator are Exclusive ORed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: XRI 86

Logical OR immediate with accumulator

the contents of the accumulator are logically ORed with
ORI 8-bit data the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: ORI 86

Complement accumulator

The contents of the accumulator are complemented. No

CMA none flags

are affected.Example: CMA

Complement carry

CMC none The Carry flag is complemented. No other flags are affected.
Example: CMC

Set Carry

STC none The Carry flag is set to 1. No other flags are affected.
Example: STC

Branching Operations

This group of instructions alters the sequence of program execution either conditionally or

unconditionally.

Jump - Conditional jumps are an important aspect of the decision-making process in the
programming. These instructions test for a certain conditions (e.g., Zero or Carry flag) and alter the
program sequence when the condition is met. In addition, the instruction set includes an instruction
called unconditional jump.

Call, Return, and Restart - These instructions change the sequence of a program either by calling

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

a subroutine or returning from a subroutine. The conditional Call and Return instructions also can
test condition flags.

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

Opcode Operand

Jump unconditionally
TMP 16-bitaddress

Jump conditionally

Operand: 16-bit address

Description

The program sequence is ransfe ed to the memo v ocation
specified by the 16-bit add ess given in the ope and.
Example: TMP 2034 or JMP XYZ

The program sequence is transferred t the memory location
specified by the 16- bit address given in the operand based onm
the specified flag of the PS as described below.
Exampe:JZ 2034 or JZXYZ

World
Opcode Description Flag Status
JC Jump on Carry CY=1
JNC Jump on no Camrv CY=10
TP Jump on positive 5=0
TM Jump on minus 5=1
JZ Jump on zero =1
INZ Jump on no zero Z=10
JPE Jump on parity even P=1
TPO Tump on parity odd P=0

Unconditional subroutine call
CAILL 16-bit address

Call conditionally

Operand: 16-bit address

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand. Before
the ransfer, the address of the next instuction after CALL
(the contents of the program counter) is pushed onto the stack.
Example: CALL 2034 or CALL XYZ

he program sequence is ransferred to the memory location
specified by the 16-bit address given in the operand based on
the specified flag of the PSW as described below. Before the
transfer, the address of the nextinstruction after the call (the
contents of the program counter}is pushed onto the stack.
Example: CZ 2034 or CZ XYZ

10

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2

Opcode
CcC

CNC
CP

CM
CZ
CNZ

CPE
CPO

+

PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

Description Flag Status
Call on Carrv CY=1
Call on no Carry CY=10

Call on positive
Call on minus

5
5
Call on zero z
Call on no zero Z
P
P

L= = N

Call on parity even
Call on paritv odd

Retum from subroutine unconditionally

BET none

The program sequence is t ansfe ed f om the subroutine to
the calling program. The two bvtes { om the top of the stack
are copied int the pr gram cunte , and p og am execution
begins at the new address.

Example: RET

Return from subroutine conditionally

Operand: none

The p ogram sequence is transferred from the subroutine to
the calling program based on the specified flag of the PSW as
described below. The two bytes from the top of the stack are
copie intothe program counter, and program execution
begins at the new address.

11

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE
Opcode Description Flag Status
BC Betumn on Carrv CY¥=1
RNC Retum on no Carry C¥=0
RP RBeturn on positive S=0
RM Return on minus 5=1
RZ Retum on zero Z=1
RNZ Retum on no zero Z=10
RPE Beturn on paritveven P=1
RPO Beturn on parity odd P=0

Load program counter with HL contents

PCHL none The contents of registers H and L are copied imto the program
counter. The contents of H are placed as the high-order byvte
and the contents of L as the low-order byte.

Example: PCHL

Restart
RS 0-7 The BST instruction is equivalentto a 1-bvte call instruction
to one of eight memory locations depending upon the number. The instructions are generally used in”

conjunction with interrupts and inserted using external
hardware. However these can be used as software

instructions in a program to

transfer program execution to one of the eight locations. The
addresses are:

Instruction Restart Address
BR5TO 0000H
R5T 2 0010H
B5T3 0013H
BR5T 4 0020H
B5T 5 0023H
B5T 6 0030H
BRST 7 M038H
The 8085 has four additional inte upts an these interrupts

generate RST instructions inte na v and thus do not require
anv external hardware. These instuctions and their Restart
addresses are:

Interrupt Restat Add ess
TRAP 0024H
B5T 55 002CH
B5T 6.5 D034H
B5T 75 DD3CH

12

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

SAMPLE PROGRAMS

1. Store the data byte 32H into memory location 4000H. MVI A, 52H : Store 32H in
the accumulator

STA 4000H - Copv accumulator contents at address 4000H

HLT : Te minate program execution

LXIH: Load HL with 4000H

MWVI M : Store 32H in memorv location peinted by HL register pair
HL : Terminate program execution

2. Exchange the contents of memorv locations 2000H and 4000H.

LDA 2000H : Get the contents of memory location 2000H into accumulator
MOV B, A : Save the contents into B register

LDA 4000H : Get the contents of memory location 4000Hinto accumulator
STA 2000H : Store the contents of accumulator at address 2000H

MOV A B : Get the saved contents back into A register
STA 4000H : Store the contents of accumulator at address 4000H

4. Machine Control Operations

These instructions control machine functions such as Halt, Interrupt, or do nothing.

The microprocessor operations related to data manipulation can be summarized in four functions:
1. copying data

2. performing arithmetic operations

3. performing logical operations

4. testing for a given condition and alerting the program sequence

Some important aspects of the instruction set are noted below:

1. In data transfer, the contents of the source are not destroyed; only the contents of the destination are
changed. The data copy instructions do not affect the flags.

2. Arithmetic and Logical operations are performed with the contents of the accumulator, and the results are
stored in the accumulator (with some expectations). The flags are affected according to the results.

3. Any register including the memory can be used for increment and decrement.

4. A program sequence can be changed either conditionally or by testing for a given data condition.

8. Instruction Format

An instruction is a command to the microprocessor to perform a given task on a specified data. Each

13

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

instruction has two parts: one is task to be performed, called the operation code (opcode), and the second is
the data to be operated on, called the operand. The operand (or data) can be specified in various ways. It may
include 8-bit (or 16-bit) data, an internal register, a memory location, or 8-bit (or 16-bit) address. In some
instructions, the operand is implicit.

Instruction word size

The 8085 instruction set is classified into the following three groups according to word size:
1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

In the 8085, "byte" and "word" are synonymous because it is an 8-bit microprocessor. However, instructions
are commonly referred to in terms of bytes rather than words.

One-Byte Instructions

A 1-byte instruction includes the opcode and operand in the same byte. Operand(s) are internal register and
are coded into the instruction.

For example:

Task Op Operand | Binary Hex
code Code Code

Copy the contents of the accumulator in MOV CA 0100 1111 | 4FH
the register C.
Add the contents of register B to the ADD B 1000 0000 | 80H
contents of the accumulator.
Invert (compliment) each bit in the CMA 00101111 | 2FH
accumulator.

These instructions are 1-byte instructions performing three different tasks. In the first instruction, both operand
registers are specified. In the second instruction, the operand B is specified and the accumulator is assumed.
Similarly, in the third instruction, the accumulator is assumed to be the implicit operand. These instructions are
stored in 8-bit binary format in memory; each requires one memory location.

MOV rd, rs

rd <-- rs copies contents of rs into rd.

Coded as 01 ddd sss where ddd is a code for one of the 7 general registers which is the destination of the
data, sss is the code of the source register.

Example: MOV A,B
Coded as 01111000 = 78H = 170 octal (octal was used extensively in instruction design of such
processors).

14

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

ADDr
A<-A+r

Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte specifies the
operand. Source operand is a data byte immediately following the opcode. For example:

Task Opcode | Operand | Binary Hex Code
Code
Load an 8-bit data | MVI A, Data 3E First Byte
0011 1110
byte in the
accumulator. Data Second Byte
DATA

Assume that the data byte is 32H. The assembly language instruction is written as

Mnemonics Hex code

MVI A, 32H 3E 32H

The instruction would require two memory locations to store in memory.

MVI r,data r <-- data
Example: MVI A,30H coded as 3EH 30H as two contiguous bytes. This is an example of immediate
addressing.

ADI data
A <-- A + data

OUT port
where port is an 8-bit device address. (Port) <-- A. Since the byte is not the data but points directly to where it is
located this is called direct addressing.

Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two bytes specify the 16-bit
address. Note that the second byte is the low-order address and the third byte is the high-order address.
opcode + data byte + data byte

For example:

15

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

Task Opcode Operand Binary code | Hex Code

Transfer the | JMP 2085H C3 First byte

program 1100 0011

sequence to 85 Second Byte
1000 0101

the memory

location 0010 0000 20 Third Byte

2085H.

This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte
LXI rp, data16

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The two data bytes are 16-bit data in
L H order of significance.
rp <-- data16

Example:
LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate addressing.

LDA addr

A <-- (addr) Addr is a 16-bit address in L H order. Example: LDA 2134H coded as 3AH 34H 21H. This is
also an example of direct addressing.

Looping:
The program is written in such a way that it executes certain set of instructions repeatedly to execute a certain

task for a number of times. Example: to perform multiplication of two numbers. This is nothing but repeated
addition.

Counting: The program has a track of how many times the instruction or a set of instructions are executed. Eg:
When division operation is performed a register is used to count the number of times the subtraction is done. The

content of that register will give the quotient.

Indexing: it allows the user to point or refer the data stored in a sequential memeory location one by one.

Sample Programs

Write an assembly program to multiply a number by 8

Program

16

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

UNIT 2

ADDITION OF TWO 8 BIT NUMBERS

MVI A, 30H

RRC

RRC

RRC

OUT PORT1

HLT

PROGRAM:
MVI
LDA
MOV
LDA
ADD
JNC
INR

LOOP: STA

MOV
STA
HLT

OBSERVATION:
Input:
Output:

PROGRAM:

C, 00 Initialize C register to 00
4150 Load the value to Accumulator.
B, A Move the content of Accumulator to B register.
4151 Load the value to Accumulator.
B Add the value of register B to A
LOOP Jump on no carry.
C Increment value of register C
4152 Store the value of Accumulator (SUM).
A, C Move content of register C to Acc.
4153 Store the value of Accumulator (CARRY)
Halt the program.
80 (4150)
80 (4251)
00 (4152)
01 (4153)

SUBTRACTION OF TWO 8 BIT NUMBERS

17

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

UNIT 2

MVI
LDA
MOV
LDA

SUB

IJNC
CMA

INR
INR

LOOP: STA
MOV
STA
HLT

OBSERVATION:

C 00
4150
B, A

4151

LOOP

4152
AC
4153

02 (4251)

01 (4153)

Initialize C to 00
Load the value to Acc.
Move the content of Acc to B register.

Load the value to Acc.

Jump on no carry.
Complement Accumulator contents.

Increment value in Accumulator.
Increment value in register C

Store the value of A-reg to memory address.
Move contents of register C to Accumulator.

Store the value of Accumulator memory
Terminate the program.

Input: 06 (4150)

Output: 04 (4152)

MULTIPLICATION OF TWO 8 BIT NUMBERS

PROGRAM:

MVI
MVI
LXI
MOV
INX
MOV
LOOP: ADD
IJNC
INR
NEXT: DCR
INZ
STA

~

I>0

~

O T
» OO
< §»—\oo
wn
o

O 02 w
m
>
_|

,_
o
o
<

4152

Initialize register D to 00
Initialize Accumulator content to 00

Get the first number in B - reg

Get the second number in C- reg.
Add content of A -reg to register

Jump on no carry to NEXT.
Increment content of register D

Decrement content of register C.
Jump on no zero to address

Store the result in Memory

18

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2

MOV

STA
HLT

OBSERVATION:

PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

A, D
4153 Store the MSB of result in Memory
Terminate the program.

Input: FF (4150)
FF (4151)
Output: 01 (4152)
FE (4153)

DIVISION OF TWO 8 BIT NUMBERS

PROGRAM:

LXI
MOV
MVI
INX
MOV

NEXT: CMP
IC

SUB
INR

JMP
LOOP: STA

MOV
STA

HLT

OBSERVATION:

H, 4150

B, M Get the dividend in B —reg.

C, 00 Clear C —reg for qoutient

H

A M Get the divisor in A —reg.

B Compare A - reg with register
LOOP Jump on carry to LOOP

B Subtract A —reg from B- reg.
C Increment content of register
NEXT Jump to NEXT

4152 Store the remainder in

A C

4153 Store the quotient in memory

Terminate the program.

19

SEC1312
UNIT 2

MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

Output:

PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

Input: FF (4150)
FF (4251)

01 (4152) ---- Remainder
FE (4153) ---- Quotient

LARGEST NUMBER IN AN ARRAY OF DATA

PROGRAM:

LXI
MOV

INX
MOV

DCR
LOOP: INX
CMP
IJNC
MOV
AHEAD: DCR
INZ
STA
HLT

OBSERVATION:

Input:

H,4200 Set pointer for

B,M array Load the

H Count

AM Set 1" element as largest data
B Decrement the count

H

M If A-reg > M go to AHEAD
AHEAD

AM Set the new value as largest

B

LOOP Repeat comparisons till count =
4300 Store the largest value at 4300

05 (4200) ----- Array Size
0A (4201)
F1 (4202)
1F (4203)
26 (4204)
FE (4205)

Output: FE (4300)

20

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

UNIT 2

SMALLEST NUMBER IN AN ARRAY OF DATA

PROGRAM:

LOOP:

AHEAD:

LXI
MOV

INX
MOV

DCR
INX

CMP
IC

MOV
DCR

INZ
STA

HLT

H,4200
B,M

AM

AHEAD
AM

LOOP
4300

Set pointer for
array Load the
Count

Set 1* element as largest data
Decrement the count
If A- reg < M go to AHEAD

Set the new value as smallest

Repeat comparisons till count =
Store the largest value at 4300

21

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2

PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

OBSERVATION:

Input: 05 (4200) ----- Array Size
0A (4201)
F1 (4202)
1F (4203)
26 (4204)
FE (4205)

Output: 0A (4300)

ARRANGE AN ARRAY OF DATA IN ASCENDING ORDER

ALGORITHM:

H\OPO.\‘?\.U‘%.W!\J.H

Initialize HL pair as memory pointer

Get the count at 4200 into C — register

Copy it in D —register (for bubble sort (N-1) times required)

Get the first value in A — register

Compare it with the value at next location.

If they are out of order, exchange the contents of A —register and Memory
Decrement D —register content by 1

Repeat steps 5 and 7 till the value in D- register become zero

Decrement C —register content by 1

O Repeat steps 3 to 9 till the value in C — register becomes zero

PROGRAM:
LXI H,4200
MOV CM
DCR C
RFPFAT: MOV D.C
LXI H,4201
LOOP: MOV AM
INX H
CMP M
IC SKIP
MOV B,M

22

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

UNIT 2

SKIP:

OBSERVATION:

Input

Output:

MOV
DCX
MOV
INX
DCR
INZ
DCR
INZ
HLT

4200
4201
4202
4203
4204

4205

4200
4201
4202
4203
4204

4205

LOOP
C

REPEAT

05 (Array Size)
05
04
03
02

01

05(Array Size)
01
02
03
04

05

ARRANGE AN ARRAY OF DATA IN DESCENDING ORDER

PROGRAM:

RFPFAT-

LOOP:

LXI
MOV
DCR

MOV
LXI
MOV

INX

H,4200
cM

nC
H,4201
AM

23

SEC1312
UNIT 2

MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

SKIP:

OBSERVATION

Input

Output:

PROGRAM:

LXI
MOV
ADD
MOV

PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

CMP

IJNC
MOV

MOV
DCX

MOV
INX

DCR
INZ

DCR
INZ

HLT

4200
4201
4202
4203
4204
4205

4200
4201
4202
4203
4204
4205

M
SKIP
B,M
M,A
H
M,B
H

D
LOOP
C
REPEAT

05 (Array Size)

01
02
03
04
05

05(Arra
05
04
03
02
01

y Size)

BCD TO HEX CONVERSION

H,4150
AM

B.A

Initialize memory

MSD X 2
Store MISD X 2

24

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

UNIT 2

ADD
ADD
ADD
INX
ADD
INX
MOV
HLT

OBSERVATION:

PROGRAM:

LOOP2:

LOOP1:

LXI
MVI
XRA

MOV
ADI

DAA
IJNC

INR
DCR

INZ
STA

MOV
STA

HLT

2 IZIT®>>

Input:

MSD X 4
MSD X 8

MSD X 10
Point to LSD
Add to form HEX

Store the result

4150 : 02 (MSD)

4151 : 09 (LSD)

Output: 4152 :1DH

HEX TO BCD CONVERSION

H,4150
D,00

c,M
01

LOOP1

LOOP2
4151
AD
4152

Initialize memory pointer
Clear D- reg for Most significant
Clear Accumulator

Get HEX data
Count the number one by one

Adjust for BCD count

Store the Least Significant Byte

Store the Most Significant Byte

25

SEC1312
UNIT 2

MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE
OBSERVATION:
Input: 4150 : FF
Output: 4151 : 55 (LSB)

4152 : 02 (MSB)

26

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS
UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

HEX TO ASCII CONVERSION

PROGRAM:

LDA
MOV

ANI
CALL

STA
MOV
ANI
RLC
RLC
RLC
RLC
CALL
STA
HIT
SUBL: CPI
ife

ADI
SKIP: ADI

RET

OBSERVATION:

Input:

Output:

4200
B,A

OF
SUB1

4201
AB
FO

SUB1
4202

0A
SKIP

07
30

Get Hexa Data

Mask Upper Nibble
Get ASCII code for upper nibble

Mask Lower Nibble

Get ASCII code for lower nibble

4200 E4(Hexa data)

4201 34(ASCII Code for 4)
4202 45(ASCII Code for E)

ASCII TO HEX CONVERSION

i)

OGRAM:

A

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE
LDA 4500
SUI 30
CPI 0A
JC SKIP
SUl 07
SKIP: STA 4501 HLT
OBSERVATION:
Input: 4500 31
Output: 4501 OB

SQUARE OF A NUMBER USING LOOK UP

TABLE
ALGORITHM:
1. Initialize HL pair to point Look up table
2. Getthe data.
3. Check whether the given input is less than 9.
4. If yes go to next step else halt the program
5. Add the desired address with the accumulator content
6. Store the result
PROGRAM:
LXI H,4125 Initialsie Look up table
LDA 4150 Get the data
CPI 0A Check input >9
JC AFTER if yes error
MVI AFF Error Indication
STA 4151
HLT
AFTER: MOV C,A Addthe desired Address
MVI B,00
DAD B
MOV AM

STA 4151 Store the result
HLT Terminate the program

SEC1312 MICROPROCESSOR AND MICROCONTROLLERBASED SYSTEMS

UNIT 2 PREPARED BY: U. ANITHA & P.GRACE KANMANI PRINCE

LOOKUP TABLE:

4125 01

4126 04

4127 09

4128 16

4129 25

4130 36

4131 49

4132 64

4133 81
OBSERVATION:

Input: 4150: 05

Output: 4151 25 (Square)

Input : 4150: 11

Output: 4151: FF (Error Indication)

RESULT:

Thus the program to find the square of the number from 0 to 9 using a Look up table was executed

