

SEC1315 Digital Signal Processing and Its Applications

UNIT-1

I. Introduction

Introduction to Digital Signal Processing: Discrete time signals & sequences, Linear shift

invariant systems, Stability, and Causality, Linear constant coefficient difference equations,

Frequency domain representation of discrete time signals and systems.

Contents:

Sampling theory

Discrete-time signals

Transformation of the independent variable

Discrete-time systems

Linear constant coefficient difference equations

Fourier analysis of discrete-time signals and systems

Frequency response of discrete-time system

Properties of the discrete-time Fourier transform (DTFT)

Sampling theory

Illustrative example A continuous-time random signal is shown. Based on this several

important concepts are shown below. The signal is a continuous-time signal with continuous

amplitude. Such a signal is also called an analog signal.

+

0

–

 x(t)‡

4 8

3 7

2 6

1 5

0 4 ‹Time

–1 3

–2 2

–3 1

–4 0

nT‹ 0 1T 2T 3T 4T 5T 6T 7T 8T ‹Time

n‹ 0 1 2 3 4 5 6 7 8

x(n)‹ 5.5 2.8 3.8 5.3 1.5 4.6 8.4 6.9 7.3 ›Sampled signal. Discrete-time

signal – time is discrete,
amplitude is continuous.

 5 2 3 5 1 4 7 6 7 ›Quantized. Quantization noise

(error). Digital signal – both

time and amplitude are discrete.

 101 010 011 101 001 100 111 110 111 Encoded to 3 bits/sample.

 ‡Note this particular point exhibits saturation (out of
range). Rounded down to 7, not 8.

If we were to represent every sample value with infinite precision (for example, x(1) = 2.8--,

instead of being approximated as 2 or 3) then we would need registers and memory words of

arbitrarily large size. However, owing to a finite word length we round off the sample values (in

this case x(1) = 2.8-- will be rounded to 2). This introduces quantization noise or error.

x(t)

t

The procedure of generating a discrete-time signal from an analog signal is shown in the

following block diagram. In the digital signal processing course we are mostly dealing with

discrete–time rather than digital signals and systems, the latter being a subset of the former.

Continuous-time,
continuous amplitude

(Analog signal)

Discrete-time,
continuous

amplitude

Discrete-time,
discrete amplitude

(Digital signal)

Encoded

digital

signal

The three boxes shown above can be represented by an analog to digital converter

(ADC). A complete digital signal processing (DSP) system consists of an ADC, a DSP algorithm

(e.g., a difference equation) and a digital to analog converter (DAC) shown below.

x(t) x(n) y(n) y(t)

As the name implies discrete-time signals are defined only at discrete instants of time.

Discrete-time signals can arise by sampling analog signals such as a voice signal or a

temperature signal in telemetry. Discrete-time signals may also arise naturally, e.g., the number

of cars sold on a specific day in a year, or the closing DJIA figure for a specific day of the year.

AT&T’s T1 Stream The voice signal is band limited to 3.3 kHz, sampled at 8000 Hz (8000

samples per second), quantized and encoded into 8 bits per sample. Twenty four such voice

channels are combined to form the T1 stream or signal.
1

Sampling interval =
8000 Hz

Bit rate for each channel = 8000
samples

x 8

sec

bits
= 64000 bits/sec.

sample

Bit rate for T1 = 64000 bits/sec per channel x 24 channels = 1 544 000 bits/sec.

Commercial examples CD, Super Audio CD (SACD), DVD Audio (DVD-A), Digital audio

broadcasting - 32 kHz, and Digital audio tape (DAT) - 48 kHz.

Commercial Audio Examples
 CD Super Audio CD

(SACD)
DVD-Audio

(DVD-A)

Sampling

Rate

44.1 kHz 2.8224 MHz 44.1, 88.2 or

48, 96, 192
kHz

Coding 16-bit PCM per sample

With 2 channels the bit rate is 1.4112

Mbits/sec, but additional error control

bits etc., raise it to 4.3218 Mbits/sec.

1-bit DSD

(Direct Stream

Digital – like Delta

modulation)

12-, 20-, 24-

bit

Encoder

Quantizer

Sample

(& Hold)

DAC

Algorithm

(Diff. Eq. or

equivalent)

ADC

= 0.125 msec.

C

Pulse-train sampling For pulse-train sampling of the signal x(t) by the rectangular pulse-train

p(t) resulting in the sampled signal xs(t), we have

xs(t) = x(t) p(t)

The Fourier series of p(t) is given by p(t) = C ne
j n 2 Fs t ,

n = −

where Fs = 1/T and the Fourier coefficients, are
T / 2

Thus

Cn =
1

p(t)e
T −T / 2

− j n 2 Fs tdt

xs(t) = Cn x(t)e j n 2 Fs t

n = −

The Fourier spectrum of xs(t) is given by
 − j 2 F t

Xs(F) = xs (t)e dt
−

= Cn x(t)e j n 2 Fs te− j 2 F t dt
− −

Interchanging the order of integration and summation yields the aliasing formula

n

 x(t) e

− j 2 (F − nF) t

dt = Cn X (F − nFs)

Xs(F) =
s

n = − − n = −

= …+ C−2 X (F + 2Fs) + C−1 X (F +1Fs) + C0 X (F)+ C1 X (F −1Fs)

+ C2 X (F − 2Fs) +…

t

0 T 2T 3T

0 T 2T

t
3T

The sampled signal spectrum Xs(F) is sketched below. For convenience of illustration we
have assumed the base band spectrum, X(F), to be real valued; the maximum value of |X(F)| is
taken to be 1. Xs(F) consists of replicas of X(F), scaled by the Fourier coefficients Cn and
repeated at intervals of Fs. Specifically, the replica at the origin is simply X(F) scaled by C0.
Note that the magnitudes, |Cn|, have even symmetry. In this case, since FM ≤ Fs–FM, there is no
overlap among the replicas in the graph of Xs(F). As a result the original signal x(t) can be

x(t)

p(t) τ

1

p(t)

x(t)
X

xs(t)

s
2

s

recovered by passing xs(t) through a low pass filter with a bandwidth B that satisfies the
condition FM ≤ B ≤ Fs–FM, and a gain of 1/C0.

–FM
F

0 FM

Xs(F)

Gain = 1/C0 Bandwidth = B

C–1 C0 C1

–Fs

–FM 0 FM

F

Fs–FM Fs Fs+FM

Impulse-train sampling If p(t) is an impulse-train then the Fourier coefficients are given by
T / 2

1 C = − j n 2 F t dt
1 = . 1 = F for all n n

T
−T / 2

(t)e T
s

so that the aliasing formula becomes

Xs(F) = Fs X (F − nFs)
n = −

Alternative derivation It can be shown that

X (jΩ) =
s X (j(− n

n = −

)) = Fs
 X (j(− ns))

n = −

Note that some use the notation X(Ω) instead of X(jΩ), so that the above equation is written as

Xs(Ω)= s
2

 X (− ns
) = Fs X (− ns)

n = − n = −

About terminology The highest frequency in the signal is called the Nyquist frequency. The

minimum sampling rate that, in theory, allows perfect signal recovery is called the Nyquist rate.

Thus Nyquist rate is twice the Nyquist frequency.

A signal, however, is generally sampled at more than twice the Nyquist frequency. One

half the sampling rate is called the folding frequency. As an example, if a voice signal is band

limited to 3.3 kHz and sampled at 8 kHz then the Nyquist frequency = 3.3 kHz, the Nyquist rate

= 6.6 kHz, and the folding frequency = 4 kHz.

To add to the ambiguity, some references use the phrase Nyquist frequency to refer to

one half the sampling rate.

X(F)

1

s

Aliasing Illustration using a signal spectrum band-limited to 4 kHz and a sampling rate of 8 kHz.

The signal is perfectly band-limited to 4 kHz so that there is no overlapping in the spectrum of

the sampled signal.

–8k –4k 0 4k 8k 12k

F, Hz

–8k –4k 0 4k 8k 12k
F, Hz

7k signal

The signal has a genuine, desirable, 1 kHz component. Since it is not perfectly band-limited to 4

kHz it has another genuine but undesirable 7 kHz component. Due to the first pair of replicas

(centered at 8 kHz and –8 kHz) this 7kHz component appears as if it were a 1kHz component –

in other words the 7 kHz component is an alias of 1kHz. Thus the first (lowest) alias of the 1 kHz

frequency is given by 8 kHz – 1 kHz = 7 kHz.

Due to the second pair of replicas at 16 kHz and –16 kHz the 15k component in the

original signal also appears as if it were a 1k component – it is another alias of the 1k. This

second alias of the 1 kHz frequency is given by 16 kHz – 1 kHz = 15 kHz. The next alias is (3 x

8 – 1) kHz = 23 kHz.

In general, for any frequency F1 within the base band (in this case any frequency from 0
to 4000 Hz) its aliases are given by

Alias = kFs – F1, k is an integer > 0

X(F)

–8k –4k 0 4k 8k 12k
F, Hz

1k signal

Xs(F)

X(F), Base-band signal

Aliasing example As an example, let a certain base band signal be band-limited to 8 Hz and let
the sampling frequency be Fs = 16 Hz. We do not expect frequencies higher than 8 Hz. Then for
the base band frequency of, say, F1 = 4 Hz, the aliases, F2, are given by

F2 = kFs – F1, k = 1, 2, …

Setting k = 1 gives the lowest alias of F1, that is, F2 = 1 x 16 – 4 = 12 Hz. The next alias is 2 x 16
– 4 = 28 Hz. Consider two waveforms with frequencies of 4 Hz and 12 Hz given by

x1(t) = 1 cos 2π4t and x2(t) = 1 cos 2π12t

The sampled versions are

x1(n) = cos 2π4nT = cos 2π4n(1/16) = cos (nπ/2) and
x2(n) = cos 2π12nT = cos 2π12n(1/16) = cos (n3π/2)

whose first few samples are tabulated below:

n 0 1 2 3 4 5 6 7

x1(n) 1 0 –1 0 1 0 –1 0
x2(n) 1 0 –1 0 1 0 –1 0

These two sequences are seen to have the same digital frequency and cannot be distinguished

from each other as far as the frequency is concerned. When passed through a smoothing filter,

they will both appear as 4 Hz signals. This is true even if the amplitudes of the underlying analog

waveforms are different.

In MATLAB

%Plot x1(t) = cos 2π4t as t goes from 0 to 0.5 sec (2 cycles) in steps of T = 1/160 sec.
t = 0: 1/160: 0.5; x1 = cos (2*pi*4*t); plot(t, x1)

%Repeat with step size of 1/16 sec.

t = 0: 1/16: 0.5; x1 = cos (2*pi*4*t); plot(t, x1)

%Produce samples of x1(t) as t goes from 0 to 0.5 in steps of 1/16 sec.
t = 0: 1/16: 0.5; x1 = cos (2*pi*4*t)

%Produce samples of x1(n) = cos nπ/2 as n goes from 0 to 8 (2 cycles) in steps of 1
%(T = 1/16 sec.)
n = 0: 1: 8; x1 = cos (n*pi/2)

%Plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1 (T = 1/160 sec.)
n = 0: 1: 80; x1 = cos (n*pi/20); plot(n, x1, 'bo'); grid %Blue circles and grid

%Stem plot x1(n) = cos nπ/2 as n goes from 0 to 8 (2 cycles) in steps of 1 (T = 1/16 sec.)
n = 0: 1: 8; x1 = cos (n*pi/2); stem(n, x1)

%Stem plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1
%(T = 1/160 sec.)
n = 0: 1: 80; x1 = cos (n*pi/20); stem(n, x1)

%Titles, labels and grid. Stem plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles)
%MATLAB won‟t accept the kind of single quote in title „Sampled Cosine‟

n = 0: 1: 80; x1 = cos (n*pi/20);

stem(n, x1); title(„Sampled Cosine‟); xlabel(„n‟), ylabel(„x1‟); grid

%Plot x1(t) = cos 2π4t as t goes from 0 to 0.5 sec (2 cycles) in steps of T = 1/160 sec.
t = 0: 1/160: 0.5; x1 = cos (2*pi*4*t); plot(t, x1)

x1 = cos (2*pi*4*t) – 4Hz Cosine plotted at T = 1/160 sec.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

%Plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1 (T = 1/160 sec.)
n = 0: 1: 80; x1 = cos (n*pi/20); plot(n, x1, 'bo'); grid %Blue circles and grid

x1 = cos (n*pi/20) – 4 Hz Cosine sampled at 160 samples per second

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0 10 20 30 40 50 60 70 80

%Stem plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1
%(T = 1/160 sec.)
n = 0: 1: 80; x1 = cos (n*pi/20); stem(n, x1)

Stem plot of x1 = cos (n*pi/20) – 4 Hz Cosine sampled at 160 samples per second

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0 10

20 30 40 50

60 70 80

Aliasing and digital frequency With Fs = 16 Hz the base band signal must be band-limited to 8
Hz. And we do not expect frequencies higher than 8 Hz. Consider the 3 signals x1(t), x2(t), and
x3(t) of frequencies 4Hz, 12Hz and 28Hz, respectively, where x2 and x3‟s frequencies are the
aliases of x1‟s. The continuous and discrete-time signals are given in table below with a sampling
rate of 16 samples/sec.

Aliasing and Digital Frequency

Analog frequency

Cycles/sec

Analog signal Discrete-time signal Digital frequency

Cycles/sample

4 x1(t) = cos 2π4t x1(n) = cos 2π(1/4)n 0.25

12 x2(t) = cos 2π12t x2(n) = cos 2π(3/4)n 0.75

28 x3(t) = cos 2π28t x3(n) = cos 2π(7/4)n 1.75

8 x4(t) = cos 2π8t x4(n) = cos 2π(1/2)n 0.5

16/3 x5(t) = cos 2π(16/3)t x5(n) = cos 2π(1/3)n 1/3

If the Nyquist criterion is to be satisfied (for perfect signal reconstruction) we never
expect any digital frequencies higher than 0.5 cycle/sample (or π rad./sample) in the base band
signal. This corresponds to taking 2 samples for every cycle (or a digital frequency of half a
cycle per sample) – the Nyquist criterion. Digital frequencies higher than 0.5 cycle/sample (x2(n)
and x3(n) in this example) are actually disallowed.

When plotted x1(n), x2(n), and x3(n) cannot be distinguished from one another as far as
the digital frequency is concerned. They all have a period = 4 (samples) and a frequency of 0.25
cycle per sample, though we know that x2(n) has a frequency of 0.75 cycle/sample and x3(n) has
a frequency of 1.75 cycle/sample.

In general any digital frequency above 0.5 cycle/sample (π rad./sample) is an alias (or

shows up as an alias of some base band frequency). It actually has more cycles per sample than

is apparent in a plot of the sampled data.

We demonstrate below the phenomenon of aliasing using the three waveforms x1(t), x2(t),
and x3(t) and the corresponding sequences x1(n), x2(n), and x3(n).

In MATLAB:
%Aliasing demo

%First---

%Plot the continuous-time waveforms x1(t), x2(t), and x3(t) over a 1-second interval
t = 0: 1/500: 1;
x1 = cos (2*pi*4*t); %4 Hz

subplot(3, 1, 1), plot(t, x1, 'b'); %subplot(3, 1, 1) – 3 rows, 1 column, #1

xlabel ('Time, t, seconds'), ylabel('x1(t)');

title ('4 Hz')

grid;

x2 = cos (2*pi*12*t); %12 Hz
subplot(3, 1, 2), plot(t, x2, 'k'); %subplot(3, 1, 2) – 3 rows, 1 column, #2
xlabel ('Time, t, seconds'), ylabel('x2(t)');
title ('12 Hz')

x3 = cos (2*pi*28*t); %28 Hz
subplot(3, 1, 3), plot(t, x3, 'r'); %subplot(3, 1, 3) – 3 rows, 1 column, #3
xlabel ('Time, t, seconds'), ylabel('x3(t)');
title ('28 Hz')

%Second---
%Plot the sequences x1(n), x2(n), and x3(n)
n = 0: 1: 16;

%4 Hz sampled at 16 Hz

x1 = cos (n*pi/2);

subplot(3, 1, 1), stem(n, x1, 'bo'); %subplot(3, 1, 1) – 3 rows, 1 column, #1

xlabel ('Sample number, n'), ylabel('x1(n)');

title ('4 Hz at 16 samples/sec')

grid;

%12 Hz sampled at 16 Hz

x2 = cos (3*n*pi/2);

subplot(3, 1, 2), stem(n, x2, 'ko'); %subplot(3, 1, 2) – 3 rows, 1 column, #2

xlabel ('Sample number, n'), ylabel('x2(n)');

title ('12 Hz at 16 samples/sec')

%28 Hz sampled at 16 Hz

x3 = cos (7*n*pi/2);

subplot(3, 1, 3), stem(n, x3, 'ro'); %subplot(3, 1, 3) – 3 rows, 1 column, #3

xlabel ('Sample number, n'), ylabel('x3(n)');

title ('28 Hz at 16 samples/sec')

%---

4 Hz

1

0

-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time, t, seconds

12 Hz

1

0

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time, t, seconds

28 Hz

1

0

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time, t, seconds

4 Hz at 16 samples/sec

1

0

-1
0 2 4 6 8 10 12 14 16

Sample number, n

12 Hz at 16 samples/sec

1

0

-1

0 2 4 6 8 10 12 14 16

Sample number, n

28 Hz at 16 samples/sec

1

0

-1
0 2 4 6 8 10 12 14 16

Sample number, n

x
3
(n

)
x
2
(n

)
x
1
(n

)
x
3
(t

)
x
2
(t

)
x
1
(t

)

Discrete-time signals

Definition A discrete-time signal is a sequence, that is, a function defined on the positive and

negative integers.

The sequence x(n) = xR(n) + j xI(n) is a complex (valued) sequence if xI(n) is not zero for

all n. Otherwise, it is a real (valued) sequence.
Examples of discrete-time signals represented in functional form are given below.

(Exercise: Plot these signals for several values of n.)

x1(n) = 2 cos 3n
x2(n) = 3 sin (0.2πn)

Alternatively, if a signal is non-zero over a finite (small enough) interval, we can list the

values of the signal as the elements of a sequence. For example

x3(n) = {5, 2, – 1, 1, – 1/2, 4}

The arrow indicates the value at n = 0. We omit the arrow when the first entry represents the

value for n = 0. The above sequence is a finite length sequence. It is assumed that all values of

the signal not listed are zero. In the above example x(0) = 1, x(1) = –1/2, x(–4) = x(3) = 0, etc.

Definition A discrete-time signal whose values are from a finite set is called a digital signal.

Classification of discrete-time signals (Along lines similar to continuous-time signals)

(Omit) Discrete-time Energy and Power signals The energy E of a discrete-time signal x(n) is

given by
N

E = lim x(n) x
*
(n)

N →
n = − N

where x* is the complex conjugate of x. If x(n) is a real sequence then x(n) x*(n) = x2(n). The

above definition can also be written as
N

E = lim x(n)
2

N →
(there are 2N+1 terms here)

n = − N

The average power P of the signal is
1

N
2

P = lim x(n)
N → 2N +1 n = − N

If E is finite but non zero (i.e., 0 < E < ∞) the signal is an energy signal. It is a power

signal if E is infinite but P is finite and nonzero (i.e., 0 < P < ∞). Clearly, when E is finite, P = 0.

If E is infinite P may or may not be finite.
If neither E nor P is finite, then the signal is neither an energy nor a power signal.

The terms “power” and “energy” are used independently of whether the
N t2

quantity x(n)
2
(or, x(t)

2
dt , in the continuous time case) actually is related to physical

n = − N t1

energy. Even if such a relationship exists, these quantities, (.) and (.), may have the wrong

dimensions and scaling. Still it is convenient to use these terms in a general fashion. It is helpful

to imagine that x(t) or x(n) is the voltage across, or, current through, a 1-ohm resistor.

Example 1.2.1 For the signal x(n) = 1 for all n,
N

E = lim x(n)
2

= 1
2
= which is infinite energy

N → n = −1N n = −
2 1

2N +1

P = lim N x(n) = lim
N

1
2
= lim =1 which is finite

N → 2N +1 n = − N
N → 2N +1 n = − N

N → 2N +1

Thus x(n) is a power signal.

Example 1.2.2 For the signal x(n) = n both E and P are infinite. This is neither an energy nor a

power signal.

(End of Omit)

x(n)

Positive n

z(n)

Non-periodic digital

Examples of discrete-time signals In these examples w(n) and z(n) take on only a finite number

of different values – hence digital. But x(n) and y(n) take on a countable infinite number of

values – they are not digital. (Figure)

n n

n n

w(n)

Periodic

y(n)

Discrete-time

u(n)

1

n
–1 0 1

u(n–k)

1

n
–1 0 k

Important discrete-time signals If a continuous-time signal x(t) is sampled at T-second

intervals, the result is the sequence {x(nT)}. For convenience we shall drop the T and the braces

and use just x(n) to represent the sequence.

1) The unit sample sequence (discrete-time impulse, aka Kronecker delta)

δ(n) = 1, n = 0

0, n 0

Whereas δ(n) is somewhat similar to the continuous-time impulse function δ(t) – the

Dirac delta – we note that the magnitude of the discrete impulse is finite. Thus there are no

analytical difficulties in defining δ(n). It is convenient to interpret the delta function as follows:

δ(argument) = 1 when argument = 0

0 when argument ≠ 0

n

–1 0 1

n

–1 0 1 k

2) The unit step sequence

u(n) = 1, n 0

0, n < 0

u(argument) = 1, if argument 0

0, if argument < 0

a) The discrete delta function can be expressed as the first difference of the unit step function:

δ(n) = u(n) – u(n–1)

b) The sum from – to n of the δ function gives the unit-step:

δ(n)

1

δ(n–k)

1

u(n)

δ(n) δ(n–1) δ(n–2) δ(n–3)

n

n

Sum up to here is 1

 (k) =
0 if

n 0

k = −

1 if

 = u(n)

n 0

k
n 0

k

0 n

Results (a) and (b) are like the continuous-time derivative and integral respectively.

c) By inspection of the graph of u(n), shown below, we can write:

u(n) = δ(n) + δ(n–1) + δ(n–2) +… = (n −)
 = 0

0 1 2 3

d) For any arbitrary sequence x(n), we have

x(n) δ(n–k) = x(k) δ(n–k)

that is, the multiplication will pick out just the one value x(k).

Sum up to here is zero

If we find the infinite sum of the above we get the sifting property:

 x(n) (n − k) = x(k)
n = −

n
0 k

n
0 k

x(k) δ(n–k)

x(k) δ(n–k)

n
0 k

e) We can write x(n) as follows:

x(n) = …+ x(–1) δ(n+1) + x(0) δ(n) + x(1) δ(n–1) + x(2) δ(n–2) + …

This can be verified to be true for all n by setting in turn

…, n = –2, n = –1, n = 0, n = 1, n = 2, etc. ...

The above can be written compactly as

x(n) = x(k) (n − k)
k = −

This is a weighted-sum of delayed unit sample functions.

3) The real exponential sequence Consider the familiar continuous time signal

x(n)

x(k)

δ(n–k)

1

x(t) = e
− t

= e
−t /

, t 0

The sampled version is given by setting t = nT

x(nT) = e
− nT

= (e− T)n

, nT 0

Dropping the T from x(nT) and setting e
− T

= a we can write

x(n) = a
n

, n 0

The sequence can also be defined for both positive and negative n, by simply writing x(n) = an

for all n.

1

t

0 1 2 3 4 5 6

1

n

0 1 2 3 4 5 6

4) The sinusoidal sequence Consider the continuous-time sinusoid x(t)

x(t) = A sin 2πF0t = A sin Ω0t

F0 and Ω0 are the analog frequency in Hertz (or cycles per second) and radians per second,
respectively. The sampled version is given by

x(nT) = A sin 2πF0nT = A sin Ω0nT

We may drop the T from x(nT) and write

x(n) = A sin 2πF0nT = A sin Ω0nT, for all n

We may write Ω0T = ω0 which is the digital frequency in radians (per sample), so that

x(n) = A sin ω0n = A sin 2πf0n, for all n

x(t) = e
− t

, t 0

x(n) = an u(n)

− T

a a = e

a2

a3

a4

Setting ω0 = 2πf0 gives f0 = ω0/2π which is the digital frequency in cycles per sample. In the
analog domain the horizontal axis is calibrated in seconds; “second” is one unit of the
independent variable, so Ω0 and F0 are in “per second”. In the digital domain the horizontal axis
is calibrated in samples; “sample” is one unit of the independent variable, so ω0 and f0 are in “per
sample”.

Classification of discrete-time signals (cont’d)

Periodic signal The discrete-time signal x(n) is periodic if, for some integer N > 0

x(n+N) = x(n) for all n

The smallest value of N that satisfies this relation is the (fundamental) period of the signal. If

there is no such integer N, then x(n) is an aperiodic signal.

Given that the continuous-time signal xa(t) is periodic, that is, xa(t) = xa(t+T0) for all t,
and that x(n) is obtained by sampling xa(t) at T second intervals, x(n) will be periodic if T0/T is a
rational number but not otherwise. If T0/T = N/L for integers N ≥ 1 and L ≥ 1 then x(n) has
exactly N samples in L periods of xa(t) and x(n) is periodic with period N.

Periodicity of sinusoidal sequences The sinusoidal sequence sin (2πf0n) has several major

differences from the continuous-time sinusoid as follows:

a) The sinusoid x(n) = sin (2πf0n) or sin (ω0n) is periodic if f0, that is, ω0/2π, is rational. If f0 is
not rational the sequence is not periodic. Replacing n with (n+N) we get

x(n+N) = sin (2πf0 (n+N)) = sin 2πf0n. cos 2πf0N + cos 2πf0n. sin 2πf0N

Clearly x(n+N) will be equal to x(n) if f0N = m, an integer or f0 = m/N. The fundamental period is
obtained by choosing m as the smallest integer that yields an integer value for N. For example, if
f0 = 15/25, which in reduced fraction form is 3/5, then we can choose m = 3 and get N = 5 as the
period. If f0 is rational then f0 = p/q where p and q are integers. If p/q is in reduced fraction form
then q is the period as in the above example.

On the other hand if f0 is irrational, say f0 =
x(n) is aperiodic.

, then N will not be an integer, and thus

Note: In expressions like sin n , sin 2fn , e
j n

and e
j 2 f n

we shall refer to ω or f as the

frequency even when the signal concerned is not periodic by the definition above.

b) The sinusoidal sequences sin ω0n and sin ((ω0+2 k)n) for 0 ω0 2π are identical. This can
be shown using the identity

sin ((ω0+2πk)n) = sin (ω0n+2πkn)
= sin ω0n cos 2πkn + cos ω0n sin 2πkn QED

Similarly, cos ω0n and cos ((ω0+2πk)n) are the same. Therefore in considering sinusoidal

sequences for analysis purposes, ω0 can be restricted to the range 0 ω0 π without any loss of
generality.

c) For π < ω0 < 2π, based on the same trigonometric identities,

2

x(n) (Odd)

2

–2 0 1

sin ω0n is the negative of sin ((2π–ω0)n), and

cos ω0n is the same as cos ((2π–ω0)n)

The sum of two discrete-time periodic sequences is also periodic. Let x(n) be the sum of two
periodic sequences, x1(n) and x2(n), with periods N1 and N2 respectively. Let p and q be two
integers such that

pN1 = qN2 = N (p and q can always be found)

Then x(n) is periodic with period N since, for all n,

x(n+N) = x1(n+N) + x2(n+N)
= x1(n+pN1) + x2(n+qN2)
= x1(n) + x2(n)
= x(n) for all n

Odd and even sequences The signal x(n) is an even sequence if x(n) = x(–n) for all n, and is an

odd sequence if x(n) = –x(–n) for all n.

n n

The even part of x(n) is determined as xe(n) =

x(n) − x(−n)

x(n) + x(−n)

2

and the odd part of x(n) is given by

xo(n) = . The signal x(n) then is given by x(n) = xe(n)+xo(n).
2

x(n) (Even)

–2 2

0 1

Example 1.2.3 Plot the sequences x1(n) = 2 cos n and x2(n) = 2 cos (0.2πn). What are their
“frequencies”? →hich of them is truly periodic and what is its periodicity?
Solution The MATLAB program segment follows:

N = 21; n = 0: N-1;

%

%Nonperiodic

x1= 2*cos(1*n);

subplot(2, 1, 1), stem(n, x1);

xlabel('n'), ylabel('x1'); title('x1 = 2 cos 1n');

%

%Periodic

x2 = 2*cos(0.2*pi*n);

subplot(2, 1, 2), stem(n, x2);

xlabel('n'), ylabel('x2'); title('x2 = 2 cos 0.2\pi n');

x1 = 2 cos 1n

2

1

0

-1

-2
0 2 4 6 8

10 12 14 16 18 20

n

x2 = 2 cos 0.2 n

2

1

0

-1

-2
0 2 4

6 8 10 12 14

n

16 18 20

x
2

x
1

Example 1.2.4 Plot the sequence x3(n) = 2(0.9)
n
cos 0.2 n .

Solution The MATLAB program segment follows:

n = [0: 30];

%

%“.^” stands for element-by-element exponentiation

%“.*” stands for element-by-element multiplication

x3 = 2* ((0.9) .^n) .*cos(0.2*pi*n);

stem(n, x3);

xlabel('n'), ylabel('x3'); title('Sequence x3(n)');

Sequence x3(n)

2

1.5

1

0.5

0

-0.5

-1

-1.5
0 5 10 15 20 25 30

n

Transformation of the independent variable

Shifting and folding (reflecting about the vertical axis) Given the sequence x(n), where n is

the independent variable, we have the following two transformation operations:

• Shifting in time by k units, where k is an integer, is denoted by x(n–k). The

sequence x(n–k) represents the sequence x(n) shifted by k samples, to the right if k

is positive, or to the left if k is negative. Parenthesize n and replace it by (n–k) for

k units of delay, or by (n+k) for k units of time advancement.

• Folding (a.k.a. time reversal or reflecting about the vertical axis) is denoted by

x(–n). The signal x(–n) corresponds to reflecting x(n) about the time origin n = 0.
Reverse the sign of n (replace n with –n).

x
3

[Delayed]

1

δ(n)

1

[Reflected]

1

As in the case of continuous-time signals the operations of shifting and folding are not

commutative. In other words, the result of first shifting and then folding is not the same as that of

first folding and then shifting.

A third operation is scaling, of which more will be said in a later unit.

Example 1.3.1 [Delta function] Given the delta function δ(n), first reflect then shift (delay) by 2

units. The other possibility is first to shift (delay) by 2 units and then reflect.

The result of “reflect then shift” is shown below left. Reflect means to change the sign of

n; then shifting is done by replacing (n) by (n–2). The result is: (1) δ(n) ‹ δ(–n) and (2) δ(–n) =

δ(–(n))‹ δ(–(n–2)) = δ(–n+2).

n n

0 0

δ(–n) δ(n–2)

n n
0 0 2

δ(–(n–2)) = δ(–n+2)

[Reflected & delayed]

1

δ(–n–2)

[Delayed & reflected]

1

n n
0 2 –2 0

To continue the example, the second possibility, the result of “shift then reflect” is shown above

right. Shift means replacing (n) by (n–2); then reflect by changing the sign of n. The result is δ(–

n–2). The result is: (1) δ(n) = δ((n))‹ δ((n–2)) and (2) δ((n–2)) = δ(n–2) ‹ δ(–n–2).

Note that the two end results are not the same. This serves to illustrate that the two

operations of shifting and reflecting are not commutative:

Fold(Shift(δ(n))) ≠ Shift(Fold(δ(n)))

δ(n)

1

T[.]

Discrete-time systems

Definition A discrete-time system is a mapping from the set of acceptable discrete-time signals,

called the input set, to a set of discrete-time signals called the output set.

Definition A discrete-time system is deterministic if its output to a given input does not depend

upon some random phenomenon. If it does, the system is called a random (stochastic) system.

Definition A digital system is a mapping which assigns a digital output signal to every

acceptable digital input signal.

A discrete-time system can be thought of as a transformation or operator, T, that maps an

input sequence x(n) to an output sequence y(n) shown thus:

x(n) y(n) = T[x(n)]

In what follows we focus on the presence or absence of the following properties in

discrete-time systems: linearity, shift invariance, causality and stability.

Filter Some refer to a linear time-invariant (LTI) system simply as a filter, that is, a filter is a

system T with a single input and a single output signal that is both linear and time-invariant.

Linearity

Definition A discrete-time system T[.] is linear if the response to a weighted sum of inputs x1(n)
and x2(n) is a weighted sum (with the same weights) of the responses of the inputs separately for
all weights and all acceptable inputs. Thus the system y(n) = T[x(n)] is linear if for all a1, a2,
x1(n) and x2(n) we have

T[a1x1(n)+a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]

Another way of saying this is that if the inputs x1(n) and x2(n) produce the outputs y1(n)
and y2(n), respectively, then the input a1x1(n) + a2x2(n) produces the output a1 y1(n) + a2 y2(n).
This is called the superposition principle. The a1, a2, x1(n) and x2(n) may be complex-valued.
The above definition combines two properties, viz.,

1. Additivity, that is, T[x1(n)+x2(n)] = T[x1(n)] + T[x2(n)], and

2. Scaling (or homogeneity), that is, T[c x(n)] = c T[x(n)]

The procedure of checking for linearity is:

1. Find outputs y1(n) and y2(n) corresponding to inputs x1(n) and x2(n)
2. Form the sum a1 y1(n) + a2 y2(n)
3. Find output y3(n) corresponding to input a1x1(n) + a2x2(n)

4. Compare the results of steps 2 and 3

Examples of linear systems:

1. y(n) = x(n) + x(n–1) + x(n–2)

2. y(n) = y(n–1) + x(n)

3. y(n) = 0

4. y(n) = n x(n) (But time-varying)

Examples of nonlinear systems:

1. y(n) = x2(n)

2. y(n) = 2 x(n)+3. This is a linear equation though! This system is made up of a

linear part, 2 x(n), and a zero-input response, 3. This is called an incrementally

linear system, for it responds linearly to changes in the input.

Example 1.4.1 Determine if the system y(n) = T[x(n)] = x(–n) is linear or nonlinear.

x(n) y(n) = T[x(n)] = x(–n)

Answer Determine the outputs y1(.) and y2(.) corresponding to the two input sequences x1(n) and
x2(n) and form the weighted sum of outputs:

y1(n) = T[x1(n)] = x1(–n)
y2(n) = T[x2(n)] = x2(–n)

The weighted sum of outputs = a1 x1(–n) + a2 x2(–n) ‹ (A).
Next determine the output y3 due to a weighted sum of inputs:

y3(n) = T[a1 x1(n) + a2 x2(n)] = a1 x1(–n) + a2 x2(–n) ‹ (B)

Check if (A) and (B) are equal. In this case (A) and (B) are equal; hence the system is

linear.

Example 1.4.2 Examine y(n) = T[x(n)] = x(n) + n x(n+1) for linearity.

x(n) y(n) = T[x(n)] = x(n) + n x(n+1)

Answer The outputs due to x1(n) and x2(n) are:

y1(n) = T[x1(n)] = x1(n) + n x1(n+1)
y2(n) = T[x2(n)] = x2(n) + n x2(n+1)

The weighted sum of outputs = a1 x1(n) + a1 n x1(n+1) + a2 x2(n) + a2 n x2(n+1) ‹ (A)
The output due to a weighted sum of inputs is

y3(n) = T[a1 x1(n) + a2 x2(n)]

= a1 x1(n) + a2 x2(n) + n (a1 x1(n+1) + a2 x2(n+1))
= a1 x1(n) + a2 x2(n) + n a1 x1(n+1) + n a2 x2(n+1) ‹ (B)

Since (A) and (B) are equal the system is linear.

T[.]

T[.]

T[.]

T[.]

2

1 2

Example 1.4.3 Check the system y(n) = T[x(n)] = ne
x(n)

 for linearity.

x(n) y(n) = T[x(n)] = n e
x(n)

Answer The outputs due x1(n) and x2(n) are:

y1(n) = T[x1(n)]= n e
x1 (n)

y2(n) = T[x2(n)] = n e
x2 (n)

The weighted sum of the outputs = a1 ne
x1 (n)

+ a ne x2 (n)
‹ (A)

The output due to a weighted sum of inputs is

y3(n) =T[a1 x1(n) + a2 x2(n)] = n e
a1 x1 (n) + a2 x2 (n)

‹ (B)

We can specify a1, a2, x1(n), x2(n) such that (A) and (B) are not equal. Hence nonlinear.

Example 1.4.4 Check the system y(n) = T[x(n)] = an cos(2πn/N) for linearity.

x(n) y(n) = an cos (2πn/N)

Answer Note that the input is x(n). Clearly y(n) is independent of x(n). The outputs due to x1(n)
and x2(n) are:

y1(n) = T[x1(n)] = an cos (2πn/N)
y2(n) = T[x2(n)] = an cos (2πn/N)

The weighted sum of the outputs = b1 a
n cos (2πn/N) + b2 a

n cos (2πn/N) ‹ (A)
The output due to a weighted sum of inputs is

y3(n) = T[b1 x1(n) + b2 x2(n)] = an cos (2πn/N) ‹ (B)

(A) and (B) are not equal, so the system is not linear. (But (A) = (b1+b2) a
n cos (2πn/N) and this is

equal to (B) within a constant scaling factor.)

Example 1.4.5 Check the system y(n) = T[x(n)] = n x(n) for linearity.

x(n) y(n) = n x(n)

Answer For the two arbitrary inputs x1(n) and x2(n) the outputs are
y1(n) = T[x1(n)] = n x1(n)
y2(n) = T[x2(n)] = n x2(n)

For the weighted sum of inputs a1 x1(n) + a2 x2(n) the output is
y3(n) = T[a1 x1(n) + a2 x2(n)]= n (a1 x1(n) + a2 x2(n))

= a1 n x1(n) + a2 n x2(n)
= a1 y1(n) + a2 y2(n). Hence the system is linear.

Example 1.4.6 Check y(n) = T[x(n)] = x2(n) for linearity.

Answer For x1(n), the output is y1(n) = x
2
(n) and for x2(n), y2(n)= x

2
(n) .

The weighted sum of outputs = a1 x
2
(n) + a2 x

2
(n) ‹ (A)

1 2

The output due to a weighted sum of inputs is

T[.]

T[.]

y3(n) = T[a1 x1(n) + a2 x2(n)] = a
2
x

2
(n) + a

2
a2

2 x
2
(n) + 2 a1 a2 x1(n) x2(n) ‹(B)

1 1 2 2

It is possible to specify a1, a2, x1(n), and x2(n) so that (A) and (B) are not equal. Hence the system
is nonlinear.

Example 1.4.7 Determine if y(n) = T[x(n)] = 2 x(n) + 3 is linear.

Answer For x1(n), the output is y1(n) = 2 x1(n) + 3 and for x2(n), it is y2(n) = 2 x2(n) + 3.
Weighted sum of outputs = a1 (2 x1(n) + 3) + a2 (2 x2(n) + 3)

= 2 a1 x1(n) + 3 a1 + 2 a2 x2(n) + 3 a2‹ (A)
The output due to a weighted sum of inputs is

y3(n) = T[a1 x1(n) + a2 x2(n)] = 2 (a1 x1(n) + a2 x2(n)) + 3
= 2 a1 x1(n) + 2 a2 x2(n) + 3 ‹ (B)

It is possible to specify a1, a2, x1(n), and x2(n) such that (A) and (B) are unequal. Hence the
system is nonlinear.

(Since the output y(n) = 3 if x(n) = 0 we see that the system violates the “zero-in / zero-

out” property of linear systems. Hence nonlinear.)

Example 1.4.8 Determine if y(n) = T[x(n)] = Re{x(n)} is linear.
Answer Note that the input signals as well as the scaling constants a1 and a2 are allowed to be
complex. Let x1(n) = r(n) + j s(n). Then y1(n) = Re{x1(n)} = r(n).

The scaling / homogeneity property says that, if the response to x1(n) is y1(n), then the
response to x2(n) = a.x1(n) is a.y1(n) where a is any constant. Let a = j, and choose x2(n) = a.x1(n)
= j.x1(n) = j.(r(n) + j s(n)) = –s(n) + j r(n). The corresponding output is y2(n) = Re{x2(n)} = –s(n).

Thus if y1(n) = T[.] = T[x1(n)] = r(n), then
y2(n) = T[.] = T[x2(n)] = T[j x1(n)] = –s(n).

This is not equal to j r(n) as would be expected from the homogeneity property. Hence the

system is nonlinear.

Shift-invariance (time-invariance)

Definition A discrete time system y(n) = T[x(n)] is shift-invariant if, for all x(n) and all n0, we
have: T[x(n–n0)] = y(n–n0).

This means that applying a time delay (or advance) to the input of a system is equivalent

to applying it to the output.

x(n) y(n) = T[x(n)]

The
invariance is:

procedure for determining shift-

Step 1. Determine output y(n) corresponding to input x(n).

Step 2. Delay the output y(n) by n0 units, resulting in y(n–n0).
Step 3. Determine output y(n, n0) corresponding to input x(n–n0).
Step 4. Determine if y(n, n0) = y(n–n0). If equal, then the system is shift-invariant;
otherwise it is time-varying.

When we suspect that the system is time-varying a very useful alternative approach is to

find a counter-example to disprove time-invariance, i.e., use intuition to find an input signal for

T[.]

which the condition of shift-invariance is violated and that suffices to show that a system is not

shift-invariant.

Example 1.4.9 Test if y(n) = T[x(n)] = x(–n) is shift-invariant.

x(n) y(n) = x(–n)

Answer Find output for x(n), delay it by n0, and compare with the output for x(n-n0). The output
for x(n) is

y(n) = T[x(n)] = x(–n)

Delaying y(n) by n0 gives

y(n–n0) = x(–(n–n0)) = x(–n+n0) ‹ (A)

As an aside this amounts to reflecting first and then shifting.

The output for x(n–n0) is denoted y(n, n0) and is given by

y(n, n0) = T[x(n–n0)] = x(–n–n0) ‹ (B)

As an aside this amounts to shifting first and then reflecting.

(A) and (B) are not equal. That is, y(n, n0) y(n–n0), so the system is time-varying.

Example 1.4.10 Examine y(n) = T[x(n)] = x(n) + n x(n+1) for time invariance.

Answer Notice that the difference equation has a time-varying coefficient, n. The output y(n)

corresponding to x(n) is already given above. Delaying y(n) by n0 gives

y(n–n0) = x(n–n0) + (n–n0) x(n–n0+1) ‹ (A)

Compare with y(n, n0) = T[x(n–n0)] = x(n–n0) + n x(n–n0+1) ‹ (B)

(A) (B), so the system is time varying.

Example 1.4.11 Check for time invariance of the system y(n) = T[x(n)] = n x(n).

Answer We shall do this by counterexample(s) as well as by the formal procedure. The formal

procedure is:

y(n) = T[x(n)] = n x(n)

Delay this by n0 to get y(n–n0) = (n–n0) x(n–n0) ‹ (A)

Compare with y(n, n0) = T[x(n–n0)] = n x(n–n0) ‹ (B)

Since (A) (B), the system is time-varying.

Alternative We expect that it is time varying since the equation has a time varying coefficient.

Find a counter example to show that the system is time varying. For input x(n) = (n), the output
is

y(n) = n δ(n) = 0 for all n

For input x(n–1) = δ(n–1), the output is

y(n, 1) = n δ(n–1) = 1 δ(n–1)

Thus while x(n–1) is a shifted version of x(n), y(n, 1) is not a shifted version of y(n). So the

system is time-varying.

Another counter-example If x(n) = u(n), then

y(n) = n u(n)

But if the input is x(n–2) = u(n–2), then

y(n, 2) = n u(n–2) = (n–2+2) u(n–2) = (n–2) u(n–2) + 2 u(n–2)

Delayed version Extra term

The extra term shows that y(n, 2) y(n–2). So the system is time-varying.

Example 1.4.12 Check for time invariance the system y(n) = T[x(n)] = cos (x(n)).

Answer The output y(n) corresponding to input x(n) is

y(n) = T[x(n)] = cos (x(n))

Delay this output by n0 to get y(n–n0) = cos (x(n–n0)) ‹ (A)

For the input x(n–n0) the output is
y(n, n0) = T[x(n–n0)] = cos (x(n–n0)) ‹ (B)

Since (A) and (B) are equal we have y(n, n0) = y(n–n0). Therefore the system is time-invariant.

Example 1.4.13 The system y(n) = T[x(n)] = g(n) x(n) needs to be tested for time-invariance.

Answer Note that the coefficient g(n) is time-varying. Hence, the system is time-varying. The

output y(n) due to input x(n) is

y(n) = T[x(n)] = g(n) x(n)

Delay this by n0 to get y(n–n0) = g(n–n0) x(n–n0) ‹ (A)

The output y(n, n0) corresponding to x(n-n0) is given by

y(n, n0) = T[x(n–n0)] = g(n) x(n–n0) ‹ (B)

(A) (B), i.e., y(n, n0) y(n–n0). Hence, the system is time-varying.

Example 1.4.14 Check for time–invariance the system y(n) = an cos (2πn/N).

Answer The output consists simply of a time-varying coefficient and is independent of the input

x(n). The output y(n) due to input x(n) is

T[.]

y(n) = T[x(n)] = a
n
cos (2πn/N)

Delay this by n0 to get y(n–n0) = a

n−n0 cos (2π(n–n0)/N) ‹ (A)

The output y(n, n0) due to input x(n–n0) is given by

y(n, n0) = T[x(n–n0)] = a
n
cos (2πn/N) ‹ (B)

(A) (B), that is, y(n, n0) y(n–n0). Hence, the system is time-varying.

Example 1.4.15 Check the system y(n) = n e
x(n)

 for time-invariance.

Answer Note time-varying coefficient, n. The output y(n) due to input x(n) is

y(n) = T[x(n)] = n e
x(n)

Delay this by n0 to get y(n–n0) = (n–n0) e
x(n−n0) ‹ (A)

The output y(n, n0) due to input x(n–n0) is given by

y(n, n0) = T[x(n–n0)] = ne
x(n−n0) ‹ (B)

(A) and (B) are not equal. Hence, the system is time-varying.

Example 1.4.16 Test the system y(n) = x(2n) for time-invariance.

x(n) y(n) = T[x(n)] = x(2n)

Answer This system represents time scaling. That is, y(n) is a time-compressed version of x(n),

compressed by a factor of 2. For example, the value of x that occurred at 2n is occurring at n in

the case of y. Intuitively, then, any time shift in the input will also be compressed by a factor of

2, and it is for this reason that the system is not time–invariant.

This is demonstrated by counter-example (Oppenheim & Willsky, p. 52). It can also be

shown by following the formal procedure, which we shall do first below. For the input x(n) the

output is
y(n) = T[x(n)] = x(2n)

Delay this output by n0 to get

y(n–n0) = x(2(n–n0)) = x(2n–2n0) ‹ (A)

Next, for the input x(n) = x(n–n0) the output is

y(n, n0) = x(2n) = x(2n–n0) ‹ (B)

(A) and (B) are not equal. So the system is not time-variant.

By counter example To show that the system y(n) = x(2n) is not time–invariant by way of a

counter example consider the x(n) below:

x(n) = 1, –2 ≤ n ≤ 2

LSI System

T[.]

LSI System

T[.]

0, otherwise

We shall show that y(n, 2) ≠ y(n–2). We express x(n) in terms of unit step functions as

x(n) = u(n+2) – u(n–3)

We determine y(n–2) by first obtaining y(n) and then delaying it by 2 units:

y(n) ‹ y(n) = x(2n) = u(2n+2) – u(2n–3)

Delay ‹ y(n–2) = x(2(n–2)) = u(2(n–2)+2) – u(2(n–2)–3) = u(2n–2) – u(2n–7)

Next we determine y(n, 2) by first obtaining x(n–2) and then the corresponding output y(n, 2):

x(n–2) ‹ x(n–2) = u((n–2)+2) – u((n–2)–3) = u(n) – u(n–5) = x2(n), say
y(n, 2) ‹ y(n, 2) = x2(2n) = u(2n) – u(2n–5)

We can easily sketch y(n, 2) and y(n–2) and see that y(n, 2) ≠ y(n–2), and therefore the system

y(n) = x(2n) is not time–invariant.

Alternatively, this can be done entirely graphically.

Application of linearity – Convolution

An arbitrary sequence, x(n), can be written as the weighted sum of delayed unit sample

functions:
x(n) = …+ x(–2) δ(n+2) + x(–1) δ(n+1) + x(0) δ(n) + x(1) δ(n–1) +…

= x(k) (n − k)
k = −

So the response of a linear system to input x(n) can be written down using the linearity

principle, i.e., linear superposition. For a linear shift-invariant system whose impulse response is

T[δ(n)] = h(n) the reasoning goes like this

• For an input δ(n) the output is h(n). For an input x(0) δ(n) the output is x(0) h(n)

by virtue of scaling.

• For an input δ(n–1) the output is h(n–1) by virtue of shift-invariance. For an input

x(1) δ(n–1) the output is x(1) h(n–1) by virtue of scaling.

• Therefore for an input of x(0) δ(n) + x(1) δ(n–1) the output is x(0) h(n) + x(1) h(n–

1) by virtue of additivity.

This reasoning can be extended to cover all the terms that make up x(n). In general the

response to x(k) δ(n–k) is given by x(k) h(n–k).

δ(n) T[δ(n)] = h(n)

x(n) T[x(n)] = y(n)

Given that

we have

h(n) = T[δ(n)], and x(n) = x(k) (n − k)
k = −

y(n) = T[x(n)] = T x(k) (n − k)
k = −

Since T[.] is linear we can apply linearity a countable infinite number of times to write

y(n) = T x(k) (n − k) = x(k)T[(n − k)]
k = − k = −

In above equation since the system is shift-invariant we write T[δ(n–k)] = h(n–k). Else write
hk(n) or h(n, k) in place of h(n–k). Thus for a linear shift-invariant system

y(n) = x(k)h(n − k)
k = −

Note that if the system is not specified to be shift-invariant we would leave the above

result in the form

y(n) = x(k)h(n, k)
k =−

or y(n) = x(k)hk (n)
k = −

Then if shift-invariance is invoked we replace h(n, k) with h(n–k).

As in the case of continuous-time systems, the impulse response, h(n), is determined

assuming that the system has no initial energy; otherwise the linearity property does not hold, so

that y(n), as determined using the above equation, corresponds to only the forced response of the

system.

The sum x(k)h(n, k) is called the convolution sum, and is denoted x(n) * h(n).
k =−

A discrete-time linear shift-invariant system is completely characterized by its unit

sample response h(n).

Theorem If a discrete-time system linear shift-invariant, T[.], has the unit sample response

T[δ(n)] = h(n) then the output y(n) corresponding to any input x(n) is given by

y(n) = x(k) h(n − k)= x(n − k) h(k)
k = − k = −

= x(n) * h(n) = h(n) * x(n)

The second summation is obtained by setting m = n–k; then for k = – we have m = + , and for

k = we have m = – . Thus
 −

 x(k) h(n − k)= x(n − m) h(m) = x(n − k) h(k)
k = − m = k = −

m is a dummy variable. The order of summation

(forward or backward) makes no difference.

Hence change m to k and switch limits

Example 1.4.17 [Linear Convolution] Given the input {x(n)} ={1, 2, 3, 1} and the unit sample

response {h(n)} = {4, 3, 2, 1} find the response y(n) = x(n) * h(n).

Answer Since x(k) = 0 for k < 0 and h(n – k) = 0 for k > n, the convolution sum becomes
 n

y(n) = x(k) h(n − k)= x(k) h(n − k)
k = − k = 0

Now y(n) can be evaluated for various values of n; for example, setting n = 0 gives y(0). See

table below. The product terms shown in bold italics need not be calculated; they are zero

because the signal values involved are zero.

Linear Convolution of {x(n)} ={1, 2, 3, 1} and {h(n)} = {4, 3, 2, 1}

n

y(n) = x(k) h(n − k)
k = 0

n = 0 0

y(0) = x(k) h(0 − k)
k = 0

= x(0) h(0)
= 1 . 4 = 4

n = 1
1

y(1) = x(k) h(1 − k)
k = 0

= x(0) h(1) + x(1) h(0)
= 1 . 3 + 2 . 4 = 11

n = 2 2

y(2) = x(k) h(2 − k)
k = 0

= x(0) h(2) + x(1) h(1) + x(2) h(0)
= 1 . 2 + 2 . 3 + 3 . 4 = 20

n = 3
3

y(3) = x(k) h(3 − k)
k = 0

= x(0) h(3) + x(1) h(2) + x(2) h(1) + x(3) h(0)
= 1 . 1 + 2 . 2 + 3 . 3 + 1 . 4 = 18

n = 4 4

y(4) = x(k) h(4 − k)
k = 0

= x(0) h(4) + x(1) h(3) + x(2) h(2) + x(3) h(1) + x(4) h(0)
= 1 . 0 + 2 . 1 + 3 . 2 + 1 . 3 + 0 . 4 = 11

n = 5 5

y(5) = x(k) h(5 − k)
k = 0

= x(0) h(5) + x(1) h(4) + x(2) h(3) + x(3) h(2) + x(4) h(1)

+ x(5) h(0)
= 3 . 1 + 1 . 2 = 5

n = 6 6

y(6) = x(k) h(6 − k)
k = 0

= x(0) h(6) + x(1) h(5) + x(2) h(4) + x(3) h(3) + x(4) h(2)

+ x(5) h(1) + x(6) h(0)
= 1 . 1 = 1

n = 7
7

y(7) = x(k) h(7 − k)
k = 0

= x(0) h(7) + x(1) h(6) + x(2) h(5) + x(3) h(4) + x(4) h(3)

+ x(5) h(2) + x(6) h(1) + x(7) h(0)
= 0

y(n) = 0 for n < 0 and n > 6 ‡Product terms in bold italics are zero.

4 h(n–k) = 0, k > n

3

Sketches of the two sequences x(n) and h(n) are shown below.

n
0 1 2 3

n
0 1 2 3

To do the convolution we need the sequences x(k) and h(n–k), k being the independent

variable. Of these x(k) is simply x(n) with k replacing n, shown below.

k

0 1 2 3

h(n–k) = h(–(k–n))

n–1 n
k

The sequence h(–k) is the reflected version of h(k). If h(–k) is delayed by n samples we get h(–

(k–n)) that is h(n–k), shown above.

For each value of n the sequences x(k) and h(n–k) are multiplied point by point and the

products are added, yielding the value of y (.) for the corresponding n.

x(n)

x(n) = 0, n < 0 & > 3

3

2

1
1

h(n)

4
h(n) = 0, n < 0 & > 3

3

2

1

x(k)
x(k) = 0, k < 0

3

2

1 1

Tabular method The following tabular method uses the second of the two forms, viz., y(n) =

h(k) x(n − k) , for the convolution sum.

Tabular method of linear convolution

n$

0

1

k‹ –3 –2 –1 0 1 2 3 4 5 6 7

h(k) ‹ 4 3 2 1

x(k) ‹ 1 2 3 1 n y(n)

x(0–k) 1 3 2 1 0 4

x(1–k) 1 3 2 1 1 11

2 x(2–k) 1 3 2 1 2 20

3 x(3–k) 1 3 2 1 3 18
4 x(4–k) 1 3 2 1 4 11

5

6

7

.

x(5–k) 1 3 2 1 5 5

x(6–k) 1 3 2 1 6 1

x(7–k) 1 3 2 1 7 0

. . .

The sequence y(n) is shown plotted below. Note that Ly, the length of y(n), equals the sum of the
lengths of x(n) and h(n) minus 1: Ly = Lx + Lh – 1.

22

n
–1 0 1 2 3 4 5 6 7 8

y(n) 18

y(n) = h(k) x(n − k)

11 11

4

MATLAB (Linear Convolution)

xn = [1, 2, 3, 1]; hn = [4, 3, 2, 1];

yn = conv(xn, hn)

M = length(xn) + length(hn) - 1;

m = 0: M-1;

stem(m, yn)

The result is: yn = 4 11 20 18 11 5 1

20

18

16

14

12

10

8

6

4

2

0
0 1 2 3 4 5 6

2

 y(2) 3 2 1 0

Matrix-vector multiplication [Proakis, Study Guide, p. 12] When the sequences x(n) and h(n)

are of finite duration (as in this case) their linear convolution can also be implemented by using

matrix-vector multiplication. We show below the formulation using the form

y(n) = h(k) x(n − k)

as in the tabular method above. We arrange h(.) and y(.) as vectors (the latter with a length Ly =
Lx + Lh – 1) and the (Toeplitz) matrix X (of size Ly rows and Lh columns) formed from the
various shifted versions, x(n–k):

y(0)

 1 0 0 0

4

y(1)

2 1 0 0

h(.) =
3
 , y(.) =

 y(2)
y(3) and X(.,.) = 3 2 1 0

1 3 2 1

 y(4) 0 1 3 2
1

y(5)

0 0 1 3

 y(6) 0 0 0 1

Note that the Toeplitz matrix may be seen (except for the zeros) in the center part of the table

given under “Tabular method”. →e then evaluate y as the product X . h:

y(0)

 1 0 0 0

y(1) 2 1 0 0

4
3

y(3) = 1 3 2 1 .2

0 2 1

MATLAB has a function called toeplitz that generates the Toeplitz matrix. We could, of course,

use the alternative form x(k) h(n − k) in which case we evaluate y = H . x.

y(4)
1 3

y(5)

0 0 1 3

 y(6) 0 0 0 1

Example 1.4.18 [Linear Convolution] Given the finite length sequences below find y(n) =

x1(n)*x2(n).

x1(n) = 1, 0 ≤ n ≤ 3,

 0, otherwise

x2(n) = 1, 0 ≤ n ≤ 3

 0, otherwise

Solution The MATLAB segment follows:

%Define sequences

n = 0:3; x1 = ones(size(n)), x2 = ones(size(n)),

%Length of output

M = length(x1) + length(x2) - 1; m = 0: M-1;

yn = conv(x1,x2); stem(m,yn)

xlabel('n'), ylabel('y(n)'), title('Convolution y(n) = x1(n) * x2(n)');

Convolution y(n) = x1(n) * x2(n)

4

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6

n

y
(n

)

Example 1.4.19 Given x1(n) = n {u(n+10) – u(n – 20)} and x2(n) = cos (0.1n) {u(n) – u(n –
30)}, find y(n) = x1(n) * x2(n).
Solution The intervals over which the sequences are non-zero are defined below:

x1(n) = n,

0,
N0 ≤ n ≤ N1,
otherwise

N0 = –10, N1 = 20

x2(n) = cos (0.1 n) , N2 ≤ n ≤ N3, N2 = 0, N3 = 30

 0, otherwise

y(n) = Non-zero,
0,

N4 ≤ n ≤ N5,
otherwise

N4 = N0 + N2, N5 = N1 + N3

For (the summation limits) N4 and N5 see DSP-HW. The MATLAB segment and plot are given
below:

%First sequence over the range N0 to N1

N0 = -10; N1 = 20; n1 = N0:N1; x1 = n1;

%Second sequence over the range N2 to N3

N2 = 0; N3 = 30; n2 = N2:N3; x2 = cos(0.1 * pi * n2);

%Convolution limits

N4 = N0+N2; N5 = N1+N3; n = N4:N5;

yn = conv(x1,x2); stem(n, yn);

xlabel('n'), ylabel('y(n)'), title('Convolution y(n) = x1(n) * x2(n)');

convolution y(n) = x1(n) * x2(n)

80

60

40

20

0

-20

-40

-60

-80
-10 0 10 20 30 40 50

n

y
(n

)

Causality

The constraints of linearity and time-invariance define a class of systems that is represented by

the convolution sum. The additional constraints of stability and causality define a more restricted

class of linear time-invariant systems of practical importance.

Definition A discrete-time system is causal if the output at n = n0 depends only on the input for
n ≤ n0.

The word “causal” has to do with cause and effect; in other words, for the system to act
up there must be an actual cause. A causal system does not anticipate future values of the input
but only responds to actual, present, input. As a result, if two inputs to a causal system are
identical up to some point in time n0 the corresponding outputs must also be equal up to this
same time. The synonyms of “causal” are “(physically) realizable” and “non-anticipatory”.

We digress below to introduce memory-less versus dynamic systems and then resume

with causality.

(Aside) Systems with and without memory A system is said to be memory-less or static if its

output for each value of n is dependent only on the input at that same time but not on past or

future inputs.

Examples of static systems

1. y(n) = x(n) ‹ the identity system

2. y(n) = a x(n) – x2(n)

3. A resistor R: y(t) = R x(t) (y(t) is voltage and x(t) is current)

In many physical systems, memory is directly associated with storage of energy. A

resistor has no storage of energy. But a circuit with capacitors and/or inductors has storage of

energy and is a dynamic system, i.e., has memory. However, while storage of energy has to do

with past inputs only, a static system is independent not only of past but also of future inputs.

Examples of systems with memory, i.e., dynamic systems:
n

1. y(n) = x(k) . This is an accumulator or summer. The output y(n) depends on
k = −

values of x(.) prior to n such as x(n–1) etc.
2. y(n) = x(n–1). This is a delay element.

t

 1
3. A capacitor C: y(t) = x() d , (y(.) is voltage and x(.) is current).

(End of Aside)

C
−

Getting back to causality, all memory-less systems are causal since the output responds

only to the current value of the input. In addition, some dynamic systems (such as the three listed

above) are also causal.

An example of a noncausal system is y(n) = x(n) + x(n+1) since the output depends on a

future value, x(n+1).

Although causal systems are of great importance, they are not the only systems that are of

practical importance. For example, causality is not often an essential constraint in applications in

which the independent variable is not time, such as in image processing. Moreover, in processing

data that have been recorded previously (non real-time), as often happens with speech,

geophysical, or meteorological signals, to name a few, we are by no means constrained to causal

2M +1

processing. As another example, in many applications, including historical stock market analysis

and demographic studies, we may be interested in determining a slowly varying trend in data that

also contain higher frequency fluctuations about that trend. In this case, a commonly used

approach is to average data over an interval in order to smooth out the fluctuations and keep only

the trend. An example of such a noncausal averaging system is
M

y(n) =
 1

k =− M

x(k)

Definition A discrete-time sequence x(n) is called causal if it has zero values for n < 0, i.e., x(n)

= 0 for n < 0.

Theorem A linear shift-invariant system with impulse response h(n) is causal if and only if h(n)

is zero for n < 0.

Proof of the “If” part By convolution the output y(n) is given by

y(n) = x(k) h(n − k)
k = −

If h(n) = 0 for n < 0, then h(n–k) = 0 for n–k < 0 or k > n. So
n

y(n) = x(k) h(n − k) + x(k) h(n − k)
k = − k = n + 1

= 0
n

= x(k) h(n − k)
k = −

Thus y(n) at any time n is a weighted sum of the values of the input x(k) for k ≤ n, that is, only

the present and past inputs. Therefore, the system is causal.

Proof of the “Only If” part This is proved by contradiction, that is, if h(n) is non zero for n < 0

then the system is noncausal. Let h(n) be nonzero for n < 0:

h(n) is non zero for n < 0 ‹ h(n–k) is non zero for n–k < 0 or k > n

‹ the 2nd sum above, x(k) h(n − k) , is non zero
k = n + 1

‹ y(n) then depends on x(n+1) and other future terms

‹ Hence, the system is noncausal

Example 1.4.20 Check the causality of the system y(n) = x(–n).

Answer If n is some positive value then y(n) depends only on past values of the input x(.). But if

n is negative, say n = –2, then

y(–2) = x(–(–2)) = x(2), a future value of input

Hence the system is noncausal.

Example 1.4.21 Check the system y(n) = x(n) cos (n+1) for causality.

Answer Note that x(.) is the input, not the cos (.). In this system, the output at any time n equals

the input at that same time multiplied by a number that varies with time. We can write the

equation as y(n) = g(n) x(n), where g(n) = cos (n+1) is a time-varying function. Only the current

value of the input x(.) determines the current output y(.). Therefore the system is causal (and also

memoryless).

Example 1.4.22 Check the system y(n) = T[x(n)] = ne
x(n)

 for causality. Answer Causal.

Example 1.4.23 Check the system y(n) = T[x(n)] = a
n
cos (2πn/N) for causality. Answer Causal.

Example 1.4.24 Check the system y(n) = T[x(n)] = cos (x(n)) for causality. Answer Causal.

Example 1.4.25 Check the system y(n) = T[x(n)] = x(–n+2) for causality.

Answer For n ≤ 0 the argument of x, viz., –n+2 will be ≥ 2. For example, if n = 0 we have

y(0) = x(2), a future value of input

Hence the system is noncausal.
n

Example 1.4.26 Check the system y(n) = T[x(n)] = x(k) for causality. Answer Causal.
k = n0

n + n0

Example 1.4.27 Check the system y(n) = T[x(n)] = x(k) for causality.
k = n − n0

n + n0 n

Answer y(n) = x(k) = x(k) + x(n+1) + x(n+2) + …+ x(n+n0)
k = n − n0 k = n − n0

Future terms

The system is noncausal since y(n) depends on future values of the input.

(Aside) A streamable system is one that is either causal or can be made causal by adding an

overall delay. The system y(n) = x(n+1) is not causal but can be made so and is therefore

streamable. But y(n) = x(–n) is not streamable since it can‟t be made causal.

Bounded input bounded output stability

Definition A sequence x(n) is bounded if there exists a finite M such that |x(n)| < M for all n.

(Note that, as expressed here, M is a bound for negative values of x(.) as well. Another way of

writing this is –M < x(n) < M.)

As an exa

mpl

+
e, the seque

nce x(n) = [1+cos 5πn] u(n) is bounded with |x(n)| ≤ 2. The

(1
sequence x(n) =

n) sin10n u(n) is unbounded.
1 + (0.8)

n

Definition A discrete-time system is bounded input-bounded output (BIBO) stable if every

bounded input sequence x(n) produces a bounded output sequence. That is, if |x(n)| M < , then

|y(n)| L < .

BIBO stability theorem A linear shift invariant system with impulse response h(n) is bounded

input-bounded output stable if and only if S, defined below, is finite.

S = h(k) <
k = −

i.e., the unit sample response is absolutely summable.

Proof of the “If” part Given a system with impulse response h(n), let x(n) be such that |x(n)|
M. Then the output y(n) is given by the convolution sum:

y(n) = h(k)x(n − k)
k = −

so that

|y(n)| = h(k) x(n − k)
k = −

Using the triangular inequality that the sum of the magnitudes the magnitude of the sum, we

get

|y(n)| h(k)x(n − k)
k = −

Using the fact that the magnitude of a product is the product of the magnitudes,

|y(n)| h(k) x(n − k)
k = −

 M h(k)
k = −

Thus, a sufficient condition for the system to be stable is that the unit sample response must be

absolutely summable; that is,

 h(k)
k = −

QED

Proof of the “Only If” part That it is also a necessary condition can be seen by considering as

input, the following bounded signal (this is the signum function),

 1 where h(n–k) > 0

x(k) = sgn [h(n–k)] = 0

–1
where h(n–k) = 0

where h(n–k) < 0

Or, equivalently,

 1 where h(k) > 0

x(n–k) = sgn [h(k)] = 0
–1

where h(k) = 0
where h(k) < 0

In the above we have implied that M = 1 (since M is some arbitrary finite number), and that |x(n)|

 1. If, however, |x(n)| M where M is finite but not equal to 1 we then will multiply the signum

function by M. In either case x(n) is a bounded input. Thus

y(n) = h(k) x(n − k) = h(k) sgn[h(k)] = h(k)
k = − k = − k = −

Clearly, if h(n) is not absolutely summable, y(n) will be unbounded. QED

For a causal system the BIBO stability condition becomes

 h(k)
k = 0

Example 1.4.28 Evaluate the stability of the linear shift-invariant system with the unit sample

response h(n) = an u(n).
Answer Evaluate

S = h(k) = ak
u(k) = ak

= a
k

k = − k = − k = 0 k = 0

Here we have used the fact that the magnitude of a product (|ak|) is the product of the magnitudes

(|a|k). The summation on the right converges if |a| < 1 so that S is finite,

S =
1

and the system is BIBO stable.

Example 1.4.29 Evaluate the stability of the system y(n) = T[x(n)] = n x(n).

Answer (Note that this is not a shift-invariant system, though it is linear as we determined

elsewhere. The BIBO stability theorem applies to LSI systems. Note that if x(n) = δ(n) we get the

result y(n) = h(n) = 0, for all n!)

If a system is suspected to be unstable, a useful strategy to verify this is to look for a

specific bounded input that leads to an unbounded output. One such bounded input is x(n) =

u(n), the unit step sequence. The output then is y(n) = n u(n), and as n‹∞, y(n) grows without

bound. Hence the system is BIBO unstable.

Example 1.4.30 Examine y(n) = T[x(n)] = e
x(n)

for stability.

Answer This system is nonlinear as determined elsewhere. Its unit sample response is given by

setting x(n) = δ(n) and is given below

h(n) = e, n = 0

1, n 0

Here we are unable to find a bounded input that results in an unbounded output. So we

proceed to verify that all bounded inputs result in bounded outputs. Let x(n) be an arbitrary

signal bounded by B an arbitrary positive number,

|x(n)| < B or –B < x(n) < B for all n

Then y(n) = e
x(n)

must satisfy the condition e–B < y(n) < eB. Or, the output is guaranteed to be

bounded by eB. Thus the system is BIBO stable.

Example 1.4.31 Check for stability the system y(n) = an cos (2πn/N)

Answer The output is independent of the input. The system is stable for |a| 1, otherwise it is

unstable.

Example 1.4.32 y(n) = x2(n)

Answer For any |x(n)| < B, we have y(n) = x2(n) < B2. Hence the system is stable.

Convolution - Properties

1 − a

h1(n) + h2(n)

h1(n)*h2(n)

h2(n)

Property 1 The convolution operation is commutative, that is, x(n) * h(n) = h(n) * x(n).

A linear shift-invariant system with input x(n) and unit sample response h(n) will have

the same output as a linear shift-invariant system with input h(n) and unit sample response x(n).

Property 2 The convolution of h(n) with δ(n) is, by definition, equal to h(n).

That is, the convolution of any function with the δ function gives back the original

function. Stated another way: The identity sequence for the convolution operator is the unit

sample, or

x(n) * δ(n) = δ(n) * x(n) = x(n)

Property 3 The convolution of a delayed unit sample sequence with x(n)

x(n) * δ(n–k) = x(n–k)

Property 4 Associativity

x(n) * (y(n) * z(n)) = (x(n) * y(n)) * z(n) = x(n) * y(n) * z(n)

Property 5 Distributivity over sequence addition.

x(n) * (y(n) + z(n)) = x(n) * y(n) + x(n) * z(n)

Block diagram manipulation The properties of commutativity, associativity and distributivity

enable us to determine the impulse response of series or parallel combinations of systems in

terms of their individual impulse responses, as below:

(1) The following three LSI systems have identical unit sample response:

x(n)

(a)

y(n) x(n)

(b) y(n)

x(n) y(n)

(c)

(2) The following two LSI systems are equivalent:

x(n) y(n)

h1(n)

x(n)

h2(n)

h1(n)

y(n)
+

h1(n) h2(n)

k =1 a0

x(n)

h3(n)

h2(n)

h1(n)

(3) A combination of the above two is the series parallel combination:

x(n) y(n)

Convolution – Overlap-and-add See Unit II.

Linear constant coefficient difference equations

A subclass of linear shift-invariant systems is that for which the input x(n) and output y(n) satisfy

an Nth order linear constant coefficient difference equation, given by

a0 y(n) + a1 y(n–1) + … + aN y(n–N)

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0 0

This may be written in the more compact, though daunting, form
N M

ak y(n − k) = br x(n − r) , a0 0
k = 0 r = 0

If the system is causal, then we can rearrange the above equation to compute y(n)

iteratively from the present input x(n) and the past inputs x(n–1), x(n–2), …, x(n–M) and the past

outputs y(n–1), y(n–2), …N ,
y(n

–N):

y(n) = –
ak y(n − k) + (

If we think of the input as beginning at n = 0, then y(n) can be computed for all n 0 once y(–1),

y(–2), …, y(–N) are specified. This is an iterative solution.

(Aside) Some write the difference equation with the terms y(n–1) through y(n–N) on the right

hand side with positive (symbolic) coefficients and the coefficient of y(n) = 1, thus

y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M) + a1 y(n–1) + … + aN y(n–N)

If we need to use this form we shall use different symbols altogether as follows:

y(n) = β0 x(n) + β1 x(n–1) + … + βM x(n–M) + α1 y(n–1) + … + αN y(n–N)

(End of Aside)

y(n)
+

h1(n)*h2(n) + h1(n)*h3(n)

Example 1.5.1 [First order system] For the first order system y(n) – a y(n–1) = x(n) find the

output sequence y(n) assuming y(n) = 0 for all n < 0 and x(n) = δ(n). This corresponds to

calculating the impulse response assuming zero initial conditions.

y(n) = a y(n–1) + x(n) = a y(n–1) + δ(n)

n = 0: y(0) = a y(–1) + δ(0) = a. 0 + 1 = 1

n = 1: y(1) = a y(0) + δ(1) = a . 1 + 0 = a

n = 2: y(2) = a y(1) + δ(2) = a . a + 0 = a2

n = 3 …

Continuing the process we have y(n) = a
n
, n 0. This is also the unit sample response h(n) =

a
n
u(n). It is not always possible to express y(n) as an analytical expression (closed form) as

above.

Note It is also possible to recast the above problem as a noncausal or negative-time system with

y(n) = 0 for n 0. In this case, solving for y(n–1), we have

y(n–1) =
1

(y(n) − x(n))
a

This can be recast (by letting (n–1) = m etc.) as
1

(y(n + 1) − x(n + 1)), n < 0

a

The solution now is y(n) = – a
n
, for n < 0, or the impulse response is h(n) = – a

n
u(–n–1).

Note Unless stated otherwise we shall generally assume that the difference equation represents a

causal system.

Other techniques for solving difference equations Among other techniques is a method

paralleling the procedure for solving linear constant coefficient differential equations, which

involves finding and combining the particular and homogeneous solutions. Another method

uses the z-transform (paralleling the Laplace transform). The state variable approach provides

another formulation of the problem and solutions in the time as well as frequency domains.

Example 1.5.2 (Moving average filter) The three-term average y(n) =

as a lead-in to FIR and IIR, see below.

x(n) + x(n −1) + x(n − 2)

3

“FIR”, “IIR”, “Recursive” and “Nonrecursive” In the first example above the impulse

response h(n) = a
n
, n 0 lasts for all positive time and is of infinite duration. In the second

example (moving average) h(n) = {1/3, 1/3, 1/3} which is of finite duration.

Definition If the unit sample response of a linear shift invariant system is of infinite duration, the

system is said to be an infinite impulse response (IIR) system.

Definition If the unit sample response of a linear shift invariant system is of finite duration, the

system is said to be a finite impulse response (FIR) system.

Theorem A causal linear shift invariant system characterized by

y(n) =

k =1 a0

N M

 ak y(n − k) = br x(n − r)
k = 0 r = 0

represents a finite impulse response (FIR) system if a0 0, and ak = 0 for k = 1, 2, …, N.
[Otherwise it could represent either an IIR or FIR system.] This is equivalent to saying that for
an FIR system N = 0. For an FIR system then we have

M

a0 y(n) = br x(n − r) , or
r = 0

M b

y(n) = r x(n − r)
r = 0 a0

The above difference equation is identical to the convolution sum, and the (br/a0) terms can be
recognized as h(r), the value of the unit sample response at time r, i.e., we can set (br/a0) = hr =
h(r). So the impulse response, h(n), is given by

h(n) = (bn/a0), 0 n M

0, otherwise

which, obviously, is of finite duration.

Note: If the above difference equation were written so that a0 = 1, we have y(n) =

M

br x(n − r) .
r = 0

In this case the impulse response consists simply of the coefficients br of the x(n–r) terms.

Iterative solution with initial conditions The LTI discrete-time system can be characterized by
N M

ak y(n − k) = br x(n − r) , a0 0, and n 0 → (A)
k = 0 r = 0

Here N is the order of the difference equation. When written out in full the equation is

a0 y(n) + a1 y(n–1) + … + aN y(n–N)

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0 0, and n 0

The equation can be divided through by a0 so that the coefficient of y(n) is 1 or, alternatively, we
could impose the equivalent condition that a0 = 1.

An alternative form of the above equation is sometimes given as
N M

 ak y(n + k) = br x(n + r) , n 0 → (A‟)
k = 0 r = 0

In this form, if the system is causal, we must have M N.

The solution to either one of the above equations can be determined (by analogy with the

differential equation) as the sum of two components: (1) the homogeneous solution, which

depends on the initial conditions assumed to be known, and (2) the particular solution, which

depends on the input.

Computing y(n) for successive values of n one after another is called an iterative solution.

To obtain y(n) for n 0 Nfro
m E

q. (A) we rearrange it as

y(n) = –
ak y(n − k) + (, → (B)

and evaluate y(n) for n = 1, 2, … in an iterative manner. →e need the initial conditions y(–1), y(–

2), …, y(–N). The initial conditions needed to solve for y(n) using Eq. (A‟) in a similar fashion

are y(0), y(1), …, y(N–1).

We may assume that the system described by Eq. (A) is in a condition of initial rest, that

is, if x(n) = 0 for n < 0, then y(n) = 0 for n < 0 as well. With initial rest the system (A) is LTI and

causal.

An equation of the form (A) or (B) is called a recursive equation since it specifies a

recursive procedure to determine the output y(n) in terms of the input and previous output values.

In the special case where N = 0, Eq. (B) reduces to

y(n) = (, → (C)

Here y(n) is an explicit function of the present and previous values of the input only. Eq. (C) is

called a non-recursive equation, since we do not recursively use previously computed values of

the output in order to calculate the present value of the output.

Example 1.5.3 Find the solution to

y(n) –
3

y(n–1) +
1

y(n–2) =
1

, n 0

with the initial conditions y(–1) = 4 and y(–2) = 10.

Answer Note that the input is x(n) = (. This is the iterative solution in the time domain. We

can write y(n) =
3

y(n–1) –
1

y(n–2) +
1

, and solve for y(n) starting with n = 0:

y(n) – (y(n–1) + (y(n–2) = (, n 0

y(–1) = 4, and y(–2) = 10

n y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)n y(n)

0 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)n

y(0) = (3/2) y(0–1) – (1/2) y(0–2) + (1/4)0

= (3/2) y(–1) – (1/2) y(–2) + (1/4)0

= (3/2) (4) – (1/2) (10) + (1)

2

1 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)n

y(1) = (3/2) y(1–1) – (1/2) y(1–2) + (1/4)1

= (3/2) y(0) – (1/2) y(–1) + (1/4)1

= (3/2) (2) – (1/2) (4) + (1/4)

5/4

2 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)n

y(2) = (3/2) y(2–1) – (1/2) y(2–2) + (1/4)2

= (3/2) y(1) – (1/2) y(0) + (1/4)2

= (3/2) (5/4) – (1/2) (2) + (1/16)

15/16

3 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)n

y(3) = (3/2) y(3–1) – (1/2) y(3–2) + (1/4)3

= (3/2) y(2) – (1/2) y(1) + (1/4)3
= (3/2) (15/16) – (1/2) (5/4) + (1/64)

51/64

4 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)n

y(4) = (3/2) y(4–1) – (1/2) y(4–2) + (1/4)4

= (3/2) y(3) – (1/2) y(2) + (1/4)4

= (3/2) (51/64) – (1/2) (15/16) + (1/256)

?

. Etc. .

2

The solution is

y(n) =

, 5 15
, ,

51

,...

 4 16 64
This procedure does not, in general, yield an analytical expression for y(n), that is, a

closed-form solution. But it is easily implemented on a digital computer.

Example 1.5.4 [MATLAB] [Zero initial conditions] In the context of MATLAB, we may use

filter(b, a, x) to generate the sequence y(n). In MATLAB the coefficients of y(.) and x(.) are

numbered slightly differently as below:

a1 y(n) + a2 y(n–1)+ a3 y(n–2) + …= b1 x(n) + b2 x(n–1)+ b3 x(n–2)+ …

From the difference equation

y(n) – (3 / 2) y(n–1) + (1/ 2) y(n–2) = (1/ 4)n
, n 0

we note that the input is x(n) = (1/ 4)n
and the coefficients of y(.) and x(.) give us the a and b

vectors, respectively: a = [1, -1.5, 0.5] and b = [1]. The following segment generates the output

with initial conditions taken as zero.

%Zero initial conditions
b = [1]; a = [1, -1.5, 0.5];

n = 0:25; xn = (1/4) .^n; %“.^” means element-by-element exponentiation

yn = filter(b, a, xn), %Or, yn = filter(1, a, xn)

subplot(2, 1, 1), stem(n, xn);

xlabel('n'), ylabel('x(n)'); title('Input Sequence');

subplot(2, 1, 2), stem(n, yn);

xlabel('n'), ylabel('y(n)'); title('Output Sequence');

The solution is:

yn = [1 1.75 2.1875 2.4219 2.5430 2.6045 2.6355 … 2.6667 2.6667 2.6667]

Input Sequence

1

0.5

0
0 5 10 15 20 25

n

Output Sequence

3

2

1

0
0 5 10 15 20 25

n

Example 1.5.5 [MATLAB] [Non-zero initial conditions] Find the solution to the difference

equation

y(n) – (3 / 2) y(n–1) + (1/ 2) y(n–2) = (1/ 4)n
, n 0

with the initial conditions y(–1) = 4 and y(–2) = 10.

If the problem specifies non-zero initial conditions, they must first be converted to

“equivalent initial conditions” for the filter function to work. In this problem y(–1) = 4 and y(–2)

= 10. These are specified as a vector yic = [4, 10] and used to generate the equivalent initial

conditions eic by the function filtic(b, a, yic). The equivalent initial conditions are then used to

generate the filter output through filter(b, a, xn, eic). The MATLAB segment follows:

%Non-zero initial conditions

b = [1]; a = [1, -1.5, 0.5]; yic = [4, 10];

n = 0:25; xn = (1/4) .^n; %“.^” means element-by-element exponentiation

%

%Equivalent initial conditions

eic = filtic(b, a, yic);

yn = filter(b, a, xn, eic)

subplot(2, 1, 1), stem(n, xn);

xlabel('n'), ylabel('x(n)'); title('Input Sequence');

subplot(2, 1, 2), stem(n, yn);

xlabel('n'), ylabel('y(n)'); title('Output Sequence');

The output is:

yn = [2 1.25 0.9375 0.7969 0.7305 0.6982 0.6824…0.6667 0.6667 0.6667]

x
(n

)
y
(n

)

1

0.5

0

0

2

1.5

1

0.5

Input Sequence

5 10 15 20 25

n

Output Sequence

0
0 5 10 15 20 25

n

(Omit) Recursive realization of FIR system – a simple example The moving average of the

signal x(n) is given by

y(n) =
x(n) + x(n −1) + x(n − 2) + ... + x(n − M)

M +1

Since past values of y(.) are not used in computing y(n) this is a nonrecursive implementation of

the FIR filter. The impulse response is

n = 0
h(n) =

 1
, 1

 M

1 , …,
1 A total of

 ,
 M + 1 M + 1

M + 1 M + 1

M+1 terms

which consists of (M+1) samples or coefficients. We recognize, by replacing n by (n–1) in the

above equation, that

y(n–1) =
x(n −1) + x(n − 2) + ... + x(n − M) + x(n − M −1)

M +1
‹ (1)

By adding and subtracting
x(n − M −1)

M +1
on the right hand side of the equation for y(n) we can

arrive at a recursive implementation of the moving average:
x(n) + x(n −1) + x(n − 2) + ... + x(n − M) + x(n − M −1) − x(n − M −1)

y(n) =

Using eq. (1) we can write y(n) as
x(n) − x(n − M −1)

M +1

y(n) = y(n–1) +

M +1
which clearly is a recursive implementation since it involves y(n–1), a past value of y.

y
(n

)
x
(n

)

H(z) =
i = 0

(End of Omit)

Further nomenclature If we take a0 = 1 our standard difference equation becomes
y(n) + a1 y(n–1) + … + aN y(n–N)

= b0 x(n) + b1 x(n–1) + … + bM x(n–M)
This is an Nth order difference equation.

A moving average (MA) filter is one with its output dependent on the present and

previous inputs. The average here is a weighted average, the weights being the b coefficients. In

terms of the above difference equation this corresponds to N = 0 and the difference equation

becomes

y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M)

There is some variation on the form of this equation. As given here it has (M+1) coefficients and

M delay elements. Sometimes it is more convenient to use this with M coefficients rather than

(M+1). Either way its order is N = 0. Note that we have tied the order to the oldest term in y(.)

and not to the oldest term in x(.). See Aside below.

An autoregressive (AR) filter is one with its output dependent on the present input (but

not previous inputs) and previous outputs – this is a purely recursive system. In terms of the

above difference equation this corresponds to M = 0 and is of the form

y(n) = b0 x(n) – a1 y(n–1) – … – aN y(n–N)

More generally, an autoregressive moving average (ARMA) filter has its output depend

on the present input, M previous inputs, and N previous outputs. In terms of the linear constant

coefficient difference equation this has the form

y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M) – a1 y(n–1) – … – aN y(n–N)

(Aside) With a0 = 1 we have
M

biz −i

N

1 + ai z
−i

i =1

This represents an IIR filter if at least one of a1 through aN is nonzero, and all the roots of the
denominator are not canceled exactly by the roots of the numerator. For example, in the system,

H(z) = (1− z
−8

) (1− z
−1

) , the single pole at z = 1 is canceled exactly by the zero at z = 1, making

H(z) a finite polynomial in z
−1

, that is, an FIR filter.

In general, there are M finite zeros and N finite poles. There is no restriction that M

should be less than or greater than or equal to N. In most cases, especially digital filters derived

from analog designs, M will be less than or equal to N. Systems of this type are called Nth order

systems.

When M > N, the order of the system is no longer unambiguous. In this case, H(z) may be

taken to be an Nth order system in cascade with an FIR filter of order (M – N).

When N = 0, as in the case of an FIR filter, according to our convention the order is 0; it

is more useful in this case to focus on M and call it an FIR filter of M stages or (M+1)

coefficients.

(End of Aside)

Fourier analysis of discrete-time signals and systems

Note For the discrete-time Fourier transform some authors (Oppenheim & Schafer, for instance)

use the symbol X(ejω) while others (Proakis, for instance) use the symbol X(ω). The symbol ω is

used for digital frequency (radians per sample or just radians) and the symbol Ω for the analog

frequency (radians/sec). Some authors, on the other hand, use just the opposite of our

convention, that is, ω for the analog frequency (radians/sec) and Ω for the digital frequency

(radians).

Discrete-time Fourier transform (DTFT) For the continuous-time signal x(t), the Fourier

transform is

F{x(t)} = X(Ω) = x(t) e
− j t

dt
−

The impulse-train sampled version, xs(t), is given by

xs(t) = x(t) (t − nT)
n = −

So the Fourier transform of xs(t) is given by

s

Xs(Ω) = x (t) e
− j t

dt = x(t) (t − nT) e
− j t

dt

− −

= x(nT) e
− j nT

n = −

n = −

where the last step follows from the sifting property of the δ function. Replace ΩT by ω the

discrete-time frequency variable, that is, the digital frequency. Note that Ω has units of

radians/second, and ω has units of radians (/sample). This change of notation gives the discrete-

time Fourier transform, X(ω), of the discrete-time signal x(n), obtained by sampling x(t), as

X(ω) = F{x(n)} = x(n) e
− j n

n = −

Note that this defines the discrete-time Fourier transforms of any discrete-time signal x(n). The

transform exists if x(n) satisfies a relation of the type

 x(n)
n = −

< ∞ or x(n)
2
< ∞

n = −

These conditions are sufficient to guarantee that the sequence has a discrete-time Fourier

transform. As in the case of continuous-time signals there are signals that neither are absolutely

summable nor have finite energy, but still have a discrete-time Fourier transform. (See also p. 22,

O & S.)

Discrete-time Fourier transform of (non-periodic) sequences The Fourier transform of a

general discrete-time sequence tells us what the frequency content of that signal is.

Definition The Fourier transform X(ejω) of the sequence x(n) is given by

F{x(n)} = X(ω) = x(n) e
− j n

n = −

The inverse Fourier transform is given by

‹ (A)

 1

F-1{X(ω)} = x(n) = X (e
j

) e
j n

d ‹ (B)

2 −

Equations (A) and (B) are called the Fourier transform pair for a sequence x(n) with X(ω)

thought of as the frequency content of the sequence x(n). Equation (A) is the analysis equation

and equation (B) is the synthesis equation. Since X(ω) is a periodic function of ω, we can think

of x(n) as the Fourier coefficients in the Fourier series representation of X(ω). That is, equation

(A), in fact, expresses X(ω) in the form of a Fourier series.

The sketch below sums up the relationship between the time and frequency domains. The

periodicity is 2π. From the relation ω = ΩT we can deduce that at the point ω = 2π on the

horizontal axis Ω = ω/T = 2π/T = 2πFs = Ωs. In other words, in terms of the analog frequency

variable the point ω = 2π corresponds to Ω = Ωs or F = Fs.

n

X(ω)

Periodic, complex-valued

–2 – 2

(Omit) Relationship to the z-transform The z-transform X(z) and the Fourier transform X(ω) are

given by

X(z) = x(n) z
− n

n =−

and X(ω) = x(n) e
− j n

n =−

Comparing the two we deduce the relationship as

X (z) j

z = e X(ω) = x(n) e
− j n

n =−

The z-transform evaluation on the unit circle gives the Fourier transform of the sequence

x(n). The z-transform of x(n) can be viewed as the Fourier transform of the sequence {x(n) r–n},

that is, x(n) multiplied by an exponential sequence r–n. This can be seen by setting z = r ejω in the

defining equation of X(z):

X(z) = x(n) (r e
j)− n

= x(n) r
−n

e
− j n

n =−

z
n =−

x(n) multiplied by the

exponential sequence r–n

x(n) Non-periodic

0

1− ae

Z-transform of a periodic sequence Consider a sequence x(n) that is periodic with period N so

that x(n) = x(n+kN) for any integer value of k. Such a sequence cannot be represented by its z-

transform, since there is no value of z for which the z-transform will converge.

(End of Omit)

Example 1.6.1 [Cf. Example 4.2.3, Proakis, 4th Ed.] For the exponential sequence x(n) = a
n
u(n),

|a| < 1, the DTFT is

X (e
j

) = a
n

e
− j n

= (ae
− j)n

=
1

− j
 1
1 − a(cos − j sin)

n = 0 n = 0

We shall put this in the form X(ω)= Magnitude {X} e
j Phase{X }

= X()

magnitude and phase will be extracted. The denominator (Dr.) is

e
jX ()

from which the

−1

 a sin
 j tan

Thus

Dr. = 1− a cos + ja sin = (1− a cos)
2

+ a
2

sin
2 e 1−a cos

jX () 1 a sin
−1

X(ω) = |X(ω)| e

The magnitude and phase are:

=
 e

(1 + a
2
− 2a cos)

− j tan 1−a cos

|X(ω)| =
1

and X() = − tan
−1 a sin

(1 + a

2
− 2a cos) 1− a cos

Plots of |X| and X are shown. Note that X(ω) is periodic and that the magnitude is an even

function of ω and the phase is an odd function. (See below on the notation |X| and X).

The value of X (e
j

) at ω = 0 is

X ()

 =0

= 1

(1 + a
2
− 2a cos 0)

 1

1 − a

X () = − tan−1 a sin 0
= 0

 =0

Similarly, at ω = we have

1 − a cos 0
X () = 1/(1+ a)

 =

and X () = 0.
 =

Phase angle of a complex number In calculating the phase angle of a complex number, z =

Re(z) + j Im(z), a hand held calculator, typically uses the formula tan−1Im(z) / Re(z), and returns an

answer in the range –/2 < angle ≤ /2. Thus for both (1–j) and (–1+j) the phase angle so

calculated is /4. However, (1–j) is in the 4th quadrant with (1− j) = –/4 whereas (–1+j) is in

the 2nd quadrant with (−1 + j) = 3/4. MATLAB has a function angle which takes into account

the real and imaginary parts separately (instead of their ratio) and calculates the “four-quadrant

inverse tangent”.

Example 1.6.2 [MATLAB fplot] To illustrate the magnitude and phase plots of the DTFT we

take a = 0.8 in the exponential sequence x(n) = a
n
u(n), |a| < 1, treated above. Thus x(n) =

(0.8)
n
u(n). We need only plot over the interval –π ≤ ω ≤ π or 0 ≤ ω ≤ 2π. To show, visually, the

periodicity we have plotted over –3π ≤ ω ≤ 3π. We have

X (e
j

) = a
n

e
− j n

= (ae
− j)n

=
1

− j = 1
− j

n = 0 n = 0

1− ae 1 − 0.8 e

=

=

In the MATLAB program segment that follows we write an algebraic expression for

X (e j)=
1

as (1) / (1-0.8*exp(-j*w)). Note that we have used „w‟ for ω and the plot
1 − 0.8 e

− j

ranges from –2 to 2. Both ω and the phase, X () , are in radians. The parameter 'k' means that

the plot/display is in black “color”.

subplot(2,1,1);fplot('abs((1)/(1-0.8*exp(-j*w)))', [-3*pi,3*pi], 'k');

xlabel('\omega');ylabel('Magnitude');

subplot(2,1,2);fplot('angle((1)/(1-0.8*exp(-j*w)))', [-3*pi,3*pi], 'k');

xlabel('\omega');ylabel('Phase');

X ()

X ()

 =0

 =

=
1

=

1 − a

= 1/(1+ a)

1
= 5

1− 0.8

= 1/1.8 = 0.555

6

4

2

0

1

0.5

0

-0.5

-1

-8 -6 -4 -2 0

-8 -6 -4 -2 0

2 4 6 8

2 4 6 8

P
h
a
s
e

M
a

g
n
it
u
d
e

Example 1.6.3 [MATLAB freqz] We repeat the frequency response plots using the freqz

function. Taking a = 0.8 as before, we have x(n) = (0.8)
n
u(n) and

X (e
j

) = a
n

e
− j n

= (ae
− j)n

=
1

− j = 1
− j

n = 0 n = 0

1− ae 1 − 0.8 e

Instead of writing an algebraic expression for X (e
j

)=
1

as in the previous example, we

1 − 0.8 e
− j

shall now specify the numerator and denominator in terms of their coefficients. We shall use the

following convention to specify the parameters of the function

X (e
j

) = b(1) + b(2)e
− j

+ b(3)e
− j 2

+ ...
−

 =
 1

a(1) + a(2)e
j

+ a(3)e
− j 2

+ ... 1 − 0.8 e
− j

Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In
our example b(1) = 1, a(1) = 1, and a(2) = –0.8. The MATLAB segment and the corresponding

plots follow. Note that the plot goes from – to , not –3 to 3.

b = [1]; %Numerator coefficient

a = [1, -0.8]; %Denominator coefficients

w = -pi: pi/256: pi; %A total of 512 points

[Xw] = freqz(b, a, w);

subplot(2, 1, 1), plot(w, abs(Xw));

xlabel('Frequency \omega'), ylabel('Magnitude of X(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Xw));

xlabel('Frequency \omega'), ylabel('Phase of X(\omega)'); grid

6

4

2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency

1

0.5

0

-0.5

-1

-4 -3 -2 -1 0 1 2 3 4

Frequency

P
h
a
s
e
 o

f
X

(
)

M
a

g
n
it
u
d
e

 o
f

X
(

)

Example 1.6.4 Find the DTFT, X(ω), for x(n) = {1, 2, 3, 4, 3, 2, 1}.

Solution The DTFT is
6

X (e j) = x(n) e− j n = 1+ 2e− j1 + 3e− j 2 + 4e− j3 + 3e− j 4 + 2e− j5 +1e− j 6

n =0

= (2 cos 3 +4 cos 2 +6 cos +4) e
− j3

The numerator vector is b = [1, 2, 3, 4, 3, 2, 1] and the denominator vector is a = {1}. The

MATLAB segment plots the sequence and the frequency response.

%Sketch of sequence

n = 0:1:6; xn = [1, 2, 3, 4, 3, 2, 1];

subplot (3, 1, 1), stem(n, xn)

xlabel('n'), ylabel('x(n)'); grid

%Frequency response

b = [1, 2, 3, 4, 3, 2, 1]; %Numerator coefficients

a = [1]; %Denominator coefficients

w = -pi: pi/256: pi; %A total of 512 points

[Xw] = freqz(b, a, w);

subplot(3, 1, 2), plot(w, abs(Xw));

xlabel('Frequency \omega'), ylabel('Magnitude of X(\omega)'); grid

subplot(3, 1, 3), plot(w, angle(Xw));

xlabel('Frequency \omega'), ylabel('Phase of X(\omega)'); grid

4

2

0
0 1 2 3 4 5 6

n

20

10

0
-4 -3 -2 -1 0 1 2 3 4

Frequency

5

0

-5
-4 -3 -2 -1 0 1 2 3 4

Frequency

Example 1.6.5 Find the DTFT, X(ω), for

(a) x(n) = {1, 2, 3, 4, 3, 2, 1, 0}

(b) x(n) = {1, 2, 3, 4, 3, 2, 1, 0, …, 0}

Solution !?!

M
a

g
n
it
u
d
e

 o
f

X
(

)
P

h
a
s
e
 o

f
X

(
)

x
(n

)

The following examples are repeated in Unit II – DFS &DFT.

Example 1.6.6 Obtain the 7-point DFT of the sequence x(n) = {1, 2, 3, 4, 3, 2, 1} by taking 7

samples of its DTFT uniformly spaced over the interval 0 ≤ ω ≤ 2π.

Solution The sampling interval in the frequency domain is 2π/7. From Example 4 we have

X (e
j

) or X(ω) = 1+ 2e
− j1

+ 3e
− j 2

+ 4e
− j3

+ 3e
− j 4

+ 2e
− j5

+1e
− j 6

= (2 cos 3 +4 cos 2 +6 cos +4) e
− j3

The DFT, X (k) , is given by replacing ω with k(2π/7) where k is an index ranging from 0 to 6:

DFT = X () = X (2k / 7) , k = 0 to 6
= 2 k / 7

This is denoted XkfromDTFT in the MATLAB segment below.

MATLAB:

w = 0: 2*pi/7: 2*pi-0.001

XkfromDTFT = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w)

MATLAB solution:

XkfromDTFT = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

This is the 7-point DFT obtained by sampling the DTFT at 7 points uniformly spaced in (0, 2π).

It should be the same as the DFT directly obtained, for instance, by using the fft function in

MATLAB:

MATLAB:

xn = [1 2 3 4 3 2 1]

Xkusingfft = fft(xn)

MATLAB solution:

Xkusingfft = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

It can be seen that “↓kfromDTFT” = “↓kusingfft”.

Example 1.6.7 Obtain the 7-point inverse DTFT x(n) by finding the 7-point inverse DFT of X(k):

X (2k / 7) = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

MATLAB:

Xk = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),(-0.1431 +

0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

xn = ifft(Xk)

MATLAB solution:

xn = [1.0000 2.0000 3.0000 4.0000 3.0000 2.0000 1.0000]

This is the original sequence we started with in Example 4.

Example 1.6.8 What will be the resulting time sequence if the DTFT of the 7-point sequence is

sampled at 6 (or fewer) uniformly spaced points in (0, 2π) and its inverse DFT is obtained?

Solution The sampling interval in the frequency domain now is 2π/6. From Example 4 we have

X (e
j

) or X(ω) = 1+ 2e
− j1

+ 3e
− j 2

+ 4e
− j3

+ 3e
− j 4

+ 2e
− j5

+1e
− j 6

= (2 cos 3 +4 cos 2 +6 cos +4) e
− j3

The DFT then is given by

DFT = X () = X (2k / 6), k = 0 to 5
 = 2 k / 6

This is denoted Xk6point in the MATLAB segment below.

MATLAB:

w = 0: 2*pi/6: 2*pi-0.001

Xk6point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w)

MATLAB solution:

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i),

(-3.0000 - 0.0000i)]

This is the 6-point DFT obtained by sampling the DTFT at 6 points uniformly spaced in (0, 2π).

Example 1.6.9 Obtain the 6-point inverse DTFT x(n) by finding the 6-point inverse DFT of

Xk6point:

X (2k / 6) = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i),

(-3.0000 - 0.0000i)]

MATLAB:

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), (-

3.0000 - 0.0000i)]

xn = ifft(Xk6point)

MATLAB solution:

xn = [2 2 3 4 3 2]

Comparing with the original 7-point sequence, xn = [1 2 3 4 3 2 1], we see the

consequence of under-sampling the continuous-ω function X(ω): the corresponding time domain
sequence x(n) is said to suffer time-domain aliasing. This is similar to the situation that occurs

when a continuous-time function x(t) is under-sampled: the corresponding frequency domain

function Xs () contains frequency-domainaliasing.

Example 1.6.10 What will be the resulting time sequence if the DTFT of the 7-point sequence is

sampled at 8 (or more) uniformly spaced points in (0, 2π) and its inverse DFT is obtained?

Solution The sampling interval in the frequency domain now is 2π/8. From Example 4 we have

X (e
j

) or X(ω) = 1+ 2e
− j1

+ 3e
− j 2

+ 4e
− j3

+ 3e
− j 4

+ 2e
− j5

+1e
− j 6

= (2 cos 3 +4 cos 2 +6 cos +4) e
− j3

The DFT then is given by

DFT = X () = X (2k /8) , k = 0 to 7
 = 2 k / 8

This is denoted Xk8point in the MATLAB segment below.

MATLAB:

w = 0: 2*pi/8: 2*pi-0.001

Xk8point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w)

MATLAB solution:

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0,

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)]

This is the 8-point DFT obtained by sampling the DTFT at 8 points uniformly spaced in (0, 2π).

Example 1.6.11 Obtain the 8-point inverse DTFT x(n) by finding the 8-point inverse DFT of

Xk8point:

X (2k / 8) = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0,

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)]

MATLAB:

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0,

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)]

xn = ifft(Xk8point)

MATLAB solution:

xn = [1 2 3 4 3 2 1 0]

We see that the original 7-point sequence has been preserved with an appended zero. The

original sequence and the zero-padded sequence (with any number of zeros) have the same

DTFT. This is a case of over-sampling the continuous-ω function X(ω): there is no time-domain

aliasing. This is similar to the situation that occurs when a continuous-time function x(t) is over-

sampled: the corresponding frequency domain function Xs () is free from frequency-domain

aliasing.

%Sketch of sequences

n = 0:1:6; xn = [1, 2, 3, 4, 3, 2, 1];

subplot (3, 1, 1), stem(n, xn)

xlabel('n'), ylabel('x(n)-7point'); grid

%

n = 0:1:5; xn = [2 2 3 4 3 2];

subplot (3, 1, 2), stem(n, xn)

xlabel('n'), ylabel('x(n)-6point'); grid

%

n = 0:1:7; xn = [1, 2, 3, 4, 3, 2, 1, 0];

subplot (3, 1, 3), stem(n, xn)

xlabel('n'), ylabel('x(n)-8point'); grid

4

2

0
0 1 2 3 4 5 6

n

4

2

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n

4

2

0
0 1 2 3 4 5 6 7

n

Frequency response of discrete-time system

For a linear shift-invariant system with impulse response h(n), the Fourier transform H(ω) gives

the frequency response. Consider the input sequence x(n) = e
j n

for – < n < , i.e., a complex

exponential of radian frequency ω and magnitude 1, applied to a linear shift-invariant system

whose unit sample response is h(n). Using convolution we obtain the output y(n) as

y(n) = h(n) * x(n) = h(k) x(n − k) = h(k) e
j (n−k)

= e
j n h(k) e

− j k

k = − k = − k = −

= H(ω) e

j n

H(ω)

Thus we see that H(ω) describes the change in complex amplitude of a complex exponential as a

function of frequency. The quantity H(ω) is called the frequency response of the system. In

x(
n

)-
8

p
o

in
t

x(
n

)-
6

p
o

in
t

x(
n

)-
7

p
o

in
t

h(n) = (1/3)[u(n) – u(n–3)]

1/3

n

general, H(ω) is complex valued and may be expressed either in the Cartesian form or the polar

from as

H(ω) = HR(ω) + j HI (ω) or H(ω) = Ĥ () e
jH ()

where HR and HI are the real part and imaginary part respectively. Ĥ () is loosely called the

magnitude and H () is loosely called the phase. Strictly speaking, Ĥ () is called the zero-

phase frequency response; note that Ĥ () is real valued but may be positive or negative. We

may use the symbol |H(ω)| for the magnitude which is strictly non-negative. If Ĥ () is positive

then

Magnitude = H () = Ĥ ()

If Ĥ () is negative then

& Phase =H()

Magnitude = H () = Ĥ () = – Ĥ () & Phase =H()± π

We shall often loosely use the symbol H () to refer to Ĥ () as well with the understanding

that when the latter is negative we shall take its absolute value (the magnitude) and accordingly

adjust H () by ± π.

Example 1.7.1 [Moving average filter] The impulse response of the LTI system

x(n) + x(n −1) + x(n − 2)
y(n) =

3
is

h(n) = 1/3, n = 0, 1, 2

0, otherwise

0 1 2 3

The frequency response is obtained below.

H(ω) = h(k) e
− j k

k = −

2

= (1/ 3) e
− j k

k = 0

=
1 (e− j 0 + e− j 1 + e− j 2) 3

− j j − j e− j 2(e
j

+ e
− j) (1 + 2 cos)

= e (e +1+ e)=
1+

 = e− j

3 3 2 3

which is already in the polar form H () = ± H () e
jH ()

, so that

H () = (1+ 2 cos) / 3 and H () = –ω

The zero crossings of the magnitude plot occur where H () = (1+ 2 cos) / 3 = 0, or ω

= cos
−1

(−1/ 2) = 2π/3 = 1200. A frequency of ω = 2π/3 rad./sample (f = 1/3 cycle/sample) is

totally stopped (filtered out) by the filter. The corresponding digital signal is x5(n) = cos

2π(1/3)n. The underlying continuous-time signal, x5(t), depends on the sampling frequency. If,

|H| = (1+2 cosω)/3

–2π –π 0 π 2π

for example, the sampling frequency is 16Hz, then x5(t) = cos 2π(16/3)t, and a frequency of 16/3
Hz will be totally filtered out. If the sampling frequency is 150Hz, then x5(t) = cos 2π(150/3)t,
and a frequency of 50 Hz will be eliminated.

In calibrating the horizontal axis in terms of the cyclic frequency, F, we use the relation

ω = ΩT = 2πFT = 2πF/Fs from which the point ω = 2π corresponds to F = Fs.

ω

(Aside) The system y(n) = x(n)
+

x(n −1)
+

x(n − 2) is a crude low pass filter, but the
3 3 3

attenuation does not increase monotonically with frequency. In fact, the highest possible
frequency, Fs/2 Hz, (or π rad/sample) is not well attenuated at all. The following is a slight
variation of the three-term moving average:

y(n) = x(n)
+

x(n −1)
+

x(n − 2)
4 2 4

Its magnitude response is a “raised cosine” (with no zero crossing, monotonically decreasing but

wider than the 3-term).

(End of Aside)

H(ω)=–ω

–2π –π 0 π 2π

Example 1.7.2 [MATLAB fplot] [Moving average filter]

H(ω) = 1 (1+ e− j 1 + e− j 2).
3

The program follows. Note that in MATLAB we use „w‟ for ω and the plot ranges over

(–2, 2). Both ω and the phase, X () , are in radians.

subplot(2,1,1);fplot('abs((1/3)*(1+exp(-j*w)+exp(-j*2*w)))', [-2*pi,2*pi], 'k');

xlabel('\omega');ylabel('Magnitude');

subplot(2,1,2);fplot('angle((1/3)*(1+exp(-j*w)+exp(-j*2*w)))', [-2*pi,2*pi], 'k');

xlabel('\omega');ylabel('Phase');

1

0.5

0

-6 -4 -2 0

4

2

0

-2

-4

-6 -4 -2 0

2 4 6

2 4 6

[Homework] Plot the output signal y(n) =

x(n) + x(n −1) + x(n − 2)

3

for several values of n 0

where the input is x(n) = cos 2π(1/3)n. Take x(–1) = x(–2) = 0.

Example 1.7.3 [MATLAB filter, freqz] [Moving average filter] Consider a signal x(t) = cos

(250t) sampled at 150 Hz. The corresponding x(n) = cos (2n/3) is the input to the moving
average filter. The following MATLAB segment plots x(n) vs. n and y(n) vs. n.

n=0:1:50;

x=cos(2*pi*n/3);

b=[1/3, 1/3, 1/3]; a=[1]; %Filter coefficients

y=filter(b, a, x);

subplot(3, 1, 1), stem(n, x, 'ko');title('Input x(n)=Cosine(2\pin/3)');

M
a

g
n
it
u
d
e

P

h
a
s
e

xlabel('n'), ylabel('x(n)')

subplot(3, 1, 2), stem(n, y, 'ko');title('Output y(n)=[x(n)+x(n-1)+x(n-2)]/3');

xlabel('n'), ylabel('y(n)');

w=0: pi/256: 2*pi; h=freqz(b, a, w);

subplot(3, 1, 3), plot(w*75/pi, abs(h));title('Magnitude Response');

xlabel('Frequency'), ylabel('Magnitude');

Input x(n)=Cosine(2n/3)

1

0

-1
0 5 10

15 20

25 30 35

n

40 45 50

Output y(n)=[x(n)+x(n-1)+x(n-2)]/3

0.5

0

-0.5

0 5 10 15 20 25 30 35 40 45 50

n

Magnitude Response

1

0.5

0
0 50 100 150

Frequency

Example 1.7.4 [MATLAB filter] [Moving average filter] As an extension of above example,

consider the signal consisting of a 2 Hz desirable component plus a noise component of 50 Hz

(with a smaller amplitude), sampled at 150 Hz.

x(t) = 5 cos (22t) + 2 cos (250t)

x(n) = 5 cos (2n/75) + 2 cos (2n/3)

In the following MATLAB segment we show both sequences, x(n) and y(n), on the same

(multi)plot so that they have the same scale. The smoothing action of the filter is easily

discernible in the multiplot.

n = 0: 1: 50;

x = 5*cos(2*pi*n/75) + 2*cos(2*pi*n/3);

b = [1/3, 1/3, 1/3]; a = [1]; %Filter coefficients

y = filter(b, a, x);

plot(n, x, 'b*', n, y, 'ko');

legend ('Input x(n)', 'Output y(n)');

title ('Moving average filter');

xlabel ('n'), ylabel('x(n), y(n)');

y
(n

)
M

a
g
n
it
u
d
e

x
(n

)

Moving average filter

8

6

Input x(n)

Output y(n)

4

2

0

-2

-4

-6

0 5 10 15 20 25 30 35 40 45 50

n

The same plot is shown below over a longer period.

Moving average filter

8

Input x(n)

Output y(n)

0 50 100 150

n

x
(n

),
 y

(n
)

x
(n

),
 y

(n
)

6

4

2

0

-2

-4

-6

[Homework] Examples 5.1.1, 5.1.2, 5.1.3 and 5.1.4, Proakis, 4th Ed.

Sketches of ideal digital low pass and high pass filters Ref. p. 23, O&S for LP filter.

Example 1.7.5 [2003] [O & S, p. 20, and L.C. Ludeman, p. 51] A linear time-invariant system

has unit sample response h(n) = u(n) – u(n–N). Find the amplitude and phase spectra.

Note that this would be an N-term moving average filter if h(n) =(1/N)[u(n) – u(n–N)].

0 1 2

n

N–1 N

h(n) = 1, 0 n N–1
0, elsewhere

H(ω) = h(k) e
−

N −1

j k = 1e− j k =
1− e

− j N

1− e− j
k = − k = 0

e− jN / 2 (e jN / 2 − e− jN / 2)

=
e− j / 2 (e j / 2 − e− j / 2)

=

sin(N / 2) e− j (N −1) / 2

sin(/ 2)

|H(ω)| =
sin(N / 2)

sin(/ 2)

See the plots in Oppenheim and Schafer.

and H (e
j

) = –ω(N–1)/2

Example 1.7.6 [MATLAB fplot] [5-term moving average filter] The program for the case

where N = 5 follows.

H(ω) = (1+ e
− j 1

+ e
− j 2

+ e
− j3

+ e
− j 4) =

1 − e − j 5

1 − e− j

Note that in MATLAB we use „w‟ for ω and the plot ranges from –2 to 2. Both ω and the

phase, X () , are in radians.

subplot(2,1,1);fplot('abs((1-exp(-j*w*5))/(1-exp(-j*w)))', [-2*pi,2*pi], 'k');

xlabel('\omega (Rad)');ylabel('Magnitude');

subplot(2,1,2);fplot('angle((1-exp(-j*w*5))/(1-exp(-j*w)))', [-2*pi,2*pi], 'k');

xlabel('\omega (Rad)');ylabel('Phase (Rad)');

N terms

h(n) = u(n) – u(n–N)

1

6

4

2

0

-6 -4 -2 0

 (Rad)

4

2

0

-2

-4

-6 -4 -2 0

 (Rad)

2 4 6

2 4 6

Properties of the discrete-time Fourier transform (DTFT)

For the DTFT Oppenheim & Schafer use the symbol X (e
j

) while Proakis uses X(ω).

(1) Periodicity X(ω) is periodic with period 2π, that is, X(ω+2π) = X(ω) for all ω. Since e

j n
is

periodic in ω with period 2π, it follows that X(ω) is also periodic with the same period.

Replacing ω with (ω+2π) gives

X(ω+2π) = x(n) e
− j (+2) n

= x(n) e
− j n

e
− j 2 n

= x(n) e
− j n

1
n = −

= X(ω) for all ω

n = − n = −

As a result, while in the continuous time case ranges from – to , in the discrete-time case
we need only consider values of ω over the range 0 to 2π (or, –π to π, or any 2π-long interval).

(2) Linearity The discrete Fourier-transform is a linear operation. If F{x1(n)} = X1(ω) and

F{x2(n)} = X2(ω), then F{a1 x1(n) + a2 x2(n)} = a1 X1(ω)+ a2 X2(ω) for any constants a1 and a2.

(3) Time shifting Time shift results in phase shift. If F{x(n)} = X(ω), then F{x(n–k)} =

e
− j k

X(ω).
Proof We have

F{x(n–k)} = x(n − k) e
− j n

n = −

On the right hand side set n–k = m, so that n = m+k and the limits n = – to change to m = –

 to + . Then

P
h
a
s
e
 (

R
a
d
)

M
a

g
n
it
u
d
e

2 0

F{x(n–k)} = x(m) e
− j (m+k)

= e–jωk x(m) e
− j m = e

–jωk
X(ω) QED

m = − m = −

(4) Frequency shifting Multiplication in the time domain by a complex exponential results in

frequency shifting. Given F{x(n)} = X(ω), then F e
j0 n

x(n) (=ωX–ω 0).
Proof We have

F e
j0 n

x(n)= e
j0 n

x(n) e
− j n

n = −

Alternatively, using the synthesis equation,
1

= x(n) e
− j (−0) n

= X(ω–ω0) QED
n = −

F-1{X(ω–ω0)} = X (−) e
j n

d
2

Set ω–ω0 = λ so that ω = λ+ω0 and the limits ω = 0 to 2π change to λ = –ω0 to (–ω0+2π), which

amounts to any interval of length 2π. Also dω= dλ. Then
1

F-1{X(ω–ω0)} =
2

X () e
j (+0) nd

2

= e j0 n
 1 X () e

j n
d = e

j0 n
x(n) QED

2 2

(5) Time reversal corresponds to frequency reversal. Given F{x(n)} = X(ω), then F{x(–n)} =
X(–ω).
Proof We have

F{x(–n)} = x(−n) e
− j n

n = −

On the right hand side set m = –n so that the limits n = – to change to m = to – , and
−

F{x(–n)} = x(m) e
j m

m =

Since this is a summation the limits can be written in reverse order, and we have

F{x(–n)} = x(m) e
− j (−) m

= X(–ω) = X (e
− j

)
m = −

QED

(6) Differentiation in frequency F{n x(n)} = j

X (e
j

) = x(n) e
− j n

n = −

dX (e
j

)

d

. Since

we differentiate both sides with respect to ω to get

dX (e
j

)

d

or

=
n =−

x(n)
de− j n

d

= x(n)(− jn) e
− j n

n = −

dX (e
j

)

j = n x(n) e
− j n

= F{n x(n)} QED
d n = −

(7) Convolution If y(n) represents the convolution of two discrete-time signals x(n) and h(n),

that is, y(n) = x(n)*h(n), then

1

=

1 2

2

 X

Y (e
j

)= F{x(n)*h(n)} = X (e
j

) . H (e
j

)

From the definition of the Fourier transform

Y (e
j

)= y(n) e
− j n

= {x(n)* h(n)}e
− j n

n =−

n = −

= h(k)x(n − k)e
− j n

n = − k = −
Interchanging the order of summation

Y (e
j

)= h(k) x(n − k) e
− j n

k = − n = −

The inner sum (I.S.) is handled thus: Let (n–k) = λ. Then as n goes from – to , λ goes from –

 to as well. Further n = λ+k. Thus the inner sum becomes

I.S. = x(n − k) e
− j n

= x() e− j (+k) =

 x() e− j
e− j k = e–jωk X (e j)

Thus we have

n = −

 = − =−

Y(e j)= h(k)e
− j k

X (e
j) = X(ejω) h(k) e

− j k
= X (e

j
) . H (e

j
)

k =− k =−

The function H (e
j

) is referred to as the frequency response of the system.

(8) Multiplication of two sequences Let y(n) be the product of two sequences x1(n) and x2(n)

with transforms X (e
j

) and X (e
j

) , respectively. Then

Y (e
j

)= F{x1(n). x2(n)} = X (e j) * X (e j)
1 2

1 j)X (e j (−))d
2

(e 1 2

2

This is called periodic convolution since both X (e j) and X (e j) are periodic functions.

(9) Parseval’s Theorem If x(n) and X (e
j

) are a Fourier transform pair, then

 x(n)
2

=
 1

 X (e
j)

2

d
n = − 2

2

Proof The energy E of the discrete-time sequence is defined as

E = x(n)
2
= x(n) x

*
(n)

n = − n = −

Making the substitution x*(n) =
1

X * (j
− j n

2
 −

e) e d , we get

E = x(n) 1 X
* (e

j)e− j n
d

2
n =− −

Interchanging the order of integration and summation,

 n =−

2

E =
1

2

X
* (e

j)
−

 x(n) e
− j n d

= X (e
j

)

1
 X

* (e
j)X (e

j)d
−

=
1 X (e

j)
2

d QED

2 −

(10) Scaling – expansion in time For con tinuous-time Fourier transforms we have the property

that if x(t) ↔ X(Ω), then x(at) —
1

X . This amounts to time-compression if a > 1 and to
a a

time-expansion if a < 1.

The relation between time- and frequency-scaling in discrete time takes on a somew hat

different form though. However, there is a result that does closely parallel x(at) —
1

X .
a a

Define y(n) = x(n/k), where k is a positive integer, as

y(n) = x(n/k), if n is a multiple of k

0, if n is not a multiple of k

This is time expansion. For example, if k =3, then y(n) is obtained from x(n) by placing k–1 = 2

zeros between successive values of x(n). That is,

y(0) = x(0), y(1) = y(2) = 0, y(3) = x(1), y(4) = y(5) = 0, … Etc.

Since y(n) equals zero unless n is a multiple of k, i.e., unless n = rk, where r = all integers from
– to + , we have the Fourier transform of y(n) as:

Y(e
j)= y(n) e

− j n

n = −

= y(rk) e
− j r k

r = −

Since y(rk) = x(rk/k) = x(r), we have

Y(e
j)= x(r) e

− j r k

r = −
= x(r) e− j (k) r

r = −

= X (e
j k)

Thus we have the relation: Given x(n) — X (e
j), then x(n/k) — X (e

jk).

Example 1.8.1 [2003] (Frequency response) A discrete-time system is given by

y(n) – 5 y(n–1) = x(n) + 4 x(n–1)

where x(n) is the input and y(n) is the output. Determine its magnitude and phase response as a

function of frequency.

Solution The frequency response is obtained by taking the discrete-time Fourier transform of

both sides of the difference equation:

F{y(n) – 5 y(n–1)} = F{x(n) + 4 x(n–1)}

With F{y(n)} = Y (e
j

) and F{y(n–k)} = e–jωk Y (e
j

) the above equation becomes

=

−

Y (e
j

)– 5 e–jω Y (e
j

)= X (e
j

) + 4 e–jω X (e
j

)

Y (e
j

) (1 – 5 e–jω) = X (e
j

) (1 + 4 e–jω)
 −1 −4sin

j − j
2 2

j tan

1+4cos Y (e) = H (e
j

) =
1+ 4e

 = (1+ 4 cos) + (4 sin) e
 X (e

j
) − j j tan−1 5sin

 1− 5e (1− 5 cos)

2
+ (5sin)

2
e

 1−5cos

 −1 −4sin −1
5sin 2 2 j tan tan

(1+ 4 cos) + (4 sin) −
 1+4cos 1−5cos

= e
(1 − 5 cos)

2
+ (5sin)

2

With the notation H () =

as follows:

H () e
jH ()

we can identify the magnitude and phase, respectively,

|H(ω)| =
(1+ 4 cos)

2
+ (4 sin)

2

(1− 5 cos)
2
+ (5sin)

2
=

 4 sin

17 + 8 cos
26 −10 cos
 5sin

H (e
j

)= − tan
−1

 + tan
−1

 1 + 4 cos 1 − 5 cos

1+ 4e
− j

The MATLAB program follows for H(ω) =
− j

. Note that in MATLAB we use „w‟
1 5e

for ω and the plot ranges from –2 to 2. Both ω and the phase, X () , are in radians.

subplot(2,1,1);fplot('abs((1+4*exp(-j*w))/(1-5*exp(-j*w)))', [-2*pi,2*pi], 'k');

xlabel('Omega');ylabel('Magnitude');

subplot(2,1,2);fplot('angle((1+4*-exp(-j*w))/(1-5*exp(-j*w)))', [-2*pi,2*pi], 'k');

xlabel('Omega');ylabel('Phase');

1.5

1

0.5

0.1

0.05

0

-0.05

-0.1

-6 -4 -2 0

Omega

-6 -4 -2 0

Omega

2 4 6

2 4 6

P
h
a
s
e

M
a

g
n
it
u
d
e

0

1− ae

Example 1.8.2 [Convolution] If X (e
j

) = DTFT{x(n)} and y(n) = x(n)*x(–n) then from

Properties 5 and 7 Y (e
j

)= DTFT{y(n)} = DTFT{x(n)*x(–n)}= X (e
j

) X (e
− j

) . This result

may also be obtained from the defining equation

Y (e
j

)= {x(n)* x(−n)}e
− j n

n =−

The convolution within the braces is x(n)*x(–n) = x(k)x(−(n − k)) , so that
k = −

Y (e
j

)= x(k)x(k − n) e
− j n

n =− k =−

= x(k) x(k − n)e
− j n

k =− n =−

Set k–n = m etc.

Example 1.8.3 [2009] [Convolution] If X (e
j

) = DTFT{x(n)} and y(n) =

Y (e
j

)= DTFT{y(n)}.

x(n) x

(−n) find

Example 1.8.4 [2008] Find a difference equation to implement a filter with unit sample response

h(n) = (1/ 4)n
cos(n / 3) u(n)

Solution In the math manipulation it would help to write cos(n / 3) in its exponential form. You

should also memorize the two standard z-transform pairs: Z{ cos(0n) u(n)} and

Z{ a
n
cos(n) u(n) }.

Hint Either use DTFT: Find the DTFT F{h(n)} = H(ejω) =
 Nr()

Dr()
.

Y (e
j

) jω
j

1) Based on the relation = H(e) set Y (e) Nr() = ,
X (e

j
) X (e

j
) Dr()

2) Cross-multiply to get Y(ejω) Dr() = X(ejω) Nr(),

3) Take inverse DTFT using time-shifting property (see below), and
4) Rearrange terms.

Or, use z-transforms: Find the z-transform Z{h(n)} = H(z) =
Nr(z)

.

Dr(z)

1) Based on the relation
Y (z)

= H(z) set Y (z)
=

Nr(z)
,

X (z) X (z) Dr(z)

2) Cross-multiply to get Y(z) Dr(z) = X(z) Nr(z),

3) Take inverse z-transform using time-shifting property, and

4) Rearrange terms.

Example 1.8.5 [2008] Find the inverse DTFT of X (e

j
)= 1

1 − (1/ 3) e
− j10

Hint Use the result, derived in an earlier example, that for the exponential sequence x(n) =

a
n
u(n), |a| < 1, the DTFT is

X (e
j

) = a
n

e
− j n

= (ae
− j)n

=
1

with a = 1/3
− j

n = 0 n = 0

.

n even

Then use the scaling property that if x(n) — X (e
j), then x(n/k) — X (e

jk)with k = 10.

Alternatively, use the defining equation

F-1{X(ω)} = x(n) =
1
 X (e

j
) e

j n
d

2 −

Example 1.8.6 [Scaling – compression in time] Given x(n) — X (e
j) and y(n) = x(2n), find

Y (e
j).

Solution This is a specific result, not a general property. We have

Y (e
j)= y(n) e

− j n

n = −

= x(2n) e
− j n

n = −

= x(n) e− j n / 2
1 1

n

= x(n) + (−1)
n

x(n)e
− j n / 2

= x(n) e− j n / 2 +
1 x(n) ((−1) e

− j / 2)
n = − 2 2 n = − 2 n = −

=
1
 x(n) e − j (/ 2) n

+
1

 x(n) − e − j (/ 2) n

2 n = −

Notationally, we may write this as

2 n = −

Y (e
j)

1
= X (e j / 2)

1
+ X (− e j / 2)

2 2

77 of 77

The z-transform and realization of digital filters

Review of z-transforms, Applications of z-transforms, Solution of difference equations of digital

filters, Block diagram representation of linear constant-coefficient difference equations, Basic

structures of IIR systems, Transposed forms, Basic structures of FIR systems, System function.

Contents:

Introduction

Important properties of z-transforms

Transforms of some useful sequences

Region of convergence and stability

Inverse z-transform by partial fractions

Relationships among system representations

Inverse z-transform by power series expansion (long division)

Computation of frequency response

Z-transforms with initial conditions

Steady-state and transient responses for a first order system

Realization of digital filters

The Lattice structure – Introduction

*Inverse z-transform by complex inversion integral

Im

z-plane

 ROC

Re

Rx+

Rx–

Introduction

For continuous-time systems the Laplace transform is an extension of the Fourier transform.

The Laplace transform can be applied to a broader class of signals than the Fourier transform

can, since there are many signals for which the Fourier transform does not converge but the

Laplace transform does. The Laplace transform allows us, for example, to perform transform

analysis of unstable systems and to develop additional insights and tools for LTI system analysis.

The z-transform is the discrete-time counterpart of the Laplace transform. The z-

transform enables us to analyze certain discrete-time signals that do not have a discrete-time

Fourier transform. The motivations and properties of the z-transform closely resemble those of

the Laplace transform. However, as with the relationship of the continuous time versus the

discrete-time Fourier transforms, there are distinctions between the Laplace transform and the z-

transform.

Definition The two-sided (bilateral) z-transform, X(z), of the sequence x(n) is defined as

X(z) = ʓ{x(n)} = x(n)z
−n

n =−

where z = r e
j

is the complex variable. The above power series is a Laurent series.

The one–sided (unilateral) z-transform is defined as

X+(z) = x(n)z
−n

n = 0

The unilateral z-transform is particularly useful in analyzing causal systems specified by linear

constant-coefficient difference equations with nonzero initial conditions into which inputs are

stepped. It is extensively used in digital control systems.

The region of convergence (ROC) is the set of z values for which the above summation

converges. In general the ROC is an annular region in the complex z-plane given by

ROC = Rx– < |z| < Rx+

Relationship between the z-transform and the discrete-time Fourier transform Setting z =
r e j in the definition gives us

X (z)

= x(n)(re
j)−n

z = r e n =−

[r −n x(n)]e− j n

n =−

j =

If |z| = r = 1, then the z-transform, evaluated on the unit circle, gives the discrete-time Fourier

transform of the sequence x(n), i.e.,

X (e
j

)= x(n)e
− j n

= X (z)

n =−
z = e j

Example 1.1.1 The positive-time signal

x(t) = e
− t

, t 0

0, otherwise

is sampled at T-second intervals resulting in the sequence x(nT) or x(n)

x(n) = e
− t

t = nT

= e
− nT

= (e−T)n

= a
n
, a = e

−T
 and n 0

x(n) = a
n

, n 0

0, n < 0

If a < 1 this sequence decays exponentially to 0 as n → ∞. Substituting x(n) into the defining

equation, the z-transform is

ʓ{x(n)} = X(z) = an
z

−n

n = 0

= (az
−1

)
n

n = 0

=
1 −1az

−1, |az
–1

| < 1

 1

1− az
−1

=
z

z − a
, |z| > |a|

The ROC is |z| > |a|. This X(z) is a rational function (a ratio of polynomials in z). The

roots of the numerator polynomial are the zeros of X(z) and the roots of the denominator

polynomial are the poles of X(z).

This is a right-sided sequence. Right-sided sequences have a ROC that is the exterior of a
circle with radius Rx– (|z| > |a| in this case). If the ROC is the exterior of a circle it is a right-
sided sequence.

Definition A right-sided sequence x(n) is one for which x(n) = 0 for all n < n0 where n0 is

positive or negative but finite. If n0 0 then x(n) is a causal or positive-time sequence.

Zero at 0

a
Re

Pole at a

z-plane

ROC, |z| > |a|
(Shaded area) Im

=

Example 1.1.2 The negative-time sequence x(n) = –bn u(–n–1). Recall that the unit step

sequence u(.) = 1 if the argument of u(.) is 0, i.e., if (–n–1) 0 or n –1.

x(n) = –bn, n –1

0, otherwise

If b > 1 this sequence decays exponentially to 0 as n → –∞. The z-transform is,
 −1 −1

ʓ{x(n)} = X(z) = x(n)z
−n

= − b
n
z

−n
= – (bz

−1
)

n

n =− n =− n =−

Let n = –m and change the limits accordingly to get,
1

X(z) = – (bz
−1

)
−m

= 1– (b−1
z)m

m = m = 0

We added 1 in the last step above to make up for the m = 0 term within the summation. The

result is,

X(z) = 1–
1

(1− zb
−1

)

=
z

,

z − b

, |z b–1| < 1

ROC is |z| < |b|

Re

This is a left-sided sequence. Such a sequence has a region of convergence which is the

interior of a circle, |z| < Rx+. In this case the ROC is |z| < |b|.
Note that if b = a then the two examples above have exactly the same X(z). So what

makes the difference? The region of convergence makes the difference.

Definition A left-sided sequence x(n) is one for which x(n) = 0 for all n n0, where n0 is

positive or negative but finite. If n0 0 then x(n) is an anticausal or negative-time sequence.

Im
z-plane

 ROC
pole

b

zero

 a z b z

Im

zero zero (a+b)/2

a b
Re

ROC

poles

When |a| < |b|

Example 1.1.3 [Two-sided sequence] This is the sum of the positive- and negative-time

sequences of the previous two examples.

y(n) = an, n 0 = an u(n) – bn u(–n–1)

–bn, n < 0

Substituting into the defining equation,
 −1

Y(z) = ʓ{y(n)} = [a
n
u(n) − b

n
u(−n −1)]z

−n
= an

z
−n

− bn z −n

Now, from Examples 1 and 2,

n =− n = 0

−1

n =−

n −n =
 z (ROC |z| > |a|) & n −n =

 z (ROC |z| < |b|)
n = 0 z − a n =− z − b

So, the desired transform Y(z) has a region of convergence equal to the intersection of the two

separate ROC’s |z| > |a| and |z| < |b|. Thus

Y(z) = z
z − a

z

z − b
, with ROC {|z| > |a|} {|z| < |b|}

z(2z − a − b)
= , with ROC |a| < |z| < |b|

(z − a)(z − b)

The ROC is the overlap of the shaded regions, that is, the annular region between |a| and |b|. The
two zeros are at 0 and (a+b)/2, and the two poles at a and b.

+

Im |z| > |a|

zero

z–1

No ROC
when |b| < |a|

zero

b a
Re

poles

z–1

If |b| < |a| the transform does not converge.

In the above three examples we may express the z-transform both as a ratio of

polynomials in z (i.e., positive powers) and as a ratio of polynomials in z–1 (negative powers).

From the definition of the z-transform, we see that for sequences which are zero for n < 0, X(z)

involves only negative powers of z. However, reference to the poles and zeros is always in terms

of the roots of the numerator and denominator expressed as polynomials in z. Also, it is

sometimes convenient to refer to X(z), written as a ratio of polynomials in z (i.e., positive power

of z), as having poles at infinity if the degree of the numerator exceeds the degree of the

denominator or zeros at infinity if the numerator is of smaller degree than the denominator.

Example 4.1.4 [Finite-length sequence] Only a finite number of sequence values are non-zero,

as given below.

x(n) = 0 for n < N1 and for n > N2, where N1 and N2 are finite

non-zero for N1 n N2

By the defining equation we have
N2

 1 2

X(z) = n = N1 x(n)z
−n

= x(N)z
− N1 +….. + x(N)z

− N2

Convergence of this expression requires simply that |x(n)| < for N1 n N2. Then z may take

on all values except z = if N1 is negative and z = 0 if N2 is positive. Thus the ROC is at least 0
< |z| < and it may include either z = 0 or z = depending on the sign of N1 and N2.

Important properties of z-transforms

The proofs are easily obtained by using the basic z-transform definition and transformations in

the summation. [Sec 2.3 Oppenheim & S]

2

ʓ

j2
 X (v)Y v −1

dv , ROC r

2 1

(1) Linearity If ʓ[x(n)] = X(z) with ROC rx1 <|z|< rx2 and ʓ[y(n)] = Y(z) with ROC ry1 <|z|< ry2

then ʓ[a x(n) + b y(n)] = a X(z) + b Y(z) with ROC at least the overlap of the ROC’s of X(z) and

Y(z). If there is any pole-zero cancellation due to the linear combination, then the ROC may be
larger.

(2) Translation (Time-shifting) If ʓ[x(n)] = X(z) with ROC r1<|z|< r2 then ʓ[x(n–k)] = z–k X(z)
with the same ROC except for the possible addition or deletion of z = 0 or z = ∞ due to z–k.

Example Given x(n) = {1, 2} and x2(n) = x(n+2) find X(z) and X2(z) and their respective ROCs.

X(z) = 1+ 2z
−1

, ROC: entire z-plane except z = 0; X2(z) = z
2
(1+ 2z

−1
) =

plane except z = ∞.
z

2
+ 2z , ROC: entire z-

(3) Multiplication by a complex exponential sequence (Scaling in the z-domain) If ʓ[x(n)] =

X(z) with ROC r1 <|z|< r 2 then ʓ[an x(n)] = X (z)
z→(z / a)

with ROC |a| r1 <|z|< |a| r2.

Example Given x(n) = {1, 2} and x2(n) = 0.5
n
x(n–2) find X(z) and X2(z) and their respective

ROCs.

(4) Multiplication by a ramp If ʓ[x(n)] = X(z) with ROC r1 <|z|< r2 then

ʓ[n x(n)] = − z
dX (z)

with ROC r <|z|< r .
1 2

dz
Example Given x(n) = {1, 2} and x2(n) = (1+ n + n

2
) x(n) find X(z) and X2(z) and their respective

ROCs. ʓ[x2(n)] = ʓ[1] + ʓ[n x(n)] + ʓ[n [n x(n)]] = …

(5) Time reversal If ʓ[x(n)] = X(z) with ROC r1 <|z|< r2 then ʓ[x(–n)] = X (z
−1

) with ROC

(1/ r)<|z|< (1/ r)

Example Given x(n) = 2
−n

u(n) and X (z) = z X (z
−1

) determine x2(n).

x(n) = (0.5)
n
u(n) , X(z) =

z
, ROC: 0.5 <|z|

z − 0.5

ʓ-1{ X (z
−1

) } = x(–n); x2(n) = ʓ-1{ z X (z
−1

)} = x(–(n+1)).= 2
−(−(n+1))

u(−(n +1))

(6) Convolution in time domain leads to multiplication in frequency domain Given [x(n)] =

X(z) with ROC zRx and ʓ[y(n)] = Y(z) with ROC zRy and x(n)*y(n) = x(k)h(n − k) then
k =−

ʓ[x(n)*y(n)] = X(z).Y(z) with ROC zRx Ry.

(7) Multiplication in time domain leads to convolution in frequency domain If ʓ[x(n)] = X(z)

with ROC rx1 <|z|< rx2 and ʓ[y(n)] = Y(z) with ROC ry1 <|z|< ry2 then

ʓ[x(n).y(n)] =
 1

 z
 v

x1 ry1 <|z|< rx2 ry2.

where
C2

C2

is a complex contour integral and C2 is a closed contour in the intersection of the ROCs

of X(v) and Y(z/v).

(8) Initial Value Theorem If x(n) is a causal sequence with z transform X(z), then

x(0) = lim X (z)
z →

(9) Final Value Theorem If ʓ[x(n)] = X(z) and the poles of X(z) are all inside the unit circle then
the value of x(n) as n→ is given by

x(n)
n →

= lim [(z −1) X (z)]
z →1

Some also give this as x(n)
n →

= lim [(1 − z
−1

) X (z)]
z →1

Transforms of some useful sequences

(1) The unit sample δ(n):

ʓ[δ(n)] = (n) z
− n

n = −

Delayed unit sample δ(n–k):

=1. z0 = 1, ROC all z

ʓ[δ(n–k)] = (n − k) z
− n

n = −

(2) Unit step u(n) (positive time):

=1. z–k = z–k, ROC |z| > 0 if k > 0 (|z| < if k < 0)

ʓ[u(n)] = u(n) z
− n

= 1 z
− n = 1+ z

–1
+ z

–2
+…

n = −

 1

1 − z
−1

n = 0

=
z

, ROC |z–1| < 1 or |z| > 1

z − 1
(3) Unit step –u(–n–1) (negative time):

ʓ[–u(–n–1)] = − u(−n − 1) z
− n

n = −

−1

= (−1) z
− n

n = −

−1

= – z
− n

n = −

z

0

= 1 – z
− n

n = −

=1 – (1 + z + z2 +…) = 1 – 1
1 − z

, ROC |z| < 1
z − 1

(4) Exponential a
n
u(n) , derived in earlier example:

z

ʓ[anu(n)] =

z − a
, ROC |z| > |a|

(5) Exponential − bnu(−n −1) ; negative time; derived earlier:
z

ʓ[− b
n
u(−n −1)] =

z − b
, ROC |z| < |b|

z

(6) Unit ramp n u(n). Given that ʓ[u(n)] = U(z) =
z −1

ʓ[n u(n)] = – z
dU (z)

= –z
d z

 − z[(z −1).1− z.1]

 =
dz dz z − 1 (z −1)

2

z
=

(z − 1)
2

(7) Sinusoid sin 0n u(n): ʓsin 0 n u(n)=

ROC |z| > 1, same as that of U(z)

z sin 0

, ROC |z| > 1

 z − 2 z cos 0 +1
2

=

=

n

j 2
 z

2
z(e j0 + e− j 0) + 1

j 2 z
2

z(e j 0 + e − j) +1

+
= 2

=
0 0

i

0 2 , ROC |z| > 1

ʓ

e j 0 n −e− j 0 n

 sin 0 n u(n) = sin 0 n z− n = j
 z − n

n = 0
1 j

n = 0 2
 j

 =
j 2

n

0 z−1) − 0 z−1)
 n = 0

1 1

(e−

n = 0
1

 j −1

= − , ROC | e

j 2 1− e
j0 z

−1

1 − e− j0 z−1

0 z | < 1 or |z| > 1

= 1 z z

 j − j

j 2 z − e 0 z − e
− 0

z (z − e

− j0) − (z − e
j0)

=

z (e

j0 − e
− j 0)

Using the identities

=

 0

whaeve

cos 0n =
e j0 + e− j0

2
and

z sin0

sin 0n =
e j0 − e− j0

j2

ʓsin 0 n u(n)= 2

z −2z cos 0 +1

As an extension, using property #3,

, ROC |z| > 1

ʓ an
sin n u(n) =

(z / a) sin 0
 az sin 0 , ROC |z| > a

0
(z / a)

2
− 2(z / a) cos

1 z −o2saz c + a
2

0 0

e j0 n + e− j0 n

(8) Cosinusoid cos 0 n u(n). Using the relation cos 0 n =
2

that for the sinusoid we get

and a procedure similar to

ʓcos n u(n)= z2−ozsc

z −s2 z co 0 +1
As an extension, using property #3, ʓ an

cos n u(n)= (z /a) − (z / a) cos z −za cos , ROC |z| > a 2 2

0

0
(z / a)

2
− 2(z / a) cos +1 z

2
−o2saz c

0

 + a
2

Region of convergence and stability

Suppose x(n) is a causal sequence that can be written as a sum of complex exponentials. This

takes in a wide class of signals including sinusoids, exponentials, and products thereof. Let
N

x(n) = a
n
u(n)

i =1

Taking the z transform of x(n) gives

ʓ[x(n)] = X(z) =
N z

i =1 z − ai

0

ROC,

|z| > Largest |ai|

Largest |ai|

All other ai
inside circle

Re

z-plane

Im

The region of convergence R is the intersection of the regions of convergence for each

exponential as follows:
N

R = Ri where Ri = {z: |z| > |ai|}
i=1

Therefore, R = {z: |z| > largest of |ai|} as shown here (Figure)

Since the ROC for a translated exponential remains the same as that for the original

exponential, all right-sided sequences that are sums of translated exponentials have ROCs similar

to that expressed above.

By a similar argument all left-sided sequences expressible as a sum of translated complex

exponentials have a ROC, L, given by
L = {z: |z| < smallest of |bi|}

If we have a combination of right- and left-sided sequences, the corresponding ROC is

the intersection of R and L. Therefore the total ROC becomes an annular region as shown below

and given by

RTotal = R L = {z: Largest of |ai| < |z| < smallest of |bi|}

Annular region Im

is the total ROC Largest ai

Smallest bi

Re

All other ai inside
the inner circle

All other bi outside
the outer circle

The stability of a system with an impulse response that is the sum of translated right- and

left-sided sequences can be determined from the region of convergence. Assume that h(n) is the

unit sample response of a causal or non-causal linear shift-invariant system. Let ʓ[h(n)] = H(z),
the so-called system function. Then:

Theorem A linear shift-invariant system with system function H(z) is BIBO stable if and only if
the ROC for H(z) contains the unit circle.

This theorem can be used to determine stability for a given H(z) without obtaining the

impulse response or checking outputs for all bounded input signals.

Illustration of stability and causality For A system function with 2 poles at, say, z = 0.5, and z

= 1.5, there are three possible regions of convergence.

(1) ROC is 0.5 < |z| < 1.5. Here the system is stable since the unit circle is inside the

region of convergence. The impulse response, h(n), is two-sided, so the system is noncausal.

Re

Im

Unit circle

1.5 0.5

ROC

1

 1.5 0.5

ROC

Re

Im

(2) ROC is |z| < 0.5. Here the system is not stable. The impulse response, h(n), is left-

sided, so the system is noncausal.

Re

(3) ROC is |z| > 1.5. Here the system is not stable. The impulse response, h(n), is right-

sided, so the system may be causal.

Inverse z-transform by partial fractions

(Aside) Comparison of inverse z-transform methods A limitation of the power series method is

that it does not lead to a closed form solution (although this can be deduced in simple cases), but

it is simple and lends itself to computer implementation. However, because of its recursive

nature care should be taken to minimize possible build-up of numerical errors when the number

of data points in the inverse z-transform is large, for example by using double precision.

Im

Unit circle

1.5 0.5

ROC

Both the partial fraction method and the inversion integral method require the
evaluation of residues albeit performed in different ways. The partial fraction method requires

the evaluation of the residues of X(z) or
X (z)

. The complex inversion integral requires the
z

evaluation of the residues of X (z) z
n−1

. In many instances evaluation of the complex inversion

integral is needlessly difficult and involved.

Both the partial fraction method and the inversion integral method lead to closed form
solutions. The main disadvantage is having to factorize the denominator polynomial of X(z)

when it is of order greater than 2. Another disadvantage is multiple order poles and the resulting

differentiation(s) when determining residues.

The partial fraction method directly generates the coefficients of parallel structures for

digital filters. The inversion integral method is widely used in the analysis of quantization errors

in discrete-time systems.

(End of Aside)

As in Laplace transforms, in order to expand a rational function into partial fractions, the
degree of the numerator should be less than the degree of the denominator – proper fraction. If it
is not then we perform long division as below where Q(z) is the quotient and N1(z) is the
remainder.

X(z) =
N(z)

D(z)

= Q(z) +
N1 (z)

D(z)

Long Division

Q(z) ←Quotient

Denominator→ D(z) N(z) ←Numerator

 N1(z) ←Remainder

The long division is done until we get a remainder polynomial N1(z) whose degree is less than
the degree of the denominator D(z). We then obtain x(n) as

 N (z)
x(n) = ʓ-1{X(z)} = ʓ-1{Q(z)} + ʓ-1

1

 D(z)
Since N1(z)/D(z) is a proper fraction it can be expanded into partial fractions. The overall inverse
transform is obtained by looking up a table of z-transform pairs.

However, there is an alternative available in the case of z-transforms which is not

available in Laplace transforms. This is a result of the fact that z-transforms are characterized by

a z in the numerator (as can be verified by looking at a table of z-transforms). Therefore, instead

of expanding X(z) we may, instead, expand [X(z)/z] into partial fractions giving

X (z)
z

A

z − z1

B
+ + …

z − z
2

so that X(z) is given by
A z Bz

X(z) = + + …

z − z1 z − z2

This can be inverted by a simple look-up of a table of transforms. Note also that in some cases

X(z) = N(z)/D(z) may not be a proper fraction but [X(z)/z] is and, therefore, this method obviates

the need for long division of N(z) by D(z). (In still other cases even [X(z)/z] may not be a proper

fraction. See later under “General procedure for partial fraction expansion”.)

=

2

1 =

Example 1.5.1 (See also long division later). Find the inverse z-transform, using partial

fractions, of

X(z) = 2 z
2
− 3 z

z
2
− 3 z + 2

=
N(z)

D(z)

This is not a proper fraction since the degree of the numerator is not less than the degree of the

denominator. However, (X(z)/z) is a proper fraction

X (z)
=

z

 2 z − 3

z
2
− 3 z +

2 z − 3

 =
(z −1) (z − 2)

which has the partial fraction expansion

X (z)

z

=
1

+

(z −1)

1

(z − 2)
or X(z) = z

(z −1)

z

 +
(z − 2)

By looking up a table of z-transforms the inverse z-transform is

ʓ-1{X(z)} = x(n) = u(n) + 2n u(n)

Note that we are giving here the causal solution that corresponds to a ROC |z| > 2 (not 1 < |z| <

2 or |z| < 1) so that x(n) is a right-sided sequence.

The alternative method is to divide N(z) by D(z) as below (as is standard practice in

Laplace transforms). Note that in this long division the numerator and denominator polynomials

are arranged in the order of decreasing powers of z. There are three other ways (all of them

wrong) of arranging the two polynomials for the long division.

Long Division

2 ←Quotient

Denominator→ z2 –3z + 2 2z2 – 3z ←Numerator

2z2 – 6z + 4

3z – 4 ←Remainder

Thus X(z) can be expressed as
X(z) = 2 + 3z − 4 = 2 +X (z) where X (z) = 3 z − 4 1

(z −1)(z − 2)
1

(z −1)(z − 2)

X1(z) is a proper fraction and can be expanded into partial fractions as below:

X (z) = 3 z − 4
(z −1)(z − 2)

 A
z −1

B

z − 2

Solving for A and B we get A = 1 and B = 2, so that X(z) may be written

X(z) = 2 + 1
z −1

2

z − 2
Taking the inverse z-transform we get

x(n) = ʓ-1{X(z)} = ʓ-1 2 +
1

+
2

 z −1 z − 2

= ʓ-1{2} + ʓ-1
 1

+ ʓ-1
 2

 1

 z −1 z − 2
1 z

−1
. z z

A term like ʓ-1 is handled by writing as . We know that ʓ-1 = u(n), so
 z −1 z −1 z −1 z −1

 −1

ʓ-1 z
z

 = u(n–1)

 z −1

+

+

−

R

Similarly ʓ-1
 2 = 2 . 2n–1 u(n–1). Thus

 z − 2

x(n) = 2 δ(n) + u(n–1) + 2 . 2n–1 u(n–1)

This can be verified to be equivalent to x(n) = u(n) + 2n u(n) obtained earlier.

In MATLAB (Partial fractions) The partial fractions may be computed by using the residuez
function. In this method X(z) is arranged as a ratio of polynomials in negative powers of z and, in

the denominator, the leading coefficient a0 0. See “General procedure for partial fraction
expansion” later.

X(z) = 2 − 3 z
−1

−

 R1

= K + + 2

1−3z
1
+2z

−2
 1− pz

−1
1 − zp

−1

1 2

We define the coefficient vectors b = [2, -3] and a = [1, -3, 2]; R = [R1, R2] represents the
residues (partial fraction constants), p = [p1, p2] the poles and K a constant.

%Partial fractions

b = [2, -3], a = [1, -3, 2],

[R, p, K] = residuez (b, a)

The MATLAB results returned are

R =

1

1

p =

2

1

K =

[]

The MATLAB output tells us that the poles are at z = 2 and z = 1 and the corresponding residues

are, respectively, 1 and 1. Further K = 0. Therefore,
2 − 3 z

−1

1 1 z z

X(z) =
1−3z

−1
+2z

−2
= 0 +

1− 2z
−1 +

1−1z
−1 =

z − 2

+
z −1

Note that the X(z) =
1

1− 2z
−1

+
1

−1

1 1z
obtained by the residuez function and X(z)

=
z

1
(z −1)

1

(z − 2)
are

the same since X(z) has no repeated poles. This won’t be the case if X(z) has repeated poles.

Example 1.5.2 Find if the discrete LTI system described by

y(n) – y(n–1) + 0.5 y(n–2) = x(n) + x(n–1)

is BIBO stable or not. Find its transfer function and impulse response. Sketch its pole-zero plot.

Solution Take the z-transform of both sides:

ʓ{y(n) – y(n–1) + 0.5 y(n–2)} = ʓ{x(n) + x(n–1}

Y(z) – z
−1

Y(z) + 0.5 z
−2

Y(z) = X(z) + z
−1

X(z)

Y(z) (1– z
−1

+ 0.5 z
−2

) = X(z) (1 + z
−1

)

+

− +

1

Pole at 0.5 – j 0.5
Zero at 0

Zero at –1

Re

Pole at 0.5 + j 0.5 Unit circle

Im

H(z) =

Y (z)
=

X (z)

1+ z
−1

−1 −2
=

1 z 0.5z

(z

(z +1) / z
2
− z + 0.5) / z

 z(z + 1)

z
2
− z + 0.5

The denominator has roots at

− (−1) (−1)
2
− 4.1.(0.5)

z1, z2 = =
2

1− 2

2

1 j1
=

2

= 0.5 j0.5

= (0.5 + j0.5) and (0.5 – j0.5)

Thus the transfer function H(z) has zeros at z = 0, z = 1, and poles at z = 0.5 ± j0.5. For a causal

system (right-sided sequence, h(n)) the region of convergence is |z| > |0.5 + j0.5| or |z| > 0.707.

(Figure)

The impulse response is given by h(n) = ʓ-1{H(z)}. We need partial fractions for H(z);

we shall instead handle H(z)/z:
H (z) z +1 z + 1

z
=

z
2
− z + 0.5

=
(z − 0.5 − j0.5) (z − 0.5 + j0.5)

A
= +

z − 0.5 − j0.5

Solving for A and A*, we get

*

A

0z .−5 + j0.5

z +1
A = = 0.5 + j0.5 + 1

=
1.5 + j0.5

z − 0.5 + j0.5 z =0.5+ j 0.5 0.5 + j0.5 − 0.5 + j0.5 j

Thus we have

= 0.5 – j1.5 =

A* = 0.5 + j1.5

e− j tan−13

*

 H (z)
z

 A
z − (0.5 + j0.5)

A

z − (0.5 − j0.5)

H(z) = A
z

z − (0.5 + j0.5)
+ A*

z

z − (0.5 − j0.5)

= a = b

5 / 2

1

= +

2 =

2

2

2

2 2

2 2

2 2

2 2

2 2

2

 1

 ()

where

a = 0.5 + j0.5 =

b = 0.5 – j0.5 =
1

e− j / 4

e j tan−11 =
1

e j / 4

The inverse z-transform is

h(n) = A an + A* bn, n 0

0, otherwise

So that for n 0,
 1 / 4

n

* 1

− j / 4

n

h(n) = A

e
j

 1
n

+ A e

n
j n / 4 *

− j

n / 4

= A e

+ A e

n n

 1
− j

3 1

j n / 4 1

3 1

− j n / 4

= e
 2 2

n

+ + j
 2

 e
2

n
1 1

3 1

=
2

n

(e j n / 4 + e− j n / 4) + j

2
n

(− e j n / 4 + e− j n / 4)

 1 e j n / 4 + e− j n / 4 3 1 − e j n / 4 + e− j n / 4
 =

 + j

2 2
 j2

j2

 1

n
 1

n

e j n / 4 − e− j n / 4
=

cos (n/4) + 3

j2

To sum up,
 1

n

h(n) = [cos (n/4) + 3 sin (n/4)], n 0

 2

0, otherwise

Alternatively, since the two terms in

h(n) = A e j n / 4

 + A
* e− j n / 4

, n 0

(2)
n

(2)
n

are complex conjugates of each other we can write

 e j n / 4

 h(n) = 2 Re A , n 0
n

sin (n/4)

cos (n/4)

0.5
2
+ 0.5

2

2

2

2 2 2

=

ʓ n z −za cos

 0

0

0

Alternative In the above solution the impulse response initially contains complex numbers;

these have been algebraically manipulated into sine and cosine terms. A more direct way to

obtain the impulse response in a form that contains no complex numbers is to use results #7 and

#8 in “Transforms of some useful sequences” and manipulate the transform
2

H(z) = z(z + 1) z + z

z
2

− z + 0.5 z
2
− z + 0.5

into those forms. Comparing the denominator of H(z) with the denominator of the transforms of

the sine and cosine functions

ʓ an
sin n u(n) ==

az sin 0
 , ROC |z| > a

and

0
z

2
−o2saz c + a

2

2
a cos n u(n) = , ROC |z| > a

we get

0
z

2
−o2saz c

0

 + a
2

from which

z
2
− z + 0.5 = z

2
− 2az cos + a

2

a
2
= 0.5 → a =

1
,

1

2a cos 0 = 1 → ω0

1

= /4,

cos 0 = , a cos = ½, sin 0 = , a sin = ½
2

0
2

0

The numerators of the two transforms then are
1 1 1 2 2 1 1 2 1

az sin 0 = z = z and z − az cos 0 = z − z = z − z
2 2 2 2 2 2

In light of these we manipulate the numerator of H(z) so that it will contain
1

z and
2

z
2
−

1
z

2
 2 1 3

Numerator = z
2
+ z = z − z + z

Denominator = z
 2

− z + 0.5 = z
2

 2 1
2 z

1
 +

1
 2

Thus

 2 1

 3 2 1 1

z
2

+ z z −
2

z + 2
z z − z z

H(z) = = = 2 + 3 2

z
2
− z + 0.5 z

2
− z + 0.5 z

2
− z + 0.5 z

2
− z + 0.5

We have, in effect, arranged H(z) as

z 2 −
 1

z
 1 1 1 z

H(z) = 2 1 2 1 2 1 + 3 2 − 2 2
z − 2 z 2 z 2 z +

2

+

 1 1 1

Therefore,

 2 2 2 2 2 2

 2 1 1
-1 -1 z − 2 z

-1
 2

z
 h(n) = ʓ {H(z)} = ʓ 2 +3 ʓ

 z − z + 0.5

 2

 z − z + 0.5

− 2

2

 1

 1
n

= cos(n / 4) u(n) +3
n

 sin(n / 4) u(n)

 2

In MATLAB (Pole-zero plot) It is convenient to specify the transfer function as a ratio of

polynomials in z
−1

H(z) =
1− z

1+ z
−1

−1
+ 0.5z

−2

The numerator coefficients, from left to right, are {bi, i = 0 to M}, specifying the vector b = [b0,
b1] = [1, 1]. Similarly, the denominator coefficients are {ai, i = 0 to N} from left to right, (with a0
= 1) specifying the vector a = [1, a1, a2] = [1, -1, 0.5].

%Pole-zero plot

b = [1, 1]; a = [1, -1, 0.5]; zplane (b, a)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1 -0.5 0 0.5 1

Real Part

In MATLAB (Partial fractions) The partial fractions may be computed by using the residuez
function as below. Note that H(z) is arranged as a ratio of polynomials in negative powers of z.

1+ z
−1 R1 R2

H(z) = = K +
1− z

−1
+ 0.5z

−2
1− pz

−1

+
1 − zp

−1

1 2

We define the coefficient vectors b = [1, 1] and a = [1, -1, 0.5]; R = [R1, R2] represents the
residues (partial fraction constants), p = [p1, p2] the poles and K a constant.

%Partial fractions

b = [1, 1], a = [1, -1, 0.5],

Im
a

g
in

a
ry

 P
a
rt

+

(a) (b) (c)

[R, p, K] = residuez (b, a)

The MATLAB results returned are

R =

0.5 - 1.5i

0.5 + 1.5i

p =

0.5 + 0.5i

0.5 - 0.5i

K =

[]

Therefore,
1+ z

−1
0.5−.5j1

0.5 +5j1.

H(z) = −1 = 0 + −2 +
−1 −1

1− z + 0.5z 1− (0.5 +.j50) z 1 − (0.5 −5j)0. z

Example 1.5.3 Find the inverse transform of X(z) =

(b) |z| < (1/3), (c) (1/3) < |z| < 1.

z
, where the ROC is (a) |z| > 1,

3z
2
− 4z + 1

Solution The three possible regions of convergence are shown below. The example shows that

the inverse transform, x(n), is unique only when the ROC is specified.

(a) For ROC ≡ |z| > 1

X (z)
=

1
=

1
=

1
z 2 4 z +

1 2 1 z +
1

 1

3 z − 3 z − z − 3 z(z −1) − (z −1)
 3 3 3 3 3

=
1

=
A

+
B

3(z −1)(z − (1/ 3)) 1z − z − (1/ 3)
1

A =
3(z − (1/ 3))

z = 1

=1/2, and B =

z = 1/ 3

= –1/2

X (z)

(1/ 2)

(−1/ 2)

z
=

z − 1
+

z − (1/ 3)

The inverse is

X (z) = (1/ 2)z (−1/ 2)z

z −1 z − (1/ 3)

(1/ 2)z (−1/ 2)z x(n) = ʓ-1{X(z)} = ʓ-1 +

-1

(1/ 2)z
+ ʓ-1

 (−1/ 2)z

 = ʓ

 z −1 z − (1/ 3) z −1 z − (1/ 3)

1

3(z −1)

The ROC is outside the largest pole signifying a right-sided sequence for each pole. The inverse

becomes

1
1 1 n 1 1 1 n

x(n) = (1)n u(n) – u(n) = u(n) – u(n)
2 2 3 2 2 3

(b) For ROC ≡ |z| < (1/3). The partial fraction expansion does not change. Since the ROC is

inward of the smallest pole, x(n) consists of two negative-time sequences.

x(n) = ʓ-1{X(z)} = ʓ-1
(1/ 2)z

+ ʓ-1
 (−1/ 2)z

 z −1 z − (1/ 3) 1 n
1 (− (1/ 3)

n)u(–n–1)
 = (–1) u(–n–1) –

2 2

= (1/ 2)(−1+ (1/ 3)
n) u(−n −1)

(c) For ROC ≡ (1/3) < |z| < 1. The partial fraction expansion stays the same. The pole at z = 1

corresponds to a negative-time sequence (left-sided sequence) while the pole at z = 1/3 gives a

positive-time sequence (right-sided sequence).
(1/ 2)z (−1/ 2)z x(n) = ʓ-1{X(z)} = ʓ-1 +

-1
(1/ 2)z

+ ʓ-1
 (−1/ 2)z

 = ʓ

 z −1 z − (1/ 3)
n

 z −1 z − (1/ 3)
n

=
1

(–1n) u(–n–1) – 1

 1

 u(n) = –

1
 u(–n–1) – 1

1

 u(n)

2

The overall result is a two-sided sequence.

2 3 2 2 3

Example 1.5.4 (Sometimes there is no z in the numerator to factor out, but we still can divide
z +1

X(z) by z as in this example.) Find x(n) for X(z) =
3z

2
− 4z +1

where the ROC is |z| > 1.

Solution

 X (z) z +1
=
 z + 1 = A B C

z
=

z(3z
2
− 4z +1)

z + 1

3z(z −1)(z − (1/ 3))
1

z
+

z − 1
+

z − (1/ 3)

A =
3(z −1)(z − (1/ 3))

=
z = 0

3(−1)(−1/ 3)
= 1

B =

z = 1

= …= 1

C =
 z + 1

3z(z −1)

z = 1/ 3

= …= –2

X (z)

z

=
1

+

z

1

z − 1

2

z − (1/ 3)

X (z) = 1 +
z

– 2

z − 1

z

z − (1/ 3)
 1

n

x(n) = δ(n) + u(n) – 2 u(n)

 3

(z −1)

2

Example 4.5.5 [2002] Find the inverse z-transform of X(z) = .
z

2
− 0.1 z − 0.56

Solution The roots of the quadratic in the denominator are given by

z + 1

3z(z − (1/ 3))

–

+

− +

− +

− b b
2

− 4ac − (−0.1) (−0.1)
2

− 4 (1)(−0.56)
z1, z2 = =

2a 2 (1)

=
0.1 0.01 + 2.24

2
2

X(z) =
 (z −1)

(z − 0.8)(+ 0.7)
2

=
0.1

2

2.25 0.1 1.5
=

2

= 0.8 and –0.7

 X (z) (z −1) A B C

z
=

z (z − 0.8) (z + 0.7)
=

(z −1)
2

z
+

z − 0.8
+

z + 0.7

A =
(z − 0.8) (z + 0.7)

z = 0

= …= –1/0.56 = –1.79

B =

z = 0.8

= …= 1/30

C =

z = −0.7

= …= 2.75

 X (z)
=

− 1.79
+

 (1/ 30)
+

 2.75

z z z 0.8 z 0.7

X (z) = –1.79 +
(1/ 30) z

+
2.75 z

z 0.8 z 0.7

x(n) = ʓ-1{X(z)} = 1.79 δ(n)
 1

(0.8)
n
u(n) + 2.75 (−0.7)

n
u(n)

30

Example 1.5.6 Find the inverse z-transform of X(z) =
1

, |z| > ½.

z − (1/ 2)z(1−/ 4)
Solution

 X (z)
1

=
A

+ B C

z
=

zz(1−/ 2) z(1−/ 4) z z − (1/ 2)
+

z − (1/ 4)

A =

z = 0

= …= 8

B =

C =

X (z)

=

8
+

z = 1/ 2

z = 1/ 4

8

= …= 8

= …= –16

16

z z z − (1/ 2)
–
 z(1−/ 4)

X (z) = 8 + 8 z
z − (1/ 2)

n

16 z

z − (1/ 4)
n

x(n) = 8 δ(n) + 8

1
 u(n) – 16

 1
 u(n)

 2 4

(z −1)
2

z (z + 0.7)

(z −1)
2

z (z − 0.8)

1

(z − (1/ 2))(z − (1/ 4))

1

z (z − (1/ 4))

1

z (z − (1/ 2))

–

=

 +

z
4

+ z
2

Example 1.5.7 Find the inverse of X(z) =
z − (1/ 2)z − (1/ 4)

for ROC ½ < |z| < ∞

X (z)
=

 z3 + z z
3
+ z

z z(1−/ 2) z(1−/ 4) z
2
− (3 / 4)z + (1/ 8)

There is a pole at z = ∞. The numerator degree is 3 and is greater than the denominator degree.

By long division we reduce the numerator degree by 2 so that the resulting numerator degree is
less than that of the denominato3 r degree. 3 (23 /16)z − (3 / 32)

X (z)
= 2 z + z = z +

4
+ 2

 z z − (3 / 4)z + (1/ 8) z − (3 / 4)z + (1/ 8)

(Note that in the long division leading to the above result the numerator and denominator

polynomials are arranged in the order of decreasing powers of z. There are three other ways (all

of them wrong) of arranging the two polynomials for the long division.)
The proper fraction part can now be expanded into partial fractions:

(23 /16)z − (3 / 32)

z
2

− (3 / 4)z + (1/ 8)

=
A

+

(z − (1/ 2))
B

z − (1/ 4)

(23 /16)z − (3 / 32)
A =

z − (1/ 4)

(23 /16)z − (3 / 32)
B =

z − (1/ 2)
3

z = 1/ 2

z = 1/ 4

= 5/2

= –17/16

X (z) = z + + (5 / 2) (−17 /16) +

z 4 (z − (1/ 2))
X (z) = z

2
+

3 z
+ (5 / 2)z

z − (1/ 4)

+
(−17 /16)z

4
x(n) = δ(n+2) +

3(z −(1/ 2))5
(n 1) +

1z − (1/ 4)
 n

−
17

1

n

u(n)

4 2 2 16 4

The answer has values for n = –1 and n = –2 due to the pole at z = ∞. The resulting x(n) is not a

causal sequence.

In MATLAB (Partial fractions) The transform X(z) represents a noncausal sequence.

X(z) =

z
4
+ z

2
 1+ z

−2

=
z

2
− (3/ 4)z + (1/ 8) z

−2
− (3/ 4)z

−3
+ (1/ 8)z

−4

Partial fractions cannot be computed by using the residuez function directly on X(z) since a0 = 0.
However, 3 (23/16)z

2
− (3/ 32)z 3

X(z) = z
2 + z + = z

2
+ z +X (z)

where

4

z
2

− (3/ 4)z + (1/ 8) 4
1

 (23/16)z
2

− (3/ 32)z (23/16) − (3/ 32)z
−1

 X1(z) =
z

2
− (3/ 4)z + (1/ 8)

=
1− (3/ 4)z

−1
+ (1/ 8)z

−2

On which we may use the residuez function.

z + 4

Example 4.5.8 Assuming that H(z) =

independently of each other

z − 5
is a causal system function, prove the following

1 − 0.25z 1− z + 0.5z

(a) h(n) = –(4/5) (n) + (9/5) 5
n
u(n)

(b) h(n) = 5
n
u(n) + (4) 5

n−1
u(n-1)

(a) h(n) = (n) + (9) 5
n−1

u(n-1)

Solution (a) H (z)
=

(−4 / 5)
+

(9 / 5)
, (b) H (z) = z

+
 4 , (c) By long division H (z) =

z

1+
9

.

z − 5

z z − 5 z − 5 z − 5

Example 4.5.9 Partial fractions can be obtained with the z-transform, say H(z), expressed as a

ratio of polynomials in negative powers of z. This amounts to expanding H(z)/z into partial

fractions. Here is an example:
8z

3
− 4z

2
+ 11z − 2

H(z) =
(z − (1/ 4))(z

2
− z + (1/ 2))

This example is from “Parallel realization of IIR filters”, towards the end of this Unit where we
obtain

H (z)
=

16
+

8

z z (z − (1/ 4))
+

(−16) z + 20

(z
2

− z + (1/ 2))
However, we may also proceed with negative powers of z as below (we may view z–1 = p as a

new variable):
8z

3
− 4z

2
+11z − 2 8 − 4z

−1
+ 11z

−2
− 2z

−3

H(z) =
(z − (1/ 4))(z

2
− z + (1/ 2))

=
(1 − 0.25z

−1)(1 − z
−1

+ 0.5z
−2)

8 − 4z
−1

+ 11z
−2

− 2z
−3

=
1 −1.25z

−1
 + 0.75z

−2
 − 0.125z

−3

By long division we reduce the degree of the numerator by 1 and then expand the proper fraction

part into partial fractions:

Long Division
16 ←Quotient

Denominator→ – 0.125z–3 + 0.75z–2 – 1.25z–1 + 1

− 8 +16z

−1
− z

−2

– 2z–3 + 11z–2 – 4z–1 + 8

– 2z–3 + 12z–2 – 20z–1 +

16

– z–2 + 16z–1 –8

←Numerator

←Remainder

Let

H(z) = 16 +
1−1.25z

−1
+ 0.75z

−2
− 0.125z

−3

− 8 +16z
−1

− z
−2

1−1.25z
−1

+ 0.75z
−2

− 0.125z
−3

A Bz
−1

+ C
=

(1− 0.25z
−1)

+
(1 − z

−1
+ 0.5z

−2)
Comparing coefficients of like powers of z in the numerators on both sides

z0: A + C = –8

z1: –A + B – 0.25C = 16

z3: 0.5A – 0.25B = –1
which give A = 8, B = 20, and C = –16, and

H(z) = 16 +
(
 8

−1)
−16 + 20z

−1

+
(−1 −2)

+ +

In MATLAB The partial fractions may be computed by using the residuez function:
8 − 4z

−1
+ 11z

−2
− 2z

−3 R R R
H(z) = = K +

1 −1.25z
−1

+ 0.75z
−2

− 0.125z
−3

1

1− pz
−1

2

1− pz
−1

3

1− zp
−1

1 2 3

We define the coefficient vectors b = [8, -4, 11, -2] and a = [1, -1.25, 0.75, -0.125]; R represents

the residues (partial fraction constants), p the poles and K a constant. Note that in the

numerator z
−3

means M = 3, and in the denominator z
−3

means N = 3; since M is not less than N

this is not a proper rational function, so that K will have a nonzero element(s).

%Partial fractions

b = [8, -4, 11, -2], a = [1, -1.25, 0.75, -0.125],

[R, p, K] = residuez (b, a)

The MATLAB results returned are

R =

-8 -12i

-8 +12i

8

p =

0.5 + 0.5i

0.5 - 0.5i

0.25

K =

16

Therefore,

H(z) = 16 +
 − 8 − j12

+
 −8+ j12

+
 8

1− (0.5+.j50) z
−1

1− (0.5−.j50) z
−1

1− 0.25 z
−1

L
+

Inverse z-transform when there are repeated roots With repeated roots, that is, a k-th order

pole at z = a we have X(z) in the form

X(z) =
z

(z − a)
k

, ROC |z| > |a|

The table below gives the inverse z-transforms for several values of k and for the general case of

arbitrary k.

Repeated Roots

X(z) x(n) = ʓ-1[X(z)] for ROC |z| > |a|

z

(z − a)

an u(n)

z

(z − a)
2

n
a

n −1
u(n)

1!

z

(z − a)
3

n(n −1)
a

n −2
u(n)

2!

z

(z − a)
4

n(n −1)(n − 2)
a

n −3
u(n)

3!

… …

 z

(z − a)
k

n(n −1)(n − 2)...(n − k − 2) n − k−1

(k −1)!
a u(n)

General procedure for partial fraction expansion Since X(z)/z must be rational, it takes the

form
 z K + z

K −1
+ + z +

X (z)
=

 K K −1 1 0

z L z
L
+

L−1 z

L−1
++ z + 0

If K < L then no adjustment is needed. The partial fraction expansion is straightforward.
If K ≥ L then divide until the remainder polynomial in z has a degree of L–1 or less:

L−1

X (z) = (c zK–L + … +c z + c) + dL−1 z + + d z + d
K–L 1 0

z
1 0 L z L + L−1 z

L−1
++ z + 0

The first part of the above expression, (cK–LzK–L + … +c1z + c0), will eventually contribute δ

functions to the output sequence some of which are time-advanced so that the resulting x(n) will
be noncausal. The second part – the proper fraction – is expanded into partial fractions. Assume
we have one repeated pole of order m, call it z1, and that all the rest are distinct, call them zm+1,
zm+2,…, zL. Then let

(=z)
d z

L−1
+ + d z + d

 L−1 1 0

 z
L
+ z

L−1
++ z +

L L−1 1 0
 A A A Bj

 m + m−1 +…+ 1 ()
 (z − z) (z − z) (z − z) j = m+1 z − zj

1 1 1
The coefficients Aj (m of them) and Bj (L − m of them) are found as follows:

Aj = 1 d m− j
 (z − z)

m
(z)

 , j = 1, 2, …, m

(m − j)! dz
m− j 1

z = z1

m−1

1

1

=
m

z

(z + 0.5)2

+
=

 z

Bj = [(z − z j) (z)] , j = m+1, m+2, …, L
z = z j

In the resulting x(n) the contribution of the Aj terms is a number of exponentials multiplied by n,
(n–1), (n–2), etc., and the contribution of the Bj terms is a number of complex exponentials.

Example 1.5.10 Find the inverse of
z

−2

H(z) =
z

3
+ 2z

2

z
1.25z + 0.25 1 + 2z

−1
 + 1.25z

−2

, |z| > 1
+ 0.25z

−3

Solution This transform is a proper rational function. We shall use this example to give a

summary of the three styles of obtaining partial fractions: (1) Expanding H(z) directly, (2)

Expanding H (z) / z and (3) Expanding H (z
−1

) as in MATLAB (also Mitra).

When the poles of H(z) are distinct the partial fraction coefficients returned by the

MATLAB function residuez are the same as in expanding H (z) / z . However, when there are

repeated poles it makes a difference in the coefficients as well as in the final analytical forms of

the inverse transforms in these two methods. In addition, directly expanding H(z) results in an

analytical form that is still different from the other two. In any event the three inverse transforms

are the same as far as the actual sequence values are concerned.

(1) Expanding H(z) We have
H(z) =

z
= z

A B B

 3 2 2 = + 2

2 +
 1

z + 2z +1.25z + 0.25 (z +1)(z + 0.5) (z + 1) (z + 0.5) (z + 0.5)

There is a pole at z = –1 and a repeated pole at z = –0.5. The coefficients A, B2 and B1 are given
by

A = =

z = −1

−1

(−1 + 0.5)2
= –4

− 0.5
B2 = =

z = −0.5
(− 0.5 +1)

= –1

 d z
= (z + 1).1 − z(1)

=
(−0.5 + 1) − (−0.5)

= 4

B1 =

Thus

dz z + 1 z = −0.5 (z + 1)2
 z = −0.5 (− 0.5 + 1)2

(−4) (−1) 4
H(z) =

(z + 1)
+

(z + 0.5)2
+

(z + 0.5)

Taking the inverse z-transform,

h(n) = –4 ʓ-1
 1

–1ʓ-1
 1

+ 4 ʓ-1
 1

 z + 1 (z + 0.5)2

 z + 0.5

= –4 ʓ-1

z
−1 z

–1ʓ-1
 −1 z

+ 4 ʓ-1

z

−1 z

 z + 1 (z + 0.5)2

 n
 z + 0.5

= –4 ((−1)
n

u(n))

n→ n−1

–1

 1!

(−0.5)
n−1

u(n)

n → n−1

+ 4 ((−0.5)
n
u(n))

n → n−1

= 4 (−1)
n
u(n −1) –4 (n −1)(−0.5)

n
u(n −1) – 8 (−0.5)

n
u(n −1)

(2) Expanding H(z) / z We have

z

(z +1)

+
(

1

(

 2)(

)) (

H (z)

=
1

= z

C D2 D

z z
3
 + 2z

2
 + 1.25z + 0.25 (z +1)(z + 0.5)2 =

 (z +1)
+
 (z + 0.5)2

 z + 0.5)
The coefficients C, D2 and D1 are given by

 1
C =

(z + 0.5)2

=

z = −1

1
= 4

(− 1 + 0.5)2

1
D2 =

z = −0.5

=
(− 0.5 +1)

= 2

 d 1
= (z + 1).0 − 1(1)

=
− 1 = –4

D1 =

Thus

dz z + 1 z = −0.5 (z + 1)2
 z = −0.5 (− 0.5 + 1)2

H (z)
=

4

z (z + 1)
+

2

(z + 0.5)2

(−4)
+

(z + 0.5)

H(z) = 4
z

(z + 1)
+ 2

z
– 4

z

(z + 0.5)2 (z + 0.5)
Taking the inverse z-transform,

h(n) = 4 ʓ-1
 z

+ 2 ʓ-1
 z

– 4 ʓ-1
 z

 z +1 (z + 0.5)2

 z + 0.5

= 4 (−1)
n
u(n) + 2

n
(−0.5)

n−1
 u(n) – 4 (−0.5)

n
 u(n)

1!

= 4 (−1)
n
u(n) – 4 n(−0.5)

n
u(n) – 4 (−0.5)

n
u(n)

(3) Expanding H (z

−1
) as in MATLAB We start with H(z) expressed as a ratio of polynomials in

negative powers of z. However, for the sake of continuity we have
−2

H(z) = z z
3
+ 2z

2

+1.25z + 0.25

 z

1 + 2z
−1

+ 1.25z
−2

+ 0.25z
−3

−2

H(z) = z
=

z +1 z + 0.5

z

(1 + 1 z
−1)(1 + 0.5z

−1)2

E
=

(1 + 1 z
−1

+
F1

1+ 0.5z
−1

+
F2

(1+ 0.5z −1)2

(We have ordered the coefficients in the order in which MATLAB displays them). We can define

z
−1

= v so that z = –1 corresponds to v = –1 and z = –0.5 to v = –2. The transform now appears as
v

2
E F F

H(v) =
2
=

(

 + 1 + 2

2
(1+1v)(1+ 0.5v)

The coefficients E, F2 and F1 are given by

=

1+1v)

12

(1+ 0.5v) (1 + 0.5v)

= 4

E =

F2 =

z−1 = −1

=

z−1 = −2

(1+ 0.5(−1))2

(−2)
2

(1+1.(−2))
= –4

1

(z +1)

(1+ 0.5z
−1)2

z −2

(1+1z
−1)

z −2

=

)

 d v
2 (1 + v). 2v − v

2
.(1) (1− 2)2(−2) − (−2)

2

F1 = =

 = = 0

Therefore,

dv 1+1v v = −2 (1 + v)2
 v = −2

(1− 2)
2

4 0 (−4)
H(z) =

(1 + 1 z
−1)

+
(1 + 0.5z

−1)
+

(1 + 0.5z −1)2

z z
2

z z
= 4 – 4 = 4 – 4z

z +1 (z + 0.5)2 z +1 (z + 0.5)2

Taking the inverse z-transform,

h(n) = 4 ʓ-1
 z

– 4 ʓ-1

z

z

 z +1 (z + 0.5)2

n

= 4 (−1)
n
u(n)– 4

1!

(−0.5)
n−1

u(n)
 n → n+1

n

= 4 (−1)
n
u(n)– 4 (−0.5)

−1

1!

(−0.5)
n
u(n)

 n → n+1

= 4 (−1)
n
u(n)+ 8 (n +1)(−0.5)

n+1
u(n +1)

In MATLAB This particular set of partial fractions may be computed by using the residuez

function:

z−2 E F1 F2
H(z) = 1 + 2z

−1
+ 1.25z

−2
+ 0.25z

−3 = K + 1− zp −1 + 1− pz −1 +

 −1 2

1 2 (1− p2 z)
We define the coefficient vectors b = [0, 0, 1] and a = [1, 2, 1.25, 0.25]; R = [E, F1, F2]
represents the residues (keyed to the above partial fraction coefficients), p the poles and K a
constant.

%Partial fractions

b = [0, 0, 1], a = [1, 2, 1.25, 0.25],

[R, p, K] = residuez (b, a)

The MATLAB results returned are

R =

4

-0 + 0i

-4 - 0i

p =

-1

-0.5 + 0i

-0.5 - 0i

K =

[]

Therefore,
 H(z) =

z−2

 = 0 +

4 0 (−4)

1 + 2z
−1

+ 1.25z
−2

+ 0.25z
−3

 1− (−1)z
−1

 +
1 − (−0.5)z

−1
+
 (1 − (−0.5)z −1)2

1 + 1 z
−1

 1 + 0.5z
−1)2

=
 4 +

(
 (−4)

which agrees with the hand-calculated results.

Example 1.5.11 Find the inverse of

z
3

− z
2

+ z −
1

z
3

− z
2

+ z −
1

X (z) = 16 = 16 , for |z| > ½

 z −

3

1 2 1
 z −

2 4
2

z
3
− (5 / 4)z

2
+ (1/ 2)z − (1/16)

 X (z)
=

 z − z + z − (1/16)
=

 A
+

B2 +
B1 +

 C
z zz − (1/ 2)2 z − (1/ 4) z (z − (1/ 2))2 (z − (1/ 2)) z − (1/ 4)

z
3
− z

2
+ z − (1/16)

A =
z − (1/ 2)2 z − (1/ 4)

z = 0

− (1/16)
=

− (1/ 2)2 − (1/ 4)
= 1

(1/ 4)
3
− (1/ 4)

2
+ (1/ 4) − (1/16)

C =

B2 =

=
z = 1/ 4

=

(1/ 4)(1/ 4) − (1/ 2)

(1/ 2)
3
− (1/ 2)

2
+ (1/ 2) − (1/16)

(1/ 2)(1/ 2) − (1/ 4)
z = 1/ 2

 d z
3
− z

2
+ z − (1/16) d z

3
− z

2
+ z − (1/16)

B1 = dz z(z1−/ 4) = dz z
2
− (z / 4)

 z = 1/ 2 z = 1/ 2

 z 2

− (z / 4)(3z
2

− 2z + 1)− z3
− z

2
+ z − (1/16)2z − (1/ 4)

=

X (z)

=1–9
= + (5/ 2) (−9)

z 2
− (z / 4)2

9

 z = 1/ 2

z z (z − (1/ 2))2
+

(z − (1/ 2))
+

z − (1/ 4)

X (z) = 1+
5

2

z
9

(z − (1/ 2))2

z
+ 9

(z − (1/ 2))
z

z − (1/ 4)

Taking the inverse z-transform,

x(n) = ʓ-1{X(z)}
= ʓ-1{1} + (5/2)ʓ-1

z

–9ʓ-1
 z

+ 9ʓ-1 z

5 1
(z − (1/ 2)) 2

 (z − (1/ 2)) z − (1/ 4)
= δ(n) + n n−1u(n) –9 nu(n) + 9 un (n)

 1 1

2 2 2 4

Other possibilities If we choose to expand X(z), rather than X (z) / z , into partial fractions,

we need to perform long division to reduce the degree of the numerator by 1 resulting in
2

X (z) = 1 + (z / 4) + (z / 2) = 1+ X (z)

z
3

− (5 / 4)z
2
+ (1/ 2)z − (1/16)

1

where X1 (z) is the proper fraction part of the above
(z

2
/ 4) + (z / 2)

X1 (z) =
z

3
− (5 / 4)z

2
+ (1/ 2)z − (1/16)

z
3
− z

2
+ z − (1/16)

zz − (1/ 2)2

z
3
− z

2
+ z − (1/16)

zz − (1/ 4)

2
= 9

= 5/2

1 2

Either X1 (z) itself or X1 (z) / z may now be expanded into partial fractions.

In MATLAB The partial fractions may be computed by using the residuez function:

1 − z
−1

+ z
−2

− (1/16)z
−3 R R R

X(z) = = K + 1

+ 2 + 3

1 − (5 / 4)z
−1

+ (1/ 2)z
−2

− (1/16)z
−3

1 − p z−1
 1 − p z−1

 (1− pz −1)2

We define the coefficient vectors b = [1, -1, 1, -1/16] and a = [1, -5/4, 1/2, -1/16]; R represents
the residues (partial fraction coefficients), p the poles and K a constant. Note that in the

numerator z
−3

means M = 3, and in the denominator z
−3

means N = 3; since M is not less than N

this is not a proper rational function, so that K will have a nonzero element(s).

%Partial fractions

b = [1, -1, 1, -1/16], a = [1, -5/4, 1/2, -1/16],

[R, p, K] = residuez (b, a)

The MATLAB results returned are

R =

-14.0000

5.0000

9.0000

p =

0.5000

0.5000

0.2500

K =

1

Therefore,
1 − z

−1
+ z

−2
− (1/16)z

−3
9 (−14) 5 X(z) = = 1 + + +

1 − (5 / 4)z
−1

+ (1/ 2)z
−2

− (1/16)z
−3

1− 0.25z
−1

1−0.5z
−1 (1 − 0.5z −1)2

z
2

+ z
Example 1.5.12 Find the inverse of X(z) =

z − (1/ 2)3 z − (1/ 4)
zfo| r>R½O.C |

 z + 1 A A +
A1 + B

X (z) = 3
+
 2

z
= z − (1/ 2)3 z − (1/ 4) (z − (1/ 2))3

 (z − (1/ 2))2
 (z − (1/ 2)) z − (1/ 4)

A3 =
z +1

z−(1/4)

=

z = 1/ 2

(1/ 2) + 1

(1/ 2) − (1/ 4)
= 6

1
 d z +1

A2 = (3−2)! dz z−(1/4)
 z = 1/ 2

= …= –20

A1 =

1 d
2 z +1

(3−1)!dz
2 z −(1/4)

= …= 80

B =

X (z)

z = 1/ 4

6

 z = 1/ 2

= …= –80

(−20) 80 (−80)
 =

3
+

2
+

(
+

z (z − (1/ 2)) (z − (1/ 2)) z − (1/ 2)) z − (1/ 4)

z +1

z − (1/ 2)3

2

()

1

X (z) = 6
z

20

(z − (1/ 2))3

x(n) = ʓ-1{X(z)}

z
+ 80

(z − (1/ 2))2

z
80

(z − (1/ 2))
z

z − (1/ 4)

= 6ʓ-1
 z

– 20ʓ-1
 z

()

 z − (1/ 2)
3

 (z − (1/ 2))2

+ 80ʓ-1

 z
– 80 ʓ-1

 z

 z − (1/ 2)

 z − (1/ 4)

n (n −1) 1
n − 2

u(n) – 20 n
n−1

u(n) + 80
n
u(n) – 80 u

n
(n)

= 6

 1 1 1

2 !

The u(n) may be factored out etc.

 2 2 2 4

MATLAB

X(z) =

z −2 + z −3

1− (7 / 4)z
−1

+ (9 / 8)z
−2

− (5/16)z
−3

+ (1/ 32)z
−4

%Partial fractions

b = [0, 0, 1, 1], a = [1, -7/4, 9/8, -5/16, 1/32],

[R, p, K] = residuez (b, a)

The MATLAB results returned are

R =

1.0e+002 *

1.44 + 0.0i

-0.88 - 0.0i

0.24

-0.80

p =

0.5 + 0.0i

0.5 - 0.0i

0.5

0.25

K =

[]

144 (−88) 24 (−80)

X(z) =
(1− (1/ 2)z

−1)
+
(− (1/ 2)z −1)2

+
 (1 − (1/ 2)z −1)3

+
1− (1/ 4)z

−1

Relationships among system representations

A discrete-time linear shift-invariant system can be characterized by its unit sample response, a

difference equation, a system function, or a frequency response. Assume that a system is

described by the linear constant coefficient difference equation
N M

 ak y(n − k) = br x(n − r)
k = 0 r = 0

System function Take the z-transform of both sides of the above equation
 N M

ʓ ak y(n − k) = ʓ br x(n − r) , or

k = 0

N

 r = 0
M

 ak ʓy(n − k)= br ʓx(n − r), or
k = 0

N

k = 0

ak z

N

r = 0

−k M −r

Y (z) = br z
r = 0

M

X (z) , or

Y(z) ak

k = 0

z
−k

= X(z)
r = 0

brz −r

M

The system function is H(z) =
 Y (z)

brz −r

 r = 0
N

X (z) ak

k = 0

z −k

Unit sample response If x(n) = δ(n) then X(z) = ʓ[x(n)] = ʓ[δ(n)] = 1. The corresponding y(n) is
the unit sample response h(n). We have

Y (z)
= H(z), or Y(z) = H(z).X(z) = H(z).1 = H(z)

X (z)

So, given H(z), the system function, the unit sample response is h(n) = ʓ-1[H(z)].

The difference equation from the H(z) The system function H(z) is first written in terms of

negative powers of z and set equal to
Y (z)

. Then cross-multiply and take the inverse z-transform
X (z)

to get the difference equation.

Frequency response of the system is the Fourier transform (DTFT) of the unit sample response
h(n):

H (e
j

) = h(n) e
− j n

n = −

Compare this with the system function H(z) defined as the z-transform of the unit sample

response h(n)

H(z) = h(n) z
−n

n = −

Thus the frequency response, if it exists, can be obtained by replacing the z in H(z) by e
j

as

follows:

=

e

H (e
j

) h(n) e
− j n

= H(z)
n = −

The system is implicitly BIBO-stable.

z = e j

The above relationships for a stable, causal system represented by a linear constant

coefficient difference equation are summarized in diagram below.

Set z = j H(e
j

)

Difference

Equation

Take z-transform,
solve for Y(z)/X(z) H(z)

Take inverse
z-transform

z–1

h(n)

Write in terms of z–1, cross

multiply, take inverse z-transform

Take z-transform

Example 1.6.1 Find the impulse response of y(n) = a y(n–1) + x(n).

Solution Note that we have solved this in the time domain earlier. Taking the z-transform of both

sides (with zero initial conditions),

Y(z) = a z–1 Y(z) + X(z), or

H(z) = Y (z)
X (z)

1

1− az
−1

z

z − a

Assume causality. Then from the table of transforms, h(n) = ʓ-1[H(z)] = an u(n).

Causality in terms of the z-transform, H(z), and the ROC A causal LTI system has an

impulse response h(n) = 0 for n < 0, and is, therefore, a right-sided sequence. This also implies

that the ROC of H(z) is the exterior of a circle in the z-plane. For a causal system the power

series

H(z) = h(n) z
− n

= h(0) + h(1) z –1 + h(2) z –2 + … → Eq. (1)
n = 0

does not include any positive powers of z. Consequently, the ROC includes z = . Therefore, we

have the principle:

A discrete-time LTI system is causal if and only if the ROC of its system function is the

exterior of a circle, and includes z = .

The initial value theorem says that for a causal sequence, h(n), the initial value is given by

h(0) = lim
z→

H (z)

This may be seen by setting z→ in Eq. (1) making all terms go to zero except the term h(0).

Thus, for a causal sequence, h(n), if h(0) is finite, then, lim
z →

H (z) is finite. Consequently, with

H(z) expressed as a ratio of polynomials in z (positive powers of z), the order of the numerator

polynomial cannot be greater than the order of the denominator polynomial (if it were there

= = =

K K −1 1 0 → Eq. (2)

z + b z

+ a z

N

+

= =

0 1 N −1 z

would be positive powers of z in the power series of H(z), corresponding to non-zero h(n) for

negative n; also z = ∞ would not be included in the ROC); or, equivalently, the number of finite

zeros of H(z) cannot be greater than the number of finite poles.

The above discussion is summed up as follows: A discrete-time LTI system with rational

system function H(z) is causal if and only if

1. The ROC is the exterior of a circle outside the outermost pole, and,

2. With H(z) expressed as a ratio of polynomials in z, (positive powers of z), the

order of the numerator is not greater than the order of the denominator.

Condition 1 alone is not enough because the sequence may be right-sided but not causal.
If H(z) is represented as a ratio of polynomials in z as

 z
K

+ z
K −1

+ + z +

H(z) =
 zL

+
 z

L−1
++ z +

L L−1 1 0

then L K if the system is causal – in other words denominator degree numerator degree. On

the other hand, if we write H(z) as the ratio of polynomials in z
−1

(negative powers of z) as
b + b z

−1
+ + b − M +1 −M

H(z) = 0 1 M −1 M

a + a z
−1

++ a −N +1 N −N
M −1 M

=
b0 + (b1 / z) + + (bM −1 / z) + (bM / z)

a0 + (a1 / z) ++ (a

N −1 / z
N −1

) + (a / z
N

)

then, if the system is (to be) causal, a0 0. This is seen by setting z→ , and requiring that h(0)
= (b0/a0) be finite. This is illustrated with an example where a0 = 0, e.g.,

1+ z
−1

+ z
−2

 z
2
+ z + 1

H(z) = = −1 −

0 + z + z
2

z + 1

which, by long division, can be seen to contain z
1
– a positive power of z – hence non-casual.)

Note When H(z) is written as a ratio of polynomials in z (positive power of z), as in Eq. (2), we

have required that L K for causality. These L and K are not to be confused with the N and M
contained in the difference equation. Consider, for example, the system

y(n) + a y(n–1) = x(n) + b x(n–3)

where, according to the notation of the difference equation, N = 1 and M = 3. Apparently M is

greater than N and this is allowable. In other words, there is no restriction on the relative values

of N and M. For, the transfer function is given by

H(z) = Y (z) −3
1 b z = z −3 (z

3

+ b)

z
3
+ b

X (z) =
1 + a z

−1
z

−1
(z + a)

=
z

2
(z + a)

and it is seen that the numerator degree (K = 3) is not greater than the denominator degree (L =
3). Thus the system is causal.

As another example consider y(n) + a y(n–1) = x(n) + b x(n+1) which is non-causal

because of the x(n+1) term. The transfer function is
H(z) = Y (z) 1 +

z(b + z −1) = (b + z −1) = (b + z
−1)

 b z

X (z) 1 + a z
−1

1+ a z
−1

 z −1 + a z −2 0 + z
−1

+ a z
−2

Note that, when the numerator and denominator are expressed in terms of negative powers of z,
“a0” = 0. On the other hand, when the numerator and denominator are expressed in terms of
positive powers of z, we have

1

=
+

 b z

 r= 0

k

0 1 2 N

2

H(z) = Y (z) b z z
X (z) z + a

with the numerator degree greater than the denominator degree.

(Omit) Rational transfer function; LTI system Given the system with the Nth order difference

equation,
a0 y(n) + a1 y(n–1) + … + aN y(n–N)

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0 0

we may write it in the more compact form
N M

 ak y(n − k) = br x(n − r) , a0 0
k = 0 r = 0

(Note that some authors take the coefficient of y(n), a0, to be 1. In the above difference equation
we may divide through by a0 so that the coefficient of y(n) is 1).

We can find the transfer function of the system by taking the z-transform on both sides of

the equation. We note that in finding the impulse response of a system and, consequently, in

finding the transfer function, the system must be initially relaxed (“zero initial conditions”).

Thus, if we assume zero initial conditions, we can use the linearity and time-shift properties to

get

so that

N

Y(z) ak

k = 0

z
−k

= X(z)

M

M

−r

r

r = 0

H(z) = Y (z) b rz −r

Eq. (1)

X (z)
=

 N

k = 0

ak z
−k

The corresponding impulse response can be found as h(n) = ʓ–1
{H(z)}. The poles of the system

transfer function are the same as the characteristic values of the corresponding difference
equation. For the system to be stable, the poles must lie within the unit circle in the z-plane.
Consequently, for a stable, causal function, the ROC includes the unit circle.

The system function, H(z), is a rational function:

N (z)

b + b z

−1
+ b z

−2
+ + b z

− M

M

b z
−k

H(z) = D(z) = 0
+

1 −1 +
2 −2

+ + a
M

− = k = 0

0 1 2 N

 a z
a a z a z z N N

−k

k
k = 0

Here N(z) and D(z) stand for numerator and denominator respectively. If a0 0 and b0 0, we
can avoid the negative powers of z by factoring out b0z

–M and a0z
–N as follows: N (z) − M M

M −1
++ (b / b)

H(z) =
=

b0 z
.

z + (b1 / b0)z M 0

D(z) −N z
N

+ (a / a)z
N −1

+ + (a / a)
a0z 1 0 N 0

Since N(z) and D(z) are polynom

ials

in z, they can be expressed in factored form as
b (z − z) (z − z).........(z − z)

H(z) = N (z)
=

0
 z

N–M. (z −
1

−
2

−
M

 D(z) a

 p) (z p). (z p)

=

1 z z N

M

(z − zk)
N–M k = 1 , where C = (b0/a0)

= C z . N

(z − pk)
k = 1

Thus H(z) has M finite zeros at z = z1, z2, …, zM, and N finite poles at z = p1, p2,…, pN, and |N–M|

zeros (if N > M) or poles (if N < M) at the origin z = 0. Poles and zeros may also occur at z = .
A pole exists at z = if H() = , and a zero exists at z = if H() = 0. If we count the poles
and zeros at z = 0 and z = as well as the N poles and M zeros, we find that H(z) has exactly the
same number of poles and zeros.

By definition the ROC of H(z) should not (can not) contain any poles.

Proper rational function Taking a0 = 1, we have
H(z) = N (z)

b + b z
−1

+ b z
−2

+ +b z
−M

D(z) = 0

+ a
1 −1

 + a
2

z
−2

+ + a
M

−
1 2 N

This is called a proper rational function if aN ≠ 0 and M < N. This amounts to saying that the
number of finite zeros is less than the number of finite poles. (Finite zeros and poles exclude
those at z = 0). This condition is related to partial fraction expansion and has nothing to do with
causality.

(End of Omit)
−1

Example 1.6.2 Give the pole-zero plot for H(z) = z z
z

2
− z

1
−1 1 − z

−1
− z

−2

Solution The denominator has roots (poles) at
− (−1) (−1)

2
− 4(1) (−1) 1 1 + 4 1 5

z1, z2 = = = = 1.62 and –0.62
2 2 2

There is a zero at z = 0. Further, since the denominator degree is greater than the numerator

degree by 1 it is clear that H() = 0, so that there is an additional zero at z = ∞.

In MATLAB the transfer function is specified as a ratio of polynomials in z
−1

0 + 1.z
−1

H(z) =
1 −1.z

−1
 −1.z

−2

The numerator coefficients, {bi, i = 0 to M} and the denominator coefficients {ai, i = 0 to N} are
specified as the two vectors b = [0, 1] and a = [1, -1, -1].

%Pole-zero plot

b = [0, 1]; a = [1, -1, -1]; zplane (b, a)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1 -0.5 0 0.5 1 1.5

Real Part

Im
a

g
in

a
ry

 P
a
rt

H(z) = z
−1

+ 2z
−2

+ 3z
−3

+ 4z
−4

+ 5z
−5

+ 6z
−6

+ 7z
−7

+ 8z
−8

+ 9z
−9

Solution From

H(z) =

z

8
+ 2z

7
+ 3z

6
+ 4z

5
+ 5z

4
+ 6z

3
+ 7z

2
+ 8z + 9

z9

we can see that there are 9 poles at z = 0 and 8 zeros at sundry places and an additional zero at z

= ∞ owing to the denominator degree being greater than the numerator degree by 1.

For the MATLAB segment the numerator and denominator coefficients are taken from
0 + z

−1
+ 2z

−2
+ 3z

−3
+ 4z

−4
+ 5z

−5
+ 6z

−6
+ 7z

−7
+ 8z

−8
+ 9z

−9

H(z) =
1

%Pole-zero plot

b = [0: 9]; a = [1, 0]; zplane (b, a)

1

0.5

0

-0.5

-1

-1.5 -1 -0.5 0 0.5 1 1.5

Real Part

Im
a

g
in

a
ry

 P
a
rt

9

Example 1.6.4 Give the pole-zero plot for

y(n) = x(n) + 0.81 x(n–1) – 0.81 x(n–2) – 0.45 y(n–2)

Solution The zeros are

z1, z2 =

The poles are given by

− 0.81 (0.81)

2
− 4 (1)(−0.81)

2 (1)

= 0.5819 and –1.3919

z1, z2 = ± j0.67082

For the MATLAB program the coefficient vectors are b = [1, 0.81, -0.81] and a = [1, 0,

0.45].

%Pole-zero plot

b = [1, 0.81, -0.81]; a = [1, 0, 0.45]; zplane (b, a)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.5 -1 -0.5 0 0.5 1

Real Part

Im
a

g
in

a
ry

 P
a
rt

r

k

a

z

0 1 2 M

From the general form H(z) in Eq.(1) we can obtain two important special forms: (1) the

all-zero system, and (2) the all-pole system. (There are, of course, trivial poles or zeros present.)
M

b z
−r

The all-zero system If ak = 0 for 1 k N, we have H(z) =

consider that a0 is absorbed in the br coefficients, so that

r = 0

a0

. Either take a0 = 1 or

−1 −2 b z
M + b z

M −1
+ ... + b

 H(z) = b + b z + b z + ... + b z−M = 0 1 M
0 1 2 M

z M

In this case, H(z) contains M zeros and an Mth order pole at the origin z = 0. Since the system

contains only trivial poles (at z = 0) and M non-trivial zeros, it is called an all-zero system. Such

a system has a finite-duration impulse response (FIR), and is called an FIR system or a moving

average (MA) system. Note that the corresponding deference equation is

a0 y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M)

The all-pole system On the other hand, if bk = 0 for 1 k M, we have

H(z) =

k = 0

b0

a z −k

=
−1

a0 + a1 z

+ a2

b0

z −2 ++ a

z−N

 b z
N

 = 0 .
 0 z

N
+ (a / a0)z

N −1
+ (a / a0)z

N −2
+ ... + (a / a0)

Here again, either take a0 = 1 or imagine that it is absorbed in the other coefficients viz., b0, a1,
a2, …, aN. Thus

H(z) =
b z

N

z
N

+ a z
N −1

+
0

a z
N −2

+ ... + a
1 2 N

Here H(z) has N poles and an Nth order zero at the origin z = 0. We usually do not make reference

to these trivial zeros. As a result this system function contains only non-trivial poles and the

corresponding system is called an all-pole system. Due to the presence of the poles, the impulse

response of such system is infinite in duration, and hence it is an IIR system. (We can divide the

numerator into the denominator and thereby expand H(z) into an infinite series from which it is

evident that h(n) is of infinite duration). Note that the corresponding deference equation is

a0 y(n) + a1 y(n–1) + … + aN y(n–N) = b0 x(n)

The pole-zero system The general form, though, contains both poles and zeros and the system is

called a pole-zero system with N poles and M zeros,
b + b z

−1
+ b z

−2
++ b z

− M

H(z) =
a + a z

−1
+ a z

−2
+ + a −N

0 1 2 N

Poles and/or zeros at z = 0 and z = are implied but are not counted explicitly. Due to the

presence of poles, the pole-zero system is an IIR system.

Inverse z-transform by power series expansion (long division)

If the z-transform is expressed as a rational function (a ratio of polynomials in z or z–1) we can

use long division to expand it into a power series. If the transform is expressed as an irrational

function we can use the appropriate power series expansion formula available in mathematical

N

N

1 2 N

Im z

Re z

2 1

ROC

tables such as the CRC Tables. Note that if the transform is expressed as an irrational function

then the partial fraction expansion method of inversion won’t work.
By definition the z-transform of the sequence x(n) is given by

X(z) = x(n) z
−n

= …+ x(–2) z2 + x(–1) z1 + x(0) z0 + x(1) z–1+…
n = −

This is a power series (Laurent series). So by long division we obtain the power series expansion

of X(z) and then, by comparison with the power series definition given above, we can identity the

sequence x(n). In particular the coefficient of z–k is the sequence value x(k).

The method is useful in obtaining a quick look at the first few values of the sequence

x(n). This approach does not assure an analytical solution. The ROC will determine whether the

series has positive or negative exponents. For right-sided sequences the X(z) will be obtained

with primarily negative exponents, while left-sided sequences will have primarily positive

exponents. For an annular ROC, a Laurent expansion would give both positive- and negative-

time terms. This last possibility is illustrated in the example below by taking a little help from

partial fractions.

Example 1.7.1 Find the inverse transform, by long division, of

2 z
2
− 3 z

X(z) =
(z −1)(z − 2)

=

2 z
2
− 3 z

z
2
− 3 z + 2

where the ROC is (a) |z| > 2, (b) |z| < 1, (c) 1< |z| < 2

Solution (a) ROC is |z| > 2. We expect a right-sided sequence, with predominantly negative

exponents of z. For the long division arrange numerator and denominator as decreasing powers

of z and then divide; or as increasingly negative power of z i.e., z–1 and then divide.

2 +3z–1+5z–2 + 9z–3 + … ←Q(z)

D(z)→ z2 –3z + 2 2z2 – 3z ←N(z)

2z2 – 6z + 4

3z – 4

3z – 9 + 6z–1

5 – 6z–1

5 – 15z–1 + 10z–2

9z–1 – 10z–2

9z–1 – 27z–2 + 18z–3

17z–2 – 18z–3

…

−1 −2

Thus X(z) = 2 + 3 z–1 + 5 z–2 + 9 z–3+… By comparison with the defining equation

X(z) = …x(–1)z1 + x(0) + x(1)z–1 + x(2)z–2 + …

we see that the sequence values are

x(–2) = x(–1) = 0, or x(n) = 0 for n < 0, and

x(0) = 2, x(1) = 3, x(2) = 5, etc.

Alternatively, it is also possible to write X(z) as a ratio of polynomials in z–1

2 − 3 z
−1

X(z) =
1 − 3 z + 2 z

Note that the polynomials are written in the order of increasing negative powers of z, that is, z–1.

Long division gives (the same answer as obtained earlier):

2 +3z–1+ 5z–2 + 9z–3 + … ←Q(z)

D(z)→ 1– 3z–1 + 2z–2 2 – 3z–1 ←N(z)
2 – 6z–1 + 4z–2

3z
–1

– 4z
–2

3z
–1

– 9z
–2

+ 6z
–3

5z
–2

– 6z
–3

…

Solution (b) The ROC is |z| < 1. We expect a left-sided sequence with predominantly positive

exponents of z. For the long division the polynomials are written in the order of increasing

powers of z (or decreasingly negative powers of z, i.e., z–1).

Re

–(3/2)z – (5/4)z2 – (9/8)z3 – … ←Q(z)

D(z)→ 2 – 3z + z2 –3z + 2z2 ←N(z)
–3z + (9/2)z2 – (3/2)z3

– (5/2)z2 + (3/2)z3

– (5/2)z2 + (15/4)z3 – (5/4)z4

– (9/4)z3 + (5/4)z4

– (9/4)z3 + (27/8)z4 – (9/8)z5

Thus X(z) = –(3/2)z – (5/4)z2 – (9/8)z3 – … = …– (9/8)z3 – (5/4)z2 – (3/2)z. By comparing with

the defining equation

X(z) = …x(–3)z3 + x(–2)z2+ x(–1)z + x(0) + x(1)z–1 +…

Im

ROC

1 2

we see that the sequence is given by

x(–1) = –3/2, x(–2) = –5/4, x(–3) = –9/8, …etc., and x(n) = 0 for n 0

The other way of long division is shown below:

–(3/2)z – (5/4)z2 – (9/8)z3 – … ←Q(z)

D(z)→ 2z–2– 3z–1 + 1 – 3z–1 + 2 ←N(z)

– 3z–1 + (9/2) – (3/2)z

…

(Omit) Solution (c) The ROC is 1 < |z| < 2. We expect a two-sided sequence with both positive

and negative exponents of z. Looking at the pole-zero configuration, the pole at z =1 implies a

right-sided sequence and the pole at z = 2 a left-sided sequence. Obviously just a single long

division cannot give both the left-sided and the right-sided sequences simultaneously. We shall

obtain the partial fraction expansion first and then proceed with the division to obtain the

sequences separately. These two sequences are then combined into one sequence to get the

solution. Note that we do this only to illustrate the method of long division. But once we use

partial fractions the utility of long division is nullified.

Re

X (z)

2z − 3 A B

z
=

(z −1) (z − 2)
=

2z −3

z − 1
+
 z − 2

A =
z − 2

B =

z = 1

z = 2

= (2 . 1 – 3) / (1 – 2) = 1

= (2 . 2 – 3) / (2 – 1) = 1

X (z)
z

 1

z − 1

1

z − 2

X (z) = z
z − 1

z

z

z − 2

For the term we have a right-sided sequence given by long division thus:
z − 1

2z − 3

z − 1

Im

 ROC

2 1

+

+

=

H(z) =
r = 0

1 + z –1 + z –2 + z –3 +…… ←Q(z)

D(z)→ z – 1 z ←N(z)

z – 1

1

1 – z–1

z–1

z–1 – z–2

z–2

 …

The corresponding sequence is xR(n) = 1, n 0

0, otherwise

For the term

z

z − 2

we have a left sided sequence

– (1/2)z – (1/4)z2 – (1/8)z3 ……. ←Q(z)

D(z)→ –2 + z z

z – (1/2)z2

(1/2)z2

(1/2)z2 – (1/4)z3

(1/4)z3

(1/4)z3 – (1/8)z4

(1/8)z4

 …

←N(z)

The corresponding sequence is xL(n) = – 2–n, n < 0

The complete sequence is then
0, otherwise

(End of Omit)

x(n) = xR(n) + xL(n) = 1, n 0

–2–n, n < 0

Computation of frequency response

Let the system function be given by
M

b rz −r
 N

 ak

k = 0

z −k

The frequency response is H (e
j

) or H(ω) = H (z)
z = e

j
. Thus

1 e j n

2 jn

N

M M M

r br cos r − jbr sin r

H (e
j

) = |H(ω)| e
jH ()

=
r = 0

r = 0
N

r = 0
N

where

 ak e
− j k

k = 0

M M

br cos r − jbr sin r

= Nr = 0 rN= 0 =

 ak cos k − j ak sin k
k =0 k = 0

 ak cos k − j ak sin k
k = 0 k = 0

A − jB
C − jD

M M N N

A = br cos r , B = br sin r , C = ak cos k , D = ak sin k .
r = 0 r = 0 k = 0 k = 0

The magnitude and phase of H (e
j

) are given, respectively, by

|H(ω)| =

−1 − B
and H() = tan −

 A

tan
−1 − D

 C

Theorem The frequency response H (e
j

) for a BIBO-stable system will always converge.

Accordingly every BIBO-stable system will have a frequency response and a describable steady-

state response to sinusoidal inputs. But, the converse of this statement is not true, that is, the fact

that H (e
j

) exists does not imply that the system is stable.

Example 1.8.1 [The ideal low pass filter] For the H(ω) given in figure below find h(n), the unit

sample response.

ω

–π –ωc 0 ωc

ω

π 2π

Solution The unit sample response is the inverse DTFT of H(ω)
1

1

c

c

1 e jc n − e− jc n
h(n) = H () e

j n
d j n =

2 −
=

2 1e
− c

d =
−c

 n j2

sin n
=

 n

, for all n

|H(ω)|

1

Periodic

–π –ωc 0 ωc π 2π

A
2

+ B
2

C
2

+ D
2

<H(ω)
Periodic

Phase = 0

c

=

(cos + 4)2
+ (sin)

2

(cos − 5)2
+ (sin)

2

=

+

It is seen that h(n) ≠ 0 for negative n so that the ideal low pass filter is noncausal. Moreover,

although h(n) tails off as n goes from 0 to ∞ and from 0 to –∞, it can be shown that h(n) is
n =−

not finite. This means that the ideal low pass filter is not BIBO-stable either.

Example 4.8.2 [2002] A discrete system is given by the difference equation

y(n) – 5 y(n–1) = x(n) + 4 x(n–1)

where x(n) is the input and y(n) is the output. Determine the magnitude and phase response as a

function of frequency for ω ≤ π. (Note that the system is not stable since it has a pole at z = 5,

which is outside the unit circle. The fact that the steady state frequency response exists does not

mean that the system is stable.)

Solution [See also Unit I] Taking the z-transform and with a dose of algebra we find the transfer

function

H(z) = Y (z)
X (z)

z + 4

z − 5

The frequency response is given by
e

j
+ 4 N ()

H(ω) = H(z)
z = e

j =

z = e j

= =
e

j
− 5 D()

N(ω) = e
j

+ 4 = cos + 4 + j sin = |N(ω)| e
jN ()

 sin

|N(ω)| = and N () = tan
−1

 cos + 4

D(ω) = e
j

− 5 = cos − 5 + j sin = |D(ω)| e
jD()

|D(ω)| = and D()=

−1

tan

sin

|H(ω)| =

(cos + 4)2
+ (sin)

2

(cos − 5)2
+ (sin)

2

 cos − 5

−1 sin
 −1 sin

H () = N () – D() = tan – tan

 cos + 4 cos − 5

The frequency response can be plotted. Note that |H(ω)| is an even function and H ()

odd function of ω.

Using MATLAB:

is an

H(ω) = e
j

+ 4 − j
1 4e b(1) + b(2)e

− j
+ b(3)e

− j 2
+ ...

e
j

− 5
=

1 − 5e
− j =

a(1) + a (2)e
− j

+ a(3)e
− j 2

+ ...
Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In
our example b(1) = 1, b(2) = 4, a(1) = 1, and a(2) = –5. The MATLAB segment and the

corresponding plots follow. Note that the plot goes from –2 to 2. Compare with the solution
obtained in Unit I using a different function.

b = [1, 4]; %Numerator coefficients

a = [1, -5]; %Denominator coefficients

w = -2*pi: pi/256: 2*pi;

[h] = freqz(b, a, w);

subplot(2, 1, 1), plot(w, abs(h));

xlabel('Frequency \omega'), ylabel('Magnitude'); grid

z + 4

z − 5

N ()

D()

=

1 1 + 24

−

subplot(2, 1, 2), plot(w, angle(h));

xlabel('Frequency \omega'), ylabel('Phase - Radians'); grid

1.5

1

0.5
-8 -6 -4 -2 0 2 4 6 8

Frequency

4

2

0

-2

-4

-8 -6 -4 -2 0 2 4 6 8

Frequency

Example 1.8.3 Assume H(z) = 12z 2 − 1 is a causal system. Find the difference equation and

6z
2

− z − 1
the frequency response.
Solution Arrange H(z) in terms of negative powers of z

H(z) =
Y (z)

= z
2
(12 − z

−2
) −2

(12 z)

X (z) z
2
(6 − z

−1
− z

−2
)

Cross multiplying

=
(6 − z

−1
− z

−2
)

Y(z) (6 − z
−1

− z
−2

) = X(z) (12 − z
−2

)

6Y (z) − z
−1

Y (z) − z
−2

Y (z) = 12X (z) − z
−2

X (z)

Taking the inverse z-transform

6y(n) − y(n −1) − y(n − 2) = 12x(n) − x(n − 2)

y(n) =
1

y(n–1) +
1

y(n–2) + 2x(n) –
1

x(n–2)

6 6 6
The poles of H(z) are located at

z1, z2 =
− (−1) (−1)

2
− 4 (6) (−1)

2 (6)
=

12
=

1 5 = 0.5 and –1/3
12

and are inside the unit circle. This being a causal system, the ROC is |z| > ½ and contains the

unit circle. The system is stable, and the frequency response is meaningful. It is given by

M
a

g
n
it
u
d
e

P

h
a
s
e
 -

 R
a
d
ia

n
s

= 12z
2
−1 12(e

j
)

2
−1 N ()

 H(ω) = H(z) j = =

where

z = e 6z
2
− z −1

z = e j 6(e j)2 − e
j

−1 D()

N(ω) = 12(e
j

)
2
−1 = 12e

j 2
−1= 12cos 2 + j12sin 2 −1

 12sin 2 j tan−1 12cos 2−1

= (12 cos 2 −1)2
+ (12sin 2)

2 e

D(ω) = 6(e
j

)
2
− e

j
−1 = 6e

j 2
− e

j
−1

= 6cos 2 + j6sin 2 − cos − j sin −1
− 6sin 2−sin j tan 1 6cos2−cos −1

= (6 cos 2 − cos −1)2
+ (6sin 2 − sin)

2 e

The magnitude response is given by

(12 cos 2 −1)
2
+ (12 sin 2)

2

|H(ω)| =
(6 cos 2 − cos −1)

2
+ (6 sin 2 − sin)

2

The phase response is given by
− 12 sin 2 − 6 sin 2 − sin

H () = tan
1
 − tan

1

12 cos 2 −1 6 cos 2 − cos −1

Using MATLAB:
2 −2

H(z) = 12z − 1
=

 12 − z

6z
2
− z − 1

12 − e− j 2

6 − z
−1

− z
−2

b(1) + b(2)e
− j

+ b(3)e
− j 2

+ ...
H(ω) = =

6 − e− j − e− j 2 a(1) + a (2)e
− j

+ a(3)e
− j 2

+ ...

Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In
our example b(1) = 12, b(2) = 0, b(3) = –1, a(1) = 6, a(2) = –1 and a(3) = –1. The MATLAB

segment and the corresponding plots follow. Note that the plot goes from – to .

b = [12, 0, -1]; %Numerator coefficients

a = [6, -1, -1]; %Denominator coefficients

w = -pi: pi/256: pi;

[h] = freqz(b, a, w);

subplot(2, 1, 1), plot(w, abs(h));

xlabel('Frequency \omega (Rad)'), ylabel('Magnitude'); grid

subplot(2, 1, 2), plot(w, angle(h));

xlabel('Frequency \omega (Rad)'), ylabel('Phase - Radians'); grid

1.62 –0.62

 Re

ROC
|z| > 1.62

Unit circle

 Im

3

2.5

2

1.5
-4 -3 -2 -1 0 1 2 3 4

Frequency (Rad)

0.4

0.2

0

-0.2

-0.4

-4 -3 -2 -1 0 1 2 3 4

Frequency (Rad)

Example 1.8.4 Discuss the stability of H(z) =

z−1

1− z
−1

− z
−2

assuming it is a causal

system. Find the difference equation and the frequency response.
(b) Determine the frequency, magnitude and phase responses and time delay for the system

y(n) + (1/4) y(n–1) = x(n) – x(n–1).

Solution

(a) Find the ROC and the poles:

H(z) = z −1

=

1 − z
−1

− z
−2

z

z
2
− z

1
−1

There is a zero at z = 0. The denominator has roots at
− (−1) (−1)

2
− 4(1) (−1) 1 1 + 4 1 5

z1, z2 = = = = 1.62 and –0.62
2 2 2

P
h
a
s
e
 -

 R
a
d
ia

n
s

M
a

g
n
it
u
d
e

(cos −1)2
+ sin

2

The pole locations are shown here. For the system to be causal the ROC is the exterior of a circle

with radius = 1.62. In this case ROC does not include the unit circle. (Equivalently, all the poles

do not lie within the unit circle). Hence the system is not stable.

(b) Taking the z-transform on both sides of y(n) + (1/4) y(n–1) = x(n) – x(n–1) we get

Y(z) + (1/4) z–1 Y(z) = X(z) – z–1 X(z), or
Y(z) {1 + (1/4) z–1} = X(z) {1 – z–1}, or

−1

H(z) = Y (z)
X (z)

 1 − z

1 + (1/ 4)z
−1

 z −1

z + 0.25

There is a single zero at z = 1 and a single pole at z = –0.25 which is inside the unit circle – hence

stable. The frequency response is given by

where

H(ω) = H(z)

 j

z = e j =

z −1

z + 0.25
=

z = e j

e
j

−1

e
j

+ 0.25
= N ()

D()

 sin

−1

N(ω) = e −1 = cos + j sin −1 = e
j tan

 cos −1

D(ω) = e
j

− 0.25 = cos + j sin − 0.25
 sin j tan−1 cos −0.25

= (cos − 0.25)2
+ sin

2 e

The magnitude response is given by

(cos −1)2
+ sin

2
|H(ω)| =

(cos − 0.25)2
+ sin

2
The phase response is given by

− sin − sin
H () = tan

1
 − tan

1

 cos −1 cos − 0.25

The time (group) delay is given by −

Using MATLAB:

d
H () .

d

H(ω) e
j

−1
1− e

− j b(1) + b(2)e
− j

+ b(3)e
− j 2

+ ...
 = = j − j − j − j 2

e + 0.25 1 + 0.25e a(1) + a (2)e + a(3)e + ...

Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In
our example b(1) = 1, b(2) = –1, a(1) = 1, a(2) = 0.25. The MATLAB segment and the

corresponding plots follow. Note that the plot goes from – to .

b = [1, -1]; %Numerator coefficients

a = [1, 0.25]; %Denominator coefficients

w = -pi: pi/256: pi;

[h] = freqz(b, a, w);

subplot(2, 1, 1), plot(w, abs(h));

xlabel('Frequency \omega (Rad)'), ylabel('Magnitude'); grid

subplot(2, 1, 2), plot(w, angle(h));

xlabel('Frequency \omega (Rad)'), ylabel('Phase - Radians'); grid

= =

=

3

2

1

0
-4 -3 -2 -1 0 1 2 3 4

Frequency (Rad)

2

1

0

-1

-2

-4 -3 -2 -1 0 1 2 3 4

Frequency (Rad)

Z-transforms with initial conditions

To solve the Nth order difference equation
N M

y(n) = – ak y(n − k) + br x(n − r)
k = 1 r = 0

with (non-zero) initial conditions we need N initial conditions on the output y(n) and M initial

conditions on the input x(n). Usually the input is applied suddenly (i.e., it is stepped into the

system) at n = 0, so that no initial conditions are needed for it, that is, x(n) = 0 for n < 0. The

output y(n), however, in general, will have non-zero initial conditions for n = –1 to –N.

We are solving for y(n) for n ≥ 0, so that Y(z) = ʓ{y(n)} is the one-sided z-transform. The

difference equation contains other terms like y(n–1), y(n–2), etc. which are delayed versions of
y(n). Suppose N = 3, then we shall have y(n–1), y(n–2), and y(n–3) to deal with. The transform of
y(n–1) is handled as follows. First, for the sequence y(n) as shown below we define

Y+(z) = ʓ{y(n), n ≥ 0} = A + Bz
−1

+ Cz
−2

+ ...
We shall refer to this loosely as just Y(z) when there is no possibility of confusion.

–3 –2 –1

n

0 1 2

y(–2)

y(n)

A

y(–1) C

y(–3)
B

P
h
a
s
e
 -

 R
a
d
ia

n
s

M
a

g
n
it
u
d
e

+

+

z

We then obtain y(n–1) by delaying the sequence by one unit, shown below.

–2 –1 0

n

1 2 3

As can be seen from the graph

ʓ{y(n–1), n ≥ 0} = y(−1) z
0
+ Az

−1
+ Bz

−2
+ Cz

−3
+ ... = z

−1
Y (z) + y(−1)

In a similar fashion

z–1Y+(z)

ʓ{y(n–2), n ≥ 0} = y(−2)z
0
+ y(−1) z

−1
+ Az

−2
+ Bz

−3
+ Cz

−4
+ ...

z–2Y+(z)

and by extension

= z
−2

Y (z) + y(−2) + y(−1)z
−1

ʓ{y(n–3), n ≥ 0} = z
−3

Y+ (z) + y(−3) + y(−2)z
−1

+ y(−1)z
−2

For N = 3 this would be the last. But we can generalize

ʓ{y(n–k), n ≥ 0} = z
−k

Y+(z) + y(−k) + y(−k −1)z
−1

+ ... + y(−1)z
−(k −1)

In the case of the input x(n), since it is applied suddenly at n = 0, the initial conditions are

zero, that is, x(–1) = x(–2) = …= x(–M) = 0, so that

ʓ{x(n–k) u(n)} = z
−k

X +(z)
With this intuitive background we give below the mathematical derivation of the z-

transform of the delayed truncated sequence.

Z-transform of delayed truncated sequence (initial conditions) The one-sided z-transform of
x(n) is

X+(z) = ʓ{x(n) u(n)} = x(n) z
−n

n = 0

Given the sequence x(n), we delay it by k units, and then truncate it to the left of n = 0 to get x(n–

k) u(n). We want find the z-transform of x(n–k) u(n).

ʓ{x(n–k) u(n)} = x(n − k) u(n) z
−n

= x(n − k) z
−n

n =− n = 0

If we let n–k = r, then n = r+k, and the summation limits n = 0 to ∞ become r = –k to ∞. Then

ʓ{x(n–k) u(n)} = x(r) z
−(r+k)

=
r =−k

z
−k x(r) z

−r

r = −k

 −1 −1

= z
−k

 x(r) z
−r

+ x(r) z
−r

 = −k X +(z) + x(r) z
−r

 r = 0 r =− k r =− k

X+(z) IC

y(n–1)

A
C

y(–1)
B

+

= z
−k X +(z) + x(−k) z

k
+ x(−k −1) z

k −1
+ ... + x(−1) z

1
= z

−k
X (z) + x(−k) + x(−k −1) z

−1
+ ... + x(−1) z

−(k −1)

Due to Initial Conditions

We shall loosely refer to X+(z) as X(z) and write the result as

ʓ{x(n–k) u(n)} = z
−k

X (z) + x(−k) + x(−k −1) z
−1

+ ... + x(−1) z
−(k −1)

Due to Initial Conditions

The above result is used to solve linear constant coefficient difference equations with

inputs that are stepped into a system. Suppose we want the solution of
N

 ak y(n − k)
k = 0

M

= br x(n − r) , n ≥ 0
r = 0

subject to the initial conditions

{y(i), i = –1, –2, …, –N} and {x(i), i = –1, –2, …, –M}

We take the z-transform of the equation using the result derived above for delayed-truncated

sequences
 N M

ʓ ak y(n − k) = ʓ br x(n − r) , n ≥ 0

k = 0
N

 r = 0
M

ak {y(n − k)} = br {x(n − r)}, n ≥ 0
k = 0 r = 0

where we have used Z to mean ʓ the z-transformation operation. The left hand side is

LHS = a0 ʓ{y(n)} + a1 ʓ{y(n–1)} + a2 ʓ{y(n–2)} + … + aN ʓ{y(n–N)}
= a0 Y(z) + a1 {z–1 Y(z) + y(–1)} + a2 {z–2 Y(z) + y(–2) + y(–1) z–1} +

… + aN {z–N Y(z) + y(–N) + y(–(N–1)) z–1+ … + y(–1) z–N+1}

(Note that in terms of the derivation earlier all of the Y(z)’s are Y+(z)’s, i.e. , one-sided
transforms). All the Y(z) terms can be grouped together under a summation, and all the remaining
terms, due to the initial conditions {y(i), i = –1, –2, …, –N}, can be grouped together so that the
above can be written as

N

LHS = ak

k = 0

z
−k

Y (z) + g{z–1, y(–1), y(–2), …, y(–N)}

Initial condition terms

By following a similar procedure the right hand side can also be written as follows (here again

the X(z)’s are X+(z)’s, i.e. , one-sided transforms):
M

RHS = b zr
−r

X (z)+ h{z–1, x(–1), x(–2), …, x(–M)}
r = 0

Initial condition terms

r

z = X(z) b z + h{…} – g{…}

 a z

N

Writing out in full, LHS = RHS becomes
N M

ak z
−k

Y (z) + g{…} = b z
−r X (z) + h{…}

k = 0 r = 0

Factoring out Y(z) and X(z) and rearranging we have

Y(z)

N

 ak

k = 0

M

−k −r

r

r = 0

M

b rz −r

Y(z) = X(z)
 r = 0

+ h{

...} − g{...}

N N ak z
k −k

−k

k = 0

Taking the inverse z-transform we get

 M

 b z

k = 0

−r

–1 r r = 0

–1 h{...} − g{...}

y(n) = ʓ
X (z)

N

 + ʓ ak z −k ak

z
−k

 k = 0 k = 0

To summarize: to solve for y(n) we take the z-transform of the linear constant coefficient
difference equation using initial conditions, manipulate in the z-domain to get Y(z) and then take

the inverse z-transform of Y(z) to get y(n).

Example 1.9.1 Find the solution to

3 1 1 n

y(n) – y(n–1) + y(n–2) = , n 0

2 2 4
with initial conditions y(–1) = 4, y(–2) = 10.
Solution There are three methods of solution:

1. Find the iterative solution in the discrete-time domain. In general this will not

give an analytical (closed) form of solution.

2. Solve in the discrete-time domain (homogeneous solution + particular solution).

3. Solve in the frequency domain as we do below.

For an input sequence x(n) that is stepped into a system, specified in words like x(n) = 0

for n < 0, the initial conditions are clearly zero and do not matter. But for an output sequence

y(n) where the initial conditions y(–1), y(–2) are explicitly given to be non-zero we need to use

the above derived “z-transform for delayed truncated sequence”. In particular we have

ʓ{y(n)} = Y(z)

ʓ{y(n–1)} = z
−1Y (z) + y(−1) z

1
ʓ{y(n–2)} = z

−2 Y (z) + y(−2) z
2
+ y(−1) z

1

Taking the z-transform of the difference equation we get
 3 1 1

n
ʓ y(n) − y(n −1) + y(n − 2) = ʓ n 0

 2 2 4

3 1 z

ʓ{y(n)} –
2

ʓ{y(n–1)} +
2

ʓ{y(n–2)} =
z − (1/ 4)

Y(z) –
3

z
−1Y (z) + y(−1) z

1 +
1

2 2
z

−2 Y(z) + y(−2) z
2

+ y(−1) z
1 =

z

z − (1/ 4)

=

=

5 15 51

=

Plugging in the initial conditions y(–1) = 4 and y(–2) = 10

Y(z) –
3 z

−1
Y(z) + 4 +

2

1 z−2
Y (z) + 10 + 4 z

−1 =

2

z

z − (1/ 4)
 3 −1 +

1
z

−2 –1 z
1 − z

Y(z)
 2

2 – 6 + 5 + 2 z = z − (1/ 4)

Y(z)1−1.5 z
−1

+ 0.5z
−2 =

z

z − (1/ 4)
2

+ 1 – 2 z–1 2z
2 − (9 / 4)z + (1/ 2)

z (z − (1/ 4))

Y(z) (1–z–1) (1–0.5z–1)=
2z − (9 / 4)z + (1/ 2)

z (z − (1/ 4))

Y(z)
(z −1)(z − (1/ 2))

z 2

2z
2
− (9 / 4)z + (1/ 2)

z (z − (1/ 4))

z (2z
2
− (9 / 4)z + (1/ 2)) Y(z) =

(z − (1/ 4))(z −1)(z − (1/ 2))
Y (z) (2z −2 (9 / 4)z + (1/ 2)) A B C

z (z − (1/ 4))(z −1)(z − (1/ 2))
=

(2z
2
− (9 / 4)z + (1/ 2))

+ +
z − (1/ 4) z − 1 z − (1/ 2)

A =
(z −1)(z − (1/ 2))

z =1/ 4

= 1/3

B =

z =1

C =

= 2/3

= 1

z =1/ 2

Y (z)

=
 (1/ 3)

+
(2 / 3)

+
 1

z z − (1/ 4) z − 1 z − (1/ 2)

Y(z) =
1

z 2 z z

3 z − (1/ 4)

+
3 z − 1

+
z − (1/ 2)

n

y(n) = 1

1

 +
2
1

n
+

1

n
u(n)

 3 4 3 2

The iterative solution for this problem was obtained in Unit I. The time-domain solution

was covered in HW (Extra). The solution is repeated below

y(n) = 2, ,...

 4 16 64

Example 4.9.2 [2002] Solve the following linear difference equation

y(n) +
1

y(n–1) –
2

given y(–1) = y(–2) = 1.

1
y(n–2) = 0

4

Solution Note that the output is a natural response corresponding to the specified initial

conditions. There is no forced response since x(n) = 0.
The iterative solution is

y(n) =
 1

,
3

, −
1

,
7

 − ,...

 4 8 4 32

(2z
2

− (9 / 4)z + (1/ 2))
(z − (1/ 4))(z − (1/ 2))

(2z
2

− (9 / 4)z + (1/ 2))
(z − (1/ 4))(z −1)

For the solution in the frequency domain we take the z-transform of the difference

equation

ʓ

y(n) +
1

y(n −1) −
1

y(n − 2)

= ʓ (0) n 0
 2

1
ʓ{y(n)} +

2

4
1

ʓ{y(n–1)} –
4

ʓ{y(n–2)} = 0

Y(z) +
1

2

z
−1Y (z) + y(−1) z

1 –
1

4
z

−2 Y (z) + y(−2) z
2
+ y(−1) z

1 = 0

Y(z) +
1

 2

z
−1Y (z) + 1 z

1 –
1

4 z
−2 Y (z) +1z

2
+1z

1 = 0

Y(z) 1+ 0.5 z
−1

− 0.25 z
−2 = − 0.25 + 0.25z

−1

(−0.25)z (z −1)
Y(z) =

z
2

+ 0.5z − 0.25

Y (z)
=

z

(−0.25)(z −1)
z

2
+ 0.5z − 0.25

The denominator on the right hand side has roots at
− 0.5 (0.5)

2
− 4(1)(−0.25) − 1 5

z1, z2 = = = 0.309 and –0.809
2 4

Y (z) (−0.25)(z −1) A B

z
=

(z − 0.309)(z + 0.809)
=

z − 0.309
+

z + 0.809

(−0.25)(z −1)
A =

(z + 0.809)

 (−0.25)(z −1) B =
(z − 0.309)

= 0.155

z = 0.309

= – 0.405

Y(z) = 0.155z
z − 0.309

z =−0.809

 0.405z

z + 0.809

y(n) = 0.155 (0.309)
n

– 0.405(−0.809)
n
, n ≥ 0

The first few values of the sequence are y(n) = − 0.25, 0.376, − 0.25, 0.219,... and should be

compared with the iterative solution.

In the context of MATLAB, we may use filter(b, a, x) to generate the sequence y(n). The

coefficients of y(.) and x(.) are numbered slightly differently as below:

a1 y(n) + a2 y(n–1)+ a3 y(n–2) + …= b1 x(n) + b2 x(n–1)+ b3 x(n–2)+ …

From the difference equation

y(n) +
1

y(n–1) –

2

1
y(n–2) = 0, n 0

4

we note that the input is x(n) = 0 and the coefficients of y(.) and x(.) give us the a and b vectors:

a = [1, 0.5, -02.5] and b = [1]. The non-zero initial conditions y(–1) = y(–2) = 1 must first be

converted to equivalent initial conditions for the filter function to work. We specify the vector

yic = [y(–1), y(–2)] = [1, 1] and generate the equivalent initial conditions eic by the function

filtic(b, a, yic). The equivalent initial conditions are then used to generate the filter output

through filter(b, a, xn, eic). The MATLAB segment follows:

–

%Non-zero initial conditions

b = [1], a = [1, 0.5, -0.25], yic = [1, 1],

n = 0:25, xn = 0 .*n

%

%Equivalent initial conditions

eic = filtic(b, a, yic),

yn = filter(b, a, xn, eic)

subplot(2, 1, 1), stem(n, xn);

xlabel('n'), ylabel('xn'); title('Input Sequence');

subplot(2, 1, 2), stem(n, yn);

xlabel('n'), ylabel('yn'); title('Output Sequence');

The output is:

yn = [-0.25 0.375 -0.25 0.2188 -0.1719 0.1406 -0.1133 … 0.0031 -0.0025 0.0020]

Input Sequence

1

0.5

0

-0.5

-1

0 5 10 15 20 25

n

Output Sequence

0.4

0.2

0

-0.2

-0.4

0

5 10 15 20 25

n

Example 1.9.3 Find the response sequence for the filter defined by

y(n) – 7 y(n–1) + 126 y(n–2) = x(n)

Assume the system is initially relaxed. Obtain the system function and plot its poles and zeros.

Solution The phrase “initially relaxed” means that the initial conditions are zero, that is, y(n) = 0

for n < 0 and x(n) = 0 for n < 0. The question doesn’t specify what the input x(n) is, so assume

δ(n). (What will the output be if both the input and the initial conditions are zero?)

Steady-state and transient responses for a first order system

y
n

x
n

()
0

0

= 0

We consider sinusoidal inputs. Although the presentation is only for a first order system, the

relationship established for the steady-state response in terms of the transfer function of the

system is a general result for stable systems and sinusoidal inputs.

The system is

y(n) = a y(n–1) + x(n), n ≥ 0

with the initial condition y(–1) and the input x(n) = cos0 n u(n). (We have considered the time-

domain behavior of this system in Unit I). Assume |a| < 1in order to have a stable system. The

system function is obtained with zero initial conditions,

Y(z) = a z–1 Y(z) + X(z), or

H(z) = Y (z)
X (z)

1

1− az
−1

z

z − a

The solution of the difference equation is obtained by taking the z-transform and using
the given initial condition

Y(z) = a [z–1 Y(z) + y(–1)] + X(z)

Y(z) 1− az
−1 = a y(–1) + X(z)

Y(z) = a y(–1)
1

1− az
−1

+ X(z)
1

1− az
−1

2

= a y(–1) H(z) + X(z) H(z)

Since X(z) = ʓ{x(n)} = ʓ{ cos0 n u(n)} =

2

z − z cos
2

z − 2z cos0 +1

, we have

Y(z) = a y(−1) H (z) + z − z cos0 H(z) = Y (z) + Y (z)
1 2

z
2

− 2z cos +1
0

= Y1(z) = Y2(z)

Here Y1(z) is the zero-input response due to the initial condition(s)
a y(−1) z

Y1(z) = a y(−1) H (z) =

z − a
and Y2(z) is the forced response due to the input x(n)

z 2 − z cos0 z z
2
− z cos

Y2(z) = z
2
− 2z cos +1

H(z) = (z − a)(z
2
− 2z cos +1)

0 0

Y1(z) is already in a convenient form for taking the inverse, but Y2(z) must be expanded into

partial fractions as below.
Y (z) z (z −cos0)

 2 =
z (z − a)(z

2
− 2z cos +1)

A
= +

z − a

A =

B

z − e

j0

z = a

*

+
 B z −

e− j0

a (a − cos)

a
2
− 2a cos + 1

0

(z
2
− 2z cos +1

z (z −cos) 0

0
) = z

2
− ze

j0 − ze
− j0 +1

= z2 − ze j0 − ze− j0 + e j0 e− j0

= z(z −e
j0) −e

− j0 (z − e
j0)

= (z −e
j0)(z −e

− j0)

 +1
2

 e j0 + e− j0
= z

2
− 2z

0
z

2
− 2z cos + 1

Factoring of…

= = =

0

0

2 e
j0 − a) 2

(

B =

j j

z = e j0

j0

 j0

e j0 + e− j0

 e 0 (e 0 −cos) e e −2
 0

=
(e

j0 − a)(e
j0 − e

− j0)
=

(e
j0 − a)(e

j0 − e
− j0)

 e j0 − e− j0

e
j0

 2

=
(e

j0 − a)(e
j0 − e

− j0)

= e j0

=
1

H (z)

B* =

So

e− j0

2(e− j0 − a)

Y(z) = Y1(z) + Y2(z) = Y1(z) +
Y2 (z)

z
z

*

=
a y(−1) z

+
 A z

+
 B z

+
 B z

z − a z − a z − e
j0

z − e− j0

Taking the inverse z-transform we get

y(n) = a y(–1) a
n
u(n) + A a

n
u(n) + B (e

j0)n

u(n) + B
* (e− j0)n

u(n)

= y2(n)

y(n) = [a y(–1) + A] a
n
u(n) + B (e

j0)n

u(n) + B
* (e− j0)n

u(n)

 Using the fact that B = e j0 (=
1

H (z)

2 e

j0 − a) 2
 1

j
z = e 0

2 ReBej0 n
= 2 Re

 2
H (z)

z = e
j0

e j0 n

= Re H (z)

z = e
j0 e j0 n

Since H (z) = H (j) = H (j) e
jH (j0) we can write 2 ReBe

j0 n = ReH(j) e
j0 n = ReH (j)

jH (j) j n
z = e j0 0 0

0 0 e 0 e 0
= ReH (j) e j (0 n +H (j0))
= H (j0) cos (n + H (j)

0 0

Thus y(n) becomes

y(n) = [a y(–1) + A] a
n
u(n) +

Transient response

conjugates, hence

= 2 ReBe
j0 n u(n)

These are complex

z (z −cos0)

(z − a)(z − e
− j0)

H (j) cos (n + H (j) u(n) 0 0 0

Steady-state response

=n)y1(

j

z = e 0

1

Since |a| < 1 the transient term will eventually go to zero as n → ∞. Even if the initial condition

is zero, y(–1) = 0, there is still a transient response Aa
n
u(n) which eventually dies down.

If there is a nonzero initial condition, y(–1), but the input x(n) = 0, the solution becomes

y(n) = y1(n) = a y(–1) a
n
u(n) which also dies down as n → ∞.

Realization of digital filters

Given H(z), the system function, or h(n), the impulse response, the difference equation may be

obtained. This difference equation could be implemented by computer program, special purpose

digital circuitry, or special programmable integrated circuit. This direct evaluation of the

difference equation is not the only possible realization of the digital filter. Alternative

realizations of the digital filter are possible by breaking up the direct realization in some form.

Direct Form realization of IIR filters An important class of linear shift invariant systems can

be characterized by the following rational system function (where X(z) is the input, Y(z) the

output and we have taken a0 = 1 in comparison with the earlier representation):
M

Y (z) −1 − M +1 b z
−k

 b + b z ++ b .. z k

k = 0 H(z) = = 0 1 M −1 + bM z
=

X (z) 1+ a z

−1
++ a N −1 z −N +1 + aN z

N

1 +
k = 1

ak z

By cross multiplying and taking the inverse z-transform we get the difference equation
N M

y(n) = – ak y(n − k) + br x(n − r)
k = 1 r = 0

= –a1 y(n–1) –a2 y(n–2) –… –aN y(n–N)
+ b0 x(n) + b1 x(n–1) + … + bM x(n–M)

To construct a filter structure we shall need three types of block diagram elements: a delay

element, a multiplier and an adder, illustrated below:

y(n)

Y(z)

a1
y(n–1)

z–1Y(z)

x(n)

X(z)

y(n)= x(n)+ a1y(n–1)

–1

Y(z)= X(z)+a1z Y(z)

a1 y(n–1)

a1 z
–1Y(z)

We can construct a realization of the filter called the Direct Form I by starting with y(n) and

generating all the delayed versions y(n–1), y(n–2), …, y(n–N); similarly starting with x(n) and

generating all the delayed versions x(n–1), x(n–2), …, x(n–M). We then multiply the above terms

by the respective coefficients and add them up. This is shown below (next page).

This is an Nth order system N being the order of the difference equation. There is no

restriction as to whether M should be less than or greater than or equal to N. The total number of

delay elements = (N+M). It is not in canonic form because it uses more than the minimum

−M

y(n–1)

z–1Y(z)

a1 y(n–1)

a1 z
–1Y(z)

z–1

−N −k

possible number of delay elements. It is called “Direct Form” because the multipliers are the
actual filter coefficients {a1, a2, …, aN, b0, b1, b2, …, bM}.

The difference equation of this realization (or structure) continues to be

y(n) = –a1 y(n–1) –a2 y(n–2) –… –aN y(n–N)

N multiplications

+ b0 x(n) + b1 x(n–1) + … + bM x(n–M)

(M+1) multiplications

and will be referred to as the Direct Form I difference equation. The total number of

multiplications can be counted and is seen to be (N+M+1). We can also count and see that there

are (N+M) additions. Finally, to calculate the value y(n) we need to store N past values of y(.),

and M past values of x(.), that is, a total of (N+M) storage locations (storage for the present value

of x(.) is not counted).

x(n)

Pick-off

point

b0

b1

Multiplier

b0x(n)

Direct Form I

Adder

 –a1

Pick-off

point

y(n)

Delay

element

x(n–1)

x(n–2)

 b1x(n–1)

b2

y(n–1)

y(n–2)

Mth delay

element

x(n–M)

bM –aN

bM x(n–M) –aN y(n–N)

Nth delay

element

y(n–N)

Multiplier

Rearrangement of Direct Form I The above diagram of Direct Form I, or the corresponding
expression for H(z), is sometimes rearranged as below. This shows visually that the transfer

z–1

–a1y(n–1)

–a2

z–1 z–1

z–1

z–1 z–1

W (z)

 k

function H(z) is arranged as a cascade of an all-zero system, H2(z), followed by an all-pole

system, H1(z):

H(z) =

Y (z) M

−

= b z 1 = H (z) H (z)
X (z) k = 0 k N

−k 2 1

 1 + ak z

 k = 1

H2(z) H1(z)

The overall block diagram then is shown thus:

W(z) Y(z)

W (z)
M

 −k

The all-zero system is H2(z) =

X (z)
= bk z

 k = 0

from which, by cross-multiplying and

taking the inverse z-transform, we get the difference equation below:

W(z) = H2(z) X(z) = X(z) M b z −k

k

 k = 0
w(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M)

W(z)

The all-pole system is H1(z) =
 Y (z)

=
 N 1

from which, by cross-multiplying

 1 + ak z
−k

 k = 1

and taking the inverse z-transform, we get the difference equation as below:

Y(z) = H1(z) W(z) = W(z)
 1

 N

 1 + ak z
−k

 k = 1

y(n) = w(n) – a1 y(n–1) – a2 y(n–2) –… – aN y(n–N)

Y(z)

X(z)
H2(z)

W(z)
H1(z)

X(z)
H2(z)

H1(z)

b1
z–1

–a2
z–1

bM–1

bM –aN z–1 z–1

–a1

z–1

Even though it seems that there are two equations, one for w(n) and another for y(n), there is, in

effect, only one since w(n) in the second equation is simply a short hand notation for the first

equation and can be eliminated from the equation for y(n).

Overall, the Direct Form I has the following alternative appearance:

b0
x(n) w(n) y(n)

H2(z) (All-zero System) H1(z) (All-pole System)

Derivation of Direct Form II The transfer function H(z) can be written as the product of the
two transfer functions H1(z) and H2 (z) as follows where we have reversed the sequence of the
two blocks:

H(z) =

Y (z)

=

 1
 M

b z

−k = H (z) H (z)
X (z) N

−

 k 1 2

 1 + ak z
 k = 0

 k = 1

H1(z) H2(z)

P(z)

Y(z)

k

X(z)
H1(z)

H2(z)

z–1

z–1 z–1

 1 M

−k

P(z) = H1(z) X(z) = N X(z) and Y(z) = H2(z) P(z) =
 bk z

 P(z)

 1 +

 ak

k = 1

z
−k

 k = 0

Cross-multiplying, taking the inverse z-transform of the above two and rearranging, we have
N M

p(n) = x(n) – ak p(n − k) , and y(n) = br p(n − r)
k = 1

The two equations are realized as below:

r = 0

x(n)

p(n)

p(n) b0

y(n)

–a1 b1

–a2

–aN–1

bM–1

–aN bM

H1(z) (All-pole System) H2(z) (All-zero System)

z–1 z–1

x(n) p(n) b0 y(n)

–a1 b1

–a2

–aN–1

 bM

–aN
z–1

z–1

z–1

The two branches of delay elements in the middle of the above block diagram can be replaced by

just one branch containing either N or M (whichever is larger) delay elements, resulting in the

Direct Form II shown below:

(Aside) This diagram of the filter structure is properly called a block diagram. There is another

representation called the signal flow graph. See below for signal flow graphs and transposed

structures.

x(n) p(n) b0

y(n)

–a1 b1

p(n–1)

–a2

bM

Nth Delay

–aN
p(n–N)

z–1

z–1

z–1

z–1

z–1

In the above diagram each column of adders on each side can be replaced by a single adder

resulting in the more familiar form shown below. There are now only two adders.

Direct Form II

The number of delay elements = max {N, M} – this is the minimum possible, hence called

a canonic form. The multipliers are the actual coefficients from the difference equation. Hence

this is also a direct form.

The numbers of multipliers and adders are also the minimum possible, but this does not
mean that it is the best realization from other considerations like immunity to round off and
quantization errors.

The difference equations are:
p(n) = x(n) –a1 p(n–1) –a2 p(n–2) –… –aN p(n–N) , and
y(n) = b0 p(n) + b1 p(n–1) + … + bM p(n–M)

The above equations show that in order to generate y(n) we need the present value of x(.)

and N (or M or whichever is larger) past values of p(.). This requires N storage locations not

counting the present value of x(.). We also see that the number of multiplications = N+M+1, and

number of additions = N+M.

Comparing the difference equations of Direct Forms I and II:

• To compute y(n) in DF I we need the past N outputs, the present input, and the

past M inputs.

• To compute y(n) in DF II we need the N (or M) values of p(n–k) for k = 1,2, …, N,

and the present input.
This illustrates the concept of the state of a system.

Definition The state of a system is the minimum information required that along with the input

allows the determination of the output.

From the above discussion the N (or M) values p(n–k), k = 1, 2, …, N, make up the state of the

system.

Comparison of Direct Forms I and II
 Direct Form I Direct Form II

No. of multiplications N+M+1 N+M+1

No. of additions N+M N+M

No. of storage locations N+M N

State y(n–k), k = 1 to N
x(n–k), k = 1 to M

p(n–k), k = 1 to N

x(n) p(n) b0 y(n)

–a1 b1

–a2

–aN–1

 bM

–aN
z–1

z–1

z–1

Signal flow graph A signal flow graph representation of a difference equation is essentially the

same as its block diagram representation, except for a few notational differences. The signal flow

graph is a network of directed branches that connect at nodes. Associated with each node is a

variable or node value. Each branch has an input signal and an output signal. In a linear signal

flow graph the output of a branch is a linear transformation (such as a constant or a delay shown

alongside the branch) of the input to the branch. Sometimes this branch transmittance is unity

and not explicitly shown. By definition, the value at each node in a graph is the sum of the

outputs of all the branches entering the node.

Source nodes have no entering branches and sink nodes have only entering branches.

We repeat below the Direct Form II block diagram developed earlier.

The signal flow graph corresponding to the above structure is shown below. With regard

to the “a” and “b” coefficients we have arbitrarily taken M = N, but M and N are independent of

each other. In this figure the bottom-most right and left nodes are unnecessary.

x(n) p(n) b0 y(n)

–a1
z–1

b1

–a2
z–1

b2

–aN–1 bN–1

–aN
z–1

bN

= =

Transposition (Flow graph reversal) leaves the overall system function between input and

output unchanged and leads to a set of transposed system structures that provide some useful

alternatives.

Transposition of a flow graph is accomplished by reversing the directions of all branches

while keeping the branch transmittances as they were and reversing the roles of the input and

output so that source nodes become sink nodes and vice versa. Clearly, if a signal flow graph

configuration is transposed, the number of delay branches and the number of coefficients remain

the same. Thus a canonic structure remains canonic in the process of transposition.

The result of applying the transposition theorem to the signal flow graph of the direct

form II structure (and reorienting the diagram so that the input and output still appear on the left

and right sides, respectively) is shown below. This will be referred to as the “direct form II

transposed”.

x(n) b0 y(n)

Comparison of the direct form II with its transposed version shows that

• The direct form II structure implements the poles first and then the zeros

• The transposed direct form II structure implements the zeros first and then the

poles

These differences can become important in the presence of quantization in finite precision digital

implementations or in the presence of noise in discrete-time analog implementations.

When the transposition theorem is applied to cascade or parallel structures, the individual

second-order systems are replaced by transposed structures.

Example 1.11.1 Develop a canonic direct form realization of the transfer function

H(z) = 6z
5

+ 8z
3
− 4

2z
5
+ 6z

4
+10z

3
+ 8z

Solution Write numerator and denominator as polynomials in negative powers of z with the
leading term (a0) in the denominator equal to 1

z
5
(6 + 8z

−2 − 4z
−5

) (6 + 8z
−2

− 4z
−5

)
H(z) = =

z
5
(2 + 6z

−1
+ 10z

−2
+ 8z

−4
) (2 + 6z

−1
+10z

−2
+ 8z

−4
)

−2 −5 −2 −5

 (6 + 8z − 4z) 3 + 4z − 2z

2 (1+ 3z
−1

+ 5z
−2

+ 4z
−4

) 1+ 3z
−1

+ 5z
−2

+ 4z
−4

b1
z–1

–a1

b2
z–1

–a2

bN–1

bN
z–1

–aN

=

x(n) p(n) y(n)

3 (b0)

p(n–1)

–3
(–
a1)

–5 (–a2) 4 (b2)

p(n–3)

–4 (–a4)

–2 (b5)

p(n–5)

z–1

z–1

z–1

z–1

z–1

Making the following comparison with the standard notation
b + b z

−1
+ b z

−2
+ b z

−3
+ b z

−4
+ b z

−5
3 + 4z

−2
− 2z

−5

H(z) = 0 1

1+ a z
2 3 4 5

−1
+ a z

−2
+ a z

−3
+ a z −4 1+ 3z

−1
+ 5z

−2
+ 4z

−4

1 2 3 4

we identify the following parameters:

b0 = 3, b1 = 0, b2 = 4, b3 = 0, b4 = 0, b5 = –2
a1 = 3, a2 = 5, a3 = 0, a4 = 4

By inspection of the above structure we can write the difference equations

p(n) = x(n) –3 p(n–1) –5 p(n–2) –4 p(n–4) and

y(n) = 3 p(n) + 4 p(n–2) – 2 p(n–5)

x(n) p(n) y(n)

1 (b0)

1 (–a1) –2 (b1)

–9/16 –1 (b2)

1/16 2 (b3)

–1/32
p(n–4)

z–1

z–1

z–1

z–1

Example 1.11.2 [Ludeman, 5.1] A system is specified by its transfer function as

H(z) = (z −1) (z − 2)(z +1) z 1 1

1 1

1 1

−
+

z −
+ j

z −

 − j

z j z j

 2 2 2
 2

 4

 4

Realize the system in the following forms: (a) Direct Form I, and (b) Direct Form II.

Solution We need to express H(z) as a ratio of polynomials in negative powers of z with the
leading term (a0) in the denominator equal to 1. Multiplying out the factors in the numerator and
denominator and rearranging

H(z) = (z
2
−1) (z

2
− 2z) 1 − 2z

−1 − z−2
+ 2z

−3

z

2
− z +

1 z
2

+ 16 =
1 − z

−1
+

9
 z −2 −

1
z −3 +

1 −4
z

 2
16 16 32

By inspection of the above structure we can write the difference equations

p(n) = ?

y(n) = ?

1 + a z
2

+
2

x(n)

p(n)
b0

y(n)

b1

–a1

b2

–a2
p(n–2)

z–1

z–1

x(n) b0

y(n)

b1

–a1

b2

–a2

z–1

z–1

Biquadratic section When M = N = 2 we have the biquadratic section, an important building

block. Thus H(z) is a ratio of two quadratics in z–1 given by
b + b z

−1
+ b z

−2

H(z) = 0 1
 −1 + a z −2

1 2

The corresponding DF II structure is shown below with the difference equations.

Biquadratic section – DF II

p(n) = x(n) – a1 p(n–1) – a2 p(n–2)
y(n) = b0 p(n) + b1 p(n–1) + b2 p(n–2)

The biquadratic may also be implemented in the DF I with the difference equation:

DF I: y(n) = b0 x(n) + b1 x(n–1) + b2 x(n–2) – a1 y(n–1) – a2 y(n–2)

Shown below is an alternative realization of the biquadratic made possible by factoring

out the coefficient b0. This is more convenient for amplitude scaling by tuning the value of b0.
b (1 + bz

−1
+ b z

−2
)

H(z) = 0 1
−1

1 a z + a z
−2

1 2

Alternative Biquadratic

As an exercise label the signal out of the left adder as w(n) and write down the difference

equations.

b z

1

1 + a z a z

1

+

i =

y1(n) y2(n) yk–1(n) y(n)

X(z) Y(z)

H(z)

Hk(z) H2(z) H1(z)

Cascade realization of IIR filters Many different realizations exist depending on how we

choose to write and rearrange the given transfer function. Two very important ways of

decomposing the transfer function are the cascade and parallel decompositions.
In the cascade realization H(z) is broken up into a product of transfer functions H1, H2,

…, Hk, each a rational expression in z–1 as follows:
Y (z) = H(z) = H (z) H (z) … H (z) H (z) k

X (z)

so that Y(z) can be written as

k–1 2 1

Y(z) = Hk(z) Hk–1(z) … H2(z) H1(z) X(z)

Although H(z) could be broken up in many different ways, the most common cascade

realization is to require each of the k product H’s to be a biquadratic section. In many cases the
design procedure yields a product of biquadratic expressions so no further work is necessary to
put H(z) in the required form. The product terms Hi(z) could take various forms, depending on
the actual problem. Some possbible forms are

0 , H (z) = b0 + b1 z−1
H (z)

1+ a z
−1

+ a z −2 i
1+ a z

−1
+ a z −2

1 2

b b z −1 +
2

−2

Hi(z) = b0 + b1z
–1 + b2z

–2, Hi(z) = 0 1 2

1+ a z
−1

b + b z
−1

+ b z
−2

Hi(z) = 0 1
 −1 +

2
−2 (Biquadratic)

1 2

b + b z
−1

Hi(z) = 0 1

−

(Bilinear)

1+ a z
1

Each of the Hi(z) could then be realized using either the direct form I or II.

Different structures are obtained by changing the ordering of the sections and by

changing the pole-zero pairings. In practice due to the finite word-length effects, each such

cascade realization behaves differently from the others.

Example 1.11.3 Develop two different cascade canonic realizations of the following causal IIR

transfer function

H(z) =
z(0.3z − 0.5)(2z + 3.1)

(z
2
+ 2.1z − 3)(z + 0.67)

Solution Write in terms of negative powers of z:

H(z) = z z
2
(0.3 − 0.5z

−1
)(2 + 3.1z −1) = (0.3 − 0.5z

−1
)(2 + 3.1z

−1)

z
3
(1+ 2.1z

−1
− 3z

−2
)(1+ 0.67z

−1
) (1+ 2.1z

−1
− 3z

−2
)(1 + 0.67z

−1
)

1

0.3 − 0.5z
−1

1 + 0.67z
−1

2 + 3.1z
−1

1+ 2.1z
−1

− 3z
−2

2 + 3.1z
−1

1+ 0.67z
−1

0.3 − 0.5z
−1

1 + 2.1z
−1

− 3z
−2

Two (of several) different cascade arrangements, based on how the factors are paired, are shown
below in block diagram form. Note that the intermediate signal y1(n) is different from the
intermediate signal y3(n).

x(n)

Cascade – A

y1(n) y2(n) = y(n)

x(n)

Cascade – B

y3(n) y4(n) = y(n)

Cascade A is shown below using the direct form II for each block separately:

x(n) p1(n)
0.3

y1(n)

–0.5

–2.1

3 p1(n–2)

y1(n) p2(n)
2

y2(n) = y(n)

3.1

–0.67

z–1

z–1

z–1

A(z)

C(z)

B(z)

D(z)

A(z)

D(z)

B(z)

C(z)

B(z)

C(z)

A(z)

D(z)

B(z)

D(z)

A(z)

C(z)

Cascade B is shown below using the direct form II for each block separately:

x(n) p3(n)
2

y3(n)

3.1

–2.1

3 p3(n–2)

y3(n) p4(n)
0.3

y4(n) = y(n)

–0.5

–0.67

Note in this example that if H(z) =
 A(z) B(z)

, then depending on the pole-zero pairings and the

C(z) D(z)

sequence order of the blocks in the cascade we can have 4 different implementations (structures).

These are equivalent from input to output though not at the intermediate point between the

blocks. Moreover the quadratic (z2 + 2.1z – 3) has real roots and so can be split into two factors

each of which can be combined with the other factor (z + 0.67) in the denominator. This results

in more than the 4 structures shown here.

z–1

z–1

z–1

y1(n)

y2(n)

yk(n)

0 1 0 1 0 1

x(n)

X(z)
Σ y(n)

Y(z)

H(z)

Hk(z)

H2(z)

H1(z)

Example 1.11.4 [Ludeman, 5.1] A system is specified by its transfer function as

H(z) = (z −1) (z − 2)(z +1) z 1 1

1 1

1 1

−
+

z −
+ j

z −

 − j

z j z j

 2 2 2
 2

 4

 4

Realize the system as a cascade of two biquadratic sections.

Solution In the numerator all the zeros are real-valued, so any two factors can be combined to

produce a quadratic; thus there are C(4, 2) ways of doing this. But in the denominator a pair of

factors must be combined so as to produce real-valued coefficients, i.e., combine two factors

with complex conjugate poles.

In general, whether in the numerator or denominator, a pair of factors associated with a

pair of complex conjugate roots must be combined so that the resulting quadratic expression will

have real coefficients.

Parallel realization of IIR filters The transfer function H(z) is written as a sum of transfer

functions H1(z), H2(z), …, Hk(z) obtained by partial fraction expansion:
Y (z) = H(z) = H (z) + H (z) + … + H (z) + H (z)

Thus

1 2

X (z)
k–1 k

Y(z) = H(z) X(z) = [H1(z) + H2(z) + … + Hk–1(z) + Hk(z)] X(z)
= H1(z) X(z)+ H2(z) X(z)+ … + Hk–1(z) X(z)+ Hk(z) X(z)

and is shown in block diagram fashion below. Note that the outputs y1(n), y2(n), …, yk(n) are
independent of each other; they are not coupled as in the case of the cascade structure.

Based on whether H(z)/z or H(z) is the starting point for partial fractions we have parallel

forms I and II (S. K. Mitra). Both of these methods are illustrated below.

Parallel Form I (This corresponds to expanding H(z)/z instead of H(z) into partial fractions).
This structure arises when the Hi(z) are all selected to be of the form

b + b z
−1

b z
2

+ b z z(b z + b)
Hi(z) = = =

1+ a z
−1

+ a z −2
z

2
+ a z + a z

2
+ a z + a

1 2 1 2 1 2

where the quadratic terms are used for each pair of complex conjugate poles so that the
coefficients of the corresponding Hi(z) will be real. Each Hi(z) is then realized as either a DF I or
DF II. Special cases of Hi(z) are

H (z) = b , H (z) =
b0

b z , H (z) = b z–1

 i 0 i
1+ a 1z

 0

z + a1

Parallel Form II (This corresponds to expanding H(z) directly into partial fractions). This

structure arises when the Hi(z) are all selected to be of the form
b z

−1
+ b z

−2
b z + b

Hi(z) =
 1 2 =
1+ a z

−1
+ a z −2

1 2

z
2
+ a z + a

1 2 1 2

Example 4.11.5 Obtain the parallel realization for
8z

3
− 4z

2
+ 11z − 2

H(z) =
(z − (1/ 4))(z

2
− z + (1/ 2))

Solution For the Parallel Form I we expand H(z)/z. Note that in the denominator the factor

(z 2
− z + (1/ 2)) represents a complex conjugate pair of poles at ((1/ 2) j(1/ 2)).

H (z) 8z
3

− 4z
2

+11z − 2 =
A

+ B C z + D = +

z z (z − (1/ 4))(z
2

− z + (1/ 2)) z (z − (1/ 4)) (z
2
− z + (1/ 2))

8z
3
− 4z

2
+11z − 2

A =
(z − (1/ 4))(z

2
− z + (1/ 2))

=
z = 0

− 2

(−1/ 4)(1/ 2)

...

= 16

B =

To determine C and D

8z
3
− 4z

2
+11z − 2

z = 1/ 4

= … = = 8
...

z (z − (1/ 4))(z
2
− z + (1/ 2))

A(z − (1/ 4))(z
2

− z + (1/ 2))+ B z (z
2

− z + (1/ 2))+ (Cz + D) z (z − (1/ 4))
=

z (z − (1/ 4))(z
2

− z + (1/ 2))
Putting A = 16 and B = 8, and equating the numerators on both sides

8z
3
− 4z

2
+11z − 2

= 16(z − (1/ 4))(z2
− z + (1/ 2))+ 8z(z2

− z + (1/ 2))+ (Cz + D) z (z − (1/ 4))
Equating the coefficients of like powers of z on both sides we have

z3: 8 = 16 + 8 + C → C = –16

z0: –2 = 16 (–1/4) (1/2) which is an identity → doesn’t help

z1: 11 = 16 (1/2) + 16 (–1/4) (–1) + 8 (1/2) + D (–1/4) → D = 20
Therefore we have

H (z)
=

16
+

8

z z (z − (1/ 4))
+

(−16) z + 20

(z
2

− z + (1/ 2))
H(z) = 16 +

8z
+

(z − (1/ 4))
8

z(20 −16 z)

(z
2
− z + (1/ 2))

− 16 + 20z
−1

H(z) = 16 + +
1 − 0.25z

−1
 1 − z

−1
 + 0.5z −2 = H1(z) + H2(z) + H3(z)

1 i

8z
3
− 4z

2
+11z − 2

z (z
2
− z + (1/ 2))

−1 =

The corresponding parallel form I diagram is shown below.

16

HW Identify other signals on the diagram as needed and write down the implementation

equations in full.

p2(n) = x(n) + 0.25 p2(n–1),
y2(n) = 8 p2(n)

p3(n) = x(n) + 1 p3(n–1) – 0.5 p3(n–2),
y3(n) = –16 p3(n) + 20 p3(n–1)

y(n) = y1(n) + y2(n)+ y3(n)

For the Parallel Form II we expand H(z)
8z

3
− 4z

2
+ 11z − 2

H(z) =
(z − (1/ 4))(z

2
− z + (1/ 2))

=

8z

3
− 4z

2
+11z − 2

z
3
−1.25z

2
+ 0.75z − 0.125

By long division we reduce the degree of the numerator by 1

Long Division

8 ←Quotient

Denominator→ z3 – 1.25z2 + 0.75z – 0.125 8z3 – 4z2 + 11z– 2 ←Numerator

8z3 – 10z2 + 6z – 1

6z2 + 5z – 1 ←Remainder

y1(n)

x(n)

p2(n)
8

y2(n)

y(n)

0.25

p3(n)

–16

y3(n)

20

1

–0.5

z–1

z–1

z–1

y1(n)

x(n)

y2(n)

y(n)

0.25 2

y3(n)

4

1

8
z–1

z–1

z–1

H(z) = 8 + 6z
2

+ 5z −1 = 8 + 6z
2

+ 5z −1

z
3

−1.25z
2

+ 0.75z − 0.125 (z − (1/ 4))(z
2
− z + (1/ 2))

The proper fraction part can now be expanded into partial fractions. Let
6z

2
+ 5z −1 A B z + C

(z − (1/ 4))(z
2
− z + (1/ 2))

=
(z − (1/ 4))

+
(z

2
− z + (1/ 2))

6z
2
+ 5z − 1

A =
(z

2
− z + (1/ 2))

z = 1/ 4

= … =
...

= 2
...

To determine B and C
6z

2
+ 5z −1 A(z

2
− z + (1/ 2))+ (Bz + C)(z − (1/ 4))

(z − (1/ 4))(z
2
− z + (1/ 2))

=
(z − (1/ 4))(z

2
− z + (1/ 2))

Putting A = 2, and equating the numerators on both sides

6z
2

+ 5z −1 = 2(z
2

− z + (1/ 2))+ (Bz + C)(z − (1/ 4))

Equating the coefficients of like powers of z on both sides we have

z2: 6 = 2 + B → B = 4

z0: –1 = 2 (1/2) + C (–1/4) → C = 8
Therefore we have

2 4z + 8
H(z) = 8 +

(z − (1/ 4))
+

(z
2
− z + (1/ 2))

−1 −2

2z −1 4z + 8z
 H(z) = 8 +

1 − 0.25z
−1

+
1− z

−1
 + 0.5z −2

= H1(z) + H2(z) + H3(z)

The corresponding parallel form II diagram is shown below.

8

–0.5

b0 b1 b2 b3 bM

y(n)

z–1 z–1 z–1 z–1

HW Identify other signals on the diagram as needed and write down the implementation

equations in full.

Example 4.11.6 [Ludeman, 5.1] A system is specified by its transfer function as

H(z) = (z −1) (z − 2)(z +1) z 1 1

1 1

1 1

−
+

z −
+ j

 z −

 − j

z j z j

 2 2 2
 2

 4

 4

Implement the parallel realization in constant, linear and biquadratic sections.
Solution For the Parallel Form I expand H(z)/z and for the Parallel Form II expand H(z). In the

denominator keep the complex conjugate roots together.

Realization of FIR filters A causal FIR filter is characterized by its transfer function H(z) given

by
Y (z) = H(z) =

M

b z = b + b z–1 + … + b –

X (z) r −r

r = 0

0 1 M
z

or, by the corresponding difference equation
M

y(n) = br x(n − r) = b0 x(n) + b1 x(n–1) + b2 x(n–2) … + bM x(n–M)
r = 0

Note that some use the notation below with M coefficients instead of M + 1
M −1

y(n) = br x(n − r) = b0 x(n) + b1 x(n–1) + b2 x(n–2) … + bM–1 x(n–M+1)
r = 0

We see that the output y(n) is a weighted sum of the present and past input values; it does not

depend on past output values such as y(n–1), etc. The block diagram is shown below. It is also

called a tapped delay line or a transversal filter.

x(n)

Mth Delay
x(n–M)

It can be seen that this is the same as the direct form I or II shown earlier for the IIR filter, except
that the coefficients a1 through aN are zero and a0 = 1; further the delay elements are arranged in
a horizontal line. As in earlier diagrammatic manipulation the multipliers can all feed into the
rightmost adder and the remaining adders removed.

Other simplifications are possible based on the symmetry of the coefficients {br}, as we
shall see in FIR filter design.

M

z

k

N + +

+

Cascade realization of FIR filters The simplest form occurs when the system function is

factored in terms of quadratic expressions in z–1 as follows:
K

H(z) =

Hi (z) = 0i + b1i z
−1

+ b z −2)
i =1 i =1

Selecting the quadratic terms to correspond to the complex conjugate pairs of zeros of H(z)
allows a realization in terms of real coefficients b0i, b1i and b2i. Each quadratic could then be
realized using the direct form (or alternative structures) as shown below.

 b0K y(n)
–

1

b1K

b2K

Parallel realization of FIR filters These are based on interpolation formulas by Lagrange,

Newton, or Hermite methods. In general, these realizations require more multiplications,

additions and delays than the others.

The Lattice structure – Introduction

In order to introduce the Lattice structure consider the all-pole IIR filter (b1 through bM are zero)

H(z) =

k = 0

b0

a z −k

=
−1

a0 + a1 z

+ a2

b0

z
−2

++ a

z−N

We shall take a0 = 1 and b0 = 1 so that
H(z) =

1 1
N

−k

1 ak z
k = 1

= −1 −2 −N

1+ a1 z + a2 z ++ aN z

We shall write the subscript k on the coefficients a as an index within parentheses: thus ak
becomes a(k); further we shall also incorporate the order N of the filter as a subscript on the
coefficients a: thus for an Nth order filter we shall have the set of coefficients aN(k), with k = 1 to
N. With this notational refinement the system function goes through the following steps

H(z) =
1

= 1 + a(1) z
−1

+

1 + a(k) z
−k

k = 1

1−2 −N

a(2) z............... a(N) z

N

x(n)

K

x(n)
b01 b02

b11 b12

b21 b22

y(n) z–1

z–1 z–1

(b 2i

N

1

= 1

1

x(n) y(n)

–a1(1)

z–1

1
H(z) = N =

1
=

1

1+
k = 1

aN(k) z −k 1+ aN (1) z
−1

+ a (2) z
−2

++ a (N) z−N
 AN (z)

where AN(z) denotes the denominator polynomial.

Using the above notation we shall consider the implementation of a first order filter, that

is N = 1. We then have
1

H1(z) = 1

1 1
= −1 =

1 + a (k) z
−k 1+ a1 (1) z A1 (z)

k = 1

Note that we have also awarded a subscript to the system function H, that is, H(z) is written H1(z)
just to remind ourselves that we are only dealing with a first order system. The difference
equation can be written down from

H1(z) = Y (z) 1 = 1
−1

X (z)
1 a (k) z

−k 1+ a1 (1) z

k = 1

y(n) = x(n) – a1(1) y(n–1) or x(n) = y(n) + a1(1) y(n–1)

This difference equation is implemented by the following structure (which can be visually
verified). Concerning the labeling of the diagram note that a1(1) is not a signal but a multiplier
that multiplies the signal coming out of the delay element and before it reaches the adder (we
have previously used a triangular symbol for the multiplier).

An embellished version of the above structure is shown below and is used as a building block in
the lattice structure. This being a first order filter the relationship between the direct form
coefficient a1(1) and the lattice coefficient K1 is obvious, that is, a1(1) = K1. The implementation
equations, in terms of the lattice coefficient, are

f0(n) = f1(n) – K1 g0(n–1) [which amounts to y(n) = x(n) – a1(1) y(n–1)]
g1(n) = K1 f0(n) + g0(n–1) [which amounts to g1(n) = K1 y(n) + y(n–1)]

At this point the need for the additional symbols f(.) and g(.) and the equation for g1(n) is not
obvious, but they become more useful as we increase the order of the filter and the relationship
between the coefficients of the two structures becomes more involved.

x(n) = f1(n)

y(n) = f0(n)

a1(1) = K1

g1(n)

–a1(1) = –K1

g0(n) = y(n)

z–1

N

+

N

+

Consider the second order (all-pole) filter (N = 2) whose transfer function is

H (z) = Y (z) 1 1 = 1
2 = 2 = −1 −2

X (z)
1 a2

k = 1

(k) z −k 1 + a2 (1)z + a2 (2)z A2 (z)

y(n) = x(n) – a2(1) y(n–1) – a2(2) y(n–2)

The corresponding lattice structure is obtained by adding a second stage at the left end of the

previous first order structure:

x(n) = f2(n) f1(n)

a2(2) = K2

y(n) = f0(n)

K1

g2(n)

–a2(2) = –K2

g1(n)

–K1

g0(n) = y(n)

We can write an equation for y(n) in terms of the lattice coefficients K1 and K2 and the signal
values x(n), y(n–1) and y(n–2):

y(n) = x(n) – K1 (1+K2) y(n–1) – K2 y(n–2)

Comparing this equation with the direct form equation for y(n) given above we have the

relationship between the direct form and lattice coefficients

a2(1) = K1 (1 + K2) and a2(2) = K2 a2(0) = 1

Note that we have thrown in a freebie in the form of a2(0) = 1 for future (actually it corresponds
to the leading term in the denominator polynomial, A2(z)).

z–1 z–1

Discrete Fourier series

Properties of discrete Fourier series, DFS representation of periodic sequences, Discrete

Fourier transforms, Properties of DFT, Linear convolution of sequences using DFT,

Computation of DFT, Relation between z-transform and DFS.

Contents:
Fourier analysis – Recapitulation

Discrete Fourier series

Properties of discrete Fourier series

The discrete Fourier transform (DFT)

Properties of DFT

Filtering through DFT/FFT

Picket-fence effect

−

Fourier analysis - Recapitulation

(1) The Fourier series (FS) of a continuous-time periodic signal, x(t), with fundamental period
T0, is given by the synthesis equation

x(t) = Xk e j 2 k F0 t

k = −

The Fourier coefficients, Xk, are given by the analysis equation

Xk = x(t) e
− j 2 kF0 t dt

T0 T0

The fundamental frequency, F0 (Hz), and the period, T0 (seconds), are related by F0 = 1/T0.

(2) The Fourier transform (FT) of a continuous-time aperiodic signal, x(t), is given by the

analysis equation

X(F) = x(t) e
− j 2 F t

dt
−

or X(Ω) = x(t) e
− j t

dt
−

Here Ω and F are analog frequencies, with Ω = 2πF. The inverse Fourier transform is given by

the synthesis equation

x(t) = X (F) e
j 2 F t

dF
−

or x(t) =
1

2

X () e
jt

d
−

(3) The Fourier series (DTFS/DFS) for a discrete-time periodic signal (periodic sequence),

x(n), with fundamental period N is given by the synthesis equation
N −1

x(n) = Xk e j 2 k n / N , 0 n N–1
k = 0

The Fourier coefficient Xk are given by the analysis equation
N 1

Xk = 1 x(n) e − j 2 k n/ N , 0 k N–1
N n = 0

This is called the discrete-time Fourier series (DTFS) or just discrete Fourier series (DFS) for

short. The sequence of coefficients, Xk, also is periodic with period N.
These two equations are derived below.

(Note that if the factor (1/N) is associated with x(n) rather than with Xk the two DFS
equations are identical to the two DFT equations which are derived below in their standard
form.)

(4) The Fourier transform (DTFT) of a finite energy discrete-time aperiodic signal

(aperiodic sequence), x(n), is given by the analysis equation (some write X(ejω) instead of X(ω))

X(ω) = x(n) e
− j n

n =−

Certain convergence conditions apply to this analysis equation concerning the type of signal x(n).

We shall call this the discrete-time Fourier transform (DTFT). Physically X(ω) represents the

frequency content of the signal x(n). X(ω) is periodic with period 2π.
The inverse discrete-time Fourier transform is given by the synthesis equation

x(n) =
1

2
2

 X () e j n d

1

k

−

The basic difference between the Fourier transform of a continuous-time signal and the

Fourier transform of a discrete-time signal is this: For continuous time signals the Fourier

transform, and hence the spectrum of the signal, have a frequency range (–,); in contrast, for

a discrete-time signal the frequency range of the DTFT is unique over the interval of (–π, π) or,

equivalently, (0, 2π).

Since X(ω) is a periodic function of the frequency variable ω, it has a Fourier series

expansion; in fact, the Fourier coefficients are the x(n) values.

Discrete Fourier series

Let x(n) be a real periodic discrete-time sequence of period N. If x(n) can be expressed as a

weighted sum of complex exponentials, the response of a linear system to x(n) is easily

determined by superposition. By analogy with the Fourier series representation of a periodic

continuous-time signal, we can expect that we can obtain a similar representation for the periodic

discrete-time sequence x(n). That is, we seek a representation for x(n) of the form

x(n) = X e
j k 0 n

 for all n
k

Here Xk are the Fourier coefficients and ω0 = 2π/N is the fundamental (digital) frequency (as Ω0

 2
= 2π/T0 = 2πF0 is in the case of continuous-time Fourier series). With kω0 = ωk = k

 N
above is also written

 , the

 Xk e
j k 2 n / N

k k

The function e
j k 2 n / N

is periodic in k with a periodicity of N and there are only N distinct

functions in the set e
j k 2 n / N

corresponding to k = 0, 1, 2, ..., N–1. Thus the representation for

x(n) contains only N terms (as opposed to infinitely many terms in the continuous-time case)

x(n) = Xk

k =N

e j k 2 n / N

The summation can be done over any N consecutive values of k, indicated by the summation

index k = <N>. For the most part, however, we shall consider the range 0 ≤ k ≤ N–1, and the

representation for x(n) is then written as
N −1

x(n) = Xk e j k 2 n / N for all n
k = 0

This equation is the discrete-time Fourier series (DTFS) or just discrete Fourier series (DFS)

of the periodic sequence x(n) with coefficients Xk.
The coefficients Xk or X(k) are given by (we skip the algebra – S&S)

N 1

Xk = 1 x(n) e − j 2 k n/ N , 0 k N–1 ‹ (B)
N n = 0

Note that the sequence of Fourier coefficients {Xk} is periodic with period = N. That is, Xk =
Xk+N. The coefficients can be interpreted to be a sequence of finite length, given by Eq. (B) for k

= 0, 1, 2, …, N–1 only and zero otherwise, or as a periodic sequence defined for all k by Eq. (B).

Clearly both of these interpretations are equivalent.

Because the Fourier series for discrete-time periodic signals is a finite sum defined

entirely by the values of the signal over one period, the series always converges. The Fourier

series provides an exact alternative representation of the time signal, and issues such as

convergence or the Gibbs phenomena do not arise.

k

N

N

The periodic sequence X(k) has a convenient interpretation as samples on the unit circle,
equally spaced in angle, of the z-transform of one period of x(n). Let x1(n) represent one period
of x(n). That is,

x1(n) = x(n), 0 n N–1
0, otherwise

 1 N −1 1

Then X1(z) = x (n) z
−n

= x (n) z
−n

, and X(k) =
n = − n = 0

X
1
(z) z = e j 2 k / N

. This then corresponds to

sampling the z-transform X1(z) at N points equally spaced in angle around the unit circle, with the
first such sample occurring at z = 1. (Note that the periodic sequence x(n) cannot be represented
by its z-transform since there is no value of z for which the z-transform will converge. However,
x1(n) does have a z-transform.)

Properties of discrete Fourier series

Properties of discrete Fourier series (DFS) for periodic sequences The following notation is

used:

p = periodic; e = even; o = odd

WN = e− j 2 / N

Re [.] = Real part of
Im [.] = Imaginary part of

|.| = Magnitude of

Arg (.) = Argument of

The following properties should be noted.

Sequence DFS Sequence DFS

Example 2.3.1 Show that DFS {xp(n+m)} = W
−k m

Xp(k).

Solution We have

N − 1

DFS { xp(n+m)} = xp

n = 0

(n + m)W
kn

Set n+m = λ so that n = λ–m and the limits n = 0 to N–1 become = m to N–1+m. Then the RHS

becomes
= N − 1+ m k −km

 = m

xp () WN WN

Since xp(λ) is periodic with period N the summation can be done over any interval of length N.

Thus
N − 1

DFS { xp(n+m)} = x
p

 = 0

N

() W k

N

W −km = W

N

−k m

N− 1

x
 = 0

p N

() W
k

= −k m

WN Xp(k) QED

4 Re [xp(n)] Xpe(k)

5 j Im [xp(n)] Xpo(k)

1 xp(n+m) W
−k m

Xp(k)
N

2 x
*
(n)

p
X

*
(−k)

p

3 x
*
(−n)

p
X

*
(k)

p

*

Example 2.3.2 Show that DFS { x
*
(n)} = X

*
(−k).

p p

Solution We have

N − 1

*

 N − 1 x* (n)W k n
DFS { x

*
(n)} = x

*
(n) W

k n =

p p
n = 0

N p

 n = 0
N

N − 1 x n WN
*
= X (−k) = X p (−k) QED

=
p

()
n = 0

−k n * *
p

Based on the properties above we can show that for a real periodic sequence xp(n), the
following symmetry properties of the discrete Fourier series hold:

1. Re [Xp(k)] = Re [Xp(–k)] 3. |Xp(k)| = |Xp(–k)|
2. Im [Xp(k)] = –Im [Xp(–k)] 4. arg Xp(k) = – arg Xp(–k)

The discrete Fourier transform (DFT)

(Omit) The discrete Fourier transform (DFT) derived from the Fourier series The exponential
Fourier series of a continuous time periodic signal x(t) with fundamental period T0 is given by
the synthesis equation

x(t) = Xk

k = −

e j 2 k F0 t ‹ (1)

where the Fourier coefficients Xk are given by the analysis equation
1

Xk = T
 x(t) e− j 2 kF0 t dt

‹ (2)
0 T

0

with the fundamental frequency F0 and the period T0 related by F0 (Hz) = 1/T0 (sec).
To obtain finite-sum approximations for the above two equations, consider the analog

periodic signal x(t) shown in Figure and its sampled version xs(nT). Using xs(nT), we can
approximate the integral for Xk by the sum

Xk =
1 N −1

−

xs (nT)e
j 2 k F0 nT

T , k = 0, 1, …, N–1

T0 n = 0

= 1

N −1

x(n) e
− j 2 k n / N

, k = 0, 1, …, N–1
N n = 0

where we used the relation F0T = 1/N, and approximated dt (or t) by T, and have used the
shorthand notation x(n) = xs(nT). (This procedure is similar to that used in a typical introduction
to integral calculus).

t
0 T0 2T0

j 2 k n / N

A finite series approximation for x(t) is obtained by truncating the series for x(t) in
equation (1) to N terms and substituting t = nT and F0 = 1/TN. This will necessarily give the
discrete sequence x(n) instead of the continuous function x(t):

x(n) or xn = N−1 Xk e , n = 0, 1, …, N–1

k = 0

x(t)

t

mN pslaes at n = 0, 1, …, N–1

Δt or dt = T = T0/N

The above two equations define the discrete Fourier transform (DFT) pair. A slight

adjustment of the (1/N) factor is needed so as to conform to standard usage. The adjustment

consists of moving the (1/N) factor from one equation to the other. Then the direct DFT of the

time series x0, x1, …, xN-1 is defined as
N −1

Xk = xn e − j 2 k n / N , k = 0, 1, …, N–1 ‹ (3)
n = 0

And the inverse DFT is defined as
N −1

xn = 1 Xk e j 2 k n / N , n = 0, 1, …, N–1 ‹ (4)
N k = 0

It can be shown that substituting equation (3) into equation (4) produces an identity, so that the

two equations are indeed mutually inverse operations and therefore constitute a valid transform

pair.

(End of Omit)

The discrete Fourier transform as a discretized (sampled) version of the DTFT A finite-

duration sequence x(n) of length N (the length N may have been achieved by zero-padding a

sequence of shorter length) has a Fourier transform denoted X(ω) or X(ejω),
N −1

X(ω) = x(n) e
− j n

, 0 ω < 2π
n = 0

x(t) xs(nT)

T0 = NT

0 T 2T (N–1)T

 N =

0 2 /N

0 1

2

N–1 N

N samples of ↓(ω)

X(ω) is a continuous function of ω and has a period of 2π. If we take N samples of X(ω)

at equally spaced frequencies {ωk = 2πk/N, k = 0, 1, ..., N–1}, along the interval [0, 2π),

the resulting samples are (Figure)
 2 k N −1

X(k) X = x(n) e− j 2 k n / N ,
n 0

Since these frequency samples are obtained by evaluating the Fourier transform X(ω) at N

equally spaced discrete frequencies, the above relation is called the discrete Fourier transform

(DFT) of x(n). In other words, X(k) are discrete samples of the continuous X(ω).

ω

The corresponding inverse discrete Fourier transform (IDFT) is given by
1

N −1

x(n) = X (k) e
j 2 k n / N

, n = 0, 1, …, N–1
N k = 0

Example 2.4.1 Find the DFT of the unit sample x(n) = {1, 0, 0, 0}. (Aside. What is the DTFT of

x(n) = {1, 0, 0, 0}?)

1

n

Sequence

Solution The number of samples is N = 4. The DFT is given by

N −1

X(k) = x(n) e
− j k 2 n / N

, 0 k N–1
n = 0

X(ω)

x(n) = {1, 0, 0, 0}

0 1 2 3
N–1

4
N

4−1

= x(n) e
− j k 2 n / 4

, 0 k 3
n = 0

3

= x(n) e
− j k 2 n / 4

, k = 0, 1, 2, 3
n = 0

3

 x(n) e
− j k 2 n / 4

, k = 0, 1, 2, 3
n = 0

k = 0 3 3 3

X(0) = x(n) e
− j 0.2 n / 4

= x(n).1 = x(n)
n = 0 n = 0 n = 0

= x(0) + x(1) + x(2) + x(3) = 1 + 0 + 0 + 0 = 1

k = 1 3 3

X(1) = x(n) e
− j1 . 2 n / 4

= x(n) e
− j n / 2

= x(0) e–j 0 = 1 . 1 = 1
n = 0 n = 0

k = 2
3 3

X(2) = x(n) e
− j 2 . 2 n / 4

= x(n) e
− j n

= x(0) e–j 0 = 1 . 1 = 1
n = 0 n = 0

k = 3 3 3

X(3) = x(n) e
− j 3 . 2 n / 4

= x(n) e
− j 3 n / 2

= x(0) e–j 0 = 1 . 1 = 1
n = 0 n = 0

The DFT is X(k) = {1, 1, 1, 1} and contains all (four) frequency components. In this example

X(k) is real-valued.

In MATLAB use fft(x) for the DFT. The magnitude and phase plots of X(k) and the

program segment follow.

4-point DFT of {1, 0, 0, 0}

1

0.5

0
0 0.5 1 1.5

k

2 2.5 3

1

0.5

0

-0.5

-1
0 0.5 1 1.5

k

2 2.5 3

x= [1, 0, 0, 0]; X= fft(x);

Mag = abs(X); Phase = angle(X);

P
h
a
s
e

M
a

g
n
it
u
d
e

N

4

4

= 2

4

4

4 4 4

k=0:3;

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1

xlabel ('k'), ylabel('Magnitude');

title ('4-point DFT of \{1, 0, 0, 0\}')

grid;

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2

xlabel ('k'), ylabel('Phase');

Matrix formulation To facilitate computation the DFT equations may be arranged as a matrix-

vector multiplication. We define the twiddle factor W = e − j 2 / N , which for N = 4 becomes

W = e
− j 2 / 4

. The equations are rewritten using the twiddle factor
3 3

X(k) = x(n) e− j k 2 n / 4 = x(n)W
k n

, k = 0, 1, 2, 3
n = 0 n = 0

There are a total of 4 values of X(.) ranging from X(0) to X(3):

X (0)= x(0)W
0
+ x(1)W

0
+ x(2)W

0
+ x(3)W

0

4 4 4 4

X (1) = x(0)W
0
+ x(1)W

1
+ x(2)W

2
+ x(3)W

3

4 4 4 4

X (2)= x(0)W
0
+ x(1)W

2
+ x(2)W

4
+ x(3)W

6

4 4 4 4

X (3) = x(0)W
0
+ x(1)W

3
+ x(2)W

6
+ x(3)W

9

4 4 4 4

These equations can be put in matrix from:

 X (0) 1 1 1 1 x(0)
 1 2 3
X (1)

 X (2) 1 W4 W4 W4 x(1)
1 W W 4 W 6 x(2)

 4 4 4

 X (3) 1
 W43 W46 W 9 x(3)

This last form is perhaps the most convenient to perform the actual computations by plugging in

the twiddle factors W
m

and the signal values x(.). Note that

W k +(N / 2) = –W k and W mN +k = W k
N N N N

and

W
1
= e− j 2 / 4 = –j, W

2
= (− j)

2
= –1, W

3
= (− j)

3
= j, etc.

The above matrix form then can be written,

X (0)

 X (1)

1 1 1 1

1

1

1 − j − 1
j

0
 =

1

 X (2) = 1 − 1 1 − 1 0 1

 X (3) 1 j − 1 − j 0 1

Example 2.4.2 Find the DFT of the “dc” sequence x(n) = {1, 1, 1, 1}. (Aside. What is the DTFT

of x(n) = {1, 1, 1, 1}? Give 4 samples of X(ω) at intervals of 2π/4 starting at ω = 0.) (Compare

Proakis, 3rd Ed., Ex. 5.1.2)

1

n

Sequence

Solution The number of samples is N = 4. The DFT is given by

N −1

X(k) = x(n) e
− j k 2 n / N

, 0 k N–1
n = 0

3

= x(n) e
− j k 2 n / 4

, k = 0, 1, 2, 3
n = 0

3

X(k) == x(n) e
− j k 2 n / 4

, k = 0, 1, 2, 3
n = 0

k = 0
3 3 3

X(0) = x(n) e
− j 0 .2 n / 4

= x(n) . 1= x(n)
n = 0 n = 0 n = 0

= x(0) + x(1) + x(2) + x(3) = 1 + 1 + 1 + 1 = 4

k = 1 3 3 3 3

X(1) = x(n) e
− j 1 . 2 n / 4

= x(n) e
− j n / 2

= 1.(e
− j / 2

)
n

= (− j)
n

n = 0 n = 0 n = 0 n = 0

= 1 – j + (–j)2 + (–j)3 = 1 – j + j2 – j3 = 1 – j – 1 + j = 0

k = 2 3 3

X(2) = x(n) e
− j 2 . 2 n / 4

= 1.(e
− j

)
n

= 1 – 1 + 1 – 1 = 0
n = 0 n = 0

k = 3
3 3

X(3) = x(n) e
− j 3 . 2 n / 4

= 1.e
− j 3 n / 2

= 1+ j – 1 – j = 0
n = 0 n = 0

The DFT is X(k) = {4, 0, 0, 0} and contains only the “dc” component and no other. Here again

X(k) is real-valued.

x(n) = {1, 1, 1, 1}

0 1 2 3
N–1

4
N

Example 2.4.3 Find the DFT of the sequence x(n) = {1, 0, 0, 1}

1

n

Sequence

Solution The number of samples is N = 4. The DFT is given by
N −1

X(k) = x(n) e
− j k 2 n / N

, 0 k N–1
n = 0

3

= x(n) e
− j k 2 n / 4

, k = 0, 1, 2, 3
n = 0

3

X(k) = x(n) e
− j k 2 n / 4

, k = 0, 1, 2, 3
n = 0

k = 0
3 3 3

X(0) = x(n) e
− j 0. 2 n / 4

= x(n).1= x(n)
n = 0 n = 0 n = 0

= x(0) + x(1) + x(2) + x(3) = 1 + 0 + 0 + 1 = 2

k = 1
3 3 3 3

X(1) = x(n) e
− j 1. 2 n / 4

= x(n) e
− j n / 2

= x(n)(e
− j / 2

)
n
= x(n)(− j)

n

n = 0 n = 0 n = 0 n = 0

= 1 . 1 + 0 + 0 + 1 . (–j)3 = 1 + j = 2 ej
 / 4

= 2 / 4

k = 2
3 3

X(2) = x(n) e
− j 2. 2 n / 4

= x(n) e
− j n

= x(0) e–j 0 + x(3) e–jπ3
n = 0 n = 0

= 1 . 1 + 1 . (–1) = 0

k = 3 3 3

X(3) = x(n) e
− j 3. 2 n / 4

= x(n) e
− j 3 n / 2

= x(0) e–j 0 + x(3) e–j 3π3 / 2
n = 0 n = 0

= 1 . 1 + 1 . (–j) = 1 – j = 2 e–j
 / 4

= 2 − / 4

The DFT is X(k) = {2, 2e
j / 4

, 0,
magnitude and a phase. See figure.

2e
− j / 4

}. In general X(k) is complex-valued and has a

In MATLAB use fft(x) for the DFT and ifft(X) for the IDFT. The magnitude and phase

plots and the program segment follow.

x = [1, 0, 0, 1]; X = fft(x); Mag = abs(X); Phase = angle(X);

k = 0:3;

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1

x(n) = {1, 0, 0, 1}

0 1 2 3
N–1

4
N

xlabel ('k'), ylabel('Magnitude');

title ('4-point DFT of \{1, 0, 0, 1\}')

grid;

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2

xlabel ('k'), ylabel('Phase');

2

1.5

1

0.5

4- point DFT of {1, 0, 0, 1}

0
0 0.5 1 1.5

k

2 2.5 3

1

0.5

0

-0.5

-1
0 0.5 1 1.5

k

2 2.5 3

P
h
a
s
e

M
a

g
n
it
u
d
e

|X(k)| DFT of x(n) = {1, 0, 0, 1}

2 2

X (k)

2

0 1 2

k

3 4

N–1 N

 k

4
N

One period. Corresponds to:

1. ω = 0 to 2π radians, or

2. Ω = 0 to Ωs rad/sec, or
3. F = 0 to Fs Hz, or
4. A sequence length of N (= 4)

The frequency components {X(k), k = 0, 1, 2, 3} are “harmonics”. The spacing between

successive components, denoted by F0, is the resolution of the DFT and is given by F0 = Fs /N:
it is the sampling interval in the frequency domain. It is determined by the sampling frequency Fs
or sampling interval T in the time domain (Fs = 1/T) and the number of samples, N. Note that N
is the number of time domain samples as well as the number of frequency domain samples.

π/4 π/4

 3

–π/4

0 1 2

–π/4

Record length, sampling time and frequency resolution of the DFT We shall use Example 3

above to illustrate. Suppose that the sampling frequency is 8000 Hz, then the sampling time is T

= (1/8000) sec = 125 μsec. The time domain samples x(n) are spaced 125 μsec apart. In the

frequency domain the DFT values, X(k), are spaced (8000/4) = 2000 Hz apart. The DFT

spectrum is re-plotted below with these parameters.

x(n)

1

0 1 2 3 4 = N n

0 125 250 375 500 Time, μsec

The terms introduced in this example and their interrelationships are summarized below:

Record length (one period) = T0 seconds = N samples
Sampling interval = T seconds = 1/Fs
Sampling interval = T sec = (T0/N) seconds

Sampling frequency (one period) = Fs Hz
Frequency resolution of the DFT = F0 Hz = 1/T0
Frequency resolution of the DFT = F0 Hz = (Fs/N) Hz

One complete period = T0 = 500 μsec

1

T = 125 μsec

X(k)

π/4

3

0 1 2 4 = N k

–π/4

Undefined

Center of Odd Symmetry = N/2

The situation in the frequency domain is shown below.

2

0 1 2 3 4 = N k

F, Hz

Ω = 2πF, rad/sec

Digital Frequency,

ω = ΩT, rad/sample

|X(k)|

One complete period = Fs = 8 kHz

F0 = 2 kHz

2 2

Center of Even Symmetry = N/2

0 2000 4000 6000 8000

= Fs

0 2π 4000 2π 8000

0 π 2π

4 k = 0

Example 2.4.4 Find the inverse discrete Fourier transform of X(k) = {3, (2+j), 1, (2–j)}.
Solution The number of samples is N = 4. The IDFT is given by the synthesis equation

1
N −1

x(n) = X (k) e
j 2 k n / N

, n = 0, 1, … , N–1
N k = 0

3

=
1

 X (k) e j 2 k n / 4 ,

1
3

= X (k) e
j k n / 2

, 0 n 3
4 k = 0

The calculations for {x(n), n = 0 to 3} are shown in table below.

x(n) = 1
3

 X (k) e j k n / 2

4 k = 0

n = 0 1 3 1 3

x(0) = X (k) e
j k 0 / 2

= X (k)
4 k = 0 4 k = 0

= (1/4) {X(0) + X(1) + X(2) + X(3)} = (1/4) {3 + 2+j + 1 + 2–j} = 2

n = 1
3 3 3

x(1) = (1/4) X (k) e
j k 1 / 2

= (1/4) X (k) (e
j / 2)k

= (1/4) X (k) (j)k

k = 0 k = 0 k = 0

= (1/4) {X(0) (j)0 + X(1) (j)1 + X(2) (j)2 + X(3) (j)3}

= (1/4) {3 . 1 + (2+j) . j + 1 . (–1) + (2–j) . (–j)} = 0

n = 2 3 3 3

x(2) = (1/4) X (k) e
j k 2 / 2

= (1/4) X (k) e
j k

= (1/4) X (k) (− 1)k

 k = 0 k = 0 k = 0

 = (1/4) {X(0) (1) + X(1) (–1) + X(2) (1) + X(3) (–1)}
 = (1/4) {X(0) – X(1) + X(2) – X(3)}
 = (1/4) {3 – (2+j) + 1 . (–1) – (2–j)} = 0

n = 3
3 3 3

x(3) = (1/4) X (k) e
j k 3 / 2

= (1/4) X (k) (e
j 3 / 2)k

= (1/4) X (k) (− j)
k

k = 0 k = 0 k = 0

= (1/4) {3 . 1 + (2+j). (–j) + 1 . (–1) + (2–j). j}

= (1/4) {3 –j2 + 1 –1 + j2 + 1} = 1

Thus x(n) = {2, 0, 0, 1}.

In MATLAB use ifft(X) for the IDFT. The magnitude and phase plots of x(n) and the

program segment follow.

X = [3, (2+j), 1, (2-j)]; x = ifft(X); Mag = abs(x); Phase = angle(x);

n = 0:3;

subplot(2, 1, 1), stem(n, Mag, 'bo'); %Two rows, one column, #1

xlabel ('n'), ylabel('Magnitude');

title ('4-point IDFT of \{3, (2+j), 1, (2-j)\}')

grid;

subplot(2, 1, 2), stem(n, Phase, 'bo'); %Two rows, one column, #2

xlabel ('n'), ylabel('Phase');

)2

4

)2

 4*

 4*

*

*

X (1)

4

4

2

1.5

1

0.5

4-point IDFT of {3, (2+j), 1, (2-j)}

0
0 0.5 1 1.5

n

2 2.5 3

1

0.5

0

-0.5

-1
0 0.5 1 1.5

n

2 2.5 3

Matrix formulation Here again to facilitate computation the IDFT equations may be arranged

as a matrix-vector multiplication.
x(n) = 1

3

j k 2 n / 4 1 3

X (k) e = * kn

4 n = 0
X (k) (W4) , n = 0, 1, 2, 3

n = 0

There are a total of 4 values of x(.) ranging from x(0) to x(3):

x0()
1

(
1

1 1
 X (0)

x(1) =
 1 1

W) (W) (W)
1 2

3

x2() 4 1 (W
*

(W
*

)4
(W

*)6

 X (2)

x(3) (*)3 (

*4)6 (*4)9 X (3)

1 W4 W4
W4

This last form is perhaps the most convenient to perform the actual computations by plugging in

the twiddle factors (W
*)m

and the values X(.). The above matrix form then can be written,

x0()

1 1

 1 1 3
x(1) 1 1 (W) (W) (W) 2 + j

 =

3 1 2

x2() 4 1 (W
*

(W
*

)4
(W *)6

 1

x(3) (*)3 (

*4)6 (*4)9 2 − j

1 W4 W4
W4

4

4

P
h
a
s
e

M
a

g
n
it
u
d
e

4*

4*

4

.

Example 2.4.5 [N not an integral power of 2] Using MATLAB find the 5-point DFT of

x(n) = {1, 0, 0, 0, 0}

Solution

x = [1, 0, 0, 0, 0]; X = fft(x),

Mag = abs(X); Phase = angle(X);

k = 0:4;

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1

xlabel ('k'), ylabel('Magnitude');

title ('5-point DFT of \{1, 0, 0, 0, 0\}')

grid;

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2

xlabel ('k'), ylabel('Phase');

5-point DFT of {1, 0, 0, 0, 0}

1

0.5

0
0 0.5 1 1.5 2

k

2.5 3 3.5 4

1

0.5

0

-0.5

-1
0 0.5 1 1.5 2

k

2.5 3 3.5 4

P
h
a
s
e

M
a

g
n
it
u
d
e

http://www.jntuworld.com/

Example 2.4.6 [N not an integral power of 2] Using MATLAB find the 6-point IDFT of

X(k) = {6, 0, 0, 0, 0, 0}

Solution

X = [6, 0, 0, 0, 0, 0]; x = ifft(X); Mag = abs(x); Phase = angle(x);

n = 0:5;

subplot(2, 1, 1), stem(n, Mag, 'bo'); %Two rows, one column, #1

xlabel ('n'), ylabel('Magnitude');

title ('6-point IDFT of \{6, 0, 0, 0, 0, 0\}')

grid;

subplot(2, 1, 2), stem(n, Phase, 'bo'); %Two rows, one column, #2

xlabel ('n'), ylabel('Phase');

6-point IDFT of {6, 0, 0, 0, 0, 0}

1

0.5

0
0 0.5 1 1.5 2 2.5

n

3 3.5 4 4.5 5

1

0.5

0

-0.5

-1
0 0.5 1 1.5 2 2.5

n

3 3.5 4 4.5 5

P
h
a
s
e

M
a

g
n
it
u
d
e

Example 2.4.7 Consider a sequence x(n) = {2, –1, 1, 1} and the sampling time T =

0.5 sec. Compute its DFT and compare it with its DTFT.
Solution The record length of the sequence is T0 = 4T = 2 sec.

The DFT is a sequence of 4 values given by
3

X(k) = x(n) e
− j k 2 n / 4

, k = 0, 1, 2, 3
n = 0

The periodicity of X(k) is 4. The frequency resolution of the DFT is 1/T0 = 0.5 Hz.
The DTFT, X(ω), is a continuous function of ω

 3

X(ω) = x(n) e
− j n

= x(n) e
− j n

= 2 e
j 0

– 1 e
− j

+1 e
− j 2

+1 e
− j3

n = − n = 0

= 2– e− j + e− j 2 + e− j3

The periodicity of X(ω), in terms of ω, is 2. In terms of the Hertz frequency the periodicity is

the sampling frequency = Fs = 1/T = 2 Hz.
The DFT is a sampled version of the DTFT, sampled at 4 points along the frequency axis

spaced 0.5 Hz apart.

You should evaluate completely both X(k) (a set of 4 numbers) and X(ω) (magnitude and

phase). Note that X(ω) may be evaluated directly at = 0, /2, , and 3/2 by plugging in the
values into the expression given above; these are then the DFT numbers as well. The MATLAB
solutions are given below.

In MATLAB: The magnitude and phase plots of the DFT can be generated by the following

segment:

x = [2, -1, 1, 1]; X = fft(x); Mag = abs(X); Phase = angle(X);

k = 0:3;

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1

xlabel ('k'), ylabel('Magnitude');

title ('4-point DFT of \{2, -1, 1, 1\}')

grid;

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2

xlabel ('k'), ylabel('Phase');

The MATLAB solution:

X = 3, (1 + j2), 3, (1 - j2)

Mag = 3, 2.2361, 3, 2.2361

Phase = 0, 1.1071, 0, -1.1071

4-point DFT of {2, -1, 1, 1}

3

2

1

0
0 0.5 1 1.5

k

2 2.5 3

2

1

0

-1

-2
0 0.5 1 1.5

k

2 2.5 3

P
h
a
s
e

M
a

g
n
it
u
d
e

The magnitude and phase plots of the DTFT can be generated by the following segment:

b = [2, -1, 1, 1]; %Numerator coefficients

a = [1]; %Denominator coefficient

w = 0: pi/256: 2*pi; %A total of 512 points

[h] = freqz(b, a, w);

subplot(2, 1, 1), plot(w/pi, abs(h));

xlabel('Frequency, Hz'), ylabel('Magnitude'); grid

title ('4-point DTFT of \{2, –1, 1, 1\}')

subplot(2, 1, 2), plot(w/pi, angle(h));

xlabel('Frequency, Hz'), ylabel('Phase - Radians'); grid

4-point DTFT of {2, –1, 1, 1}

4

3

2

1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency, Hz

2

1

0

-1

-2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency, Hz

Example 2.4.8 Compute the discrete Fourier transform of the following finite length sequences

considered to be of length N.
1) x(n) = δ(n+n0), 0 < n0 < N

2) x(n) = an, 0 < a < 1
Solution See Ramesh Babu 3.16.

Note that x(n) = δ(n+n0) would be zero everywhere except at n = –n0 which is not in the
range [0, N). So make it δ(n–n0).

Example 2.4.9 [2008] Compute the N-point DFT X(k) of the sequence

x(n) = cos (2n/N), 0 ≤ n ≤ N–1

for 0 ≤ k ≤ N–1.

Solution Express cos (2n/N) as (e
j 2 n / N

+ e
− j 2 n / N

) / 2 .

Example 2.4.10 Obtain the 7-point DFT of the sequence x(n) = {1, 2, 3, 4, 3, 2, 1} by taking 7

samples of its DTFT uniformly spaced over the interval 0 ≤ ω ≤ 2π.

P
h
a
s
e
 -

 R
a
d
ia

n
s

M
a

g
n
it
u
d
e

Solution The sampling interval in the frequency domain is 2π/7. From Example 4 we have

X (e
j

) or X(ω) = 1+ 2e
− j1

+ 3e
− j 2

+ 4e
− j3

+ 3e
− j 4

+ 2e
− j5

+1e
− j 6

= (2 cos 3 +4 cos 2 +6 cos +4) e
− j3

The DFT, X (k) , is given by replacing ω with k(2π/7) where k is an index ranging from 0 to 6:

DFT = X () = X (2k / 7) , k = 0 to 6
= 2 k / 7

This is denoted XkfromDTFT in the MATLAB segment below.

MATLAB:

w = 0: 2*pi/7: 2*pi-0.001

XkfromDTFT = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w)

MATLAB solution:

XkfromDTFT = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

This is the 7-point DFT obtained by sampling the DTFT at 7 points uniformly spaced in (0, 2π).

It should be the same as the DFT directly obtained, for instance, by using the fft function in

MATLAB:

MATLAB:

xn = [1 2 3 4 3 2 1]

Xkusingfft = fft(xn)

MATLAB solution:

Xkusingfft = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

It can be seen that “↓kfromDTFT” = “↓kusingfft”.

Example 2.4.11 Obtain the 7-point inverse DTFT x(n) by finding the 7-point inverse DFT of

X(k):

X (2k / 7) = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

MATLAB:

Xk = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),(-0.1431 +

0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)]

xn = ifft(Xk)

MATLAB solution:

xn = [1.0000 2.0000 3.0000 4.0000 3.0000 2.0000 1.0000]

This is the original sequence we started with in Example 4.

Example 2.4.12 What will be the resulting time sequence if the DTFT of the 7-point sequence is

sampled at 6 (or fewer) uniformly spaced points in (0, 2π) and its inverse DFT is obtained?

Solution The sampling interval in the frequency domain now is 2π/6. From Example 4 we have

X (e
j

) or X(ω) = 1+ 2e
− j1

+ 3e
− j 2

+ 4e
− j3

+ 3e
− j 4

+ 2e
− j5

+1e
− j 6

= (2 cos 3 +4 cos 2 +6 cos +4) e
− j3

The DFT then is given by

DFT = X () = X (2k / 6), k = 0 to 5
 = 2 k / 6

This is denoted Xk6point in the MATLAB segment below.

MATLAB:

w = 0: 2*pi/6: 2*pi-0.001

Xk6point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w)

MATLAB solution:

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i),

(-3.0000 - 0.0000i)]

This is the 6-point DFT obtained by sampling the DTFT at 6 points uniformly spaced in (0, 2π).

Example 2.4.13 Obtain the 6-point inverse DTFT x(n) by finding the 6-point inverse DFT of

Xk6point:

X (2k / 6) = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i),

(-3.0000 - 0.0000i)]

MATLAB:

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), (-

3.0000 - 0.0000i)]

xn = ifft(Xk6point)

MATLAB solution:

xn = [2 2 3 4 3 2]

Comparing with the original 7-point sequence, xn = [1 2 3 4 3 2 1], we see the
consequence of under-sampling the continuous-ω function X(ω): the corresponding time domain

sequence x(n) is said to suffer time-domain aliasing. This is similar to the situation that occurs

when a continuous-time function x(t) is under-sampled: the corresponding frequency domain

function Xs () contains frequency-domainaliasing.

Example 2.4.14 What will be the resulting time sequence if the DTFT of the 7-point sequence is

sampled at 8 (or more) uniformly spaced points in (0, 2π) and its inverse DFT is obtained?

Solution The sampling interval in the frequency domain now is 2π/8. From Example 4 we have

X (e
j

) or X(ω) = 1+ 2e
− j1

+ 3e
− j 2

+ 4e
− j3

+ 3e
− j 4

+ 2e
− j5

+1e
− j 6

= (2 cos 3 +4 cos 2 +6 cos +4) e
− j3

The DFT then is given by

DFT = X () = X (2k /8) , k = 0 to 7
 = 2 k / 8

This is denoted Xk8point in the MATLAB segment below.

MATLAB:

w = 0: 2*pi/8: 2*pi-0.001

Xk8point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w)

MATLAB solution:

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0,

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)]

This is the 8-point DFT obtained by sampling the DTFT at 8 points uniformly spaced in (0, 2π).

Example 2.4.15 Obtain the 8-point inverse DTFT x(n) by finding the 8-point inverse DFT of
Xk8point:

X (2k / 8) = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0,

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)]

MATLAB:

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0,

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)]

xn = ifft(Xk8point)

MATLAB solution:

xn = [1 2 3 4 3 2 1 0]

We see that the original 7-point sequence has been preserved with an appended zero. The

original sequence and the zero-padded sequence (with any number of zeros) have the same

DTFT. This is a case of over-sampling the continuous-ω function X(ω): there is no time-domain

aliasing. This is similar to the situation that occurs when a continuous-time function x(t) is over-

sampled: the corresponding frequency domain function Xs () is free from frequency-domain

aliasing.

%Sketch of sequences

n = 0:1:6; xn = [1, 2, 3, 4, 3, 2, 1];

subplot (3, 1, 1), stem(n, xn)

xlabel('n'), ylabel('x(n)-7point'); grid

%

n = 0:1:5; xn = [2 2 3 4 3 2];

subplot (3, 1, 2), stem(n, xn)

xlabel('n'), ylabel('x(n)-6point'); grid

%

n = 0:1:7; xn = [1, 2, 3, 4, 3, 2, 1, 0];

subplot (3, 1, 3), stem(n, xn)

xlabel('n'), ylabel('x(n)-8point'); grid

4

2

0
0 1 2 3 4 5 6

n

4

2

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n

4

2

0
0 1 2 3 4 5 6 7

n

x(
n

)-
8

p
o

in
t

x(
n

)-
6

p
o

in
t

x(
n

)-
7

p
o

in
t

Properties of DFT

The properties of the DFT (for finite duration sequences) are essentially similar to those of the

DFS for periodic sequences and result from the implied periodicity in the DFT representation.

(1) Periodicity If x(n) and X(k) are an N-point DFT pair, then X(k) (and x(n)) is periodic with a

periodicity of N. That is

X(k+N) = X(k) for all k

This can be proved by replacing k by k+N in the defining equation for X(k).

(2) Linearity For two sequences x1(n) and x2(n) defined on [0, N–1], if x3(n) = a x1(n) + b x2(n)
then

DFT {x3(n)} = DFT {a x1(n) + b x2(n)} = a DFT {x1(n)} + b DFT {x2(n)}

If one of the two sequences x1(n) and x2(n) is shorter than the other then the shorter one must be
padded with zeros to make both sequences of the same length.

(3) Circular shift or circular translation of a sequence (The sequence wraps around). The

circular shift, by an amount n0 to the right, of the sequence x(n) defined on [0, N–1] is denoted by
x((n–n0)mod N) or x((n–n0))N. For example, if x(n) is

x(n) = {x(0), x(1), x(2), …, x(N–3), x(N–2), x(N–1)}

then x((n–2))N is given by

x((n–2))N = {x(N–2), x(N–1), x(0), x(1), x(2), …, x(N–3)}

The operation can be thought of as wrapping the part that falls outside the region of interest

around to the front of the sequence, or equivalently, just a straight (linear) translation of its

periodic extension.

Example 2.5.1 Given x(n) = {1, 2, 2, 0}. Here N = 4. The circular shift of x(n) by one unit to the

right is x((n–1))4, and is given by

x((n–1))4 = {0, 1, 2, 2}

where the 0 has been wrapped around to the start and the other values are shifted one unit to the

right.

Alternatively, we can view this as a straight translation of the periodic extension outside

the range [0, 3] of the given sequence. The periodic extension xp(n) is shown below:

xp(n) = {… 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, …}

n=0

The periodic extension, when shifted to the right by one unit, appears as below; and the

circularly shifted version x((n–1))4 is the shaded part defined over 0 n 3 only:

2 2 2 2 2 2

1 1 1

0 0 0

x((n–1))4
0, 1, 2, 2,

n=0

xp(n –1) = {… 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, …}

x(n)

n

0 1 2 3

xp(n) (periodic extension)

–6 –4

–2 0 1 2 3

n

4 5 6

xp(n–1) (shifted by 1)

–6 –4 –2

0 1 2 3

n

4 5 6

x((n–1))4 (truncated outside [0, 3])

n

0 1 2 3

2 2 2 2 2 2

1 1 1

0 0 0

2 2

1

0

2 2

1

0

2 2 2 2

1 1 1

0 0 0 k

N

N

Example 2.5.2 Given x(n) = {1, 2, 2, 0}, sketch x((n–k))4 where k is the independent variable.

2 xp(0–k)

x(k)

2 1

x((–k))4

0

–6 –4 –2 0 1 2 3 4 5 6

xp(1–k)

–5 –4 –2 0 1 2 3 4 5 6

DFT of circularly-shifted sequence Given that DFT {x(n)} = X(k), then

DFT {x((n–m))N} = W
k m

X(k)

Conversely, if the X(k) is circularly shifted, the resulting inverse transform will be the

multiplication of the inverse of X(k) by a complex exponential: that is, if DFT {x(n)} = X(k), then

DFT {W
−l n

x(n)} = X((k–l))N

Note from the above property that a shift in the frequency domain values X(k) generally results in

a complex-valued inverse sequence x(n) even though the original sequence in the time domain

could have been real-valued.

Circular convolution The N-point circular convolution of two sequences x1(n) and x2(n) denoted
by x1(n) ©N x2(n) is defined as follows:

N −1

x1(n) ©N x2(n) ≡ x1 (k) x2 ((n − k))N

k = 0

N −1

= x1 ((n − k))N x2 (k)
k = 0

x((1–k))4 = circular shift of
x(–k) to the right by 1 unit

2 2 2 2

1 1 1

0 0 0 k

x((0–k))4 = circular shift of
x(–k) to the right by 0 units

where x1((n–k))N is the reflected and circularly translated version of x1(n). Note that k is the
independent variable, so that x1(–k) is the reflected version and x1(–(k–n))N is simply the
reflected version shifted right by n units; the “mod N” makes it a circular shift instead of a linear
shift.

If X1(k) and X2(k) represent the N-point DFTs of x1(n) and x2(n) respectively, i.e.,

X1(k) = DFTN{x1(n)} and X2(k) = DFTN{x2(n)}
Then

IDFTN{X1(k) X2(k)} = x1(n) ©N x2(n), or DFTN{x1(n) ©N x2(n)} = X1(k) X2(k)

This property is used to perform circular convolution of two sequences by first obtaining their

DFTs, multiplying the two DFTs, then taking the inverse DFT of the product.

Example 2.5.3 [Circular convolution] For the two sequences x1(n) = {1, 2, 2, 0} and x2(n) = {0,
1, 2, 3} find y(n) = x1(n) ©4 x2(n).

3

Solution We use the form y(n) = x1(n) ©N x2(n) = x1 ((n − k))4 x2 (k) which uses the circularly
k = 0

shifted version x1((n–k))4. The values of the sequence x1(k) = {1, 2, 2, 0} are arranged on a circle
in counterclockwise direction starting at point A. The sequence x1((–k))4 is then read off in the
clockwise direction starting at A. Thus x1((–k))4 = {1, 0, 2, 2}. See figure below.

2

2 1 A

0

As an alternative we may also obtain the sequence x1((–k))4 by periodically extending x1(k)4,
reflecting it about k = 0, and truncating it outside the range 0 ≤ k ≤ 3.

The value
3

y(0) = x1 ((0 − k))4 x2 (k)
k = 0

is obtained by lining up x1((–k))4 below x2(k), multiplying and adding:

x2(k) 0 1 2 3
x1((–k))4 1 0 2 2

Thus y(0) = (0) (1) +(1) (0) +(2) (2) +(3) (2) = 10.

For n = 1 the value
3

y(1) = x1 ((1 − k))4 x2 (k)
k = 0

is obtained as follows: the sequence x1((1–k))4 is obtained from x1((–k))4 by shifting the latter to
the right by 1 with wrap around; we then line up x1((1–k))4 below x2(k), multiply and add to get
y(1):

x2(k) 0 1 2 3
x1((1–k))4 2 1 0 2

The result is y(1) = (0) (2) +(1) (1) +(2) (0) +(3) (2) = 7.

The procedure is continued for successive values of n, at each step using the circularly-

shifted-by-1 version of the previous x1((n–k))4.

Circular convolution – Matrix method The circular convolution of the two sequences x1(n)
and x2(n) is given by:

N −1

x1(n) ©N x2(n) ≡ x1 ((n − k))N x2 (k)
k = 0

• Step 1. By zero-padding make sure the two sequences are of the same length, say, N.

• Step 2. Arrange the various circularly shifted versions of x1(.) as a matrix and x2(.) as a
vector; then multiply to get the vector x3(.) which is the desired result.

The matrix formed by the shifted versions of x1(.) is shown below. It displays somewhat
more terms than is possible to show in the complete multiplication equation shown farther down
below.

x1(3)

x1(2)

x1(1)

x1(0) ›Start

x1(N–1)

x1(N–3)
x1(N–2)

x1 (0)

x1 (1)
x1 (2)

x1 (N −1)

x1 (0)

x1 (1)

x1 (N − 2) .

x1 (N −1) .

x1 (0) .

x1 (3)

x1 (4)

x1 (5)

x1 (2)

x1 (3)

x1 (4)

x1 (1)

x1 (2)
x1 (3)

.
x (N − 2) x (N − 3) x (N − 4) . x (1) x (0) x (N −1)

 1 1 1 1 1 1
x1 (N −1) x1 (N − 2) x1 (N − 3) . x1 (2) x1 (1) x1 (0)

The complete multiplication step is shown below:

x2(3)

x1 (0) x1 (N −1) . x1 (3) x1 (2) x1 (1) x2 (0) x3 (0)

x (0) . x (4) x (3) x (2)

x1 (1) 1

. .

. .

1 1 1

. . . .

. . . .

 x2 (1)
 .

 .

 x3 (1)
 .
 =
 .

x (N − 2) x (N − 3) . x (1) x (0) x (N −1) x (N − 2) x (N − 2)

 1 1 1 1 1
2

3

x1 (N −1) x1 (N − 2) . x1 (2) x1 (1) x1 (0) x2 (N − 1) x3 (N −1)

As an example the element x3(0) is given by

x3(0) = x1(0) x2(0) + x1(N–1) x2(1) + … + x1(2) x2(N–2) + x1(1) x2(N–1)

x2(2)

x2(1)

Start‹ x20)

x2(N–1)

x2(N–3)
x2(N–2)

Carrying out circular convolution to obtain linear convolution If both signals x1(n) and x2(n)
are of finite lengths N1 and N2 respectively, and defined on [0, N1–1] and [0, N2–1], respectively,
as shown below, the value of N needed so that circular and linear convolution are the same on [0,
N–1] can be shown to be N ≥ N1 + N2 – 1.

0 N1–1

n

N–1 0

N2–1

n

N–1

Example 2.5.4 [Circular and linear convolution] (a) Determine the 4-point circular

convolution of the sequences

x1(n) = [1, 2, 3, 1] and x2(n) = [4, 3, 2, 1]

(b) Evaluate the linear convolution of the above sequences.

(c) Evaluate the linear convolution of the above sequences using circular convolution.

Solution

(a) The 4-point circular convolution is given by

y(n) = x1(n) ©4 x2(n) = {15, 16, 21, 18}

(b) The linear convolution was done in Unit I:

y(n) = x1(n) * x2(n) = {4, 11, 20, 18, 11, 5, 1}

(c) Length of sequence x1(n) = N1 = 4; length of sequence x2(n) = N2 = 4. Let N = N1+ N2 – 1 = 4

+ 4 – 1 = 7 be the length of each of the zero-padded sequences
N −1

x1(n) ©N x2(n) ≡ x1 ((n − k))N x2 (k)
k = 0

x1(.) and x2 (.) .

Example 2.5.5 [2007] Compute the circular convolution of the sequences x1(n) = {1, 2, 0, 1} and
x2(n) = {2, 2, 1, 1} using the DFT approach.
Solution The sequences are of the same length, so no zero padding is needed. The length of

{x1(n) ©N x2(n)} is 4 (= N). Use the property that if x1(n) X1(k) and x2(n) X2(k) and x3(n) =

x1(n) ©N x2(n), then x3(n) X3(k) = X1(k) X2(k):

x3(n) = x1(n) ©N x2(n) = IDFT{X3(k)} = IDFTN{X1(k) X2(k)}with N = 4

where X1(k) and X2(k) are the N-point DFTs of x1(n) and x2(n), respectively. The following steps
are involved in computing x1(n) ©N x2(n):

1. Find X1(k) = DFT4{ x1(n)} and X2(k) = DFT4{ x2(n)}
2. Compute the product X1(k) X2(k)

x1(n)

Zero

padding

x2(n)

Zero
padding

3. Compute x1(n) ©N x2(n) = IDFT{X1(k) X2(k)}

Example 2.5.6 Compute the linear convolution of the sequences x(n) = {1, 2, 0, 1} and y(n) =

{2, 2, 1, 1} using the DFT approach.

Solution The length of x(n)*y(n) is 7 (= 4+4–1). We zero-pad the sequences to a length of 7 each

and perform circular convolution of the 7-point sequences; the result will be the same as the

linear convolution of the original 4-point sequences. The following steps are involved in

computing x(n)*y(n):

1. Augment the sequences x(.) and y(.) by zero-padding: xa(n) = {1, 2, 0, 1, 0, 0, 0}

and ya(n) = {2, 2, 1, 1, 0, 0, 0}
2. Find Xa(k) = DFT7{xa(n)} and Ya(k) = DFT7{ya(n)}.
3. Compute the product Xa(k) Ya(k)
4. Compute x(n)*y(n) = x(n) ©7 y(n) = IDFT{X(k) Y(k)}

Example 2.5.7 Compute the linear convolution of the sequences x(n) = {1, 2} and y(n) = {2, 2,
1} using the DFT approach.

Solution The length of x(n)*y(n) is 4 (= 2+3–1). We zero-pad the sequences to a length of 4 each

and perform circular convolution of the 4-point sequences; the result will be the same as the

linear convolution of the original 2- and 3-point sequences. The following steps are involved in

computing x(n)*y(n):

1. Augment the sequences x(.) and y(.) by zero-padding: xa(n) = {1, 2, 0, 0} and

ya(n) = {2, 2, 1, 0}
2. Find Xa(k) = DFT4{xa(n)} and Ya(k) = DFT4{ya(n)}.
3. Compute the product Xa(k) Ya(k)
4. Compute x(n)*y(n) = xa(n) ©4 ya(n) = IDFT{Xa(k) Ya(k)}

Convolution – Overlap-and-add The response, y(n), of a LTI system, h(n), can be obtained by

linear convolution

y(n) = h(n) x(n)

Let the impulse response {h(n), n = 0 to M–1} be of finite length M. The input sequence {x(n), n

= 0 to S–1} is long but of finite length S. Recall that

Length {y(n)} = Length {h(n)}+ Length {x(n)} – 1 = M + S – 1,

Further, let h(n) be defined to be zero everywhere except over the interval [N1, N2]. Similarly, let
x(n) be defined to be non-zero over [N3, N4]. Then y(n) is non-zero over [(N1+ N3), (N2+ N4)].

x(n) y(n) = h(n) x(n)

One way to perform the convolution in pseudo real time (i.e., real time with a finite
delay) is by sectionalizing the input. We divide x(n) into K sections of length M each, where K

= S M :

x1(n) = x(n),

0,
0 ≤ n ≤ M –1
elsewhere

…

xi(n) = x(n), (i–1)M ≤ n ≤ iM –1

…
0, elsewhere

xK(n) = x(n), (K–1)M ≤ n ≤ KM –1
 0, elsewhere

In the Kth section (the last section) zeros may have to be appended. If, for instance, x(n) = {3, –1,

0, 1, 3, 2, 0, 1, 2, 1} with S = 10 and h(n) = {1, 1, 1} with M = 3, we have K = 10 3 = 4, with

the 4th section containing two appended zeros, and the sections are

x1(n) = {3, –1, 0}
x2(n) = {1, 3, 2}
x3(n) = {0, 1, 2}
x4(n) = {1,0, 0}

In general, then, x(n) can be written as the sum of all the sections
K

x(n) = xi (n)
i = 1

and the output y(n) becomes
 K

y(n) = h(n) x(n) = h(n) xi (n)
i = 1

h(n)

Overlap (Add)

(M–1) points

Overlap of
y3 and y4

(M–1) points

Overlap of
y2 and y3

(M–1) points

Overlap of
y1 and y2

(M–1) points

Using the linearity property this becomes
K K

y(n) = xi (n) h(n) = yi (n)
i = 1 i = 1

where

have

yi (n) = xi (n) h(n) are the output sections. Let us examine y1(n) and y2(n). For i = 1 we

y1 (n) = x1 (n) h(n)

Since x1(n) and h(n) are of lengths M each and they are defined to be non-zero over [0, M–1] and
[0, M–1] respectively, the result y1(n) will be non-zero over [0, 2M–2] and of length (2M–1).
Similarly, for i = 2, x2(n) is defined over [M, 2M–1] while h(n) remains unchanged. The resulting

y2 (n) then is non-zero from (0+M) to (M–1 + 2M–1), i.e., over [M, 3M–2] with a length of (2M–

1). Comparing y1 (n) and y2 (n) it is seen that they overlap in the interval M ≤ n ≤ (2M–2), over a

range of (2M–2) – M +1 = M–1 points. Consequently the two must be added in this range (see

figure). This amounts to adding (M–1) pairs of data.

y1(n): (2M –1) points

0 M 2M–2

M 2M –2 3M–2

y2(n): (2M –1) points

In a similar fashion x3(n) is defined over 2M ≤ n ≤ (3M–1), so that y3 (n) is non-zero over

[2M, (4M–2)]. Comparing y2 (n) and y3 (n) it is seen that they overlap in the interval 2M ≤ n ≤

(3M–2), consequently the two must be added in this range. This amounts to adding ((3M–2) –

2M +1) or (M–1) pairs of data.

0 … M–1 M … 2M–2 2M … 3M–2 3M … n

The overlap interval of y1 (n) and y2 (n) is disjoint from that of y2 (n) and y3 (n) . In

general, the overlap intervals of successive pairs of yi (n) are mutually exclusive. Thus we

calculate successive yi (n) for i = 0 to K and add each successive yi (n) to the previous yi (n) in

Overlap (Add)

(M–1) points

the overlap region. Hence the procedure is called the overlap-and-add method. Each convolution

could be obtained by using the DFT of size (2M–1) or greater so that the resulting circular

convolution would be a linear convolution. In principle rather than using the DFT we could zero-

pad h(n) and each of the xi (n) ’s to a length of (2M–1) and perform circular convolution to

generate the yi (n) ’s which are then overlapped and added.

Input divided into sections of length L In the above development we divided x(n) into K sections

of length M each, where K = S M . This need not be the case. We could divide x(n) into (some

number of) sections of length L each. The situation now looks as below and the overlap occurs

over a range of (M–1) points – the same as before.

y1(n): (L+M –1) points

0 L L+M–2

L L+M –2 2L+M–2

y2(n): (L+M –1) points

Once again each new section xi (n) and h(n) are zero-padded to a length of (L+M –1) and circular

convolution performed to generate the new

y(n).

yi (n) ’s which are overlapped and added to generate

Note A little reflection shows that the input sequence x(n) need not be of finite length. As the

stream of input samples arrives we could sectionalize it into blocks of size L and proceed as

discussed above to generate the stream of blocks of y(n) as a continuous process.

Example 2.5.7 [Ramesh Babu’s Example 3.14] Find the output y(n) of a filter with impulse

response h(n) = {1, 1, 1} and input x(n) = {3, –1, 0, 1, 3, 2, 0, 1, 2, 1}.

Symmetry properties of the DFT Notation: RN(n) = 1 in [0, N–1], and 0 elsewhere. Thus
x((n+m))N RN(n) means the circularly shifted version of the finite length sequence x(n) defined
over [0, N–1]. Sometimes the RN(n) is omitted.

The following properties should be noted.

Sequence DFT Sequence DFT

4 Re [x(n)] Xep(k)

5 j Im [x(n)] Xop(k)

1 x((n+m))N RN(n) W
−k m

X(k)
N

2 x*(n) X*((–k))N RN(k)

3 x*((–n))N RN(n) X*(k)

N

W W

W N

Example 2.5.8 Show that DFT{x((n+m))N} =W
−k m

X(k).

Solution By definition
N − 1 DFT {x((n+m))N} = x((n + m)) W

k n

N N
n = 0

Set n+m = λ so that n = λ–m and the limits n = 0 to N–1 become λ = m to N–1+m. Then the RHS

becomes
N − 1+ m

= x(())N
k −km

N N

 = m

The limits on λ will be changed to 0 to N–1 resulting in

=
N − 1

x(())
N

 = 0

k −km

N N =W −k m X(k)

Based on the properties above, we can show that for a real sequence the following

symmetry properties of the DFT hold:

1. Re [X(k)] = Re [X((–k))N] RN(k) 3. |X(k)| = |X((–k))N| RN(k)
2. Im [X(k)] = –Im [X((–k))N] RN(k) 4. arg [X(k)] = – arg [X((–k))N] RN(k)

Example 2.5.9 [2009] Given that the real-valued sequence x(n) defined over 0 ≤ n ≤ N–1 has the

DFT X(k) = XR (k)+ jX I (k) , 0 k N–1 show that XR (k) is an even function and XI (k) is an odd

function of k.
Solution By definition we have

N −1

X(k) = x(n) e
− j k 2 n / N

, 0 k N–1
n = 0

N −1

= x(n)cos(2kn / N) − j sin(2kn/ N), 0 k N–1
n = 0

N −1 N −1

= x(n) cos(2kn / N) – j x(n) sin(2kn / N) , 0 k N–1
n = 0 n = 0

N −1 N −1

With XR (k) = x(n) cos(2kn / N) and X I (k) = − x(n) sin(2kn / N) the above DFT may be
n = 0 n = 0

written
X(k) = XR (k)+ jX I (k) , 0 k N–1

Since cos(2kn/ N) is an even function of k, that is, cos(2 (−k)n / N) = cos(2kn/ N) for all k, it

follows that XR (k) is an even function of k, that is, XR (−k)= XR (k) for all k.

Similarly, since sin(2kn/ N) is an odd function of k, it follows that XI (k) is an odd

function of k.

Do the above results depend on whether x(n) is real-valued or not?

Filtering through DFT/FFT

Filtering of a sequence x(n) may be done in the discrete time domain using the difference

equation. Alternatively, we may work in the frequency domain: Given x(n) we first find its DFT,

X(k) and then set selected components of X(k) = 0 (this is done so as to preserve the symmetry

W

2

properties of X(k) about the mid point of the sequence k = N/2). The resulting DFT is denoted
Xf(k). We then find the IDFT of Xf(k) which we shall denote as xf(n), which should be a filtered
version of x(n). Thus x(n) has been filtered entirely in the discrete frequency domain.

We illustrate with a signal consisting of two frequency components, a 2 Hz and a 4 Hz.
Given the signals x1(t) = cos 2π2t and x2(t) = cos 2π4t, the signal x(t) = x1(t) + x2(t) is sampled at
16 Hz. We construct below the discrete-time sequence x(n) and find its 8-point DFT, i.e., the
X(k) values. We then filter the signal in the frequency domain, i.e., work on the DFT values
instead of on the x(n) values and denote the “filtered” DFT values by Xf(k). We then take the
IDFT of Xf(k) resulting in the sequence xf(n).

x(t) = cos 2π2t + cos 2π4t

x(nT) = x(n) = cos 2π2nT + cos 2π4nT = cos 2π2n(1/16) + cos 2π4n(1/16)

= cos (πn/4) + cos (πn/2)

The cos 2π2t component has an analog frequency of 2 Hz. When sampled at 16 Hz its digital

frequency is 1/8 cycles/sample. Similarly, the 4 Hz component, cos 2π4t, sampled at 16 sps, has

a digital frequency of 1/4 cycles/sample.

Example 2.6.1 (a) Find the frequency and period of (i) x1(n) = cos (πn/4) and (ii) x2(n) = cos

(πn/2). Sketch the sequences x1(n), x2(n), and x(n) = x1(n) + x2(n) for 0 n 7.
Solution Arrange cos (πn/4) in the format cos (2π f n). Thus, cos (πn/4) = cos (2π(1/8)n), from

which the digital frequency is identified as f = 1/8 cycle/sample or = π/4 rad/sample. The
sequence values are:

 1 1 1 1
x1(n) = 1, , 0, – , –1, – , 0,

 2 2 2 2
x2(n) = {1, 0, –1, 0, 1, 0, –1, 0}

 1 1 1 1
x(n) = x1(n) + x2(n) = 2, , –1, – , 0, – , –1,

 2 2 2

The sequences x1(n), x2(n) and x(n) are sketched below.

n

− 1/

n

1/

n

−1/

x1(n) = cos (πn/4)

1
1/ 2

1 7 8

2

–1

x(n) = x1(n) + x2(n)

2

2

1 7 8

2

–1

x2(n) = cos (πn/2)

1

1 7 8

–1

In MATLAB the following segment plots the three functions x1(t), x2(t) and x(t).

t = 0:1/160:0.5; x1t = cos(2*pi*2*t); x2t = cos(2*pi*4*t);

xt = x1t + x2t;

%

subplot(3,1,1), plot(t,x1t); xlabel('t'), ylabel('x1(t)');

title('x1(t) = cos 2\pi2t');

%

subplot(3,1,2), plot(t,x2t); xlabel('t'), ylabel('x2(t)');

title('x2(t) = cos 2\pi4t');

%

subplot(3,1,3), plot(t,xt); xlabel('t'), ylabel('x(t)');

title('x(t) = cos 2\pi2t + cos 2\pi4t');

x1(t) = cos 22t

1

0

-1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t

x2(t) = cos 24t

1

0

-1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t

x(t) = cos 22t + cos 24t

2

0

-2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t

In MATLAB the following segment plots the two functions x1(n), x2(n) and x(n).

%t = 0:1/160:0.5; x1t = cos(2*pi*2*t); x2t = cos(2*pi*4*t);

%xt = x1t + x2t;

%

n = 0:8; x1n = cos(pi*n/4); x2n = cos(pi*n/2);

xn = x1n + x2n,

%

subplot(3,1,1), stem(n,x1n); xlabel('n'), ylabel('x1(n)');

title('x1(n) = cos(\pi n/4)');

%

x
(t

)
x
2
(t

)
x
1
(t

)

subplot(3,1,2), stem(n,x2n); xlabel('n'), ylabel('x2(n)');

title('x2(n) = cos(\pi n/2)');

%

subplot(3,1,3), stem(n,xn); xlabel('n'), ylabel('x(n)');

title('x(n) = cos(\pi n/4)+ cos(\pi n/2)');

The sequence is x(n) = {2, 0.707, -1, -0.707, 0, -0.707, -1, 0.707}

x1(n) = cos(n/4)

1

0

-1

0 1 2 3 4 5 6 7 8

n

x2(n) = cos(n/2)

1

0

-1

0 1 2 3 4 5 6 7 8

n

x(n) = cos(n/4)+ cos(n/2)

2

0

-2

0 1 2 3 4 5 6 7 8

n

Example 2.6.1 (b) Find the 8-point DFT (8-point FFT using either DIT or DIF, or use the direct

calculation) of x1(n) = cos (πn/4), for 0 n 7. Sketch the sequence X1(k).
In MATLAB the following segment plots the magnitude and phase angle of X1(k):

n = 0:7; x1n = cos(pi*n/4), X1k = fft(x1n),

%

% MX1k = magnitude of X1k, AX1k = phase angle of X1k

MX1k = abs(X1k); AX1k = angle(X1k);

%

subplot(2,1,1), stem(n, abs(X1k)); xlabel('k'), ylabel('|X1(k)|');

title ('Magnitude of X1(k)');
%

subplot(2,1,2), stem(n, angle(X1k)); xlabel('k'), ylabel('<X1(k)');

title ('Phase of X1(k)');

The sequence and DFT values are:

x1(n) = {1 0.707 0 -0.707 -1 -0.707 -0 0.707}
X1(k) = {-0 (4 - 0i) 0 (-0 - 0i) 0 (-0 + 0i) 0 (4 + 0i)}

x
(n

)
x
2
(n

)
x
1
(n

)

X1 (k) = {0 4 0 0 0 0 0 4}

X1 (k) = {3.1416 -0.0000 0 -2.9873 0 2.9873 0 0.0000}

!!! Note that all phase angle values should be zeros, that is, X1 (k) = 0 for all k.

The MATLAB plots for magnitude and phase angle are shown below. The 2 Hz component is

indicated by X1(1) = 4 (and, from symmetry considerations, X1(7) = 4).
With regard to the phase angle, strictly speaking, the phase of X1(k) = 0 for all k since

X1(k) is real valued for all k. Check out why!!!: When the input is listed explicitly as

x1n = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)]

the program gives the correct phase angle calculations, but not when it is specified implicitly as

n = 0:7; x1n = cos(pi*n/4)

Magnitude of X1(k)

4

3

2

1

0
0 1 2 3 4 5 6 7

k

Phase of X1(k)

4

2

0

-2

-4

0 1 2 3 4 5 6 7

k

Example 2.6.1 (c) Find the 8-point DFT of x(n) = cos (πn/4) + cos (πn/2), for 0 n 7. Sketch

the sequence X(k).

Solution Consider the 8-point sequence x(n) for n = 0 to 7 obtained by sampling x(t) at 16 Hz.

The length of the sequence is N = 8. The sequence values are
 1 1 1 1

x(n) = 2, , –1, – , 0, – , –1,
 2 2 2 2

The corresponding DFT is given by
N −1

X(k) = x(n) e
− j 2 k n / N

, k = 0 to (N–1)
n = 0

<
X

1
(k

)
|X

1
(k

)|

and may be obtained using either the DIT or the DIF form of FFT:

X(k) = {0, 4, 4, 0, 0, 0, 4, 4}

k=0

The DFT is sketched below: there is a component at 2 Hz. (k = 1) and another at 4 Hz. (k = 2) as

would be expected.

X(k)

Line of Symmetry
4

k

–3 –2 –1 0 1 2 3 4 5 6 7 8

F0 = 2 Hz

‡Fs = 16 Hz

Note that the DFT sequence shows a component at 2 Hz and another at 4 Hz, corresponding to k

= 1 and 2 respectively.

In MATLAB the following segment plots the magnitude and phase angle of X(k). Note

that x(n) is specified by an explicit list.

%n = 0:7; xn = cos(pi*n/4) + cos(pi*n/2),

xn = [2, 1/sqrt(2), -1, -1/sqrt(2), 0, -1/sqrt(2), -1, 1/sqrt(2)], Xk = fft(xn),

%

% MXk = magnitude of Xk, AXk = phase angle of Xk

MXk = abs(Xk), AXk = angle(Xk),

%

k = 0:7;

subplot(2,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|');

title ('Magnitude of X(k)');

%

subplot(2,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)');

title ('Phase of X(k)');

The sequence and DFT values are:

X
x(n) = {2, 0.707, -1, -0.707, 0, -0.707, -1, 0.707}

(k) = {0 4 4 0 0 0 4 4}

X (k) = {0 4 4 0 0 0 4 4}

X (k) = {0 0 0 0 0 0 0 0}

f

The MATLAB plots for magnitude and phase angle are shown below. The 2 Hz component is

indicated by X(1) = 4 (and, from symmetry considerations, X(7) = 4). Similarly, the 4 Hz

component is indicated by X(2) = X(6) = 4.

Magnitude of X(k)

4

3

2

1

0
0

1

0.5

0

-0.5

-1

0

1 2 3 4 5 6 7

k

Phase of X(k)

1 2 3 4 5 6 7

k

Example 2.6.1 (d) [Filtering] Next we would like to filter the sequence x(n) = cos (πn/4) + cos

(πn/2) so that the 4 Hz component is removed.

Solution In terms of the DFT sequence X(k) this means setting X(2) and X(6) to zero. In order to

preserve the symmetry properties of the DFT we should set both X(2) and X(6) = 0, not just X(2).

The resulting DFT sequence is denoted Xf(k) and is given by

Xf(k) = {0, 4, 0, 0, 0, 0, 0, 4}

k=0

We next find the inverse DFT of the above Xf(k) by using either the DIT or the DIF form of the
FFT. The result is denoted by xf(n). Using the IDFT formula we have

1
xf(n) =

N

N −1

 Xf

k = 0

1
7

(k)e
j 2 k n / N

, n = 0, 1, … , N–1

= X (k)e j 2 k n / 8 , n = 0 to 7
8 k = 0

It will be seen that xf(n) is equal to the original x1(n) component (= cos πn/4, from the 2 Hz.
component; see plot of x1(n) earlier); that is

<
X

(k
)

|X
(k

)|

 1 1 1 1
xf(n) = x1(n) = 1, , 0, – –1, – , 0,

 2 2 2 2

This is low pass filtering where we have selectively removed the 4 Hz component.

In MATLAB the following segment finds the inverse DFT, xf(n), from the given Xf(k).

Xfk = [0, 4, 0, 0, 0, 0, 0, 4],

n = 0:7; xfn = ifft(Xfk),

stem(n, xfn); xlabel('n'), ylabel('xf(n)');

title ('Filtered signal xf(n)');

The filtered version is xf(n) = {1 0.707 0 -0.707 -1 -0.707 0 0.707}

Filtered signal xf(n)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
0 1 2 3 4 5 6 7

n

To remove all frequency components above 2 Hz (in this example the 4, 6 and 8 Hz

components), we set X(2) = X(6) = 0 for the 4 Hz, X(3) = X(5) = 0 for the 6 Hz, and X(4) = 0 for

the 8 Hz, once again preserving symmetry. In this example, of course, there are no 6 or 8 Hz

components.
Similarly high pass filtering is done by deleting X(1) and X(7) – set them to zero –

preserving symmetry once again. In this case XfHP(k) = {0, 0, 4, 0, 0, 0, 4, 0}.

Picket-fence effect

Example 2.7.1 The signal x(t) = cos 2π2t is sampled at 16 Hz.

(a) What frequency components do you expect to see in its DFT?

(b) Take 8 samples and calculate the 8-point DFT.

Solution (b) Using x(n) = cos 2π2n(1/16) = cos (πn/4), the sequence values are

x
f(

n
)

x(n) = {1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)}

Note that the average value of the sequence (the dc component) is zero. The MATLAB program

follows:

xn = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)]; Xk = fft(xn),

%

% MXk = magnitude of Xk, AXk = phase angle of Xk

MXk = abs(Xk); AXk = angle(Xk);

%

k = 0:7;

subplot(2,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|');

title ('Magnitude of X(k)');

%

subplot(2,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)');

title ('Phase of X(k)');

The DFT values are:

X(k) = {0 4 0 0 0 0 0 4}

X (k) = {0 4 0 0 0 0 0 4}

X (k) = {0 0 0 0 0 0 0 0}

The frequency resolution is Fs/N = 16/8 = 2 Hz. The table below shows that the 8-point

DFT contains a component at 2 Hz, corresponding to k = 1. The DFT values are all real numbers
symmetrically disposed about k = 4, the center of symmetry.

 k=0

$

X(k) = {0, 4, 0, 0, 0, 0, 0, 4}
Hz‹ 0 2 4 6 8 10 12 14

(Fs/2)

Magnitude of X(k)

4

3

2

1

0
0

1

0.5

0

-0.5

-1

0

1 2 3 4 5 6 7

k

Phase of X(k)

1 2 3 4 5 6 7

k

Example 2.7.2 [Zero-padding] The first 8 sample values of a 2-Hz cosine, x(t) = cos 2π2t,

obtained at a sampling rate of 16 samples/second are given below:

x(n) = {1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)}

Find the 16-point DFT using zero padding.

Solution The zero-padded sequence is given by

x(n) = {1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2), 0, 0, 0, 0, 0, 0, 0, 0}

Note that when zero padded the average value of the sequence is no longer zero. The frequency

resolution of the DFT is

Frequency resolution =
Sampling Frequency

=
Fs =

16 Hz
= 1 Hz.

Number of po int s N 16

The 2 Hz component corresponds to X(k) with k = 2.

In MATLAB:

xn = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)],

Xk = fft(xn, 16), %x(n) is zero-padded to a length of 16

%

% MXk = magnitude of Xk, AXk = phase angle of Xk

MXk = abs(Xk), AXk = angle(Xk),

%

k = 0:15;

subplot(3,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|');

title ('Magnitude of X(k)');

<
X

(k
)

|X
(k

)|

%

subplot(3,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)');

title ('Phase of X(k)');

%

xn16 = ifft(Xk),

n = 0:15;

subplot(3,1,3), stem(n, xn16); xlabel('n'), ylabel('x(n)');

title ('Zero-padded sequence xn16');

The DFT (reproduced from the MATLAB output) is

X(k) = {0, (1+1.7654i), 4, (1-2.8478i), 0, (1-0.8478i), 0, (1-0.2346i),

0, {1+0.2346i), 0, (1+0.8478i), 0, (1+2.8478i), 4, (1-1.7654i)}

Magnitude of X(k)

4

2

0
0 5 10 15

k

Phase of X(k)

2

0

-2
0 5 10 15

k

Zero-padded sequence xn16
1

0

-1
0 5 10 15

n

Example 2.7.3 [Without zero-padding] Given all 16 sample values of a 2-Hz cosine, x(t) = cos
2π2t, obtained at a sampling rate of 16 samples/second find its 16-point DFT.
Solution The frequency resolution of the DFT is

Frequency resolution =
Sampling Frequency

=
Fs =

16 Hz
= 1 Hz.

Number of po int s N 16

The 2 Hz component corresponds to X(k) with k = 2.

t = 0: 1/16: 15/16; xn = cos (2*pi*2*t), Xk = fft(xn),

%

% MXk = magnitude of Xk, AXk = phase angle of Xk

MXk = abs(Xk), AXk = angle(Xk),

%

k = 0:15;

subplot(3,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|');

x
(n

)
<

X
(k

)
|X

(k
)|

title ('Magnitude of X(k)');

%

subplot(3,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)');

title ('Phase of X(k)');

%

n = 0:15;

subplot(3,1,3), stem(n, xn); xlabel('n'), ylabel('x(n)');

title ('Sequence x(n)');

The DFT (reproduced from the MATLAB output) is

X(k) = {0, (-0+0i), (8-0i), (0-0i), (0-0i), (0-0i), (0-0i), (0+0i),

-0, (0-0i), (0+0i), (0+0i), (0+0i), (0+0i), (8+0i), (-0-0i)}

Magnitude of X(k)

10

5

0
0 5 10 15

k

Phase of X(k)

5

0

-5
0 5 10 15

k

Sequence x(n)

1

0

-1
0 5 10 15

n

Specifying the sequence values explicitly as below produces correct phase values (rather
than implicitly by n = 0: 1 : 15; x = cos (pi*n/4), X = fft(x))

%Listing the sequence values explicitly

xn1 = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)],

xn2 = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)],

xn = [xn1,xn2], Xk = fft(xn),

%

% MXk = magnitude of Xk, AXk = phase angle of Xk

MXk = abs(Xk), AXk = angle(Xk),

%

k = 0:15

subplot(3,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|');

title ('Magnitude of X(k)');

%

|X
(k

)|

x
(n

)
<

X
(k

)

subplot(3,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)');

title ('Phase of X(k)');

%

n = 0:15;

subplot(3,1,3), stem(n, xn); xlabel('n'), ylabel('x(n)');

title ('16-point sequence xn');

Magnitude of X(k)

10

5

0
0 5 10 15

k

Phase of X(k)

1

0

-1
0 5 10 15

k

16-point sequence xn

1

0

-1
0 5 10 15

n

The 16-point DFT is X(k) = {0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0}. The DFT contains a

component at 2 Hz. The DFT values are all real numbers symmetrically disposed about k = 8, the

center of symmetry.

k‹ 0 2 8 15

X(k) {0 0 8 0 0 0 0 0 0 0 0 0 0 0 8 0}

Hz‹ 2 8

Example 2.7.4 The signal x(t) = cos 2π2t is sampled at 12 Hz (still satisfies the sampling

theorem). Calculate (1) the 6-point DFT and (2) the 8-point DFT. Compare the results.
Solution The resulting sequence is x(n) = cos 2π2n(1/12) = cos (πn/3).
(1) 6-point DFT.

n = 0: 1 : 5; x = cos (pi*n/3), X = fft(x)

The samples are
 1 1 1 1

x(n) = 1, , – , –1, – ,

 2 2 2 2

|X
(k

)|

x
(n

)
<

X
(k

)

The average value of the sequence (the dc component) is zero. The frequency resolution is Fs/N
= 12/6 = 2 Hz. The DFT is

X(k) = {0, 3, 0, 0, 0, 3}

which does show a component at 2 Hz.

(2) 8-point DFT.

n = 0: 1 : 7; x = cos (pi*n/3), X = fft(x)

The samples are
 1 1 1 1 1

x(n) = 1, , –
 2 2

, –1, – ,
2

, 1,
2 2

Note that the average value of the sequence (the dc component) is not zero. The frequency

resolution is Fs/N = 12/8 = 1.5 Hz. The DFT is

X(k) = {1.5, (2.5607 + j2.5607), -j1.5, (0.4393 - j0.4393),

0.5, (0.4393 + j0.4393), j1.5, (2.5607 - j2.5607)}

It is not possible to know that there is a component at 2 Hz.

Example 2.7.5 For the signal x(t) = cos 2π2t + cos 2π4t choose a sampling frequency of 12Hz

(still satisfies sampling theorem). Find the N-point DFT for (a) N = 6, (b) N = 8, and (c) N = 12.

(a) For N = 6

x(n) = cos (2π2n/12) + cos (2π4n/12) = cos (πn/3) + cos (2πn/3)

n = 0: 1 : 5; x = cos (pi*n/3) + cos (2*pi*n/3), X = fft(x)

The samples are

x(n) = {2, 0, -1, 0, -1, 0}

The dc component is zero. The frequency resolution is Fs/N = 12/6 = 2 Hz. The DFT is

X(k) = {0, 3, 3, 0, 3, 3}

Both the 2 Hz and the 4 Hz components show up.

k‹ 0 3 5

X(k) {0 3 3 0 3 3

Hz‹ 0 2 4 6 8 10

(b) For N = 8

x(n) = cos (2π2n/12) + cos (2π4n/12) = cos (πn/3) + cos (2πn/3)

n = 0: 1 : 7; x = cos (pi*n/3) + cos (2*pi*n/3), X = fft(x)

X(k)

2 Hz 4 Hz

The samples are

x(n) = {2, 0, –1, 0, –1, 0, 2, 0}

This particular set has a nonzero dc component. The frequency resolution is Fs/N = 12/8 = 1.5
Hz. The DFT is

X(k) = {2, (3 + j3), 0, (3 - j3), 2, (3 + j3), 0, (3 - j3)}

Neither the 2 Hz nor the 4 Hz component can show up.

k‹ 0 4 7

X(k) {2 3+j3 0 3–j3 2 3+j3 0 3–j3

Hz‹ 0 1.5 3 4.5 6 7.5 9 10.5

0 1 2

1.5 Hz 3 Hz

k
8

12 Hz

Example 2.7.6 For the signal x(t) = cos 2π2t + cos 2π3t + cos 2π4t choose a sampling frequency

of 12Hz (still satisfies sampling theorem). Find the N-point DFT for (a) N = 6, (b) N = 8.

(a) For N = 6

x(n) = cos (2π2n/12) + cos (2π3n/12) + cos (2π4n/12)

= cos (πn/3) + cos (πn/2) + cos (2πn/3)

n = 0: 1 : 5; x = cos (pi*n/3) + cos (πn/2) + cos (2*pi*n/3), X = fft(x)

The samples are

x(n) = {3, 0, -2, 0, 0, 0}

The dc component is not zero. The frequency resolution is Fs/N = 12/6 = 2 Hz. The DFT is

X(k) = {1, (4 + j1.732), (4 - j1.732), 1, (4 + j1.732), (4 - j1.732)}

Both the 2 Hz and the 4 Hz components show up, but the 3 Hz component is missing.

k‹ 0 3 5

X(k) {1 4 + j1.732 4 - j1.732 1 4 + j1.732 4 - j1.732

Hz‹ 0 2 4 6 8 10

Fast Fourier transform

Fast Fourier Transform (FFT) – Radix-2 decimation in time and decimation in frequency FFT

Algorithms, Inverse FFT, and FFT for composite N.

Contents:

Introduction

Radix-2 decimation-in-time FFT (Cooley-Tukey)

Radix-2 decimation-in-frequency FFT (Sande-Tukey)

Inverse DFT using the FFT algorithm

*Decimation-in-time algorithm for N = 4 (Cooley-Tukey formulation)

*Decimation-in-frequency algorithm for N = 4 (Sande-Tukey formulation)

FFT with general radix

(1
2

N

N

N

N

N N

N

Introduction

For a finite-duration sequence x(n) of length N, the DFT sum may be written as
N −1

X(k) =
n = 0

x(n)W
k n

, k = 0, 1, …, N–1

where W = e − j 2 / N . There are a total of N values of X(.) ranging from X(0) to X(N–1). The

calculation of X(0) involves no multiplications at all since every product term involves W
0
=

e
− j 0

= 1. Further, the first term in the sum always involves W
0
or e

− j 0
= 1 and therefore does

not require a multiplication. Each X(.) calculation other than X(0) thus involves (N–1) complex

multiplications. And each X(.) involves (N–1) complex additions. Since there are N values of X(.)

the overall DFT requires (N −1)2 complex multiplications and N(N–1) complex additions. For

large N we may round these off to N
2
complex multiplications and the same number of complex

additions.

Each complex multiplication is of the form

(A + jB) (C + jD) = (AC – BD) + j(BC + AD)

and therefore requires four real multiplications and two real additions. Each complex addition is

of the form

(A + jB) + (C + jD) = (A + C) + j(B + D)

and requires two real additions. Thus the computation of all N values of the DFT requires 4N2

real multiplications and 4 N
2
(= 2 N

2
+ 2 N

2
) real additions.

Efficient algorithms which reduce the number of multiply-and-add operations are known
by the name of fast Fourier transform (FFT). The Cooley-Tukey and Sande-Tukey FFT

algorithms exploit the following properties of the twiddle factor (phase factor), WN = e
− j 2 / N

(the factor e
j 2 / N

is called the Nth principal root of 1):
k +

N
 k

1. Symmetry property WN
2 = –WN

2. Periodicity property W
k + N

= W
k

To illustrate, for the case of N = 8, these properties result in the following relations:

1 − j
W

0
= – W

4
= 1 W

1
= – W

5
=

8 8 8 8

+ j)
W

2
= – W

6
= –j W

3
= – W

7
= −

8 8 8 8

2

N

log
2

2

The use of these properties reduces the number of complex multiplications from N2 to

N (actually the number of multiplications is less than this because several of the

multiplications by W
r
are really multiplications by ±1 or ±j and don’t count); and the number of

complex additions are reduced from N
2
to N log2 N . Thus, with each complex multiplication

requiring four real multiplications and two real additions and each complex addition requiring

two real additions, the computation of all N values of the DFT requires

 N
Number of real multiplications = 4 2 log2 N = 2N log2 N

 N

Number of real additions = 2N log2 N + 2
 2

log2 N = 3N log2 N

We can get a rough comparison of the speed advantage of an FFT over a DFT by

computing the number of multiplications for each since these are usually more time consuming

than additions. For instance, for N = 8 the DFT, using the above formula, would need 82 = 64

complex multiplications, but the radix-2 FFT requires only 12 (=
8

log 8 = 4 x 3).

2
2

Number of multiplications: DFT vs. FFT

No. of points

N

No. of complex multiplications No. of real multiplications

DFT FFT DFT FFT

32 1024 80 4096 320

128 16384 448 65536 1792

1024 1048576 5120 4194304 20480

We consider first the case where the length N of the sequence is an integral power of 2,

that is, N = 2ν where ν is an integer. These are called radix-2 algorithms of which the

decimation-in-time (DIT) version is also known as the Cooley-Tukey algorithm and the

decimation-in-frequency (DIF) version is also known as the Sande-Tukey algorithm. We

show first how the algorithms work; their derivation is given later.

For a radix of (r = 2), the elementary computation (EC) known as the butterfly consists

of a single complex multiplication and two complex additions.

If the number of points, N, can be expressed as N = r
m

, and if the computation algorithm

is carried out by means of a succession of r-point transforms, the resultant FFT is called a radix-

r algorithm. In a radix-r FFT, an elementary computation consists of an r-point DFT followed

by the multiplication of the r results by the appropriate twiddle factor. The number of ECs

required is

Cr =
N

log r N

which decreases as r
r
increases. Of course, the complexity of an EC increases with increasing r.

For r = 4, the EC requires three complex multiplications and several complex additions.

Suppose that we desire an N-point DFT where N is a composite number that can be

factored into the product of integers

N = N1 N2 … Nm

If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64-

point transform can be viewed as a three-dimensional 4 x 4 x 4 transform.

If N is a prime number so that factorization of N is not possible, the original signal can be

zero-padded and the resulting new composite number of points can be factored.

WNk

N

N

Radix-2 decimation-in-time FFT (Cooley-Tukey)

Procedure and important points

1. The number of input samples is N = 2ν where ν is an integer.

2. The input sequence is shuffled through bit-reversal. The index n of the sequence x(n) is

expressed in binary and then reversed.

3. The number of stages in the flow graph is given by ν = log2 N .

4. Each stage consists of N/2 butterflies.

5. Inputs/outputs for each butterfly are separated as follows:

Separation = 2m–1 samples where m = stage index, stages being numbered from

left to right (that is, m = 1 for stage 1, m = 2 for stage 2 etc.).
This amounts to separation increasing from left to right in the order 1, 2, 4, …, N/2.

Stage 1 Stage 2 Stage 3

Separation of 1

6. The number of complex additions = N log2 N and the number of complex multiplications
N

is log N .

2
2

7. The elementary computation block in the flow graph, called the butterfly, is shown here.
This is an in-place calculation in that the outputs (A + BW

k
) and (A – BW

k
) can be

N N

computed and stored in the same locations as A and B.

A A + BW
k

B A – BW

k

Separation of 2

Separation of 4

W80

W80 W82 W83

N

N

Stage 3 $
Natural

$ order

Example 2.2.1 Radix-2, 8-point, decimation-in-time FFT for the sequence

n‹ 0 1 2 3 4 5 6 7

x(n) = {1, 2 3 4 –4 –3 –2 –1}

Solution The twiddle factors are

0 1 − j 2 / 8 − j / 4 1 1
W8 = 1 W8 = e = e = – j

2 − j 2 / 8 2 − j / 2 3 − j 2 / 8 3 2 − j 3 / 4 12 1

W = (e) = e = – j W = (e) = e = – – j
8 8

2 2

One of the elementary computations is shown below:

A

= 1

B

= – 4
= 1

A + BW
k

= 1 – 4 = – 3

A – BW
k

= 1 + 4 = 5

The signal flow graph follows:

Bit-reversed
order $

Stage 1 $

Stage 2 $

000 000 x(0) = 1

001

100

x(4) = –4

W80

010 010 x(2) = 3

W80

011 110 x(6) = –2

W80 W82

100 001 x(1) = 2

W80

101 101 x(5) = –3

W80

W81

110 011 x(3) = 4

W80 W82

X(0) = 0

X(1) =

X(2) =

X(3) =

X(4) =

X(5) =

X(6) =

111 111 x(7) = –1 X(7) =

8-point FFT using DIT

Results of the first stage

Input Stage 1 Stage 2 Stage 3 (Output)

1 1 + (–4) . 1 = –3

– 4 1 – (–4) . 1 = 5

3 3 + (–2) . 1 = 1

– 2 3 – (–2) . 1 = 5

2 2 + (–3) . 1 = –1

– 3 2 – (–3) . 1 = 5

4 4 + (–1) . 1 = 3

– 1 4 – (–1) . 1 = 5

Results of the second stage

Input Stage 1 Stage 2 Stage 3 (Output)

1

– 4

–3 –3 + 1 . 1 = –2

5 5 + 5 . (–j) = 5 2e
− j / 4

3 1 –3 – 1 . 1 = –4

– 2 5 5 – 5 . (–j) = 5 2e
j / 4

2 –1 –1 + 3 . 1 = 2

– 3 5 5 + 5 . (–j) = 5 2e
− j / 4

4 3 –1 – 3 . 1 = –4

– 1 5 5 – 5 . (–j) = 5 2e
j / 4

Results of the third stage

Input Stage 1 Stage 2 Stage 3 (Output)

1

– 4

–3 –2 –2 + 2 . 1 = 0

5 5 2e− j / 4 5 2e
− j / 4

+ 5 2e
− j / 4

. e
− j / 4

= 5 – j12.07

3 1 –4 –4 + (–4) . (–j) = –4 + j4 = 4 2e
j3 / 4

– 2 5 e j / 4 5 2e
j / 4

+ 5 2e
j / 4

. e
− j 3 / 4

= 5 – j 2.07

2 –1 2 –2 – 2 . 1 = –4

– 3 5 5 2e− j / 4 5 2e
− j / 4

– 5 2e
− j / 4

. e
− j / 4

= 5 + j2.07

4 3 –4 –4 – (–4) . (–j) = –4 – j4 = 4 2e
− j3 / 4

– 1 5 e j / 4 5 2e
j / 4

– 5 2e
j / 4

. e
− j 3 / 4

= 5 + j12.07

The DFT is X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)}

The MATLAB program:

x = [1, 2, 3, 4, -4, -3, -2, -1], X = fft(x)

WNk

N

N

Radix-2 decimation-in-frequency FFT (Sande-Tukey)

Procedure and important points

1. The number of input samples is N = 2ν where ν is an integer.

2. The input sequence is in natural order; the output is in bit-reversed order.

3. The number of stages in the flow graph is given by ν = log2 N .

4. Each stage consists of N/2 butterflies.

5. Inputs/outputs for each butterfly are separated in the reverse order from that of the DIT.

The separation decreases from left to right in the order N/2, … , 4, 2, 1.

6. The number of complex additions = N log2 N and the number of complex multiplications

is
N

log N .

2
2

7. The basic computation block in the flow graph of the DIF FFT is the butterfly shown

here. This is an in-place calculation in that the two outputs (A + B) and (A – B) W
k can

be computed and stored in the same locations as A and B.

A A + B

B (A – B)W

k

W80 W8
0

W8
0

W81 W82

W82 W80

W83

W80 W80

W82

W 0

8

N

2

Example 2.3.1 Radix-2, 8-point, decimation-in-frequency FFT for the sequence

n‹ 0 1 2 3 4 5 6 7

x(n) = {1, 2 3 4 –4 –3 –2 –1}

Solution The twiddle factors are the same as in the DIT FFT done earlier (both being 8-point

DFTs):
0 1 − j 2 / 8 1 1

W8 = 1 W8 = e = – j
2 − j 2 / 8 2 − j / 2

2 3 − j 2 / 8 3 − j 3 / 4 1 1

W = (e) = e = – j W = (e) = e = – – j
8 8

2 2
One of the elementary computations is shown below:

A

= 1

B

= –4

A + B

= 1 – 4 = –3

(A – B)W
k

= (1 + 4) 1 = 5

The signal flow graph follows:

x(0) = 1

Stage 1 $ Stage 2 $ Stage 3 $

X(0) =

x(1) = 2

x(2) = 3

x(3) = 4

x(4) = –4

x(5) = –3

x(6) = –2

X(4) =

X(2) =

X(6) =

X(1) =

X(5) =

X(3) =

x(7) = –1 X(7) =

W80 = 1

Bit-reversed

$ order

Natural

order $

8-point FFT using DIF

Results of the first stage

Input Stage 1 Stage 2 Stage 3 (Output)

1 1 + (–4) = –3

2 2 + (–3) = –1

3 3 + (–2) = 1

4 4 + (–1) = 3

– 4 (1 – (–4)) 1 = 5

– 3 (2 – (–3)) e
− j / 4

= 5 e
− j / 4

– 2 (3 – (–2)) (–j) = –j5

– 1 (4 – (–1)) e− j3 / 4 = 5 e− j3 / 4

Results of the second stage

Input Stage 1 Stage 2 Stage 3 (Output)

1
2

–3 –3 + 1 = –2

–1 –1 + 3 = 2

3 1 (–3 –1) 1 = –4

4 3 (–1 –3) (–j) = j4

– 4 5 5 + (–j5) = 5 2e
− j / 4

– 3 5 e− j / 4
5 e− j / 4 + 5 e− j3 / 4 = –j5 2

– 2 –j5 (5 – (–j5)) 1 = 5 2e
j / 4

– 1 5 e− j3 / 4
(5 e

− j / 4
– 5 e

− j3 / 4
) (–j) = –j5 2

Results of the third stage

Input Stage 1 Stage 2 Stage 3 (Output)

1

2

–3 –2 –2 + 2 = 0

–1 2 (–2 –2) 1 = –4

3 1 –4 –4 + j4 = –4 + j4 = 4 2e
j3 / 4

4 3 j4 (–4 – j4) 1 = –4 – j4 = 4 2e
− j3 / 4

– 4 5 5 2e− j / 4 5 2e
− j / 4

+ (–j5 2) = 5 – j12.07

– 3 5 e− j / 4 –j5 2 (5 2e
− j / 4

– (–j5 2)) 1 = 5 + j2.07

– 2 –j5 5 2e j / 4 5 2e
j / 4

+ (–j5 2) = 5 – j2.07

– 1 5 e− j3 / 4 –j5 2 (5 2e
j / 4

– (–j5 2)) 1 = 5 + j12.07

The DFT is X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)}

The MATLAB progarm is the same as shown in Example 1.

WNk

N

N

(DIT Template)

The elementary computation (Butterfly):

A A + BW
k

B A – BW

k

The signal flow graph:

WNk

N

(DIF Template)

The elementary computation (Butterfly):

A A + B

B (A – B)W

k

The signal flow graph:

16-point DIF FFT

N

Inverse DFT using the FFT algorithm

The inverse DFT of an N-point sequence {X(k), k = 1, 2, … , (N–1)} is defined as

x(n) =

N −1

 X (k)W
N k = 0

−k n
, n = 0, 1, … , N–1

N

where WN = e
− j 2 / N

. Take the complex conjugate of x(n) and multiply by N to get
N −1

N x*(n) =
k = 0

X
*
(k)W

k n

The right hand side of the above equation is simply the DFT of the sequence X*(k) and can be

computed by using any FFT algorithm. The desired output sequence is then found by taking the

conjugate of the result and dividing by N

x(n) =
1

N −1

X
*
(k)W

k n
*

 N
k = 0

1

 N

WNk

N

2

Example 2.4.1 Given the DFT sequence X(k) = {0, (–1–j), j, (2+j), 0, (2–j), –j, (–1+j)} obtain the

IDFT x(n) using the DIF FFT algorithm.
Solution This is an 8-point IDFT. The 8-point twiddle factors are, as calculated earlier,

0 1 − j 2 / 8 1 1
W8 = 1 W8 = e = – j

2 − j 2 / 8 2 − j / 2
2 3 − j 2 / 8 3 − j 3 / 4 1 1

W = (e) = e = – j W = (e) = e = – – j
8 8

2 2

The elementary computation (Butterfly) is shown below:

A A + B

B (A – B)W

k

The signal flow graph follows:

Stage 1 $ Stage 2 $ Stage 3 $

W80
X*(0) = 0

Natural

order $

X*(7) =

X*(6) = j

X*(5) =

X*(4) = 0

X*(3) =

X*(2) =–j

X*(1) =

8 x*(0) =

Bit-reversed

$ order

8 x*(7) =

8 x*(3) =

8 x*(5) =

8 x*(1) =

8 x*(6) =

8 x*(2) =

8 x*(4) =

8 x (n)

8-point IDFT using DIF FFT

Results of the first stage

Input

X*(k)
Stage 1 Stage 2 Stage 3 (Output)

0 0 + 0 = 0

–1+j –1+j + 2+j = 1+j2

–j –j + j = 0

2–j 2–j + (–1–j) = 1–j2

0 (0 – 0) 1 = 0

2+j (–1+j – (2+j)) e
− j / 4

= –3 e
− j / 4

j (–j – j) (–j) = –2

–1–j (2–j – (–1–j)) e
− j3 / 4

= 3 e
− j3 / 4

Results of the second stage

Input Stage 1 Stage 2 Stage 3 (Output)

0 0 0 + 0 = 0

–1+j 1+j2 1+j2 + 1–j2 = 2

–j 0 (0 – 0) 1 = 0

2–j 1–j2 (1+j2 – (1–j2)) (–j) = 4

0 0 0 + (–2) = –2

2+j –3 e− j / 4
–3 e− j / 4 + 3 e− j3 / 4 = –3 2

j –2 (0 – (–2)) 1 = 2

–1–j 3 e− j3 / 4
(–3 e

− j / 4
– 3 e

− j3 / 4
) (–j) = 3 2

Results of the third stage

Input Stage 1 Stage 2 Stage 3 (Output)

0 0 0 0 + 2 = 2 ← 8 x*(0)

–1+j 1+j2 2 (0 – 2) 1 = – 2 ← 8 x*(4)

–j 0 0 0 + 4 = 4 ← 8 x*(2)

2–j 1–j2 4 (0 – 4) 1 = – 4 ← 8 x*(6)

0 0 –2 –2 + (–3 2) = – 6.24 ← 8 x*(1)

2+j –3 e− j / 4
–3 2 (–2 – (–3 2)) 1 = 2.24 ← 8 x*(5)

j –2 2 2 + 3 2 = 6.24 ← 8 x*(3)

–1–j 3 e− j3 / 4
3 2 (2 – 3 2) 1 = – 2.24 ← 8 x*(7)

The output at stage 3 gives us the values 8 x
*
(n)in bit-reversed order:

*

bit rev order
= {2, –2, 4, –4, –6.24, 2.24, 6.24, –2.24}

The IDFT is given by arranging the data in normal order, taking the complex conjugate of the

sequence and dividing by 8:

8 x
*

normalorder = {2, –6.24, 4, 6.24, –2, 2.24, –4, –2.24}

x(n) =
1

, − 6.24

1 6.24 , –
1

, 2.24 , –
1

,
− 2.24

 , ,
 4 8 2 8 4 8 2 8

x(n) = {0.25, –0.78, 0.5, 0.78, –0.25, 0.28, –0.5, –0.28}

Note Because of the conjugate symmetry of {X(k)}, we should expect the sequence {x(n)} to be

real-valued.

The MATLAB program:

X = [0, (-1-j), j, (2+j), 0, (2-j), -j, (-1+j)], x = ifft(X)

Example 2.4.2 Given the DFT sequence X(k) = {0, (1–j), j, (2+j), 0, (2–j), (–1+j), –j} obtain
the IDFT x(n) using the DIF FFT algorithm.

Solution There is no conjugate symmetry in {X(k)}. Using MATLAB

The IDFT is

X = [0, 1-1j, 1j, 2+1j, 0, 2-1j, -1+1j, -1j]

x = ifft(X)

x(n) = {0.5, (-0.44 + 0.037i), (0.375 - 0.125i), (0.088 + 0.14i), (-0.75 + 0.5i),

(0.44 + 0.21i), (-0.125 - 0.375i), (-0.088 - 0.39i)}

2.7 FFT with general radix

As mentioned in the introduction, if the number of points, N, can be expressed as N = r
m

, and if

the computation algorithm is carried out by means of a succession of r-point transforms, the

resultant FFT is called a radix-r algorithm. In a radix-r FFT, an elementary computation (EC)

consists of an r-point DFT followed by the multiplication of the r results by the appropriate

twiddle factor. The number of ECs required is
N

Cr =
r

logr N

which decreases as r increases.

Of course, the complexity of an EC increases with increasing r. For r = 2, the EC (the

butterfly) consists of a single complex multiplication and two complex additions; for r = 4, the

EC requires three complex multiplications and several complex additions.

Suppose that we desire an N-point DFT where N is a composite number that can be

factored into the product of integers

N = N1 N2 … Nm

If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64-

point transform can be viewed as a three-dimensional 4 x 4 x 4 transform.
If N is a prime number so that factorization of N is not possible, the original signal can be

zero-padded and the resulting new composite number of points can be factored.

We illustrate in the table below the situation for N = 64. Since 64 = 26, we can have a

radix-2 FFT; alternatively, since 64 = 43, we can also have a radix-4 FFT.

N = 64 = 26 = 43 = 82

 Radix-2 Radix-4 Radix-8

No. of stages log2 64 = 6 log4 64 = 3 log8 64 = 2

No. of ECs per stage 64/2 = 32 64/4 = 16 64/8 = 8

 UNIT -2

 IIR Digital Filters

Analog filter approximations – Butterworth and Chebyshev, Design of IIR digital filters from

analog filters, Bilinear transformation method, Step and Impulse invariance techniques, Spectral

transformations, Design examples: Analog-Digital transformations

Contents:

Introduction

The normalized analog, low pass, Butterworth filter

Time domain invariance

Bilinear transformation

Nonlinear relationship of frequencies in bilinear transformation

Digital filter design – The Butterworth filter

Analog design using digital filters

Frequency transformation

The Chebyshev filter

The Elliptic filter

H(z) =
i = 0

Equivalent Analog Filter

xa(t) x(n) y(n) ya(t)

xa(nT) ya(nT)

(1/T) samples/sec (1/T) samples/sec

D/A H(z) A/D

Introduction

Nomenclature With a0 = 1 in the linear constant coefficient difference equation,
a0 y(n) + a1 y(n–1) + … + aN y(n–N)

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0 0
we have,

M

biz −i

N

1 + ai z
−i

i =1

This represents an IIR filter if at least one of a1 through aN is nonzero, and all the roots of the
denominator are not canceled exactly by the roots of the numerator. In general, there are M finite
zeros and N finite poles. There is no restriction that M should be less than or greater than or equal
to N. In most cases, especially digital filters derived from analog designs, M ≤ N. Systems of this

type are called Nth order systems. This is the case with IIR filter design in this Unit.

When M > N, the order of the system is no longer unambiguous. In this case, H(z) may be

taken to be an Nth order system in cascade with an FIR filter of order (M – N).
When N = 0, as in the case of an FIR filter, according to our convention the order is 0.

However, it is more meaningful in such a case to focus on M and call the filter an FIR filter of M

stages or (M+1) coefficients.

Example The system H(z) = (1− z
−8

) (1− z
−1

) is not an IIR filter. Why (verify)?

IIR filter design An analog filter specified by the Laplace transfer function, Ha(s), may be
designed to either frequency domain or time domain specifications. Similarly, a digital filter,
H(z), may be required to have either (1) a given frequency response, or (2) a specific time
domain response to an impulse, step, or ramp, etc.

Analog design using digital filters, ωi = ΩiT Another possibility is that a digital filter may be

required to simulate a continuous-time (analog) system. To simulate an analog filter the discrete-

time filter is used in the A/D – H(z) – D/A structure shown below. The A/D converter can be

thought of roughly as a sampler and coder, while the D/A converter, in many cases, represents a

decoder and holder followed by a low pass filter (smoothing filter). The A/D converter may be

preceded by a low pass filter, also called an anti-aliasing filter or pre-filter.

We will usually be given a set of analog requirements with critical frequencies Ω1, Ω2,…,
ΩN in radians/sec., and the corresponding frequency response magnitudes K1, K2, …, KN in dB.
The sampling rate 1/T of the A/D converter will be specified or can be determined from the input
signals under consideration.

Equivalent
Analog Specs

Ω1, Ω2, …, ΩN

K1, K2, …, KN

Digital Filter
Specs

i = iT
 1, 2, …, N

H(z)

K1, K2, …, KN

K = K i i

Digital
Design

(Perhaps

Bilinear)

The general approach for the design is to first convert the analog requirements to digital

requirements and then design the digital filter using the bilinear transformation. The conversion

of the analog specifications to digital specifications is through the formula ωi = ΩiT. To show

that this is true, suppose that the input to the equivalent analog filter is xa(t) = sin it . The output

of the A/D converter with sampling rate 1/T becomes

x(n) = xa(nT) = sini nT = sin (iT)n = sin i n

Thus, the magnitude of the discrete-time sinusoidal signal is the same as the continuous time

sinusoid, while the digital frequency ωi is given in terms of the analog frequency Ωi by ωi = ΩiT.
Thus, the specifications for the digital filter become ω1, ω2, …, ωN with the

corresponding frequency response magnitudes K1, K2, …, KN. The digital frequency, ω, is in
units of radians. The procedure is conceptually shown in figure below.

There are various techniques for designing H(z):

1. Numerical approximation (numerical solution) to the derivative operation or the

integration operation (this latter results in the bilinear transformation aka

bilinear z-transformation – BZT).

2. Time domain invariance, e.g., impulse invariance and step-invariance methods.

The focus is on the low pass analog filter because once designed it can be transformed

into an equivalent quality high pass, band pass or band stop filter by frequency transformation.

The Butterworth, Chebyshev and elliptic filters are used as a starting point in designing digital

filters. We approximate the magnitude part of the frequency response, not the phase. Butterworth

and Chebyshev filters are actually special cases of the more difficult elliptic filter.

Because a constant divided by an Nth order polynomial in Ω falls off as ΩN it will be an

approximate low pass function as Ω varies from 0 to ∞. Therefore, an all-pole analog filter H(s)

= 1/D(s) is a good and simple choice for a low pass filter form and is used in both the

Butterworth and the type I Chebyshev filters. Moreover, for a given denominator order, having

the numerator constant (order zero) gives (for a given number of filter coefficients) the

maximum attenuation as Ω → ∞.

1+ (/ 5)
2

The normalized analog, low pass, Butterworth filter

As a lead-in to digital filter design we look at a simple analog low pass filter – an RC filter, and

its frequency response.

Example 3.2.1 Find the transfer function, Ha(s), impulse response, ha(t), and frequency response,
Ha(jΩ), of the following system.

R = 10kΩ

+ +

Input = x(t)
C = 20μF

Output = y(t)

– –

Solution This is a voltage divider. The transfer function is given by

H (s) = Y(s) (1 sC) = (1 RC) =
5

 a

X (s)
=

 R + (1 sC) s+(1RC) s + 5

Taking the inverse Laplace transform gives the impulse response,

ha(t) = 5 e
−5t

u(t)

The frequency response is

Ha(jΩ) = Ha (s) =
s = j

5

j +5
=

1
e− j tan−1 (/ 5)

The cut-off frequency is Ωc = 5 rad/sec. The gain at Ω = 0 is 1.

|Ha(jΩ)|

Ω, rad./sec.

The MATLAB plots of frequency response of Ha(jΩ) = 5 (j + 5) are shown below. We

use the function fplot. The analog frequency, Omega (Ω), extends from 0 to ∞; however, the

plots cover the range 0 to 6π rad/sec.

subplot(2, 1, 1), fplot('abs(5/(5+j*Omega))', [-6*pi, 6*pi], 'k');

xlabel ('Omega, rad/sec'), ylabel('|H(Omega)|'); grid; title ('Magnitude')

%

subplot(2, 1, 2), fplot('angle(5/(5+j*Omega))', [-6*pi, 6*pi], 'k');

xlabel ('Omega, rad/sec'), ylabel('Phase of H(Omega)'); grid; title ('Phase')

1

0.707

Ωc= 5

1

0.8

0.6

0.4

0.2

2

1

0

-1

-2

Magnitude

 1

s +1

If we adjust the values of the components R and C so that 1 RC = 1, we would have Ha(s)

which is a normalized filter with cut-off frequency Ωc = 1 rad/sec and gain of 1 at Ω = 0.

Such a normalized LP filter could be transformed to another LP filter with a different cut-off

frequency of, say, Ωc = 10 rad/sec by the low pass to low pass transformation s →(s /10). The

transfer function then becomes
1

Ha(s) = =
10

s +1 s →(s /10) s + 10

which still has a dc gain of 1. The gain of this filter could be scaled by a multiplier, say, K, so

that

Ha(s) = K
10

s +10

which has a dc gain of K and a cut-off frequency of Ωc = 10 rad/sec.

The frequency response of the normalized filter Ha(s) = 1/(s +1) is Ha(jΩ) = 1 (j +1) . The

corresponding MATLAB plots are shown below using the function plot. Omega is a vector,

consequently we use “./” instead of “/” etc.

Omega = -6*pi: pi/256: 6*pi; H = 1./(1.+ j .*Omega);

subplot(2, 1, 1), plot(Omega, abs(H), 'k');

xlabel ('Omega, rad/sec'), ylabel('|H(Omega)|'); grid; title ('Magnitude')

subplot(2, 1, 2), plot(Omega, angle(H), 'k');
xlabel ('Omega, rad/sec'), ylabel('Phase of H(Omega)'); grid; title ('Phase')

|H
(O

m
e

g
a
)|

P

h
a
s
e
 o

f
H

(O
m

e
g
a
)

=

-15 -10 -5 0 5 10 15

 Omega, rad/sec

 Phase

-15 -10 -5 0

Omega, rad/sec

 5 10 15

Magnitude
1

0.5

0
-20 -15 -10 -5 0 5 10 15 20

Omega, rad/sec

Phase

2

1

0

-1

-2
-20 -15 -10 -5 0 5 10 15 20

Omega, rad/sec

Butterworth filter The filter Ha(s) = 5/(s + 5) is a first order Butterworth filter with cut-off

frequency Ωc = 5 rad/sec. Its magnitude response is given by

|H(jΩ)| =
 1

1 + (/ 5)2

Omega = 0: pi/256: 15; H1 = 1./sqrt(1.+ (Omega/5) .^2);

plot(Omega, H1, 'k'); legend ('1st Order, Cut-off = 5 rad/sec');
xlabel ('Omega, rad/sec'), ylabel('|H(Omega)|'); grid; title ('Magnitude')

|H
(O

m
e

g
a
)|

P

h
a
s
e
 o

f
H

(O
m

e
g
a
)

Magnitude
1

0.9

0.8

0.7

0.6

0.5

0.4

0 5 10 15

Omega, rad/sec

1st Order, Cut-off = 5 rad/sec

|H
(O

m
e

g
a
)|

H(z)

H(s)

Frequency response analysis The frequency response analysis in the analog frequency (Ω)

domain is given by the following equations which may be used to illustrate, qualitatively, the

effect of LP, HP or BP analog filters on a signal.

Y(s) = H(s) X(s)

Y(jΩ) = H(jΩ) X(jΩ) = H(j) ej H (j) X (j) ej X (j) = H(j) X(j)ej(H (j)+X (j)

Y() = H () X () and Y () = H () + X ()

X(s) Y(s)

Similarly, if we have a digital filter H(z) the frequency response analysis in the digital

frequency (ω) domain is given by the following equations which may be used to illustrate,

qualitatively, the effect of LP, HP or BP digital filters on a signal.

Y(z) = H(z) X(z)

Y(jω) = H(jω) X(jω) = H(j) e j H (j) X (j) e j X (j) = H(j) X(j) e j (H (j)+X (j)

Y () = H() X () and Y () = H () + X ()

X(z) Y(z)

1+ (/ 2 N
c)

The Nth order Butterworth filter In general the magnitude response of the Nth order

Butterworth filter with cut-off frequency Ωc is given by

|H(jΩ)| =
1

With the normalized frequency variable defined as r = / c , the MATLAB segment below

plots the magnitude response for 1st, 3rd, and 10th order filters, that is, N = 1, 3, and 10,

respectively. Note that as the filter order increases the response becomes flatter on either side of

the cut-off; and the transition (cut-off) becomes sharper.

r = 0: 0.1: 3;

H1 = 1./sqrt(1.+ r .^2);

H3 = 1./sqrt(1.+ r .^6);

H10 = 1./sqrt(1.+ r .^20);
plot (r, H1, r, H3, 'r', r, H10, 'k');

legend ('1st Order', '3rd Order', '10th Order');

xlabel ('Normalized frequency, r'), ylabel('|H(r)|'); grid; title ('Magnitude')

Magnitude

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.5 1 1.5 2 2.5 3

Normalized frequency, r

1st Order

3rd Order

10th

|H
(r

)|

1+ (/ 2 N
c)

 1

0.707

Direction of
increasing

order of filter

Ωc = 1

Writing down the Nth order filter transfer function H(s) from the pole locations Let us look

at some analog Butterworth filter theory.

(1) |H(jΩ)| =
1

decreases monotonically with Ω. No ripples.

(2) Poles lie on the unit circle in the s-plane (for the Chebyshev filter, in contrast,

they lie on an ellipse).

(3) The transition band is wider (than in the case of the Chebyshev filter).

(4) For the same specifications the Butterworth filter has more poles (or, is of higher

order) than the Chebyshev filter. This means that the Butterworth filter needs

more components to build.

|H(jΩ)|

Ω, rad./sec.

The normalized analog Butterworth filter has a gain of |H(jΩ)| = 1 at Ω = 0, and a cut-off

frequency of Ωc = 1 rad/sec. Given the order, N, of the filter we want to be able to write down its

transfer function from the pole locations on the Butterworth circle.

Example 3.2.2 Given the order N of the filter, divide the unit circle into 2N equal parts and place

poles on the unit circle at (3600/2N) apart. The H(s) will be made up of the N poles in the left half

plane only. Remember complex valued poles must occur as complex conjugate pairs. There will

jΩ

s-plane

ζ
–1 1

Radius = Ωc = 1

be no poles on the imaginary axis. Since the N poles must lie on the left half semicircle, when N
is odd the odd pole must be at s = –1. Thus, for N = 1, there is one pole, s1 = –1, and H(s) is
given by

2 2 2 2

2 2 2 2

H(s) =
1

s − s1

=
1

=

s − (−1)

1

s + 1

Example 3.2.3 Filter order N = 2 so that 2N = 4 and 3600/4 = 900. The pole plot is shown above.

The poles are at
 1 1 1 1

s1 = − + j and s2 = − − j ,
 2 2 2 2

jΩ

s-plane

Radius = Ωc = 1

ζ
–1 1

so that

H(s) =

(s − s1

1)(s − s2) =

1

 − j
1

1

1
 + j

1

Denominator is
 1

2

 1 2

s +

s +

2 1 1 2 1 2

Dr. = s + – j = s + + 2 s − j = s + 2s +1

So

H(s) =

2 2

1

2 2 2

Example 3.2.4 Filter order N = 3, so that 2N = 6 and 3600/6 = 600. Poles are at
 1 3 1 3 1

s1, 2, 3 = – 1, − + j , and − − j

= 1

s
2

+ 2s + 1

s
2

+ 2 s +1

jΩ
s-plane

s2 –s3

s1 ζ

1

s3

= s
*

Radius = Ωc

2

2

H(s) =
1

 1 3 1 3
(s +1)s + − j s + + j

Denominator is

 1

2 2

2 3

2 2

2

Dr. = (s + 1) s + − j = (s + 1) + s + 1)
 2

So

H(s) =
1

(s + 1)(s 2
+ s + 1)

4 (s

Example 3.2.5 Filter order N = 4, so that 2N = 8 and 3600/8 = 450. Poles are at

s = (–cos 22.50 j sin 22.50) = (–cos j sin) (–

cos 67.50 j sin 67.50) = (–cos j sin)

Wrong

placement

jΩ

s-plane

ζ

H(s) =

o(ss+ c

1

)2
− j

2
sin

2 (oss+ c

1

)2

− j
2
sin

2

H(s) =
(s 2

+ 1.848 s + 1)(s2
+ 0.765 s + 1)

jΩ Correct

s-plane

ζ

1+ (/ 2 N
c)

Determining the order and transfer function from the specifications A typical magnitude
response specification is sketched below. The magnitudes at the critical frequencies Ω1 and Ω2

are A and B, respectively. Typically Ω1 is in the pass band or is the edge of the pass band and Ω2

is in the stop band or is the edge of the stop band. For illustrative purposes we have arbitrarily

|H(jΩ)|

Transition

band

A

Ω1 Ω2

Stop
band

Ω, rad./sec.

taken A = 0.707 (thus Ω1 is the cut-off frequency, but this need not be the case) and B = 0.25.
The log-magnitude specification is diagrammed below. Note that (20 log A) = K1 dB and

(20 log B) = K2 dB. Thus the analog filter specifications are

0 20 log10 H (j)

20 log10 H (j)

 K1 for all Ω Ω1

 K2 for all Ω Ω2

dB (= 20 log10 |H(jΩ)|)

Ω

With the magnitude |H(jΩ)| given by the Butterworth function,

|H(jΩ)| =
1

and using the equality condition at the critical frequencies in the above specifications the order,

N, of the filter is given by

0

K1

Ω1 Ω2

K2

Pass
band

= 0.707

B = 0.25

c

()

log10 10 10

2

 10
− K1 /10

− 1
log10

10
−K

2
/10 − 1

N =

 2 log
10

1

→ (3.16, Ludeman)

 2

The result is rounded to the next larger integer. For example, if N = 3.2 by the above calculation

then it is rounded up to 4, and the order of the required filter is N = 4. In such a case the resulting

filter would exceed the specification at both Ω1 and Ω2. The cut-off frequency Ωc is determined

from one of the two equations below.

Ωc = or Ω =
2

2 N

/10 − 1
10−K2 → (3.17 Ludeman)

The equation on the left will result in the specification being met exactly at Ω1 while the
specification is exceeded at Ω2. The equation on the right results in the specification being met
exactly at Ω2 and exceeded at Ω1.

Note that the design equation for N may be written in the alternative form
 10

− K2 /10
−1

log10
10

−K1 /10
−1

N =

 2 log10

2

 1

Example 3.2.6 What is the order and transfer function of the analog Butterworth filter that

satisfies the following specification?

1 = 200 rad/sec K1 = – 1 dB

2 = 600 rad/sec K2 = – 30 dB

Solution The order N is given by
 10

− K
1

/10
− 1 10−(−1) /10 −1 10

0.1
−1

log10
10

−K
2

/10

− 1 log10 −(−30) /10
−1

 log10 10
3
−1

= 10 =

 N = 2 log 200

 200

 1 2log10 2 log10

10

 600 600

1.2589 −1

 log

0.2589

 log

0.2589

= 1000 −1 = 999 = 999
2 log10 200 2 log10200 2 log10200

 600

 600

 600

log (0.00025918) − 3.586
= 10

2log 0.3333333 = 2 (−0.47712) = 3.76 = 4

 10

Now, as in an earlier example, locate 8 poles uniformly on the unit circle, making sure to satisfy

all the requirements … and write down the transfer function, H (s) , of the normalized

Butterworth filter (with a cut-off frequency of 1 rad/sec),
1

H (s) =
(s 2

+ 1.848 s + 1)(s2
+ 0.765 s + 1)

1

2 N 10− K1 /10 −1

1 + 2 (/ 2 N
1)

Next, determine the cutoff frequency c that corresponds to the given specifications and

the order N = 4 determined above

 =
1

= 200 200
=

200
= = 236.8 rad/sec

2(4)
10−(−1) /10 −1

8 1.26 −1 0.8446

Finally, we make the substitution s → (s / 236.8) in H (s) and thereby move the cutoff frequency

from 1 rad/sec to 236.8 rad/sec resulting in the transfer function Ha (s)

s→(s / 236.8)

1
=

((s / 236.8)
2

+ 1.848(s / 236.8) +1)((s / 236.8)
2
+ 0.765(s / 236.8) +)1

(236.8)
4

=
(s2

+ 1.848(236.8) s + 236.8
2)(s 2

+ 0.765(2326.8) s + 236.8
2)

= …

(Aside) The more general Nth order Butterworth filter has the magnitude response given by

H (j) =
1

The parameter ‹ has to do with pass band attenuation and 1 is the pass band edge frequency

(not necessarily the same as the 3 dB cut-off frequency c). MATLAB takes ‹ = 1 in which case
1 = c. See DSP-HW. [See Cavicchi, Ramesh Babu].

(End of Aside)

Time domain invariance

Given an analog filter’s response to a specific input we require that the response of the digital

filter (to be designed) to the digital version of the analog input should be the same as the analog

response at sampling instants. If the input is an impulse function the corresponding design is

called an impulse invariant design, if the input is a step function the corresponding design is

called a step invariant design.

Impulse-invariant design If ha(t) represents the response of an analog filter Ha(s) to a unit
impulse 6(t), then the unit sample response of a discrete-time filter used in an A/D – H(z) – D/A
structure is selected to be the sampled version of ha(t). That is, we are preserving the response to
an impulse. Therefore the discrete-time filter is characterized by the system function, H(z), given
by

H(z) = ʓ{h(n)} = ʓ ha (t)

t = nT

If we are given an analog filter with system function Ha(s) the corresponding impulse-invariant
digital filter, H(z), is seen from above to be

H(z) = ʓ (L−1Ha (s))
t = nT

, where L–1 means Laplace inverse

Note that at this point we have not specified how Ha(s) was obtained, but rather we have
shown how to obtain the digital filter H(z) from any given Ha(s) using impulse invariance.

c

2 N 10− K1 /10 −1

1

s + 1.848 s + 1)(s + 0.765 s + 1)

Ha(s) = k

 k

k

1

Example 5.3.1 [Low pass filter] For the analog filter Ha(s) =
A

s +

find the H(z) corresponding

to the impulse invariant design using a sample rate of 1/T samples/sec.
Solution The analog system’s impulse response is h (t)= ℒ–1

 A
=Ae − t u(t). The

a

corresponding h(n) is then given by
 s +

h(n) = ha (t) =
t = nT

Ae
− nT

u(nT) = A(e− T)n

u(n) = Aa
n
u(n)

where, as previously, we have set e
− T

= a. The discrete-time filter, then, is given by the z-

transform of h(n)

H(z) = ʓ{h(n)} = ʓ A(e− T)n

u(n) =
 Az

=
 Az

z − e− T z − a

=
 A

=
A

−

1 − e− T z −1 1 − az
1

which has a pole at z = e
− T

= a. In effect, the pole at s = –α in the s-plane is mapped to a pole at

z = e− T
= a in the z-plane. (HW What is the difference equation?)

Y (z)

X (z)

A
= →

1 − az
−1

Y(z)(1−az
−1

) = A X (z)

→ y(n) − ay (n −=1) Ax(n) → y(n) = Ax(n)+ay (n−1)

Relationship between the s-plane and the z-plane (z = e
s T

) We can extend the above procedure

to the case where Ha(s) is given as a sum of N terms with distinct poles as
N A

k = 1 s + k

For this case the impulse invariant design, H(z), is given by N A
 N A z N A

 −1
H(z) = ʓ

L s +

 k

 = z − e
−k T

 = k

1 − e−k T z −1

 k = 1
k t = nT

k = 1 k = 1

where L–1 means Laplace inverse. We observe that a pole at s = – in the s-plane gives rise to a

pole at z = e
−kT

in the z-plane and the coefficients in the partial fraction expansion of Ha(s) and

H(z) are equal. If the analog filter is stable, corresponding to – k
being in the left half plane,

then the magnitude of e
−kT

will be less than unity, so that the corresponding pole of the digital

filter is inside the unit circle, and as a result the digital filter also is stable.

While the poles in the s-plane “map” to poles in the z-plane according to the relationship

z = e
s T

, it is important to recognize that the impulse invariance design procedure does not

correspond to a mapping (transformation) of the s-plane to the z-plane by that relationship or in

fact by any relationship. (An example of a transformation is where we actually make a
2 1 − z

−1

substitution, say, s =

1+ z −

 which, of course, is the bilinear transformation). For example,

the zeros of Ha(s) do not map to zeros of H(z) according to this relation. See also matched z-
transform later.

We can explore the relationship z = e
s T

keeping in mind that it only applies to poles and

that it is not a transformation. Set s = ζ + jΩ and z = r e
j

in z = e
s T

to get r e
j

= e
(+ j) T

=

e T ejT
so that r = e

 T
and ω = ΩT.

T

The above relations can be used to show that poles in the left half of the primary strip in

the s-plane map into poles within the unit circle in the z-plane as shown in the figure for s = s1.

Mapping of poles, z = e
s T

s-plane pole
s = ζ + jΩ

z-plane pole

z = e
s T

= r e
j

r ω

0 1 1 0
jΩs/2 –1 1 π

–∞ + jΩs/2 –0 0 π
–∞ – jΩs/2 –0 0 π

–jΩs/2 –1 1 π

For s1 = ζ1 + jΩ1 we have r = e
1 T

and ω = Ω1T. However, poles at s2 and s3 (which are a

distance Ωs from s1) also will be mapped to the same pole that s1 is mapped to. In fact, an infinite

number of s-plane poles will be mapped to the same z-plane pole in a many-to-one relationship.
These frequencies differ by Ωs = 2πFs = 2π/T (Fs is the sampling frequency in Hertz). This is

called aliasing (of the poles) and is a drawback of the impulse-invariant design. The analog
system poles will not be aliased in this manner if, in the first place, they are confined to the

“primary strip” of width Ωs = 2πFs = 2π/T in the s-plane.
In a similar fashion poles located in the right half of the primary strip in the s-plane will

be mapped to the outside of the unit circle in the z-plane. Here again the mapping of the s-plane

poles to the z-plane poles is many-to-one.

jΩ

s-plane

 lane

Im

Ω1T

s2

Ωs

s1
Re =ζ1+jΩ1

1

s3

j3π/T

jΩs/2 = jπ/T

0

–jπ/T

Primary strip,
width = Ωs = 2π/T

–j3π/T

Owing to the aliasing, the impulse invariant design is suitable for the design of low pass
and band pass filters but not for high pass filters.

(Omit) Matched z-transform In this method we apply the mapping z = e

s T
not only to the poles

but also to the zeros of Ha(s). As a result the observations made above are valid for the matched
ransform method of filter design.

σ

2
+

2

1 + e
−2T

− 2e
−T

cos T

s +

a

eq

Frequency response of the equivalent analog filter Going back to the impulse invariant design

of the first order filter, how does the frequency response of the A/D – H(z) – D/A structure using

this H(z) compare to the frequency response of the original system specified by Ha(s)?

X(s)

x(t)

Ha(j)

Y(s)

y(t)

Heq(j)

Note Ha(s) =
A

s +

and H(z) =
Az

z − e− T
=

Az

z − a
with a = e

−T
. For the analog filter we have

A A A − j tan−1 (/)

Ha(jΩ) = =
s = j

= e
j +

|H (jΩ)| =
A

, – ∞ < Ω < ∞

For future reference note that |Ha(j0)| = A / .
To obtain the equivalent frequency response of the A/D – H(z) – D/A structure one must

first find the frequency response of the discrete-time filter specified by H(z). This is given by
Ae j

H(ej) = H (z) j =
e j − e−T

, – π < ω < π (because periodic)

The analog frequency response of the equivalent analog filter is then determined by replacing ω

by ΩT. Note, however, that since the digital frequency, ω, is restricted to (–π, π), the analog

frequency, Ω, is correspondingly is restricted to (–π/T, π/T). We get

Heq (jΩ) = H (e
j

) = Ae jT

e jT − e−T
=

 A , ΩT < π or Ω < π/T

1− e−T e− jT

Denominator =1 − e
−T

e
− jT

=1− e
−T

(cosT − j sin T) = (1− e
−T

cosT) + je
−T

sinT

So Heq(jΩ) =
A

(1 − e
−T

cos T) + je
−T

sin T

, Ω < π/T

|H (jΩ)| =
A

, Ω < π/T

A
Note that |H (j0)| = eq

=
A

.

1 − e− T 1 − a

We can plot |Heq(jΩ)| and |Ha(jΩ)| for, say, = 1 and different values of T say T = 0.1
and T = 1, remembering that |Heq(jΩ)| is periodic, the basic period going from –π/T < Ω < π/T.
Ideally the two plots should be very close (in shape, over the range of frequencies of interest) but
it will be found that the smaller the value of T, the closer the two plots are. Thus T = 0.1 will
result in a closer match than T = 1. Therefore, using the impulse invariant design, good results
are obtained provided the time between samples (T) is selected small enough. What is small
enough may be difficult to assess when the Ha(s) has several poles; and when it is found, it may
be so small that implementation may be costly. In general, other transformational methods such
as the bilinear allow designs with sample rates that are less than those required by the impulse
invariant method and also allow flexibility with respect to selection of sample rate size.

2
+

2

X(s)

x(t)

Y(s)

y(t)
D/A H(z) A/D Ha(s)

z = e

= T

|Ha(jΩ)

π 10π
Ω

|Heq(jΩ)|

For T = 1, valid for Ω < π/1

For T = 0.1, valid for Ω < 10π

Ω
π 10π

Example 3.3.2 [Impulse invariant design of 2nd order Butterworth filter] Obtain the impulse
4

invariant digital filter corresponding to the 2nd order Butterworth filter Ha(s) =
s

2
+ 2 2s + 4

with sampling time T = 1 sec.

Solution Note that we are using T = 1 sec. simply for the purpose of comparing with the bilinear

design done later with T = 1 sec. It is important to remember that in bilinear design calculations

the value of T is immaterial since it gets cancelled in the design process; but in impulse invariant

design there is no such cancellation, so the value of T is critical (the smaller, the better).
H (s) =

4
=

4

a

= 42

s
2

+ 2 2s + (

2)2

+ (2)2

2 ()

 ()2 = 2 2

()

 s + 2 + 2 s + 2 + 2
The expression in braces is in familiar form and can be converted to its impulse invariant digital

filter equivalent. See 3(c) in HW.

Step invariant design Here the response of the digital filter to the unit step sequence, u(n), is

chosen to be samples of the analog step response. In this way, if the analog filter has good step

response characteristics, such as small rise-time and low peak over-shoot, these characteristics

would be preserved in the digital filter. Clearly this idea of waveform invariance can be extended

to the preservation of the output wave shape for a variety of inputs.

pa(t)

t

(Omit) Problem Given the analog system Ha(s), let ha(t) be its impulse response and let pa(t) be
its step response. The system Ha(s) is given to be continuous-time linear time-invariant. Let also

s
2
+ 2 2s + 4

()2
2

+

s
= 1 + 2

h(n) be the unit sample response,

p(n) be the step response, and,

H(z) be the system function,

of a discrete-time linear shift-invariant filter. Then,
n

(a) If h(n) = ha(nT), does p(n) = ha (kT) ?
k = −

(b) If p(n) = pa(nT), does h(n) = ha(nT)?
n

Solution (a) If h(n) = ha(nT), does p(n) = ha (kT) ? We know that
k = −

n

u(n) = (k)
k = −

This is seen to be true by writing it out in full as

u(n) = 6(–) + 6(– +1) + …+ 6(–1) + 6(0) + 6(1) +…+ 6(n)

where n is implicitly some positive integer. Take, for instance, n = 3; then, from the above

equation u(3) = 6(0) = 1, all the other terms being zero. In other words u(n) is a linear

combination of unit sample functions. And, since the response to 6(k) is h(k), therefore, the

response to u(n) is a linear combination of the unit sample responses h(k). That is,
n n

p(n) = h(k) = ha (kT)
k = − k = −

Therefore, the answer to the above question is, Yes.

(b) If p(n) = pa(nT), does h(n) = ha(nT)? Since 6(n) = u(n) – u(n–1), the response of the

digital system, H(z), to the input 6(n) is

h(n) = p(n) – p(n–1) = pa(nT) – pa(nT–T) ha(nT)

Therefore, the answer to the above question is, No.

Example 3.3.3 [LP filter] [Step Invariance] Consider the continuous-

A
time system Ha(s) = with unit step response pa(t). Determine the system function, H(z), i.e.,

s
the z-transform of the unit sample response h(n) of a discrete-time system designed from this

system on the basis of step-invariance, such that p(n) = pa(nT), where
n

p(n) = h(k)
k = −

t

Solution Since pa(t) = ha () d
−

t

and pa(t) = ha () d
−

we have

ℒ[pa(t)] = Pa(s) =
Ha (s)

=
 A K

s (s +) s

K

s +

where K1 and K2 are the coefficients of the partial fraction expansion, given by

 2
+

2

=

z

Therefore,

K1 =
 A

s +
A

s= 0

and K2 =
A

s s = −

= –
A

A / A/ A −0 t A − t

Pa(s) = – ↔

 u(t) – e u(t)

s s + pa (t) =

e

from which we write p(n) = pa (nT) and hence P(z) etc. Equivalently, we may reason as follows.

The correspondence between s-plane poles and z-plane poles is

 1

s +
Thus we get P(z) as below (A /)

1

1 − e− T z −1

(A /) A z z

A z(z − e)− z(z −1)

P(z) = – =

−
= =

 − T

1 − e−0 T z −1 1−e− T z−1 z −1 z − e− T

 (z −1)(z −e
− T)

=
A (1− e

− T)

z

(z −1)(z − e
− T

)

However, what we need is H(z). Since 6(n) = u(n) – u(n–1), and we know the response to u(n),

therefore, the response to u(n) – u(n–1) is given by h(n) = p(n) – p(n–1), and taking the z-

transform of this last equation,
H(z) =P(z)– z

−1
P(z) =(1− z

−1
)P(z) =

 z − 1
P(z)

 z −1 A

 z

= (1−e
− T)

 z

(z −1)(z − e
− T

)

=
A (1− e

− T)

1

(z −e
− T

)

Alternatively, we may also obtain the transfer function as the ratio of output and input

transforms, H(z) = P(z)/U(z).

Frequency-response analysis As we did in the case of the impulse-invariant design, here also

A

we can compare |Ha (j)| with |Heq(j)|. For the system Ha(s) =

A
s +

the frequency response is

already evaluated as |Ha(jΩ)| = . We need the frequency response, |Heq(j)|, of the

equivalent analog filter when the above H(z) is used in a A/D – H(z) – D/A structure. Start with

the above H(z) and set z = e
j

to get A − 1 A −1 H (e
j

) = H (z) =

T − = T

z = e (1−e

)
(z − e

T

) z = e j
(1−e)

(e j − e− T)

For the equivalent analog filter we get Heq(jΩ) by setting ω = ΩT in H (e
j

) .

Bilinear transformation

One approach to the numerical solution of an ordinary linear constant-coefficient differential

equation is based on the application of the trapezoidal rule to the first order approximation of an

integral (or integration). Consider the following equivalent pair of equations

j

↔

1

s

x(n) y(n)

X(z) Y(z)

−1

 T 1+ z

1

2 1− z −1

dy
= x(t)

dt
 dy = x(t)dt

Here dy = area shown shaded and is given by
 x(n) + x(n − 1)

y(n) – y(n–1) = T
 2

where we have used the trapezoidal rule to compute the area under a curve.

t
(n–1)T nT

Taking the z transform of the above we get

Y(z) – z
−1

Y(z) =
T

X (z)(1+ z
−1

)
2

Rearranging terms gives 1 + z
−1 1

 Y (z) =
T − =

X (z) 2
 1 − z

1

 2 1 − z

−1
T

1 + z

−1

Thus the continuous time system y(t) = x(t)dt

represented by the following block diagrams

x(t) y(t) X(s) Y(s)

is replaced in the discrete-time domain by the following block.

H(z)

In other words, given the Laplace transfer function Ha(s), the corresponding digital filter is given
2(1 − z

−1
)

by replacing s with , or
T (1 + z

−1
)

H(z) = H (s) 2(1−z−1)
a s =

T (1+z−1)

This is called bilinear transformation (both numerator and denominator are first order

polynomials), also known as bilinear z-transformation (BZT).

x(t)

x((n–1)T)
x(nT)

Here again, note that at this point we have not specified how Ha(s) was obtained, but
rather we are showing how to obtain the digital filter H(z) from any given Ha(s) using bilinear
transformation.

Example 3.4.1 [LP filter] [Bilinear] Design a digital filter based on the analog system Ha(s)

=
A

, using the bilinear transformation. Give the difference equation. Use T = 2 sec.

s +
Solution H(z) = H (s) 2(1−z−1)

A
= = A

−1 a s = T (1+z−1) 2(1 − z) + (+1) + (−1)z
−1

T (1+ z
−1)

Example 2 [Ludeman, p. 178] Apply bilinear transformation to the 2nd order Butterworth filter
4

Ha(s) = with T = 1 sec. Obtain (1) H(z), (2) the difference equation and
s

2
+ 2

(3) H (e
j

) .

Solution

2s + 4

 1 − z

−1 2(1− z
−1

)

1. With T = 1 second, s =
 2

 becomes s = , and

T

H(z) = H (s) 2(1−z−1)

 1 + z
−1

=

1+ z
−1

4
a s =

1(1+ z−1)

2(1 − z

−1
)

2
+ 2

2(1 − z
−1

)

+ 4

 (1 + z
−1

) 2 (1 + z
−1

)

1 + 2z
−1

+ z
−2

= 3.4142135 + 0.5857865 z
−2

2. The difference equation is obtained from

H(z) = Y (z)
=

X (z)

1 + 2z
−1 + z −2

3.4142135 + 0.5857865 z
−2

Cross-multiply and take inverse z-transform to get

3.4142135 y(n) + 0.5857865 y(n–2) = x(n) + 2x(n–1) + x(n–2)

By rearranging and scaling y(n) can be realized as

y(n) = 0.2928932 [x(n) + 2 x(n–1) + (n–2)] – 0.1715729 y(n–2)

3. Frequency response
1 + 2e− j + e− j 2 N ()

H (z) j
= =

z = e
3.4142135 + 0.5857865e

− j 2
D()

Numerator = N () = 1+ 2e
− j

+ e
− j 2

= e
− j

(e
j

+ 2 + e
− j

) = e
− j

(2 + 2cos)

= 2(1 + cos) e
− j

Denominator = D() = 3.4142135 + 0.5857865 e
− j 2

= (A + B cos 2) – j B sin 2ω

= A + B e
− j 2

− − B sin 2
 j tan 1

= (A + B cos 2)
2
+ (B sin 2)

2
e A+B cos2

H (e
j

) = 2(1 + cos) j

−−tan−1

− B sin 2

 e

 A+B cos2

(A + B cos 2)
2
+ (B sin 2)

2

The magnitude of the frequency response is

| H (e
j

2(1 + cos)
) | =

(A + B cos 2)
2
+ (B sin 2)

2

Plot 20 log10| H (e
j

) | vs ω for ω = 0 to π.

Relationship between the s- and z-planes The bilinear transformation is
−1

s =
2(1 − z

−

)
or z =

1 + (sT / 2)

T (1 + z
1
) 1 − (sT / 2)

We can map a couple of points on the jΩ axis by setting s = jΩ, so that

1 + (jT / 2)

1 − (jT / 2)

Thus Ω = 0 maps to z = 1 and Ω = 2/T maps to z = j1 = 1 e
j / 2

as shown in figure below. The

transformation has the following properties:

1. The entire j axis of the s-plane goes on to the unit circle of the z-plane.

2. The entire left half of the s-plane is mapped into the inside of the unit circle of the
z-plane. (In contrast, in impulse invariant design the poles in the left halves of

infinitely many strips of width s in the s-plane are mapped into the inside of the
unit circle in the z-plane.)

So a stable analog filter, with all of its poles in the left half plane, would be transformed
into a stable digital filter with all of its poles in the unit circle. The frequency response is

evaluated on the j axis in the s-plane and on the unit circle in the z-plane. While the frequency

responses of the analog filter and digital filter have the same amplitudes there is a nonlinear
relationship between corresponding digital and analog frequencies.

jΩ

s-plane,
s = ζ+jΩ

Im

Unit circle

z-plane

j2/T

j0+

j0–

ζ

(Ω = +∞)

j1 (for Ω = 2/T)

+

(Ω = 0)

Re

(Ω = 0–)
–j2/T (Ω = –∞)

–j1 (for Ω = –2/T)

Left half plane

z =

T 1 + z

=

Ω =
2

tan(/ 2)

T

A

A

ω

Nonlinear relationship of frequencies in bilinear transformation

In the bilinear transformati

on

−
the −a1n

alog and digital frequencies are non-linearly related. Setting

jΩ j 2

1 z

s = and z = e in s = , we get
−1

 −
− j − j / 2 j / 2 − − j / 2 2(j / 2 − − j / 2) / 2)

jΩ =
2

1 e

 = 2 e (e e)
2 (

 e e j

T 1 + e
− j

j

T e− j / 2 (e j / 2 + e− j / 2) T 2((e j / 2 + e− j / 2) / 2) or
Ω =

2
sin / 2

2
tan

 =
 or ω = 2 tan

T

 −1

T cos / 2 T 2 2

First we sketchΩ (the analog frequency) as a function of ω (the digital frequency) as

given by Ω =
2

tan to show qualitatively the distortion of the frequency scale that occurs
T 2

due to the nonlinear nature of the relationship.

Unequal

Equally spaced pass bands A are pushed together or warped on the higher frequency end

of the digital frequency scale. This effect is normally compensated for by pre-warping the analog

filter before applying bilinear transformation.

c

c

c =

Because of warping the relationship between Ω1 and Ω2 on the one hand and ω1 and ω2 on
the other is not linear. The digital frequencies ω1 and ω2 are pushed in towards the origin (ω = 0).

In this process Ω = is transformed to ω =.

ω

2π

ω = 2 tan
−1 (T / 2)

π

ω

π (Periodic)

ω2

Ω
ω1

0 K2 K1

|H(ω)|

–π

|H(Ω)|

(Nonperiodic)
K1

K2

Ω
Ω1 Ω2

If the bilinear transformation is applied to the system Ha(s) with critical frequency c, the

digital filter will have a critical frequency ωc = 2 tan
−1 (T / 2). If the resulting H(z) is used in an

A/D–H(z)–D/A structure, the equivalent critical frequency (of the equivalent analog filter) is
obtained by replacing ωc with ceqT:

−1 cT 2 −1 cT
ωc Ωceq T = 2 tan

 2
or Ωceq =

T
tan

 2

If (cT/2) is so small that tan
−1 (T / 2) cT/2, then we have

ceq =
2 T

 c

T 2

If this condition is not satisfied, then the warping of the critical frequency (in the bilinear
design) is compensated for by pre-warping.

Digital filter design – The Butterworth filter

1+ (/ 2 N
c)

Before taking up design we reproduce below some of the material relating filter specifications to

the filter order and the cut-off frequency.

A typical magnitude response specification is sketched below. The magnitudes at the

critical frequencies Ω1 and Ω2 are A and B, respectively. For illustrative purposes we have

|H(jΩ)|

Transition

band

A

Ω1 Ω2

Stop
band

Ω, rad./sec.

arbitrarily taken A = 0.707 (thus Ω1 is the cut-off frequency, but this need not be the case) and B

= 0.25.

The log-magnitude specification is diagrammed below. Note that (20 log A) = K1 and (20
log B) = K2. Thus the analog filter specifications are

0 20 log10 H (j)

20 log10 H (j)

 K1 for all Ω Ω1

 K2 for all Ω Ω2

dB (= 20 log10 |H(jΩ)|)

Ω

With the magnitude |H(jΩ)| given by the Butterworth function,

|H(jΩ)| =
1

and using the equality condition at the critical frequencies in the above specifications the order,

N, of the filter is given by

0

K1

Ω1 Ω2

K2

Pass
band

= 0.707

B = 0.25

c

 10
− K1 /10

− 1
log10

10
−K

2
/10 − 1

N =

 2 log
10

1

→ (3.16, Ludeman)

 2

The result is rounded to the next larger integer. For example, if N = 3.2 by the above calculation

then it is rounded up to 4, and the order of the required filter is N = 4. In such a case the resulting

filter would exceed the specification at both Ω1 and Ω2. The cut-off frequency Ωc is determined

from one of the two equations below.

Ωc = or Ω =
2

2 N

/10 − 1
10−K2 → (3.17 Ludeman)

The equation on the left will result in the specification being met exactly at Ω1 while the
specification is exceeded at Ω2. The equation on the right results in the specification being met
exactly at Ω2 and exceeded at Ω1.

Example 3.6.1 Design and realize a digital low pass filter using the bilinear transformation

method to satisfy the following characteristics:

(a) A monotonic pass band and stop band

(b) –3.01 dB cut off frequency of 0.5 rad.

(c) Magnitude down at least 15 dB at 0.75 rad.

dB (= 20 log10 |H(jω)|)

ω

Note that the given frequencies are digital frequencies. The required frequency response

is shown. We use bilinear transformation on an analog prototype.

Step 1 Pre-warp the critical digital frequencies 1 = 0.5 and 2 = 0.75 using T = 1 sec. That

is, we find the analog frequencies 1 and 2 that correspond to 1 and 2:
2 1 0.5

1 =
T

tan

 = 2
2

tan = 2.0 rad / sec
2

2 2 0.75
2 =

T
tan

 = 2

2
tan = 4.8284 rad / sec

2

1

2 N 10− K1 /10 −1

0

–3.01

π/2 3π/4 π

–15

2

log10 +15/10

Step 2 Design LP analog filter with critical frequencies 1 and 2 that satisfy

0 20 log |Ha(j 1)| –3.01 dB = K1, and

20 log |Ha(j 2)| –15 dB = K2

The Butterworth filter satisfies the monotonic property and has an order N and critical

frequency Ωc determined by Eq. 3.16 and 3.17 of Ludeman
 10

− K1 /10
− 1

log10
10

−K
2
/10 − 1

 1

N = and Ωc =
2 N

− K /10
 2 log10 1 10 1 −1

 2
Plugging in numerical values,

 10+3.01/10 − 1 log

10 − 1

 2 −1
10 31.62 −1

 −1.486

N =

 2

2(− 0.3827)

=

2
= 1.941 = 2

(−0.3827)

 2 log10

2.0

 4.828
2

Ωc = = = 2 rad / sec

4 10+3.01/10 − 1
Note in this case that Ωc = Ω1.

4 2 − 1

Therefore, the required pre-warped, normalized, unit bandwidth, analog filter of order 2

using the Butterworth Table 3.1b (or the Butterworth circle) is
1

Ha(s) = (with a cut off frequency = 1 rad / sec)
s

2
+ 2 s + 1

Since we need a cut-off frequency of Ωc = 2 rad/sec, we next use the low pass to low pass

transformation s → s/2 in order to move the cut-off frequency from 1 to 2 rad/sec.
1 1 H (s) = =

a
s

2
+

 2

s +1 s→s / 2
(s / 2) + 2(s / 2) + 1

4 (with a cut-off frequency = 2 rad/sec.)
s

2
+ 2 2 s +4

Step 3 Applying the bilinear transformation to Ha(s) with T = 1 will transform the pre-warped
analog filter into a digital filter with system function H(z) that will satisfy the given digital
requirements:

H(z) = H (s) 2(1−z−1) =
4

 a s→ 1+z

 2(1− z
−1

)
2+ 2(1− z

−1
)

1+ 2 z
−1

+ z
−2

1+ z
−1

2 + 4

 1+ z −1

= 3.414 + 0.585 z
−2

HW: Obtain the difference equation. Plot | H (e
j

) | and H (e
j

) vs .

Bilinear transformation: Cancellation of sampling time in warping and pre-warping The
digital specifications are the set of critical frequencies {ω1, ω2, …, ωN} and the corresponding set
of magnitude requirements {K1, K2, …, KN}. When an analog filter is used as the prototype for

2

=

−1

=

T 2

()

the bilinear transformation method the relationship between digital and analog frequencies is

nonlinear and governed by −1 T

Ω =
2

tan and ω = 2 tan
T 2 2

Therefore, to get the proper digital frequency, we must design an analog filter with analog

critical frequencies Ωi: i = 1, 2, …, N given by
2

Ωi = tan i , i = 1, 2, …, N

T 2

This operation will be referred to as pre-warping. The corresponding analog magnitude

requirements are not changed and remain the same as the corresponding digital requirements. An

analog filter Ha(s) is then designed to satisfy the pre-warped specifications given by Ω1, Ω2, …,
ΩN and K1, K2, …, KN. The bilinear transformation is then applied to Ha(s), i.e.,

H(z) = H (s) 2(1−z−1)
a s→

T (1+ z−1)

As the T in the Ωi equation and the T in the bilinear transform cancel in the procedure described

above for low pass filter design, it is convenient to just use T = 1 in both places. This is easily

seen since if the Ωi comes from an analog-to-analog transformation of an Ha(s) with a unit radian
2(1 − z

−1
)

cut-off frequency, we have s→(s/ Ωi), and when the bilinear transformation s →

used the cascade of transformations is given by

T (1 + z
is

−1)

2(1 − z −1) = 2(1− 2z
−1) (1 − z

−1)

s → T (1 + z −1) T (1+ z

−1
) tan i = (1 z

−1
) tan i

i

+

This does not contain a T. Thus it is immaterial what value of T is used as long as it is the same
in both steps (which it is).

The procedure for the design of a digital filter using the bilinear transformation consists

of:

Step 1: Pre-warping the digital specifications

Step 2: Designing an analog filter to meet the pre-warped specs

Step 3: Applying the bilinear transformation

In the process T is arbitrarily set to 1, but it can be set equal to any value (e.g., T = 2), since it
cancels in the design. The design process is shown by the figure below.

Digital specs
ω1, ω2 , …, ωN

K1, K2, …, KN

Pre-warp

T = 1

Ωi = (2/T) tan (ωi/2)

Pre-warped
Analog specs

Ω1, Ω2, …, ΩN

K1, K2, …, KN

Design

Analog
Filter Ha(s)

Bilinear

transformation T = 1

2 1 − z
− 1

 s→

Desired

H(z)

T 1 + z − 1)

2

2

* *

1 1 1

Example 3.6.2 Design a digital low pass filter with pass band magnitude characteristic that is

constant to within 0.75 dB for frequencies below = 0.2613 and stop band attenuation of at

least 20 dB for frequencies between = 0.41 and .

dB (= 20 log10 |H(jω)|)

ω

Use bilinear transformation. Determine the transfer function H(z) for the lowest order
Butterworth design which meets these specifications. Draw the cascade form realization.

Step 1: Pre-warp 1 = 0.2613, 2 = 0.41 with T = 1 sec.

1 =
T
2

tan 1

2

0.2613
= 2 tan = 0.8703 rad / sec

0.41
2 = tan 2 = 2 tan = 1.501 rad / sec

T 2 2
Step 2: Design Ha(s)

 10+0.75/10 −1 log
 1.19 −1

 log10
10

+20/10 −1

 10 100 −1 − 2.7203 = 5.75 = 6
 N = 0.8703 = 2(− 0.2367)

=
2 (−0.2367)

 2log10

 1.501

Ωc =
 1 =

2 N 10− K1 /10 −1

 0.8703
=

12 10+0.75/10 − 1

0.8703

0.8701
= 1 rad/sec

*

Let the left-half plane poles be denoted s1 , s1 , s2 , s2 , s3 , and s3 . Ha(s) =
(* * *

s − s)(s − s) (s − s)(s − s) (s − s)(s − s)

1 1 2 2 3 3

Since Ωc = 1 the LP to LP transformation s → (s/1) results in the same Ha(s) as given above.
Step 3: H(z) = H (s) 2(1−z−1)

a s→
1+z−1

0

–0.75

0.2613π 0.41π π

–20

2

− − −

=
−1 2(1 z)

−1 2(1 z)

−1 2(1 z)

s →
1+ z1

s →
1+ z1

s →
1+ z1

Example 3.6.3 Determine H(z) for a Butterworth filter satisfying the following

constraints. Use the impulse invariance technique.

 | H (e
j

) | 1, for 0 ω π /2

| H (e
j

) | 0.2, for 3π /4 ω π

|H(ω)

|

1

0.707

0.2

0

ω

π/2 3π/4 π

dB (= 20 log10 |H(ω)|)

ω

Solution The critical frequencies are ω1 = π/2, ω2 = 3 π/4. Use ω = ΩT to determine the analog

frequencies 1 and 2. Note T is not given. Take T = 1, so that ω = Ω .1 = Ω. (This corresponds

to the pre-warping step of the bilinear transformation with Ω = (2 /T) tan(/ 2)).

We have ω = Ω .1, so that the critical frequencies are

K1 = –3.01 dB

1 = ω1 = π/2 rad/sec. (= ωc)

K2 = – 13.98 dB

2 = ω2 = 3π/4 rad/sec.

The order of the filter is given by

0.5

(s − s)
1

(s − s) *

1 1
(s − s)

1

(s − s) *

2 2
(s − s)

1

(s − s) *

3 3

0 π/2 3π/4 π

–3

–13.98

log log log10

+ + +

 10
− K1 /10

− 1 10+3.01/10 −1 2 −1
10 −K /10 10 +13.98/10

 10 2 − 1 = 10 −1 25.003 −1
 N =

 / 2

=
 2

 2 log
10

1

 2 log10 2 log10

 2 3 / 4 3
 −13.8

=

 = 3.919 = 4

 2 (−0.176)

c is already known to be /2 rad/sec.
The 4th order normalized Butterworth filter (with unit bandwidth) is

1
Ha(s) (normalized) =

s
4
+ 2.613 s

3
+ 3.414 s

2
+ 2.613 s + 1

Using the low pass to low pass analog transformation s→ (s / c)

Butterworth filter satisfying the required specs:

or s→ (s /1.57) we get the

Ha(s) = s 4

+

 s 3

1
 s 2

 s

 2.613 + 3.414 + 2.613 +1

1.57 1.57 1.57 1.57

For the impulse invariant design we need the poles of Ha(s), so the above form is not much help.
We need to use the factored form:

Ha(s) (normalized) =

And with s→ (s /1.57) , we have

1

(s
2
+ 0.76536 s +1)(s

2
+1.84776 s +1)

H (s) = 1
2

 a
 s

2
 s s s

 0.76536 1 1.84776 + 1

1.57 1.57 1.57 1.57
Put this into partial fraction form. We need the poles individually since we need to use the
relation

(s = s1) → (z = e
s1T

), with T = 1 of course

to get H(z) from the Ha(s). Once we get the Ha(s) we can then combine complex conjugate pole
pairs to biquadratic form and then implement as a parallel form with two biquadratics in it.

Alternatively, memorize relations 3(c) and 3(d). This latter gives the biquadratics directly.

This same problem will next be solved using the bilinear transformation to show the

difference.

Step 1: Pre-warping according to Ω =
2

tan with T = 1 gives

T 2

Ω1 = 2 tan
2

(/ 2)
= 2 tan = 2 rad / sec

2

Ω2 = 2 tan
2 (3 / 4)

= 2 tan
2 2

= 4.828 rad / sec

Step 2: Design Ha(s)

1

 10 3.01/10 −1

log10 −K /10 log10 −(−15) /10 log10

+ log10
 10

+13.98/10
−1

N =

 2log

 2 =?

10

 4.828

Ωc =
 1 =?

2 N 10−K1 /10 − 1
Step 3: H(z) = H (s) 2(1−z−1)

a s→
1+z−1

Example 3.6.4 Design a low pass digital filter by applying impulse invariance to an appropriate

Butterworth continuous-time filter. The digital filter specs are:

–1 dB 20 Log |H()| 0, 0 || 0.2

20 Log |H()| – 15 dB, 0.3 ||

Solution First convert the digital frequencies to analog frequencies . The mapping between

 and is linear in the absence of aliasing. We shall use = T with T = 1. Thus the specs
become

–1 dB 20 Log |Ha()| 0, 0 || 0.2
20 Log |Ha()| –15 dB, 0.3 ||

dB (= 20 log10 |H|)

0

K1 = –1 dB

0.2π 0.3π π
ω

K2 = –15 dB

 10
− K1 /10

− 1 10−(−1) /10 −1 1.259 −1

 10 2 − 1 10 −1 31.6228−1
 N =

=
 0.2

=
 2 log (0.6666)

 2 log 10 1

 2 log10
10

 2 0.3

jΩc

s-plane

ζ

Ωc

Radius = Ωc

10

or z =

1 1 1

2

log 0.2589 30.6228

 log (0.0085) −
= =

10 = 2.0729

= 5.885 = 6

 2 (− 0.1761)
2 (− 0.1761)

2 (−0.3827)

Ωc = 1 =

 0.2 0.2 =

 0.2 =

= 0.703 rad/sec

2 N 10− K1 /10 −1
121.2589 − 1 12 0.2589 0.8935

* * *

Let the left-half plane poles be denoted s1 , s1 , s2 , s2 , s3 , and s3 . Ha(s) =
(* * *

s − s)(s − s) (s − s)(s − s) (s − s)(s − s)

1 1 2 2 3 3

Since Ωc = 0.703 the LP to LP transformation s → (s/0.703) results in

Ha(s) =
s

s →

To be completed
0.703

Example 3.6.5 [2003] [The Butterworth circle and the bilinear transformation] Refer to

Oppenheim & Schafer, Sec. 5.1.3 and Sec. 5.2.1. The bilinear transformation is given by
−1 (1 −

s = z) 1+ (sT / 2)

T (1 + z
−1

) 1− (sT / 2)

This last equation is used to map the poles on the Butterworth circle in the s-plane into poles on
the Butterworth circle in the z-plane. For the normalized Butterworth filter with a cut-off
frequency of 1 rad/sec., the Butterworth circle in the s-plane has unit radius. If the cut-off
frequency is Ωc instead of 1, then the circle has a radius of Ωc. This is the case in the example on

pp. 212-214 of Oppenheim & Schafer where the order N of the filter is 3, the radius of the
Butterworth circle in the s-plane is Ωc, and ΩcT = ½ which corresponds to a sampling frequency

of twice the cut-off frequency (Figure 5.14).

For the two poles at s = – Ωc and s = Ωc and ΩcT = ½ we get

1 − (cT / 2)

1+ (cT / 2)

s = Ωc: z =
1 + (cT / 2)

1− (cT / 2)

1− (1/ 4)

1+ (1/4)

1+ (1/ 4)

1− (1/ 4)

= 3/5

= 5/3

Both of these z-plane poles are on the real axis as shown in figure below.

jΩ Im
Unit circle

z-plane

j1

3/5

–1 Re

5/3

Butterworth circle

in the s-plane

Butterworth circle

in the z-plane

(s − s)(s − s) (s − s)
1

* (s − s) (s − s) *

3
(s − s) *

1 1 2 2 3

s = – Ωc: z = =

=

2

The other s-plane poles are similarly mapped to z-plane poles, though the algebra involved is a

little more. Note that the three poles in the left-half of the s-plane are mapped into the inside of

the unit circle in the z-plane.

5.7 Analog design using digital filters

When we are required to simulate an analog filter using the A/D – H(z) – D/A structure, the

specifications consist of the analog frequencies{Ω1, Ω2, …, ΩN}, the corresponding magnitudes
{K1, K2, …, KN} and the sampling time T. We convert to digital specs using the relation ωi = ΩiT.

Example 5.7.1 [Bilinear] [4.2, p. 180, Ludeman] Design a digital filter H(z) that when used in

an A/D-H(z)-D/A structure gives an equivalent low-pass analog filter with (a) –3.01 dB cut-off

frequency of 500Hz, (b) monotonic stop and pass bands, (c) magnitude of frequency response

down at least 15 dB at 750 Hz, and (d) sample rate of 2000 samples/sec.

Solution

Step 0 First we convert the analog Ω’s to digital ω’s using i = iT.

Ω1 = 2F1 = 2 500 = 1000 rad/sec., K1 = –3.01 dB

Ω2 = 2F2 = 2 750 = 1500 rad/sec., K2 = –15 dB

Thus
ω1 = Ω1T = 1000

ω2 = Ω2T = 1500

1

2000

1

2000

= 0.5 rad, K1 = –3.01 dB

= 0.75 rad, K2 = –15 dB

Step 1 Pre-warping. Use T = 1. (In Steps 1 and 3 we could have used T = 1/2000 but the two

occurrences of T would cancel out).
2 1 2 2

1 = tan
T

= 2.0 rad/sec. and
2

2 = tan
T

= 4.828 rad/sec.
2

Step 2 Design Ha(s), i.e., determine the low pass Butterworth filter (see earlier example).
 10+3.01/10 − 1 log

 2 −1

 log10
10

+15/10
− 1

 10 31.62 −1 −1.486
N =

 2

2(− 0.3827)

=

2
= 1.941 = 2

(−0.3827)

 2 log10

2.0

 4.828
2

Ωc = = = 2 rad / sec

4 10+3.01/10 − 1
4 2 − 1

Do analog low pass to low pass transformation s→(s/Ωc), i.e., s→(s/2) in order to move the cut-
off frequency from 1 to 2 rad/sec. This gives the Ha(s) with pre-warped specs and Ωc = 2 rad/sec.

1 1
H (s) =

 =
a

s
2
+ s +1 s→s / 2

=
 4 (with a cut-off frequency = 2 rad/sec.)

s
2
+ 2 s + 4

2 (s / 2)
2
+ 2(s / 2) + 1

=

)

=

Step 3 Applying the bilinear transformation s→
2

(1 − z −1
−1

to H (s) with T = 1 will transform
a

T (1 + z)

the pre-warped analog filter into a digital filter with system function H(z) that will satisfy the

given requirements:

H(z) = H 4 (s) 2(1−z−1)

1 + 2z −1 + z −2

a s→ =
(1+ z−1) 2(1− z

−1
) + 2 2(1− z

 −2 −1
) + 4 3.414 + 0.585z

 1+ z −1
2

1+ z −1

Example 3.7.2 [2002] Derive the Butterworth digital filter having the following specs:

Pass band: 0 to 4411 rad/sec.

Maximum ripple in pass band: 1 dB

Stop band: beyond 25975 rad/sec.

Minimum attenuation in stop band: 60 dB

Sampling frequency: 20 kHz

dB (= 20 log10 |H|)

0

–1 dB

0.221 1.299 π
ω

–60 dB

Solution Even though pass band ripple may suggest a Chebyshev filter we shall comply with the

request for a Butterworth filter. We use bilinear transformation.

Analog frequency specs are given. Convert them to digital by using the relation ω = ΩT

and T = (1/20000) sec.

Ω1 = 4411 rad/sec. becomes ω1 = Ω1T = 4411/20000 = 0.221 rad

Ω2 = 25975 rad/sec. becomes ω2 = Ω2T = 25975/20000 = 1.299 rad

Now, starting from these digital specs the design proceeds in 3 steps as usual.

Step 1 Pre-warp the critical

digital frequencies 1 and 2 using T = 1 sec., to get

2 1 0.221

1 =
T

tan

 = 2
2

tan = 2
2

tan0.11 = 0.221 rad/sec.

2 2 1.299

2 =
T

tan

 = 2
2

tan = 2
2

tan 0.650 = 1.519 rad/sec.

2

1

2 N 10− K1 /10 −1 8 10+1/10 − 1

10 2 − 1 10 − 1 10 − 1

= =

Step 2 Design an analog low pass filter with critical frequencies 1 and 2 to satisfy

0 20 log |Ha(j 1)| –1 dB = K1, and

20 log |Ha(j 2)| –60 dB = K2

The Butterworth filter of order N and cut-off frequency Ωc is given by equations (3.16) and

(3.17) of Ludeman:
 10

− K1 /10
− 1 10

+1/10
− 1 1.259 − 1

log10 −K /10 log10 +60/10 log10 6

N =

=
 0.221

=

 2 log
10

1

 2 log10

 2 1.519

2 log (0.145)
10

log (2.59 . 10
−7)

− 6.587 = 10 =
= 3.934 = 4

 2 (− 0.837)

− 1.674

Ωc = =
 0.221 0.221

8 1.259 − 1

0.221
= 0.262 rad/sec.

0.845

Therefore the required pre-warped Butterworth (analog) filter using Table 3.1b (Ludeman) and

the analog low-pass to low pass transformation from Table 3.2, s→(s/Ωc), that is, s→(s/0.262), is
1

Ha(s) =
s

4
+ 2.613 s

3
+ 3.414 s

2
+ 2.613 s +

1 s → (s / 0.262)

Example 3.7.3 Design a digital LPF using bilinear transformation with the following

specifications, and a Butterworth approximation:

– 2 dB at 5 rad/sec.,

– 23 dB at 10 rad/sec.,

Sampling frequency = 1000 per sec.

dB (= 20 log10 |H|)

0

K1 = –2

0.005 0.01
ω

K2 = –23

42 dB

Solution Convert the analog specs to digital using = ΩT, with T = 1/1000 sec. The critical

frequencies are
ω1 = Ω1T = 5/1000 = 0.005 rad; K1 = –2 dB
ω2 = Ω2T = 10/1000 = 0.01rad; K2 = –23 dB

Now apply Steps 1, 2 and 3 of the bilinear transformation design process.

Example 5.7.4 [2003] Design a digital filter that will pass a 1 Hz signal with attenuation less

than 2 dB and suppress 4 Hz signal down to at least 42 dB from the magnitude of the 1 Hz

signal.

dB (= 20 log10 |H|)

0 2π 8π
Ω

K1 = –2

K2 = –44

Solution All the specs are given in the analog domain. The sampling period T is not specified.

Since 1 Hz is in the pass band and 4 Hz in the stop band we shall use some multiple of 4 Hz, say,

20 Hz as the sampling frequency. Thus T = 1/20. We shall employ the impulse invariance

method.

Step 0 Convert the analog specs to digital by using ω = ΩT = 2FT. Thus

Ω1 = 2 .1 =2 rad/sec., and

Ω2 = 2 . 4 = 8 rad/sec.

so that ω1 = 2T = 2 (1/20) = 0.1 rad., and ω2 = 8T = 8 (1/20) = 0.4 π rad.

Step 1 Convert the digital frequencies 1 and 2 back to analog frequencies. Since we are using
impulse invariance this involves using the same formula ω = ΩT and we get the same analog

frequencies as before, viz., Ω1 = 2 rad/sec., and Ω2 = 8 rad/sec. (Note that the value of T is
irrelevant up to this point. We could have used a value of T = 1 in Steps 0 and 1, resulting in

awkward values for the ω’s, like 2 and 8 when we expect values between 0 and ; but this is
not a problem for the design).

Step 2 Determine the order of the analog Butterworth filter.

= 10 2 − 1 10 − 1 25118.8 −1

c

a +

=a

* *

e 1

2

 10
− K1 /10

− 1 10
+2 /10

− 1 1.585 −1

log10 −K /10 log10 +44/10 log10

N =

 2

= 2(− 0.602)
 2 log 1 2 log10

10

 8

=
− 4.633

= 3.848 = 4

−1.204
Cut–off frequency Ωc is determined next:

Ω =
1 =

2 N 10−K1 /10 −1

 2
=

 2
8 1.585 −1 =

 2

0.93515

= 6.719

Step 3 The normalized filter Ha(s) of order 4 is
1

Ha(s) =
(s

2
+ 1.848s + 1) (s

2
+ 0.765s + 1)

We may break it down into partial fractions now (before making the transformation s→(s/Ωc).

H (s) = As + B
s

2
+ 1.848s + 1

 Cs + D

0s
2
.7+65s + 1

Determine A, B, C, and D and then substitute s→(s/Ωc).

Alternatively, we can get the individual pole locations from the Butterworth circle.
1

H (s)
(s + 0.924 + j0.383)(s + 0.924 − j0.383)(s + 0.383 + j0.924)(s + 0.383 − j0.924)

*

=
 A

+
 A

*

+ C
+

 C

s − s1 s − s1 s − s2 s − s2

Determine A, A*, C and C*. Next find H (s)
a s →(s / c)

which is the analog prototype. From this we

can find the H(z) by mapping the s-plane poles to z–plane poles by the relation: (s = s1) → (z =

e
s1T

). Here at last we must specify T; we could use T = 1/20. In general, the smaller the value of T

the better.

Ha(z) = A z −
z s T + A* z z

es *T

z
+ C z − e

s2T
 + C*

z
 s*T

− 1 z − e 2

If we were to use the bilinear transformation use some value of T like 1/20 (justifying it
on the basis of the sampling theorem) in ω = ΩT in Step 0.

Example 5.7.5 [Low pass filter] Design a digital low pass filter to approximate the following

transfer function:

H (s) =
1

a

Using the BZT (Bilinear z-transform) method obtain the transfer function, H(z), of the digital

filter, assuming a 3 dB cut-off frequency of 150 Hz and a sampling frequency of 1.28 kHz.

Solution This problem is a slight variation from the pattern we have followed so far in that it

specifies one critical frequency (cut-off frequency) and the filter order instead of two critical

frequencies with the filter order unknown.

Step 0 Convert the analog specs to digital

Ωc = 2Fc = 2 150 = 300 rad/sec.

8 10+2 /10 −1

s
2

+ 2 s + 1

c c

The corresponding digital frequency is

ω = Ω T = 300
1

= 0.2343 rad.

Step 1 Pre-warp (with T = 1)
2 c

1280

c = tan = 0.7715
T 2

Step 2 Ha(s) is given to be of order 2. We only need to do the analog low pass to low pass
transformation.

Ha (s) s→
s = 1

 s 2 s

0.7715
 +

 0.7715
2 + 1

 0.7715
Step 3 Applying the BZT (with T = 1)

H(z) = Ha (s) 2(1−z−1) =
s→

−1

1
−1

2

−1
T (1+ z) 2(1− z) +

2 2(1− z)
 +1

 −

(1+ z
1
) 0.7715

0.0878 (1 + 2z
−1

+ z
−2

)

 −

(1+ z
1
) 0.7715

=
1 −1.0048 z

−1
 + 0.3561 z

−2

Example 3.7.6 [Low pass filter] Design a low pass digital filter derived from a second order

Butterworth analog filter with a 3 dB cut-off frequency of 50 Hz. The sampling rate of the

system is 500 Hz.
Solution (This is similar to Example 10). The second order Butterworth analog filter is

H (s) =
1

a

Step 0 Convert the analog specs to digital

Ωc = 2Fc = 2 50 = 100 rad/sec.

The corresponding digital frequency is
1

ωc = ΩcT = 100

Step 1 Pre-warp (with T = 1)

500
= 0.2 rad.

2 c 0.2

c =
T

tan

 = 2
2

tan

 = 0.6498
2

Step 2 Ha(s) is given to be of order 2. We only need to do the analog low pass to low pass
transformation.

1
 s 2

+
 s =

0.42229
s

2
+ 0.91901s + 0.42229

 2 + 1

 0.6498 0.6498

Step 3 Applying the BZT (with T = 1)

H(z) = Ha (s) 2(1−z−1) =
s→ −1

0.42229

 2(1− z
−1

) 2 2(1− z
−1

)
T (1+ z)

 − + 0.91901 − + 0.42229

 (1+ z
1

) (1+ z
1
)

s
2

+ 2 s + 1

=

0.42229 (1 + z
−1)2

The denominator is

=
4(1 − z −1)2 + (0.91901)(2) (1 − z

−1)(1 + z
−1

)+ 0.42229(1 + z −1)2

Dr = 4(1− 2z−1 + z−2)+1.83802(1− z−2)+ 0.42229(1+ 2z−1 + z−2)
Dr = (4 +1.83802 + 0.42229) + z−1 (−8 + 0.84458) + z−2 (4 −1.83802 + 0.42229)

Dr = 6.26031− 7.15542 z−1 + 2.58427 z−2

0.42229(1+ 2z
−1

+ z
−2

)
H(z) =

6.26031− 7.15542 z
−1

+ 2.58427 z
−2

0.06746(1+ 2z
−1

+ z
−2

)
= 6.26031−1.14298 z

−1
+ 0.4128 z

−2

Summary of IIR filter design

Bilinear

Digital specs given:

ω1, ω2 (rad.)
K1, K2 (dB)

2

(1) Pre-warp = tan , T = 1 sec.
T 2

Calculate 1 , 2 and K1, K2

(2) Find filter order N, cut-off frequency Ωc
Find normalized filter Ha(s)

Find Ha (s)
s →(s /)

c

(3) H(z) = Ha (s)
s → 2(1−z) with T = 1 sec.

 −1
 −1

 T (1+ z)

Bilinear

Analog specs given:

Ω1, Ω2 (rad./sec.),
K1, K2 (dB), and
T

Step 0. (Preparation)

Use ω = ΩT to convert Ω to ω

Get ω1, ω2, and K1, K2

Then

(1)

(2) As in the left side column

(3)

Impulse invariance

Digital specs given:
ω1, ω2,
K1, K2, and
T (or T = 1)

(1) Determine Ω1, Ω2 using ω = ΩT
(2) Find filter order N, cut-off frequency Ωc

Find normalized filter Ha(s)

Find Ha (s)
s →(s /)

c

(3) Find individual pole locations.

Then (s = s1) → (z = e
s1T

) for given T

Frequency Transformation

Frequency transformation is useful for converting a frequency-selective filter from one type to

another.

Analog-to-analog transformations Suppose we are given a continuous-time normalized low

pass filter G(s) with a cut-off frequency of 1 rad/sec. Then what is the effect of the

20 log10 |H(jΩ)|

0 dB

K1

K2

transformation s′ = sc where s′ represents the transformed frequency variable? In other words,

we make the substitution s → s′/c in the transfer function. Since s′ = sc implies ′ = c, it

follows that the frequency range 0 ≤ ≤ 1 is mapped into the range 0 ≤ ′ ≤ c. Thus G(s′)

represents a low pass filter with a cut-off frequency of c. In the rest of what follows, rather than
use an explicitly different symbol s′ we shall instead indicate such transformation by s → s/c

and the resulting transfer function by H(s) = G(s) s → s / c
.

1. Low-pass to low-pass transformation Given the prototype low pass filter G(s) with unit

band width (i.e., cut-off frequency = 1 rad/sec.) and unity gain at = 0 (i.e., |G(j0)| = 1), the

transformation s → s/c gives us a new filter, H(s), with cut-off frequency of c. The filter H(s)
is given by

H(s) = G(s) s → s / c

The critical frequency Ωr of the filter G(s) is transformed to r of the filter H(s), given by

r = Ωr Ωc. Both G(s) and H(s) are low pass filters.

Ω

0 1 Ωr

0 Ωc

Ω

r

More generally, the transformation

s → s
c

c

transforms a low pass filter with a cut-off (or critical) frequency c to a low pass filter with a

cut-off (or critical) frequency c .

2. Low-pass to high-pass transformation Given G(s) as above the transformation s → c/s
will transform the low-pass G(s) into a high-pass filter H(s) with cut-off frequency of Ωc:

H(s) = G(s)
s → / s

c

20 log10 |G(jΩ)|

0 dB

K1

K2

The critical frequency r of the filter G(s) is changed to r of H(s), given by r = Ωc/Ωr.

20 log10 |H(jΩ)|

 0 dB

K1

K2

0 r Ωc

There are similar transformations from low-pass to band-pass and low-pass to band-stop.

Refer to table 3.2, page 128, Ludeman.

The Low-pass prototype analog unit bandwidth filter could be any analog filter such as

Butterworth, Chebyshev etc. of any order, any ripple etc.

Digital-to-digital transformations Similarly, a set of transformations can be found that take a

low-pass digital filter and turn it into another low-pass or high-pass or band-pass or band stop

digital filter. Refer to Sec 4.3, p. 181, Ludeman.

The Chebyshev filter

The Butterworth filter provides a good approximation to the ideal low pass characteristics for

values of Ω near zero, but has a low fall-off rate in the transition band. The Chebyshev filter has

ripples in either the pass band or the stop band but has a sharper cut-off in the transition band.

Thus, for filters of the same order, the Chebyshev filter has a smaller transition band than the

Butterworth filter. We now look at the analog low pass Chebyshev filter. There are two types of

the Chebyshev filter.

Type I (Chebyshev I) is an all-pole filter. It has equiripple behavior in the pass band and

monotonically decreases in the stop band. For N = order of the filter, the magnitude response

looks as below (N = 5 and N = 6 illustrated). The magnitude, |H(jΩ)|, is an even symmetric

function of Ω.

|H(jΩ)|

N is odd
|H(jΩ)|

N is even
1

N = 6
A

B

Ω
0 Ω1 Ω2

1

N = 5

A

B

0 Ω2

Ω

Ω

1 + C (2 2

N /) 1

1

N = 5

A

B

0 Ω1 Ω2

Ω

1

0
Ω

Type II (Chebyshev II or Inverse Chebyshev) filter has both poles and zeros. It has a

monotonically decreasing shape in the pass band and an equiripple behavior in the stop band.

|H(jΩ)|

Design of the Chebyshev I filter A typical magnitude response specification is sketched below
(shown for N = 5 and N = 6). The magnitudes at the critical frequencies Ω1 and Ω2 are A and B,

respectively. Typically Ω1 is in the pass band or is the edge of the pass band and Ω2 is in the stop
band or is the edge of the stop band. In terms of the log-magnitude the analog filter specifications
are as below. Note that (20 log A) = K1 dB and (20 log B) = K2 dB. If A and B are less than 1, K1
and K2 are negative.

0 20 log10 H (j)

20 log10 H (j)

 K1 for all Ω Ω1

 K2 for all Ω Ω2

|H(jΩ)|
N is odd

|H(jΩ)|

1

A

N is even

N = 6

B

Ω
0 Ω1 Ω2

The magnitude characteristic of the Nth order Chebyshev I filter is given by

|H(jΩ)| =
1

, N = 1, 2, …

1 + C (2 2

N
)

1 + 2

1 0

where ‹ has to do with pass band ripple and CN(x) is the Nth order Chebyshev cosine polynomial

defined as
CN(x) = cos(N cos

−1
x), x ≤ 1 (pass band)

cosh(N cosh
−1

x), x > 1 (outside the pass band)

Chebyshev polynomials are also defined by the recursion formula

CN (x) = 2xCN −1 (x) − CN −2 (x)

with C0 (x) =1 and C1 (x) = x. Using this recursion formula we get, for N = 2, C2 (x) =

2xC (x) − C (x) = 2x
2
−1.

Chebyshev Polynomials, CN(x)

N CN(x)

0 1

1 x

2 2x
2
−1

3 4x
3
− 3x

… …

[Aside If the frequencies are normalized, that is, for a normalized filter, Ω1 = 1 rad/sec and the

magnitude characteristic of the Nth order Chebyshev I filter is given by

|H(jΩ)| =
1

, N = 1, 2, …

End of Aside]

At Ω = 0 we have

CN(0) = cos(N cos
−1

0) = cos(N / 2)
= 0, N odd

±1, N even

As a consequence, on the vertical axis (Ω = 0) the magnitude curve starts at |H(j0)| = 1 for odd N

and at |H(j0)| = A =
1

for even N.

At Ω = Ω1 we have CN(1) = cos(N cos
−1

1)= cos(0) = 1 for all N. The corresponding

magnitude is

|H(jΩ)| = A =
1

, for all N
1

This equation is used to compute ‹ from the given |H(jΩ)|.

The order, N, of the filter is given by

cosh

−1

 N =

10−K2 /10 −1

10
−

K1 /1

0 −1

cosh
−1 2

 1

The symbol means that the computed result is rounded to the next larger integer. For

example, if N = 3.2 by the above calculation then it is rounded up to 4, and the order of the

required filter is N = 4. In such a case the resulting filter would exceed the specification at both

Ω1 and Ω2.

1 + 2

 cosh cosh

 cosh
1

Example 3.9.1 [Filter order] Determine the order of a Chebyshev I filter to have an attenuation

of no more than 1 dB for |Ω| ≤ 1000 rad/sec and at least 10 dB for |Ω| ≥ 5000 rad/sec.

Solution The specifications as given are

0 20 log10 H (j)

20 log10 H (j)

 –1 dB for all Ω 1000 rad/sec

 –10 dB all Ω 5000 rad/sec

The design parameters are identified as

K1 = –1 dB, Ω1 = 1000 rad/sec
K2 = –10 dB, Ω2 = 5000 rad/sec

The filter order is given by

cosh−1

 10−K2 /10 −1 −1 1010/10 −1 −1 10 −1

 10−K1 /10 −1
 101/10 − 1

= 1.2589 −1

N =
−1

 =
 cosh

2

− 5000 cosh

−1(5)

 1 1000
cosh

−1
5.8956 2.4601

= −1 =
 = 1.073 = 2

 cosh 5 2.2924

[On the HP 15C, cosh
−1

5.8956 is obtained by: (1) Enter Radian mode, (2) Enter 5.8956, (3) g,

(4) HYP
−1

, and (5) COS]

Pole locations and transfer function The poles of the Chebyshev I filter are related to those of

the Butterworth filter of the same order and are located on an ellipse in the s-plane. If N is odd

there will be a pole on the negative real axis. In order to find the pole locations and hence the

transfer function we introduce the parameter β

β =
1

sinh
−1 (1/)

N

The poles of H(s), sksi=n
ζk2k+−jΩ1 k, k =sin0h, 1, … ,a(nNd–1), Ωare=gicvoesn

b2yk −1
 cosh

ζk =

k

 N 2 N 2

ζ

Note that if the sinh and cosh terms were not present we would have the pole locations of

the normalized Butterw

o2rtkh−f1ilter

(on the unit circle), that i

−
s,

ζ
sin and Ω = cos

2k 1

k = k
 N 2 N 2

with 2
+ 2 = 1 which is the unit circle. Thus, the hyperbolic sine and cosine terms are scale

k k

factors which, when applied to the Butterworth pole coordinates, give the pole coordinates of a

Chebyshev I filter of the same order. The Chebyshev poles are located on an ellipse in the s-

plane described by

 2
k

2 +

sinh

2
k = 1

cosh
2

The major axis of the ellipse is on the imaginary (jΩ) axis and the minor axis is on the real axis
and the foci are at Ω = ±1. The 3 dB cut-off frequency occurs at the point where the ellipse

intersects the jΩ axis, that is, at Ω = cosh .

jΩ

cosh β

sinh β

–j1

j1

1

k

1 1

In putting together the transfer function, H(s), we rely on the symmetry of pole positions

and make use of the left half plane poles only. Finally, the pole positions are scaled by the actual
“cut-off frequency” Ω1. This last step amounts to s→ s/Ω1 (in the case of the Butterworth design

this was s→ s/Ωc).

Example 3.9.2 [Pole locations and transfer function] Find the pole locations and the transfer

function of the Chebyshev I filter designed in above example, that is, with an attenuation of no

more than 1 dB for |Ω| ≤ 1000 rad/sec and at least 10 dB for |Ω| ≥ 5000 rad/sec.

Solution The filter order has been determined above as N = 2. Further, we know that |H(jΩ1)| =

1 1 + 2
and 20 log H (j) = –1 dB. Thus

20 log(1 1+ 2)= –1

Solving for ‹ we get ‹ = 0.5088. Since N is even |H(j0)| = 1

on the vertical axis.

= 0.8913 is the starting point

With regard to the pole locations, if it were a Butterworth filter of order 2 the poles are

located at 2k −1 and Ω = cos
2k −1

 , k = 0, 1

ζk =
sin

 −N 2 − N 2

s0,1 = sin ± j cos = (−1 2) ± j (1 2)
 4 4

The Chebyshev I poles are then obtained from the Butterworth poles by scaling the real and

imaginary parts, respectively, by sinh and cosh and then scaling both parts by Ω1:

s0,1 = 1(−1 2)sinh j(1 2)cosh
where Ω1 = 1000 rad/sec., and

β = sinh
−1

N
= sinh

−1

2
(1/ 0.5088) = 0.7140

Thus the Chebyshev I pole locations are
1000 1000

s0,1 = − sinh 0.714 2 ± j cosh 0.714
2

= −
1000

sinh 0.714

2

± j
1000

cosh 0.714

2

Hence
= – (707.11) (0.7762) ± j (707.11) (1.2659) = –548.86 ± j 895.15

H(s) = K
=

(s − s0)(s − s1)

K

(s − (−548.86 + j895.15))(s − (−548.86 − j895.15))

 K

(s + 548.86)
2

+ (895.15)
2

Since N is even the constant K will be adjusted to achieve |H(j0)| = 1

were odd, K would be adjusted to achieve |H(j0)| = 1.)

|H(j0)| =
K

= 0.8913
(548.86)

2
+ (895.15)

2

which yields K = 982694.6. The filter then is

H(s) =
982694.6

(s + 548.86)
2
+ (895.15)

2

= 0.8913. (If N

1 + 2

1 + 2

(1/)

=

 cosh cosh

1

1

1 1

Example 3.9.3 [Ramesh Babu] Determine the order of a Chebyshev I filter to have a gain of –3

dB or better for |F| ≤ 1000 Hz and a gain of –16 dB or less for |F| ≥ 2000 Hz. Find the pole

locations and the transfer function.

Solution The specifications as given are

0 20 log10 H (j)

20 log10 H (j)

 –3 dB for all Ω 2π (1000) rad/sec

 –16 dB all Ω 2π (2000) rad/sec

The design parameters are identified as

K1 = –3 dB, Ω1 = 2000 π rad/sec
K2 = –16 dB, Ω2 = 4000 π rad/sec

The filter order is given by

cosh−1

 10−K2 /10 − 1 −1 1016/10 −1 −1 39.81 −1

 10−K1 /10 − 1
 103/10 −1

= 1.995 −1

N =
−1

 =
 cosh

2

 cosh
− 4000

 cosh
−1(2)

 1 2000
cosh

−1
6.2445 2.5184

= −1 =
 = 1.9122 = 2

 cosh 2 1.3169

Further |H(jΩ1)| = 1 1 + 2
and 20 log H (j) = –3 dB implies that |H(jΩ1)| = 1 2 .

From these two conditions it follows that ‹ = 1. Since N is even |H(j0)| = 1 1 + 2
= 1 2 .

The poles ofsHin(
s)2kar−e1givensibnyhsk = ζka+ndjΩk, kΩ==0, c1os

2k −1
 cosh

ζk =

k

 N 2 N 2

β = sinh
−1

N
= sinh

−1

2

(1/1) = 0.88137
= 0.44069

2
Thus, one of the left half plane poles is

 − −
s1 = 1 + j1 = sin sinh 0.44069 + j cos cosh 0.44069

 4 4

= –
 1

0.45509 + j

2

1
1.09868 = –0.3218 + j0.77689

2

Scaling this by Ω1 = 2000 π rad/sec results in
s1 = 2000 π (–0.3218 + j0.77689) = –2021.9 + j4881.3 = –a + jb

where a = 2021.9 and b = 4881.3. The other left half plane pole is the conjugate of the above, at

s2 = –2021.9 – j4881.3 = –a – jb

The transfer function is H(s) = 1/D(s), where the denominator, D(s), is put together from

the poles as follows

D(s) = (s − s1)(s − s2) = (s − (−2021.9 + j4881.3))(s − (−2021.9 − j4881.3))
= (s + 2021.9)

2
+ (4881.3)

2

For convenience we shall write this as D(s) = (s + a)
2
+ b

2
= s

2
+ 2sa + a

2
+ b

2
, so that

(1/)

2

1 + 2 CN (2 / 1)
2

C (
2

N 2 /)

2

1 +

N 2 1

H(s) = K
=

D(s)

sa2+ 2s

K

a2 + b2

where the constant K is adjusted so as to make |H(j0)| = 1 :

Thus

|H(j0)| =
K

= 1 2

a2 + b2
→ K =

a2 + b2

a
2
+ b

2

H(s) =
2

as2+ 2s

1

a2 + b2

= 19739005.5
1

s2 + 4043.8s + 27915169.3

Design of the Chebyshev II filter A typical magnitude response specification is sketched below.
The magnitudes at the critical frequencies Ω1 and Ω2 are A and B, respectively. Typically Ω1 is in

the pass band or is the edge of the pass band and Ω2 is in the stop band or is the edge of the stop
band. In terms of the log-magnitude the analog filter specifications are as below. Note that (20
log A) = K1 dB and (20 log B) = K2 dB. If A and B are less than 1, K1 and K2 are negative.

0 20 log10 H (j)

20 log10 H (j)

 K1 for all Ω Ω1

 K2 for all Ω Ω2

|H(jΩ)|

1

A

B

0 Ω

Ω1 Ω2

The magnitude characteristic of the Nth order Chebyshev II filter is given by

|H(jΩ)| =
1
 , N = 1, 2, …

where ‹ has to do with pass band attenuation and CN(x) is the Nth order Chebyshev polynomial.
At Ω = Ω1 we have

1 1
|H(jΩ1)| = = = A, for all N

2

2 CN (2 / 1)
C

2
(/)

1 + 2

At Ω = 0, CN (2 /) = CN () → ∞, and the magnitude becomes

1 + 2 CN (2 / 1)
2

C (
2

N 2 / 0)

1 +

N 2 2

N 2 1

|H(j0)| =
1
 = 1 for all N

The magnitude curve starts at |H(j0)| = 1 on the vertical axis for all N.
At Ω = Ω2 we have CN (2 / 2) = CN (1) = cos(N cos 1) = cos(0) = 1

−1

1 1
|H(jΩ2)| = =

2

2 CN (2 / 1)
C

2
(/)

=
1

1 +
2
C

2
(/)

= B, for all N

The order, N, of the filter is given by

cosh
−1

 N =

10−K2 /10 −1

10
−

K1 /1

0 −1

cosh

−1

2

 1

The symbol means that the computed result is rounded to the next larger integer. For

example, if N = 3.2 by the above calculation then it is rounded up to 4, and the order of the

required filter is N = 4. In such a case the resulting filter would exceed the specification at both

Ω1 and Ω2.

Example 3.9.4 If an analog low pass filter is to have an attenuation of 1 dB at cut-off frequency

of 1 kHz, and a maximum stop band ripple of 0.01 for |F| > 5 kHz, determine the required the

filter order for (a) a Butterworth filter, (b) a Chebyshev I filter, and (c) a Chebyshev II filter.

Solution The specifications are the same for all three cases but the magnitude characteristic

differs from one case to the next.

(a) The Butterworth magnitude (absolute value) characteristic is sketched below.

Ω1 = 2F1 = 2 1000 rad/sec., K1 = –1 dB → A = 0.8912

Ω2 = 2F2 = 2 5000 rad/sec., B = 0.01 → K2 = –40 dB

|Ha(jΩ)|

1

A =0.8912

B = 0.01

Ω1= 2π1000 Ω2= 2π5000

Ω, rad./sec.

1 + 2 CN (2 / 1)
2

1

1

N =?

A

B

0 Ω1 Ω2
Ω

The relation between the absolute values and the dB figures (K1 = 20 log A and K2 = 20 log B) is

used to compute A = 10
K1 / 20

= 10
−1/ 20

= 0.8912 and K2 = 20 log B = 20 log 0.01 = –40 dB.
The Butterworth filter order is given by

 10
− K1 /10

− 1 10−(−1) /10 −1 10
0.1

−1
log10

10
−K

2
/10

− 1 log10 −(−40) /10
−1

 log10 10
4
−1

= 10 =

N =

 1 2 log

 1

 2 log
10

1

 2 log10 10
 2 5 5

 log
 1.25892 −1

− 4.5868

 10 10000 −1

= 3.28 = 4

=
 =

 2 log10 (0.2) −1.3979

(b) The Chebyshev I specs and magnitude (absolute value) characteristic are diagrammed below.

As earlier we compute A = 10
K1 / 20

= 10
−1/ 20

= 0.8912 and K2 = 20 log B = 20 log 0.01 = –40 dB.

Ω1 = 2F1 = 2 1000 rad/sec., K1 = –1 dB → A = 0.8912

Ω2 = 2F2 = 2 5000 rad/sec., B = 0.01 → K2 = –40 dB

|H(jΩ)|
N is odd

|H(jΩ)|

1

A

N is even

N =?

B

Ω
0 Ω1 Ω2

The Chebyshev I filter order is given by

−1 10−K2 /10 −1
cosh−1 10−(−40) /10 −1 −1

10000 −1
cosh
 10−K1 /10 −1

 cosh

10−(−1) /10 −1 =
 10

0.1
−1

N =
−1

 = cosh
2

−1 5 cosh cosh

−1(5)

 1

 1

cosh
−1

38617.3 cosh
−1

(196.5) 5.9738 =
cosh−1 (5) =

cosh
−1 (5) =

2.2924
= 2.6059 = 3

(c) The Chebyshev II specs and magnitude (absolute value) characteristic are shown below. As

earlier we compute A = 10
K1 / 20

= 10
−1/ 20

= 0.8912 and K2 = 20 log B = 20 log 0.01 = –40 dB.

Ω1 = 2F1 = 2 1000 rad/sec., K1 = –1 dB → A = 0.8912

Ω2 = 2F2 = 2 5000 rad/sec., B = 0.01 → K2 = –40 dB

|H(jΩ)|

1

A

B

0 Ω

Ω1 Ω2

The Chebyshev II filter order is given by

−1 10−K2 /10 −1
cosh−1 10−(−40) /10 −1 −1

10000 −1
cosh
 10−K1 /10 −1

 cosh

10−(−1) /10 −1 =
 10

0.1
−1

N =
−1

 = cosh
2

−1 5 cosh cosh

−1(5)

 1

 1

cosh
−1

38617.3 cosh
−1

(196.5) 5.9738 =
cosh−1 (5) =

cosh
−1 (5) =

2.2924
= 2.6059 = 3

Example 3.9.5 Determine the system function H(z) of the lowest order Chebyshev filter that

meets the following specs. Use the impulse invariance method.

(a) 0.5 dB ripple in the pass band, 0 ≤ |ω| ≤ 0.24π

(b) At least 50 db attenuation in the stop band, 0.35π ≤ |ω| ≤ π

Solution We assume the Chebyshev I filter. The procedure is similar for the Chebyshev II. The

specs are:

A = 10
K1 / 20

= 0.94406

B = 10
K2 / 20

= 0.0031622

The sampling time, T, is not specified. Since this is impulse invariant design, T should be very

small – the smaller the better. Strictly for convenience we shall use T = 1 sec., and convert the

digital specs to analog using the relation ω= ΩT.

A = 10
K1 / 20

= 0.94406

B = 10
K2 / 20

= 0.0031622

ω1 = 0.24 rad., K1 = –0.5 dB →

ω2 = 0.35 rad., K2 = –50 dB →

Ω1 = ω1/T = 0.24 rad/sec, K1 = –0.5 dB →

Ω2 = ω2/T = 0.35 rad/sec, K2 = –50 dB →

 cosh

 1 ()

Ω

The magnitude (absolute value) characteristic is diagrammed below.

|H(jΩ)|

1

N = unknown

(Shown for N = 5)

A = 10K1 / 20

B = 10K2 / 2

0 Ω1 =

0.24

Ω

Ω2 =

0.35

The Chebyshev I filter order is given by

cosh

−1

10−K2 /10 −1
cosh−1 10−(−50) /10 −1 −1 100000 −1

 10−K1 /10 −1

N = =
10−(−0.5) /10 −1 =

 0.35
−
100.05 −1

cosh 1.4583

=
cosh

−1
819539.96

=
cosh

−1
(905.28)

= 7.5014

cosh
−1 (1.4583) cosh

−1 (1.4583) 0.9242 = 8.117 = 9

Determine the poles and transfer function H(s), h(t), h(n), and H(z).

The Elliptic (or Cauer) filter

An approximation to the ideal low-pass characteristic, which, for a given order of filter, has an

even smaller transition band than the Chebyshev filter, can be obtained in terms of Jacobi elliptic

sine functions. The resulting filter is called an elliptic filter. The magnitude characteristic of the

elliptic filter has ripples in both the pass band and the stop band.

|H(jΩ)|2
N is odd

1

N = 5

|H(jΩ)|2

1

N is even

N = 6

1/(1+ε2) 1/(1+ε2)

0
Ω

0

c Ωc
Ω

0

 cosh
−1

2

−

cosh

1

 1 0.24

 UNIT-3

 FIR digital filters

Characteristics of FIR digital filters, Frequency response, Design of FIR digital filters using

Window techniques, Frequency sampling technique, Comparison of IIR and FIR filters.

Contents:

FIR – Recapitulation

Characteristics if FIR digital filters

Frequency response

Design of FIR digital filters – The Fourier series and windowing method

Choosing between FIR and IIR filters

Relationship of the DFT to the z-transform

H(z) =
i = 0

FIR - Recapitulation

Nomenclature With a0 = 1 in the linear constant coefficient difference equation,
a0 y(n) + a1 y(n–1) + … + aN y(n–N)

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0 0
we have,

M

biz −i

N

1 + ai z
−i

i =1

This represents an IIR filter if at least one of a1 through aN is nonzero, and all the roots of the
denominator are not canceled exactly by the roots of the numerator. In general, there are M finite
zeros and N finite poles. There is no restriction that M should be less than or greater than or equal
to N. In most cases, especially digital filters derived from analog designs, M ≤ N. Systems of this

type are called Nth order systems. This is the case with IIR filter design.

When M > N, the order of the system is no longer unambiguous. In this case, H(z) may be

taken to be an Nth order system in cascade with an FIR filter of order (M – N).
When N = 0, as in the case of an FIR filter, according to our convention the order is 0.

However, it is more meaningful in such a case to focus on M and call the filter an FIR filter of M

stages or (M+1) coefficients.

Example The system H(z) = (1− z
−8

) (1− z
−1

) is an FIR filter. Why (verify)?

An FIR filter then has only the “b” coefficients and all the “a” coefficients (except a0

which equals 1) are zero. An example is the three-term moving average filter y(n) = (1/3) x(n) +
(1/3) x(n–1) + (1/3)x(n–2). In general the difference equation of an FIR filter can be written

M

y(n) = br x(n − r) = b0x(n) + b1 x(n–1) + … + bM x(n–M) → (1)
r = 0

There are (M + 1) coefficients; some use only M coefficients. This equation describes a

nonrecursive implementation. Its impulse response h(n) is made up of the coefficients {br} =
{b0, b1, …, bM}

h(n) = bn, for 0 n M = {b0, b1, …, bM}
0, elsewhere

Equivalently, the finite length impulse response can also be written in the form of a weighted

sum of functions as was done in Unit I
 for example, x(n) =

x(k) (n − k)

 k = −
M

h(n) = br (n − r) = b0 (n) + b1(n–1) + … + bM (n–M)
r = 0

The difference equation (1) is also equivalent to a direct convolution of the input and the

impulse response:
M M

y(n) = br x(n − r) = b(r)x(n − r)
r = 0 r = 0

where we have written br as b(r), i.e., the subscript in br is written as an index in b(r).

The transfer function H(z) of the FIR filter can be obtained either from the difference

equation or from the impulse response h(n):

H(z) =
M

n = 0

h(n)z
−n

= b + b z
−1

+ b z
−2

+ ... + b z
− M

0 1 2 M

b z
M

+ b z
M −1

+ ... + b z
1
+ b

= 0 1 M −1 M
 b z M

b b
b z

M
+ 1 z

M −1
++

M −1 z1 + M

0 b
b b

= 0 0 0
z M

The transfer function has M nontrivial zeros and an Mth order (trivial) pole at z = 0. This is

considered as an all-zero system.

We may obtain the frequency response H (e
j

) or H() of the FIR filter either from H(z)
as

H (e
j

) = H (z)
z =e j

or, from the impulse response, h(n), as the discrete-time Fourier transform (DTFT) of h(n):
H (e

j
) = h(n) e

− j n
= M − j n + b e

− j
+ b e

− j 2
+ ... + b e− jM

b e = b
n 0 1 2 M

n =− n = 0

The inverse DTFT of H(ω) is of course the impulse response, given by
1

h(n) = H () e
j n

d
2 −

The basic design problem is to determine the impulse response h(n), or, the coefficients

br, for r = 0 to M, required to achieve a desired H(). These coefficients are of course the
constants that appear in the numerator of the transfer function H(z). The various transformations
used in IIR filter design cannot be used here since they usually yield IIR functions, i.e., with both
numerator and denominator coefficients.

Characteristics of FIR digital filters

Illustration The equations of the three-term moving average filter are repeated below
x(n) + x(n −1) + x(n − 2)

y(n) =
3

 Y (z)
= H(z) =

1+ z −1 + z−2

X (z)
− j

3
− j 2 − j j − j

H (e
j

) =
1 + e + e

=
e (e + 1 + e)

=
1 + 2 cos

 e
− j

3 3 3

This is a crude low pass filter with linear phase, H () = –ω.

%Magnitude and phase response of 3-coefficient moving average filter

%Filter coefficients: h(n) = {1/3, 1/3, 1/3}

b3=[1/3, 1/3, 1/3],

a=[1]

w=-pi: pi/256: pi;

Hw3=freqz(b3, a, w);
subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude');
xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

1

0.5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

Normalized frequency We define the r = ω/π. As ω goes from – to the variable r goes from

–1 to 1. This corresponds to a frequency range of –Fs/2 to Fs/2 Hz. In terms of the normalized
frequency the frequency response of the three-term moving average filter becomes

H(r) =
1 + e − j r + e− j 2 r

3

%Magnitude and phase response of 3-coefficient moving average filter

%Filter coefficients: h(n) = {1/3, 1/3, 1/3}

subplot(2,1,1); fplot('abs((1/3)*(1+exp(-j*pi*r)+exp(-j*2*pi*r)))', [-1, 1], 'k');

legend ('Magnitude');

xlabel('Normalized frequency, r'); ylabel('Magnitude of H(r)'); grid

subplot(2,1,2);fplot('angle((1/3)*(1+exp(-j*pi*r)+exp(-j*2*pi*r)))', [-1, 1], 'k');

legend ('Phase');

xlabel('Normalized frequency');ylabel('Phase of H(r)'); grid

 Phase

Magnitude

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

-4 -3 -2 -1 0 1 2 3 4

 Frequency , rad/sample

1

0.5

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized frequency, r

4

2

0

-2

-4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized frequency

Phase

M
a

g
n
it
u
d
e

 o
f
H

(r
)

P
h
a
s
e
 o

f
H

(r
)

Magnitude

We illustrate below the characteristics of several types of FIR filter. The filter length N

may be an odd (preferred) or an even number. Further, we are typically interested in linear phase.

This requires the impulse response to have either even or odd symmetry about its center.

Example 4.2.1 Find the frequency response of the following FIR filters

A. h(n) = {0.25, 0.5, 0.25} Even symmetry

B. h(n) = {0.5, 0.3, 0.2} No symmetry

C. h(n) = {0.25, 0.5, –0.25} No symmetry

D. h(n) = {0.25, 0, –0.25} Odd symmetry

Solution

(A) The sequence h(n) = {0.25, 0.5, 0.25} has even symmetry.

%Magnitude and phase response of h(n) = {0.25, 0.5, 0.25}

%Filter coefficients – Even symmetry

b3=[0.25, 0.5, 0.25],

a=[1]

w=-pi: pi/256: pi;

Hw3=freqz(b3, a, w);

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Phase = -\omega');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

1

0.5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Magnitude

Phase = -

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

(B) The sequence h(n) = {0.5, 0.3, 0.2}is not symmetric.

%Magnitude and phase response of h(n) = {0.5, 0.3, 0.2}

%Filter coefficients – No symmetry

b3=[0.5, 0.3, 0.2],

a=[1]

w=-pi: pi/256: pi;

Hw3=freqz(b3, a, w);

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Nonlinear Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

1

0.8

0.6

0.4

0.2

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

1

0.5

0

-0.5

-1

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Magnitude

Nonlinear Phase

P
h
a
s
e
 o

f
H

(
)

M
a

g
n
it
u
d
e

 o
f
H

(
)

(C) The sequence h(n) = {0.25, 0.5, –0.25} is not symmetric.

%Magnitude and phase response of h(n) = {0.25, 0.5, –0.25}

%Filter coefficients – This is not odd symmetry

b3=[0.25, 0.5, -0.25],

a=[1]

w=-pi: pi/256: pi;

Hw3=freqz(b3, a, w);

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Nonlinear Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

0.9

0.8

0.7

0.6

0.5

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

(D) The sequence h(n) = {0.25, 0, –0.25} has odd symmetry.

%Magnitude and phase response of h(n) = {0.25, 0, –0.25}

%Filter coefficients – This is odd symmetry

b3=[0.25, 0, -0.25],

a=[1]

w=-pi: pi/256: pi;

Hw3=freqz(b3, a, w);
subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Phase = -\omega + \pi/2 ');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

Magnitude

Nonlinear Phase

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

2

1

0

-1

-2

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Frequency response

Realization of linear phase FIR filters An important special subset of FIR filters has a linear

phase characteristic. Linear phase results if the impulse response is symmetric about its center.

For a causal filter whose impulse response begins at 0 and ends at N–1, this symmetry is

expressed thus

Even: h(n) = h(N–1–n), for n = 0, 1,…, (N–1) – a total of N points

Odd: h(n) = – h(N–1–n), for n = 0, 1,…, (N–1) – a total of N points

This symmetry allows the transfer function to be rewritten so that only half the number of

multiplications is required for the resulting realization.

Linear phase – phase and delay distortion Assume a low pass filter with frequency response

H (e
j

) given by

H (e
j

) = 1 e
− j k

, |ω| < ωc

0, ωc < |ω| < π

where k is an integer. This is a linear phase filter with the slope of the phase “curve” in the pass

band being –k. Let X (e
j

) represent the Fourier transform of an input sequence x(n). Then the

transform of the output sequence y(n) is given byY (e
j

)= X (e
j

) . H (e
j

) . If X (e
j

) is entirely

within the pass band of H (e
j

) then

Y (e
j

)= X (e
j

) . e
− j k

Magnitude

Phase = - + /2

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

So the output signal y(n) can be obtained as the inverse F-transform of Y (e
j

) as

y(n) = x(n–k), a delayed version of x(n)

ω
–ωc ωc

ω

Thus the linear phase filter did not alter the shape of the original signal, simply translated

(delayed) it by k samples. If the phase response had not been linear, the output signal would have

been a distorted version of x(n).

It can be shown that a causal IIR filter cannot produce a linear phase characteristic and

that only special forms of causal FIR filters can give linear phase.

Theorem If h(n) represents the impulse response of a discrete time system, a necessary and

sufficient condition for linear phase is that h(n) have a finite duration N, and that it be symmetric

about its midpoint.

Example 4.3.1 (a) For the FIR filter of length N = 7 with impulse response h(n) let h(n) = h(N–

1–n). Show that the filter has a linear phase characteristic. (b) Repeat for N = 8.

n

Solution (a) For N = 7, the positive symmetry relation h(n) = h(N–1–n) leads to h(n) = h(6–n)

which means that h(0) = h(6), h(1) = h(5), and h(2) = h(4), as shown in figure above.

|H|

1

h(n)

1 5

0 2 3 4 6
N–1

–kω
H

6

H(z) = h(n)z
−n

n = 0

and H (e
j

) = H (z)

z = e

6

j = h(n)e
− j n

n = 0

H (e
j

) = h(0) + h(1) e
− j

+ h(2) e
− j 2

+ h(3)e
− j3

+ h(4) e
− j 4

+ h(5)e
− j5

+ h(6) e
− j 6

= e
− j3

{ h(0)e
j3

+ h(1)e
j 2

+ h(2)e
j

+ h(3)

+ h(4)e
− j

+ h(5) e
− j 2

+ h(6)e
− j3

}

Since h(0) = h(6), etc., we can write

H (e
j

) = e
− j3

{ h(0)(e
j3

+ e
− j3

)+ h(1)(e
j 2

+ e
− j 2

)+ h(2)(e
j

+ e
− j

) + h(3) }

= e
− j3

{ 2h(0) cos 3 + 2h(1)cos 2 + 2h(2)cos + h(3) }

= a(3) = a(2) = a(1) = a(0)
3

= e
− j3 a(k) cos k , with a(0) = h(3) and a(k) = 2h(3–k), k = 1, 2, 3

k = 0

The coefficients, in general, are given by
 N − 1 N −1

a(0) = h and a(k) = 2h − k , for k = 1, 2, ..., (N–1)/2
 2 2

j3

H (e
j

) = ± H (e
j

)

3

ejH (e
)
= e

− j3 a(k) cos k
k = 0

where ± H (e
j

) = a(k) cos k and H (e
j

) = Θ(ω) = –3ω. The phase response is obviously
k = 0

linear, with slope = –3 = – (N– 1)/2 which means that the delay is an integer number of samples.

Slope = –3

H(ω) or Θ(ω)

(b) For N = 8, the positive symmetry relation h(n) = h(N–1–n) leads to h(n) = h(7–n), which

means h(0) = h(7), h(1) = h(6), h(2) = h(5), and h(3) = h(4) as shown in figure below.

n

h(n)

1 6

0 2 3 4 5 7
N–1

7

H(z) = h(n)z
−n

n = 0

and H (e
j

) = H (z)

z = e

7

j = h(n)e
− j n

n = 0

H (e
j

) = h(0) + h(1) e
− j

+ h(2) e
− j 2

+ h(3)e
− j3

+ h(4) e
− j 4

+ h(5)e
− j5

+ h(6) e
− j 6

+ h(7)e
− j 7

= e
− j 7 / 2

{ h(0)e
j 7 / 2

+ h(1) e
j5 / 2

+ h(2) e
j3 / 2

+ h(3)e
j / 2

+ h(4) e
− j / 2

+ h(5) e
− j3 / 2

+ h(6)e
− j5 / 2

+ h(7)e
− j 7 / 2

}

Since h(0) = h(7), etc., we can write

H (e j) = e− j 7 / 2 { h(0)(e j 7 / 2 + e− j 7 / 2) + h(1) (e j5 / 2 + e− j5 / 2)

+ h(2)(e
j3 / 2

+ e
− j3 / 2

) + h(3)(e
j / 2

+ e
− j / 2

)}
 7 5 3

= e
− j 7 / 2

2h(0) cos + 2h(1) cos + 2h(2) cos + 2h(3) cos

 2 2 2 2

= b(4) = b(3) = b(2) = b(1)

With b(k) = 2h((N/2) – k), for k = 1, 2, …, N/2, we can write
4

= e
− j 7 / 2 b(k) cos[(k − 1/ 2)

k = 1

4

where ± H (e
j

) = b(k) cos[(k −1/ 2)] and H (e
j

) = Θ(ω) = –7ω/2. The phase, H (e
j

) ,
k = 1

is clearly linear. However, the slope of the phase curve is (–7/2), which is not an integer. The

non-integer delay will cause the values of the sequence to be changed, which, in some cases,

may be undesirable.

Slope = –7/2

H(ω) or Θ(ω)

] H (e
j

) = ± H (e
j

) e jH (ej)

()

 N

n = 0

h 1 z

Implementation For a causal filter whose impulse response has even symmetry:

h(n) = h(N–1–n), for n = 0, 1,…, (N–1) – a total of N points

N −1

the transfer function H(z) = ʓ{h(n)} = h(n)z
−n

can be written, depending on whether N is
n = 0

even or odd, as follows.

For even N The difference equation is derived starting from H(z),

(N / 2) − 1

H(z) =
 h(n) (z −n + z −(N −1−n))

Since Y(z) = H(z) X(z), we can write

 (N / 2) − 1

Y(z) =
 h(n) z

−n
+ z

−(N −1−n)
 X(z)

 n = 0

= h(0)(1+ z
−(N −1))X (z) + h(1)(z−1

+ z
−(N −2))X (z)

 − −1 N

+ … +
N

−

2 +

 2

Taking the inverse z-transform of the above we get y(n) as

y(n) = h(0)x(n) + x(n − N −1)+ h(1)x(n −1) + x(n − N − 2)
 N N N

+…+ h 2 −1x n − 2 −1 + x n − 2

The delayed versions of x(n) are added in pairs and then multiplied by coefficients h(.). This is

shown in figure below for N = 8. Note that there are an odd number (= 7) of delay elements.

There are N/2 = 4 multiplications and (N/2) + 1 = 4 + 1 = 5 adders (actually the number of two-

operand additions is 4 + 3 = 7).

Figure for N = 8

x(n)

x(n–1) x(n–2) x(n–3) x(n–4) x(n–5) x(n–6)

z–1

x(n–7)

+

h(0) = h(7)

h(1) = h(6)

+
y(n)

h(2) = h(5)
+

+

h(3) = h(4)

+

z–1 z–1 z–1 z–1 z–1 z–1

z − 2 X(z)

For odd N We need not derive the equations (they would be necessary if we were writing a

computer program to automate it). For N = 7, there are N – 1 = 6 delay elements – an even number

of delay elements. There are (N + 1)/2 = (7 + 1)/2 = 4 multiplications and 4 adders (the number of

two-operand additions is 6).

x(n)

Figure for N = 7

x(n–1) x(n–2) x(n–3) x(n–4) x(n–5) x(n–6)

+

h(0) = h(6)

h(1) = h(5)

+

h(2) = h(4) +

+

y(n)

h(3)

Properties of FIR digital filters The sinusoidal steady state transfer function of a digital filter is

periodic in the sampling frequency. We have

H (e
j

) = H(z)
z = e j = h(n)e

− j n

n = −

in which h(n) represents the terms of the unit pulse response. The above expression can be

decomposed into real and imaginary components by writing

H (e
j

) = h(n) cos n – j h(n) sin n = HR(ω) + j HI(ω)
n = − n = −

where the real and imaginary parts of the transfer function are given by

HR(ω) = h(n) cos n
n = −

and HI(ω) = – h(n) sin n
n = −

These expressions for HR(ω) and HI(ω) show that

1. HR(ω) is an even function of frequency and HI(ω) is an odd function of
frequency.

2. If h(n) is an even sequence, the imaginary part of the transfer function, HI(ω),
will be zero. (The even sequence, h(n), multiplied by the odd sequence sin ωn
will yield an odd sequence. An odd sequence summed over symmetric limits
yields zero.) In this case

H (e
j

) = h(n) cos n = HR(ω)
n = −

3. Similarly, if h(n) is an odd sequence, the real part of the transfer function,
HR(ω), will be zero

H (e
j

) = – j h(n) sin n = j HI(ω)
n = −

z–1 z–1 z–1 z–1 z–1 z–1

π/2

–π π

–π/2

Thus an even unit pulse response yields a real-valued transfer function and an odd unit
pulse response yields on imaginary-valued transfer function. Recall that a real transfer function

has a phase shift of 0 or radians, while an imaginary transfer function has a phase shift of

 / 2 radians as shown in figures below. So, by making the unit pulse response either even or

odd, we can generate a transfer function that is either real or imaginary.

h(n) (Odd)

n n

Θ(ω) Θ(ω)

–π π

Two types of applications In designing digital filters we are usually interested in one of the

following two situations:

1. Filtering We are interested in the amplitude response of the filter (e.g., low

pass, band pass, etc.) without phase distortion. This is realized by using a real

valued transfer function, i.e., H (e
j

) = HR(ω), with HI(ω) = 0.

2. Filtering plus quadrature phase shift These applications include integrators,

differentiators, and Hilbert transform devices. For all of these the desired

transfer function is imaginary, i.e., H (e
j

) = j HI(ω), with HR(ω) = 0

FIR Filter Design Procedure

1. Decide whether HR(ω) or HI(ω) is to be set equal to zero. Typically,

• Hd(ω) = HR(ω) + j 0 for filtering, and

• Hd(ω) = 0 + j HI(ω) for integrators, differentiators and Hilbert
transformers

2. Expand Hd(ω) into Fourier series hd(n). This is the desired impulse response.
3. Decide on the length N of the impulse response duration. Truncate the

sequence hd(n) to N samples {ht(n), n = – (N–1)/2 to (N–1)/2}. Even values of
N result in delays of half-sample periods; odd values of N avoid this problem.

4. Apply window function {w(n), n = – (N–1)/2 to (N–1)/2}

5. Find the transfer function H(z) = z–(N–1)/2 Ht(z) and the frequency response
H(ω). If not satisfactory the value of N may have to be increased or a different
window function may be tried.

Phase delay and group delay If we consider a signal that consists of several frequency

components (such as a speech waveform or a modulated signal) the phase delay of the filter is

Θ(ω) = 0

h(n) (Even)

the amount of time delay each frequency component of the signal suffers in going through the

filter. Mathematically, the phase delay τp is given by secant
()

τp = −

The group delay on the other hand is the average time delay the composite signal suffers at each
frequency. The group delay τg is given by the slope (tangent) at ω

d()
τg = −

d
where Θ(ω) = H (e

j
) of the filter.

A nonlinear phase characteristic will cause phase distortion, which is undesirable in many

applications, for example, music, data transmission, video and biomedicine.

A filter is said to have a linear phase response if its phase response satisfies one of the

following relationships:

Θ(ω) = – kω → (A) or Θ(ω) = β – kω → (B)

where k and β are constants. If a filter satisfies equation (A) its group delay and phase delay are

the same constant k. It can be shown that for condition (A) to be satisfied the impulse response of

the filter must have positive symmetry (aka even symmetry or just symmetry). The phase

response in this case is simply a function of the filter length N:

h(n) = h(N–1–n), n = 0, 1, 2, …, (N–1)/2 for N odd

n = 0, 1, 2, …, (N/2) – 1 for N even

k = (N–1)/2

If equation (B) is satisfied the filter will have a constant group delay only. In this case, the

impulse response h(n) has negative symmetry (aka odd symmetry or antisymmetry):

h(n) = – h(N–1–n)

k = (N–1)/2

β = /2

Analog filter background of phase and group delay Phase delay “at a given frequency” is the

slope of the secant line from dc to the particular frequency and is a sort of overall average delay

parameter. Phase delay is computed over the frequency range representing the major portion of

the input signal spectrum (0 to F1 in the figure below).

− H (F)

F1

Tangent at F1
Slope = group delay at F1

Phase curve

Secant at F1
Slope = phase delay over 0 to F1

F

The group delay at a given frequency represents the slope of the tangent line at the
particular frequency and represents a local or narrow range (neighborhood of F1 in the figure)
delay parameter.

A case of significance involving both phase delay and group delay is that of a narrow

band modulated signal. When a narrow band modulated signal is passed through a filter, the

carrier is delayed by a time equal to the phase delay, while the envelope (or intelligence) is

delayed by a time approximately equal to the group delay. Since the intelligence (modulating

signal) represents the desired information contained in such signals, strong emphasis on good

group delay characteristics is often made in filters designed for processing modulated

waveforms.

h

Summary of symmetry

Positive symmetry (or just “symmetry” or even symmetry about the middle) is characterized

by h(n) = h(N–1–n). Show that for positive symmetry
(N −1) / 2

a) For N odd (Type I): H (e j) = e− j (N −1) / 2 a(k) cos k
k = 0

 N − 1 N −1
a(0) = h & a(k) = 2h − k , k ≠ 0

 2 2
N / 2

b) For N even (Type II): H (e
j

) = e
− j (N −1) / 2 b(k) cos[(k −1/ 2)]

k = 1

b(k) = 2
 N

− k

 2

n

0 6
N–1

n

7

N–1

h(n) Type II
N is even

Center of Symmetry

h(n) Type I
N is odd

Center of Symmetry

0

h(n) Type IV
N is even

Center of Symmetry

7
N–1

0

h

Summary of symmetry, cont’d

Negative symmetry (or “antisymmetry” or odd symmetry about the middle) is characterized

by h(n) = – h(N–1–n). Show that for negative symmetry
− j

N −1
− (N −1) / 2

a) For N odd (Type III): H (e
j

)= e 2 2 a(k)sin k
k = 0

 N − 1 N −1
a(0) = h & a(k) = 2h − k , k ≠ 0

 N −1

 2 2
− j − N / 2

b) For N even (Type IV): H (e
j

) = e 2
 2 b(k)sin[(k −1/ 2)]

k = 1

b(k) = 2
 N

− k

 2

n n

h(n) Type III
N is odd

Center of Symmetry

6
N–1

0

z e 5

Qualitative nature of symmetry

Type I Positive symmetry, N is odd. To illustrate take N = 5:
(N −1) / 2 2

H (e j) = e− j (N −1) / 2 a(k) cos k = e
− j 2 a(k) cos k

k = 0 k = 0

= e
− j 2

[a(0) + a(1) cos ω + a(2) cos 2ω]

We have to add up a(0), and the two cosine terms. It is clear that at ω = 0 all the cosine terms are

at their positive peak, so that when added the response of H (e
j

) vs. ω would indicate a low

pass filter. Consider

x(n) + x(n −1) + x(n − 2) + x(n − 3) + x(n − 4)

y(n) =
5

H (e
j

) = H (z) 1+ e
− j + e− j 2 + e− j3 + e− j 4

=
= j

 e j 2 + e j + 1 + e− j + e− j 2 1+ 2cos + 2cos 2

= e− j 2 = e
− j 2

 5 5

%Frequency response of moving average filter h(n) = {0.2, 0.2, 0.2, 0.2, 0.2}

b5 = [0.2, 0.2, 0.2, 0.2, 0.2], a = [1]

w=-pi: pi/256: pi; Hw5=freqz(b5, a, w);

subplot(2, 1, 1), plot(w, abs(Hw5)); legend ('Magnitude'); title ('Type I, N is odd');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw5)); legend ('Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

Type I, N is odd

1

0.5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Magnitude

Phase

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

=

Type II Positive symmetry, N is even. Take N = 6:
N / 2 3

H (e
j

) = e
− j (N −1) / 2 b(k) cos[(k −1/ 2)] = e

− j5 / 2 b(k) cos[(k −1/ 2)]
k = 1 k = 1

= e
− j5 / 2

[b(1) cos ω/2 + b(2) cos 3ω/2 + b(3) cos 5ω/2]

At =, corresponding to half the sampling frequency (maximum possible frequency), all the

cosine terms will be zero. Thus this type of filter is unsuitable as a high-pass filter. It should be
ok as a low pass filter. Consider

y(n) =
 x(n) + x(n −1) + x(n − 2) + x(n − 3) + x(n − 4) + x(n − 5)

6

H (e
j

) = H (z) 1 + e
− j + e− j 2 + e− j3 + e− j 4 + e− j5

=
z = e j

6

e
− j (5/ 2) e j (5 / 2) + e j (3/ 2) + e j (1/ 2) + e− j (1/ 2) + e− j (3/ 2) + e− j (5 / 2)

 6

 cos(/ 2) + cos(3 / 2) + cos(5 / 2) e− j (5/ 2)

=
 3

%Frequency response of moving average filter h(n) = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

b6 = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6], a = [1]

w=-pi: pi/256: pi; Hw6=freqz(b6, a, w);

subplot(2, 1, 1), plot(w, abs(Hw6)); legend ('Magnitude');

title ('Type II, N is even');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw6)); legend ('Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

Type II, N is even

1

0.5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Magnitude

Phase

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

k = 0

h

Type III Negative symmetry, N is odd. This introduces a 900 (= π/2) phase shift. Because of the

sine terms |H| is always zero at ω = 0 and at ω = π/2 (half the sampling frequency). Therefore the

filter is unsuitable as a low pass or a high pass filter. To illustrate take N = 5 and

h(n) = {0.2, 0.2, 0, -0.2, -0.2}
− j

N −1
− (N −1) / 2 − j

 5−1

−
 (5−1) / 2

H (e
j

)= e 2 2 a(k)sin k = e 2

k = 0

2 a(k) sin k
k = 0

2

= e− j 2+ j (/ 2) a(k) sin k
 N − 1

a(0) = h

= h(2) = 0
2

a(k) = 2
 N −1

− k

= 2h(2 − k), k ≠ 0

 2

Etc.

%Frequency response of Type III filter, h(n) = {0.2, 0.2, 0, -0.2, -0.2}

b5 = [0.2, 0.2, 0, -0.2, -0.2], a = [1]

w=-pi: pi/256: pi; Hw5=freqz(b5, a, w);

subplot(2, 1, 1), plot(w, abs(Hw5)); legend ('Magnitude');

title ('Type III, N is odd');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw5)); legend ('Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

Type III, N is odd

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Magnitude

Phase

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

−
2

Type IV Negative symmetry, N is even. This introduces a 900 (= π/2) phase shift. Because of the

sine terms |H| is always zero at ω = 0. Therefore the filter is unsuitable as a low pass filter. To

illustrate take N = 6 and

h(n) = {1/6, 1/6, 1/6, -1/6, -1/6, -1/6}
− j

 N −1 N / 2

− j

 6−1

 6 / 2

H (e
j

) = e

2 2 b(k)sin[(k −1/ 2)] = e
k = 1
3

 −
 2 b(k) sin[(k −1/ 2)]

k = 1

Etc.

= e
− j3+ j (/ 2) b(k) sin[(k −1/ 2)]

k = 1

and b(k) = 2h(3 − k), k = 1 to 3

%Frequency response of Type IV filter h(n) = {1/6, 1/6, 1/6, -1/6, -1/6, -1/6}

b6 = [1/6, 1/6, 1/6, -1/6, -1/6, -1/6], a = [1]

w=-pi: pi/256: pi; Hw6=freqz(b6, a, w);

subplot(2, 1, 1), plot(w, abs(Hw6)); legend ('Magnitude');

title ('Type IV, N is even');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw6)); legend ('Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

Type IV, N is even

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Types III and IV are often used to design differentiators and Hilbert transformers because of

the 900 phase shift that each one can provide.

Magnitude

Phase

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

sin nc

 n

c ,

|Hd(ω)| Hd(ω) = 0

1

d

The phase delay for Type I and II filters or group delay for all four types of filters is

expressible in terms of the number of coefficients of the filter and so can be corrected to give a

zero phase or group delay response.
 N − 1

Types I and II: τp = τg = –Θ(ω)/ω = T
 2

d() N − 1
Types III and IV: τg = − = T

d 2

 Magnitude (|H(ω)|) response at

ω = 0 rad. ω = π rad.

Type I Max Low pass

Type II Zero OK as LP
Not OK as HP filter

Type III Zero Zero 900 Phase shift

Type IV Zero 900 Phase shift

Design of FIR digital filters – The Fourier series and windowing method

This method of filter design originates with the observation that the sinusoidal steady state

transfer function of a digital filter is periodic in the sampling frequency. Since H() is a

continuous and periodic function of we can expand it into a Fourier series. The resulting
Fourier coefficients are the impulse response, h(n). The major disadvantage is that one cannot
easily specify in advance the exact values for pass band and stop band attenuation/ripple levels,
so it may be necessary to check several alternate designs to get the required one.

Consider the ideal low pass filter with frequency response H (e
j

) or

below. The subscript d means that it is the desired or ideal filter.

Hd () as shown

–2π

–π –ωc

ω

0 ωc π 2π

The impulse response is given by 1

(e
j

) e
j n

d =
1 c

j n
hd(n) = Hd 1e d

2 − 2 − c

= , – ∞ n ∞, n ≠ 0

n = 0

d

d

d

This is a non-causal infinite impulse response sequence. It is made a finite impulse response
sequence by truncating it symmetrically about n = 0; it is made causal by shifting the truncated
sequence to the right so that it starts at n = 0. The shifting results in a time delay and we shall
ignore it for now. The truncation results in the sequence ht(n) where the subscript t means
truncation but we shall ignore the subscript

h(n) = hd(n), – (N–1)/2 n (N–1)/2

0, otherwise

In general h(n) can be thought of as obtained by multiplying hd(n) with a window function w(n)
as follows

h(n) = hd(n) . w(n)

For the h(n) obtained by simple truncation as above the window function is a rectangular

window given by

w(n) = 1, – (N–1)/2 n (N–1)/2

0, otherwise

Let H (e
j

) , H (e
j

) and W (e
j

) represent the Fourier transforms of h(n), hd(n) and w(n)

respectively. Then the frequency response H (e j) of the resulting filter is the convolution of

H (e j) and W (e j) given by

H (e
j

) =
1

 H (e
j

)W (e
j (−)

d = H (e
j

)*W (e
j

)

d d

2 −

The convolution produces a smeared version of the ideal low pass filter. In other words,
H (e

j
) is a smeared version of H (e j) . In general, the wider the main lobe ofW (e j) , the

d

more spreading or smearing, whereas the narrower the main lobe (larger N), the closer

H (e
j

) comes to H (e
j

) .

For any arbitrary window the transition band of the filter is determined by the width of

the main lobe of the window. The side lobes of the window produce ripples in both pass band

and stop band.

. We are
phase dis

se of the
a real

W (e j)

Hd (e)
j

|Hd(ω)|

1

In general, we are left with a trade-off of making N large enough so that smearing is minimized,

yet the number of filter coefficients (= N) is not too large for a reasonable implementation. Some

commonly used windows are the rectangular, Bartlett (triangular), Hanning, Hamming,

Blackman, and Kaiser windows.

n ω

n ω

h(n) = hd(n).w(n) H (e j)

We turn now to filtering applications n interested in the amplitude respon ω
filter (e.g., low pass, band pass, etc.) without tortion. This is realized by using

valued transfer function, i.e., H (e
j

) = HR(ω), with HI(ω) = 0.

Example 4.4.1 [Design of 9-coefficient LP FIR filter] Design a nine-coefficient (or 9-point or

9-tap) FIR digital filter to approximate an ideal low-pass filter with a cut-off frequency c= 0.2.

The magnitude response, Hd () , is given below. Take Hd () = 0.

–π –π/5 0 π/5 π ω, rad/sample

Solution The impulse response of the desired filter is

w(n)

hd(n)

 n

= = =

 1

(e
j

) e
j n

d =
1 0.2

j n

hd(n) = Hd

2 −

 0.2 j

j 0.2 n

2
− j 0.2 n

1.e d
− 0.2

1 e (e − e) sin 0.2 n
2 jn −0.2 2 jn n

Since hd(n) ≠ 0 for n < 0 this is a noncausal filter (also, it is not BIBO stable – see Unit IV). The
rest of the design is aimed at coming up with a noncausal approximation of the above impulse
response.

For a rectangular window of length 9, the corresponding impulse response is obtained by
evaluating hd(n) for –4 n 4 on a calculator. In the MATLAB segment below, which
generates the hd(n) coefficients for –50 n 50, division by zero for n = 0 causes “NaN” (Not
a Number), while all the other coefficients are correct. In generating the frequency

response H () we copy and paste all the coefficients except for hd(0) which is entered by hand.

d (sin 0.2 n)

hd(0) = dn

d (n)

dn

n = 0

=
0.2 cos 0.2 n

n = 0

= 0.2

Aside (MATLAB) The segment below generates and stem-plots the hd(n) coefficients.

%Calculate hdn = (sin (0.2*pi*n)) / (pi*n) and stem plot

n = -50: 50, hdn = (sin(0.2*pi*n)) ./(pi*n), stem(n, hdn)

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (sin (0.2*pi*n)) / (pi*n)')

n = -50 to 50

Warning: Divide by zero.

hdn = -0, -0.0038, -0.0063, -0.0064, -0.0041, 0, 0.0043 0.0070 0.0072,

0.0046 -0, -0.0048 -0.0080 -0.0082 -0.0052 0, 0.0055 0.0092, 0.0095
0.0060 -0, -0.0065 -0.0108 -0.0112 -0.0072 0, 0.0078, 0.0132 0.0138

0.0089 -0, -0.0098 -0.0168 -0.0178 -0.0117 0, 0.0134 0.0233 0.0252
0.0170 -0, -0.0208 -0.0378 -0.0432 -0.0312, 0, 0.0468 0.1009 0.1514

0.1871 NaN 0.1871 0.1514 0.1009, 0.0468 0.0000 -0.0312 -0.0432

-0.0378 -0.0208 -0.0000 0.0170 0.0252, 0.0233 0.0134 0.0000 -0.0117

-0.0178 -0.0168 -0.0098 -0.0000 0.0089, 0.0138 0.0132 0.0078 0.0000

-0.0072 -0.0112 -0.0108 -0.0065 -0.0000, 0.0060 0.0095 0.0092 0.0055

0.0000 -0.0052 -0.0082 -0.0080 -0.0048, -0.0000 0.0046 0.0072 0.0070
0.0043 0.0000 -0.0041 -0.0064 -0.0063, -0.0038 -0.0000

0.2

0.15

0.1

0.05

0

hd(n) = (sin (0.2*pi*n)) / (pi*n)

-0.05
-50 -40 -30 -20 -10

0 10 20 30 40 50

n

Note 1 The segment below is used to get a quick look at the hd(n) coefficients and their
symmetry. The MATLAB problem with n = 0 may be avoided by replacing n with (n – 0.001).
This will affect the other coefficients very slightly (which is not a serious problem as far as
demonstrating the even symmetry of hd(n)) but the accuracy of the coefficients is somewhat
compromised in the third or fourth significant digit.

%Calculate hdn = (sin (0.2*pi*n)) / (pi*n) and stem plot

n = -4: 4, hdn = (sin(0.2*pi*(n-0.001))) ./(pi*(n-0.001)), stem(n, hdn),

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (sin (0.2*pi*n)) / (pi*n)')

hdn = 0.0467, 0.1009, 0.1513, 0.1871, 0.2, 0.1871, 0.1514, 0.1010, 0.0468

h
d
(n

)

hd(n) = (sin (0.2*pi*n)) / (pi*n)
0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
-4 -3 -2 -1 0 1 2 3 4

n

Note 2 As an alternative to the above, one could write a custom program to calculate all
coefficients exactly including hd(0).
End of Aside

The values are shown in table below:

n = –4 –3 –2 –1 0 1 2 3 4

ht(n) = {0.047, 0.101, 0.151, 0.187, 0.2, 0.187, 0.151, 0.101, 0.047}

By a rectangular window of length 9 we mean that we retain the above 9 values of hd(.)

and truncate the rest outside the window. Thus

ht(–4) = 0.047, ht(–3) = 0.101, …, ht(0) = 0.2, …, ht(4) = 0.047

n

hd(n)

0.2

0.047

–6 6

–5 0 5

h
d
(n

)

– 4ω

j=

The transfer function of this filter is

Ht(z) = 4

n =− 4

hd (n)z
−

n = 0.047 z
4
+ 0.101 z

3
+ 0.151 z

2
+ 0.187 z

1
+ 0.2 z

0

+ 0.187 z
−1

+ 0.151 z
−2

+0.101 z
−3

+ 0.047 z
−4

The causal filter is then given by delaying the sequence ht(n) by 4 samples. That is, h(n) = ht(n–
4), and the resulting transfer function is

H(z) = z–4 Ht(z)

= 0.047 (1+ z
−8

) + 0.101 (z
−1

+ z
−7

) + 0.151 (z
−2

+ z
−6

)

+ 0.187 (z
−3

+ z
−5

) + 0.2 z
−4

We may obtain the frequency response of this realizable (causal) filter by setting z = e
j

,

that is, H (e
j

) = H (z) . Because of the truncation the magnitude |H| will only be
z e

approximately equal to |Hd| – Gibbs phenomenon, see comparison of 9 coefficients versus 101

coefficients below. Further, because of the delay the phase H = –4ω whereas, as originally
dH ()

specified, Hd = 0. The slope

samples.

= –4, showing that the filter introduces a delay of 4
d

H

ω

%Magnitude and phase response of 9-coefficient LP filter

%Filter coefficients

b9=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468],

a=[1]

w=-pi: pi/256: pi;

Hw9=freqz(b9, a, w);

subplot(2, 1, 1), plot(w, abs(Hw9)); legend ('9 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw9)); legend ('9 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

1.5

1

0.5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

9 coefficients

9 coefficients

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

9 coefficients

101 coefficients

%Comparison of 9 coefficients vs. 101 coefficients

%Filter coefficients

b9=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468],

a=[1]

b101 = [-0.0 -0.0038 -0.0063 -0.0064 -0.0041 0.0, 0.0043 0.0070 0.0072

0.0046 -0.0, -0.0048 -0.0080 -0.0082 -0.0052 0.0, 0.0055 0.0092,

0.0, 0.0468 0.1009 0.1514 0.1871 0.2 0.1871 0.1514 0.1009 0.0468

0.0 -0.0312 -0.0432 -0.0378 -0.0208 -0.0 0.0170 0.0252, 0.0233

0.0134 0.0 -0.0117 -0.0178 -0.0168 -0.0098 -0.0 0.0089, 0.0138

w=-pi: pi/256: pi;

Hw9=freqz(b9, a, w);

Hw101=freqz(b101, a, w);

plot(w, abs(Hw9), w, abs(Hw101), 'k')

legend ('9 coefficients', '101 coefficients');

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

Magnitude Response

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Rectangular window In this example the sequence hd(n), which extends to infinity on both
sides, has been truncated to 9 terms. This truncation process can be thought of as multiplying the

M
a

g
n
it
u
d
e

 o
f
H

(
)

0.0095 0.0060 -0.0, -0.0065 -0.0108 -0.0112 -0.0072 0.0, 0.0078

0.0132 0.0138 0.0089 -0.0, -0.0098 -0.0168 -0.0178 -0.0117 0.0,

0.0134 0.0233 0.0252 0.0170 -0.0, -0.0208 -0.0378 -0.0432 -0.0312

0.0132 0.0078 0.0 -0.0072 -0.0112 -0.0108 -0.0065 -0.0, 0.0060

0.0095 0.0092 0.0055 0.0 -0.0052 -0.0082 -0.0080 -0.0048, -0.0

0.0046 0.0072 0.0070 0.0043 0.0 -0.0041 -0.0064 -0.0063, -0.0038 -

0.0]

infinitely long sequence by a window function called the rectangular window, wR(n). The figure
below shows both hd(n) and wR(n) in the undelayed form, that is, symmetrically disposed about n
= 0.

Specifying the window function The interval over which the window function is defined

hd(n)

 –6 6

n

–5 0 5

n

–6 –5 0 5 6

depends on whether we first delay hd(n) and then truncate it or the other way around. If, instead
of truncating first and then delaying, we adopt the procedure of first delaying hd(n) and then
truncating it, the window function may be defined over the interval 0 n N–1, where N is the
number of terms retained. With this understanding the rectangular window, wR(n), is given
below.

wR(n) = 1, 0 n N–1

0, elsewhere

If, however, we define wR(n) symmetrically about n = 0, as we do later, we have

wR(n) = 1, – (N–1)/2 n (N–1)/2

0, elsewhere

In this case we have implied that N is odd.

wR(n)

1

Hamming window As an alternative to the rectangular window we shall apply the Hamming

window, defined over the interval 0 n N–1, by

wHam(n) = 0.54 – 0.46 cos[2 n /(N −1)] , 0 n N–1
0, elsewhere

For N = 9, the Hamming window is given by wHam(n) = 0.54 – 0.46 cos(n / 4) , 0 n 8

n = 0 1 2 3 4 5 6 7 8

wHam(n) = {0.08, 0.215, 0.54, 0.865, 1, 0.865, 0.54, 0.215, 0.08}

n

Imagine that we line up this sequence alongside the hd(n) given earlier. (This means we should
imagine wHam(n) is moved to the left by 4 samples). We then multiply the two sequences at each
point to get the windowed sequence, ht(n):

n = –4 –3 –2 –1 0 1 2 3 4

hd(n) = {0.047, 0.101, 0.151, 0.187, 0.2, 0.187, 0.151, 0.101, 0.047}
w(n) = {0.08, 0.215, 0.54, 0.865, 1, 0.865, 0.54, 0.215, 0.08}
ht(n) = {0.00382, 0.0216, 0.0815, 0.1617, 0.2, 0.1617, 0.0815, 0.0216, 0.00382}

The transfer function is given by

Ht(z) = 0.00382 z
4
+ 0.0216 z

3
+ 0.0815 z

2
+ 0.1617 z

1
+ 0.2 + 0.1617 z

−1

+ 0.0815 z
−2

+ 0.0216 z
−3

+ 0.00382 z
−4

Delaying by 4 sample periods we get

H(z) = z–4 Ht(z) = 0.00382 (1+ z
−8

) + 0.0216 (z
−1

+ z
−7

) + 0.0815 (z
−2

+ z
−6

)

+ 0.1617 (z
−3

+ z
−5

) + 0.2 z–4

HW Write the corresponding difference equation and show the filter structure.

We compare below the 9-tap Hamming windowed filter to the filter without the window.

%Comparison of no window vs. Hamming window

%Nine-tap filter coefficients, no window

b9=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468],

%

%Nine-tap, Hamming-windowed filter coefficients

wHam(n) 1

0.08

0 1 2 3 4 5 6 7 8

9 coefficients, No window

9 coefficients, Hamming window

b9Ham=[0.00382, 0.0216, 0.0815, 0.1617, 0.2, 0.1617, 0.0815, 0.0216, 0.00382]

a=[1]

w=-pi: pi/256: pi;

Hw9=freqz(b9, a, w);

Hw9Ham=freqz(b9Ham, a, w);

plot(w, abs(Hw9), w, abs(Hw9Ham), 'k')

legend ('9 coefficients, No window', '9 coefficients, Hamming window');

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

Magnitude Response

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Example 4.4.2 [Low pass filter] [2003] Design a low pass FIR filter that approximates the

following frequency response

H(F) = 1, 0 F 1000 Hz

0, elsewhere in 0 F Fs/2

where the sampling frequency Fs is 8000 sps. The impulse response duration is to be limited to
 msec. Draw the filter structure.

Solution Note the specs are given in Hertz. On the digital frequency scale goes from 0 to 2,

with 2 corresponding to the sampling frequency of Fs = 8000 Hz or to s = 2 8000 rad/sec.

Based on this 1000 Hz corresponds to (1/8)2 = /4. Or we may use the relation = T to
convert the analog frequency 1000 Hz to the digital frequency. Thus

 = T = 2F T = 2 1000(1/8000) = /4

Thus the specifications are restated on the ω scale as

M
a

g
n

it
u
d
e

 o
f
H

(
)

d

H (e
j

) = 1, –/4 /4

0, elsewhere in the range [– to]

F

ω

0 π/4 π 2π

We can evaluate the impulse response
1

1 H (e
j

) e
j n

d = / 41.e
j n

d = 1 ej n / 4
 hd(n) =

2

 d
 2

 2 jn
− − / 4 − / 4

(e
j n / 4

− e− j n / 4) =

= sin 0.25 n

2 jn n

We need to decide the number of coefficients, that is, the filter length, needed. The

problem specifies the impulse response duration is to be limited to 2.5 msec. At 8000

n

samples/sec., the sampling period T = 1/8000 = 0.125 msec. So the duration of 2.5msec translate

to 2.5/0.125 = 20 sample periods. Arranging these on a linear scale we see that the filter length N

= 21 or we need 21 coefficients. Therefore determine the values hd(–10) through hd(10),
sin 0.25 n

ht(n) = , –10 n 10
 n

ht(0) = 0.25 by L’Hopital’s rule

%Calculate hdn = (sin (0.25*pi*n)) / (pi*n) and stem plot

n = -50: 50, hdn = (sin(0.25*pi*n)) ./(pi*n), stem(n, hdn)

n = -50 to 50

Warning: Divide by zero.

h(n)

0 20
N–1

2.5 msec (21 Points)

|H(F)| or |Hd(ω)|

1

–1k 0 1k 4k 8k

Take Hd(ω) = 0

hdn = [0.0064 0.0046 -0.0000 -0.0048 -0.0069 -0.0050 0.0000 0.0052

0.0076 0.0055 -0.0000 -0.0058 -0.0084 -0.0061 0.0000 0.0064
0.0094 0.0068 -0.0000 -0.0073 -0.0106 -0.0078 0.0000 0.0083

0.0122 0.0090 -0.0000 -0.0098 -0.0145 -0.0107 0.0000 0.0118

0.0177 0.0132 -0.0000 -0.0150 -0.0227 -0.0173 0.0000 0.0205

0.0318 0.0250 -0.0000 -0.0322 -0.0531 -0.0450 0.0000 0.0750

0.1592 0.2251 NaN 0.2251 0.1592 0.0750 0.0000 -0.0450 -

0.0531 -0.0322 -0.0000 0.0250 0.0318 0.0205 0.0000 -0.0173 -
0.0227 -0.0150 -0.0000 0.0132 0.0177 0.0118 0.0000 -0.0107

-0.0145 -0.0098 -0.0000 0.0090 0.0122 0.0083 0.0000 -0.0078 -
0.0106 -0.0073 -0.0000 0.0068 0.0094 0.0064 0.0000 -0.0061 -

0.0084 -0.0058 -0.0000 0.0055 0.0076 0.0052 0.0000 -0.0050 -

0.0069 -0.0048 -0.0000 0.0046 0.0064]

n = 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10

ht(n) = 0.25 0.2251 0.1592 0.075 0 -0.045 0.0531 -0.0322 0 0.025 0.0318

10

Then take the z transform Ht(z) = h (t n)z
−n

. Then determine the transfer function, H(z), of the
n =−10

realizable FIR filter as H(z) = z –10 Ht(z) from which the filter structure can be drawn. The
frequency response is compared below for 21 and 101 coefficients. The 21-tap filter is not that
bad.

%21-tap filter coefficients

b21=[0.0318 0.0250 -0.0000 -0.0322 -0.0531 -0.0450 0.0000 0.0750

0.1592 0.2251 0.25 0.2251 0.1592 0.0750 0.0000 -0.0450 -0.0531

-0.0322 -0.0000 0.0250 0.0318],

a=[1]

%101-tap filter coefficients

b101=[0.0064 0.0046 -0.0000 -0.0048 -0.0069 -0.0050 0.0000 0.0052

0.0076 0.0055 -0.0000 -0.0058 -0.0084 -0.0061 0.0000 0.0064
0.0094 0.0068 -0.0000 -0.0073 -0.0106 -0.0078 0.0000 0.0083

0.0122 0.0090 -0.0000 -0.0098 -0.0145 -0.0107 0.0000 0.0118

0.0177 0.0132 -0.0000 -0.0150 -0.0227 -0.0173 0.0000 0.0205
0.0318 0.0250 -0.0000 -0.0322 -0.0531 -0.0450 0.0000 0.0750

0.1592 0.2251 0.25 0.2251 0.1592 0.0750 0.0000 -0.0450 -0.0531

-0.0322 -0.0000 0.0250 0.0318 0.0205 0.0000 -0.0173 -0.0227 -
0.0150 -0.0000 0.0132 0.0177 0.0118 0.0000 -0.0107 -0.0145 -

0.0098 -0.0000 0.0090 0.0122 0.0083 0.0000 -0.0078 -0.0106 -

0.0073 -0.0000 0.0068 0.0094 0.0064 0.0000 -0.0061 -0.0084 -

0.0058 -0.0000 0.0055 0.0076 0.0052 0.0000 -0.0050 -0.0069 -
0.0048 -0.0000 0.0046 0.0064],

w=-pi: pi/256: pi;

Hw21=freqz(b21, a, w);

Hw101=freqz(b101, a, w);

plot(w, abs(Hw21), w, abs(Hw101), 'k')

legend ('21 coefficients', '101 coefficients');

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)');

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4

Magnitude Response

-3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Example 4.4.3 [Very narrow band pass filter] [2003] Design a band pass FIR filter that

approximates the following frequency response:

H(F) = 1, 160 F 200 Hz

0, elsewhere in 0 F Fs/2

when the sampling frequency is 8000 sps. Limit the duration of impulse response to 2 msec.

Draw the filter structure.

Solution The sampling frequency Fs = 8000 Hz corresponds to ω = 2 rad. Thus

160 Hz corresponds to ω = (160/8000)2 = 0.04 rad., and

200 Hz corresponds to ω = (200/8000)2 = 0.05 rad.

|Hd(ω)|

ω

1

–π –0.05π –0.04π 0 0.04π 0.05π π

Take Hd(ω) = 0

21 coefficients

101 coefficients
M

a
g
n
it
u
d
e

 o
f
H

(
)

d

H (e
j

) = 1, – 0.05 ω – 0.04 and 0.04 ω 0.05

0, elsewhere in the range [– to]
1

1 −0.04 0.05

j j n hd(n) = H (e) e d = 1e
j n

d + 1e
j n

d d

2
2 − −0.05 0.04

 1 e j n −0.04
= +

 e j n

2
jn −0.05 jn 0.04

=
 1 (e− j 0.04 n − e− j 0.05 n)+ (e j 0.05 n − e j 0.04 n) j2

(ne − e) (e − e)

=
1

j 0.05 n − j 0.05 n − j 0.04 n − j 0.04 n

 n j2 j2

sin 0.05 n − sin 0.04 n
=

 n

n

Filter length N is determined by the duration of the impulse response. Two milliseconds

corresponds to 0.002 / (1/8000) = 16 sample periods. This means that the filter length N = 17,

and there will be 17 coefficients. Determine the values of hd(n) for –8 n 8, so that

ht(n) = { hd (–8), hd (–7), …, hd (0), …, hd (8) }, and
8

Ht(z) = h t(n)z
−n

n = −8

Delay the impulse response by 8 sample periods so that

h(n) = ht(n–8) and H(z) = z –8 Ht(z)

hd(0) = 0.01 by L’Hopital’s rule

%Calculate hdn = (sin(0.05*pi*n) - sin(0.04*pi*n)) /(pi*n) and stem plot

n = -50: 50, hdn = (sin(0.05*pi*n) - sin(0.04*pi*n)) ./(pi*n), stem(n, hdn)

n = -50 to 50

Warning: Divide by zero.

hdn =[0.0064 0.0072 0.0080 0.0085 0.0089 0.0092 0.0092 0.0091

0.0087 0.0082 0.0076 0.0067 0.0058 0.0047 0.0035 0.0022 0.0009
-0.0005 -0.0018 -0.0031 -0.0044 -0.0056 -0.0066 -0.0076 -0.0084 -
0.0090 -0.0095 -0.0097 -0.0098 -0.0097 -0.0094 -0.0088 -0.0082 -

h(n)

0 16
N–1

2 msec (17 Points)

0.0073 -0.0063 -0.0052 -0.0039 -0.0026 -0.0012 0.0002 0.0016

0.0029 0.0042 0.0055 0.0066 0.0076 0.0084 0.0091 0.0096 0.0099

NaN 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042

0.0029 0.0016 0.0002 -0.0012 -0.0026 -0.0039 -0.0052 -0.0063 -
0.0073 -0.0082 -0.0088 -0.0094 -0.0097 -0.0098 -0.0097 -0.0095 -

0.0090 -0.0084 -0.0076 -0.0066 -0.0056 -0.0044 -0.0031 -0.0018 -

0.0005 0.0009 0.0022 0.0035 0.0047 0.0058 0.0067 0.0076 0.0082

0.0087 0.0091 0.0092 0.0092 0.0089 0.0085 0.0080 0.0072

0.0064]

n = 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8

hd(n) = 0.01 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042

The frequency responses 17-tap and 101-tap filters are shown below. The 17-tap filter

looks more like a low pass filter! Owing to the very narrow pass band a very large number of

coefficients is needed before the pass band becomes discernible. In general FIR filters are

characterized by a large number of coefficients compared to IIR filters.

%Filter coefficients

b17=[0.0042 0.0055 0.0066 0.0076 0.0084 0.0091 0.0096 0.0099
0.01 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042],

a=[1]
b101=[0.0064

0.0072

0.0080

0.0085

0.0089

0.0092

0.0092

0.0091

0.0087 0.0082 0.0076 0.0067 0.0058 0.0047 0.0035 0.0022 0.0009

-0.0005 -0.0018 -0.0031 -0.0044 -0.0056 -0.0066 -0.0076 -0.0084 -

0.0090 -0.0095 -0.0097 -0.0098 -0.0097 -0.0094 -0.0088 -0.0082 -

0.0073 -0.0063 -0.0052 -0.0039 -0.0026 -0.0012 0.0002 0.0016
0.0029 0.0042 0.0055 0.0066 0.0076 0.0084 0.0091 0.0096 0.0099

0.01 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042
0.0029 0.0016 0.0002 -0.0012 -0.0026 -0.0039 -0.0052 -0.0063 -

0.0073 -0.0082 -0.0088 -0.0094 -0.0097 -0.0098 -0.0097 -0.0095 -

0.0090 -0.0084 -0.0076 -0.0066 -0.0056 -0.0044 -0.0031 -0.0018 -

0.0005 0.0009 0.0022 0.0035 0.0047 0.0058 0.0067 0.0076 0.0082

0.0087 0.0091 0.0092 0.0092 0.0089 0.0085 0.0080 0.0072

0.0064]

w=-pi: pi/256: pi; Hw17=freqz(b17, a, w); Hw101=freqz(b101, a, w);

subplot(2, 1, 1), plot(w, abs(Hw17)); legend ('17 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, abs(Hw101)); legend ('101 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

0.2

0.15

0.1

0.05

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Example 4.4.4 [Band pass filter] [2003] Design a band pass filter to pass frequencies in the

range 1 to 2 rad/sec using Hanning window with N = 5. Draw the filter structure and plot its

spectrum.

Solution The Hanning window is also known as the Hann window. It is a raised cosine, is very

similar to the Hamming window, and is given by

wHan(n) = 0.51− cos(2 n /(N −1)), 0 n N–1

0, elsewhere

Note In order to convert the analog frequencies to digital we need the sampling time T. The
sampling frequency Fs (or the sampling time T) is not specified. We assume T = 1 sec or, what
amounts to the same, we assume that the frequencies given are actually digital, that is, 1 to 2
rad/sample instead of 1 to 2 rad/sec. However, the solution below assumes that the frequencies

are given correctly, that is, that they are analog, and uses a sampling frequency of s = 4 rad /
sec.

Although there is a specialized version of the sampling theorem for band pass signals we
shall simply take the sampling frequency to be twice the highest frequency which is 2 rad / sec.

Thus we shall take s = 4 rad / sec. This then gives us a high pass filter rather a band pass.
However, if we take, say, s = 8 rad / sec., we shall have a band pass filter. We shall next

convert the analog frequency specs to digital ():

s = 4 rad / sec corresponds to = 2 rad

1 rad / sec corresponds to = 2/4 = /2 rad

2 rad / sec corresponds to = (2/4) 2 = rad

17 coefficients

101 coefficients

M
a

g
n
it
u
d
e

 o
f
H

(
)

M
a

g
n
it
u
d
e

 o
f
H

(
)

j=

Thus
Hd() = 1, – –/2 and /2

0, elsewhere in [–,]

|Hd(ω)|

–π –π/2

ω

0 π/2 π

Evaluate impulse response
h (n) = 1 H () e

j n
d = 1 − / 21 e j nd + 1 e j nd

d d

2 −
2 − / 2

= 1 e j n − / 2

+
 j n

 1 − j n / 2 − j n j n j n / 2

 e = (e − e)+ (e − e)
2

 jn − jn / 2
j2 n

 1 (e − e)

j n − j n

(e − e)
j n / 2 − j n / 2

sin(n) − sin(n / 2)

 n j2 j2 n

hd(0) = 0.5 by L’Hopital’s rule

Determine hd(n) for –2 n 2, so that

ht(n) = {hd(–2), hd(–1), hd(0), hd(1), hd(2)}

For N = 5 the Hanning window is given by

wHan(n) = 0.51− cos(2 n / 5 −1), 0 n 5 – 1

= 0.51− cos(n / 2), 0 n 4
Thus w(n) = {0, 0.5, 1, 0.5, 0}. Multiplying ht(n) and wHan(n) point by point we get

 h (−1) h (1)
ht(n) = ht(n) wHan(n) = 0, d , h (0), d , 0 and

 2
d

2
2

Ht(z) = h t(n)z
−n

n =− 2

Delay by 2 samples to get h(n) = ht(n–2) and H(z) = z–2 Ht(z). Now draw the direct form structure

for H(z). The spectrum is given by H (e
j

) = H (z) . We compare below filters lengths of 5
z e

and 101 without the Hanning window.

Generate filter coefficients:

%Calculate hdn = (sin(pi*n) - sin(pi*n/2)) /(pi*n) and stem plot

n = -50: 50, hdn = (sin(pi*n) - sin(pi*n/2)) ./(pi*n), stem(n, hdn)

1

Take Hd(ω) = 0

= − =

n = -50 to 50

Warning: Divide by zero.

hdn = [0.0000 -0.0065 -0.0000 0.0068 -0.0000 -0.0071 -0.0000 0.0074

0.0000 -0.0078 -0.0000 0.0082 -0.0000 -0.0086 -0.0000 0.0091
0.0000 -0.0096 -0.0000 0.0103 -0.0000 -0.0110 -0.0000 0.0118

0.0000 -0.0127 -0.0000 0.0138 -0.0000 -0.0152 -0.0000 0.0168 -

0.0000 -0.0187 -0.0000 0.0212 -0.0000 -0.0245 -0.0000 0.0289 -

0.0000 -0.0354 -0.0000 0.0455 -0.0000 -0.0637 -0.0000 0.1061 -

0.0000 -0.3183 NaN -0.3183 -0.0000 0.1061 -0.0000 -0.0637 -

0.0000 0.0455 -0.0000 -0.0354 -0.0000 0.0289 -0.0000 -0.0245 -

0.0000 0.0212 -0.0000 -0.0187 -0.0000 0.0168 -0.0000 -0.0152 -

0.0000 0.0138 -0.0000 -0.0127 0.0000 0.0118 -0.0000 -0.0110 -

0.0000 0.0103 -0.0000 -0.0096 0.0000 0.0091 -0.0000 -0.0086 -

0.0000 0.0082 -0.0000 -0.0078 0.0000 0.0074 -0.0000 -0.0071 -
0.0000 0.0068 -0.0000 -0.0065 0.0000]

Generate frequency responses:

%5-tap filter coefficients

b5=[0.0000 -0.3183 0.5 -0.3183 -0.0000],

a=[1]

%101-tap filter coefficients

b101=[0.0000 -0.0065 -0.0000 0.0068 -0.0000 -0.0071 -0.0000 0.0074

0.0000 -0.0078 -0.0000 0.0082 -0.0000 -0.0086 -0.0000 0.0091
0.0000 -0.0096 -0.0000 0.0103 -0.0000 -0.0110 -0.0000 0.0118

0.0000 -0.0127 -0.0000 0.0138 -0.0000 -0.0152 -0.0000 0.0168 -

0.0000 -0.0187 -0.0000 0.0212 -0.0000 -0.0245 -0.0000 0.0289 -
0.0000 -0.0354 -0.0000 0.0455 -0.0000 -0.0637 -0.0000 0.1061 -

0.0000 -0.3183 0.5 -0.3183 -0.0000 0.1061 -0.0000 -0.0637 -0.0000

0.0455 -0.0000 -0.0354 -0.0000 0.0289 -0.0000 -0.0245 -0.0000
0.0212 -0.0000 -0.0187 -0.0000 0.0168 -0.0000 -0.0152 -0.0000
0.0138 -0.0000 -0.0127 0.0000 0.0118 -0.0000 -0.0110 -0.0000

0.0103 -0.0000 -0.0096 0.0000 0.0091 -0.0000 -0.0086 -0.0000

0.0082 -0.0000 -0.0078 0.0000 0.0074 -0.0000 -0.0071 -0.0000
0.0068 -0.0000 -0.0065 0.0000],

w=-pi: pi/256: pi;

Hw5=freqz(b5, a, w);

Hw101=freqz(b101, a, w);

plot(w, abs(Hw5), w, abs(Hw101), 'k')

legend ('5 coefficients', '101 coefficients');

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

5 coefficients

101 coefficients

Magnitude Response
1.4

1.2

1

0.8

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

We compare below the frequency responses of the 5-tap filter with and without the

Hanning window. It can be seen that the Hanning window aggravates what is already a poor

(short) filter length. There may be more to gain by increasing the filter length than by

windowing.

Generate Hanning window:

%Generate Hanning window wn = 0.5*(1–cos(pi*n/2)) and stem plot

n = -2: 2, wn = 0.5*(1-cos(pi*n/2)), stem(n, wn)

n = -2 to 2

wn = 1.0000 0.5000 0 0.5000 1.0000

Generate frequency responses:

%5-tap filter coefficients

b5=[0.0000 -0.3183 0.5 -0.3183 -0.0000],

%Hanning window coefficients

wn = [1.0000 0.5000 0 0.5000 1.0000],

%Windowed coefficients

b5Han = b5 .*wn,

a=[1]

w=-pi: pi/256: pi;

Hw5=freqz(b5, a, w);

Hw5Han=freqz(b5Han, a, w);

plot(w, abs(Hw5), w, abs(Hw5Han), 'k')

legend ('5 coefficients, No window', '5 coefficients, Hanning window ');

M
a

g
n
it
u
d
e

 o
f
H

(
)

5 coefficients, No window

5 coefficients, Hanning window

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

Magnitude Response

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

M
a

g
n
it
u
d
e

 o
f
H

(
)

d

Example 4.4.5 [High pass filter] [2008] Design a high pass linear phase filter with frequency

response

H (e j) = 1 e− j3 , c

0, elsewhere in the range [– to]

The number of filter coefficients is N = 7 and c = /4. Use (a) rectangular window and (b)

Hamming window.

|Hd(ω)|

–π –π/4 0

Hd(ω)

ω

π/4 π

ω

1 H () e

j n
d = − / 4

 1 − j 3 j n
hd(n) = d

 1 1 e− j 3 e j nd + e

e d

2 −

− / 4

2 −

 / 4

=
1 e j (n−3) d + e j (n−3) d

2 − / 4

 j (n−3)

− / 4 j (n−3)

=
1

e

+

 e

2 j(n − 3) − j(n − 3) / 4

=
 1 (e− j (n−3) / 4 − e− j (n−3))+ (e j (n−3) − e j (n−3) / 4)

 j2 (n −

3() − e)

−
(e − e)

1 e
= j (n−3) − j (n−3)

j (n−3)/ 4 − j (n−3)/ 4

 (n − 3) j2 j2

sin((n − 3))− sin((n − 3) / 4)
=

 (n − 3)

1

–3ω

–π π

This sequence is centered at n = 3. Since the filter length is N = 7 we can calculate the 7
coefficients as {hd(n), 0 ≤ n ≤ 6}. In other words we truncate it outside the interval 0 ≤ n ≤ 6;
moreover, there is no need to right-shift the truncated sequence.

In general, one may not know the filter length with certainty and there is no special
advantage in specifying the phase, Hd(ω), as anything but zero. We calculate 101 coefficients

sin(n) − sin(n / 4)
of the sequence centered about n = 0, that is, hd(n) = :

 n

hd(0) = 0.75 by L’Hopital’s rule

% Generate hdn = (sin(pi*n) - sin(pi*n/4)) /(pi*n) and stem plot

n = -50: 50, hdn = (sin(pi*n) - sin(pi*n/4)) ./(pi*n), stem(n, hdn)

n = –50 to 50

Warning: Divide by zero.

hdn = [-0.0064 -0.0046 -0.0000 0.0048 0.0069 0.0050 -0.0000 -0.0052

-0.0076 -0.0055 -0.0000 0.0058 0.0084 0.0061 -0.0000 -0.0064 -
0.0094 -0.0068 -0.0000 0.0073 0.0106 0.0078 -0.0000 -0.0083 -

0.0122 -0.0090 -0.0000 0.0098 0.0145 0.0107 -0.0000 -0.0118 -

0.0177 -0.0132 -0.0000 0.0150 0.0227 0.0173 -0.0000 -0.0205 -

0.0318 -0.0250 -0.0000 0.0322 0.0531 0.0450 -0.0000 -0.0750 -

0.1592 -0.2251 NaN -0.2251 -0.1592 -0.0750 -0.0000 0.0450

0.0531 0.0322 -0.0000 -0.0250 -0.0318 -0.0205 -0.0000 0.0173

0.0227 0.0150 -0.0000 -0.0132 -0.0177 -0.0118 -0.0000 0.0107

0.0145 0.0098 -0.0000 -0.0090 -0.0122 -0.0083 -0.0000 0.0078

0.0106 0.0073 -0.0000 -0.0068 -0.0094 -0.0064 -0.0000 0.0061

0.0084 0.0058 -0.0000 -0.0055 -0.0076 -0.0052 -0.0000 0.0050

0.0069 0.0048 -0.0000 -0.0046 -0.0064]

7 coefficients

101 coefficients

The 7-tap and 101-tap filter responses are shown below

%7-tap filter coefficients

b7=[-0.0750 -0.1592 -0.2251 0.75 -0.2251 -0.1592 -0.0750],

a=[1]

%101-tap filter coefficients

b101=[-0.0064 -0.0046 -0.0000 0.0048 0.0069 0.0050 -0.0000 -0.0052

w=-pi: pi/256: pi;

Hw7=freqz(b7, a, w);

Hw101=freqz(b101, a, w);

plot(w, abs(Hw7), w, abs(Hw101), 'k')

legend ('7 coefficients', '101 coefficients');

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

Magnitude Response

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

M
a

g
n
it
u
d
e

 o
f
H

(
)

-0.0076 -0.0055 -0.0000 0.0058 0.0084 0.0061 -0.0000 -0.0064 -

0.0094 -0.0068 -0.0000 0.0073 0.0106 0.0078 -0.0000 -0.0083 -

0.0122 -0.0090 -0.0000 0.0098 0.0145 0.0107 -0.0000 -0.0118 -

0.0177 -0.0132 -0.0000 0.0150 0.0227 0.0173 -0.0000 -0.0205 -

0.0318 -0.0250 -0.0000 0.0322 0.0531 0.0450 -0.0000 -0.0750 -

0.1592 -0.2251 0.75 -0.2251 -0.1592 -0.0750 -0.0000 0.0450

0.0531 0.0322 -0.0000 -0.0250 -0.0318 -0.0205 -0.0000 0.0173

0.0227 0.0150 -0.0000 -0.0132 -0.0177 -0.0118 -0.0000 0.0107

0.0145 0.0098 -0.0000 -0.0090 -0.0122 -0.0083 -0.0000 0.0078

0.0106 0.0073 -0.0000 -0.0068 -0.0094 -0.0064 -0.0000 0.0061

0.0084 0.0058 -0.0000 -0.0055 -0.0076 -0.0052 -0.0000 0.0050

0.0069 0.0048 -0.0000 -0.0046 -0.0064],

|Hd(ω)|

1

+ e

|Hd(ω)|

1

–π
ω

0 π

Example 4.4.6 [Band-stop filter] Design a band-stop linear phase filter with the following

frequency response. The number of filter coefficients is N = 31.

–π –3π/4 –π/4 0 π/4 3π/4 π ω

1 H () e
j n

d =
−3 / 4

 j n
 / 41e

j n
d +

hd(n) =
2

d

 1 1e
2

d +
 1e j n

−

 j n

−3 / 4

 j n / 4

 −
j n

 − / 4 3 / 4

=
1

e

 +

e

2

= …

jn − jn − / 4 jn 3 / 4

Example 4.4.7 [Design of 9-coefficient narrow-band LP FIR filter] This is a repeat of

Example 2.1 with the bandwidth reduced to 0.02π. The band width is narrower by a factor of 10

from the band width in that example. The objective is to show that the narrower the band width

the larger the number of coefficients needed to achieve the specified frequency response.

Design a nine-coefficient (or 9-point or 9-tap) FIR digital filter to approximate an ideal

low-pass filter with a cut-off frequency c= 0.02. The magnitude response, Hd () , is given

below. Take Hd () = 0.

–0.02π 0.02π

Solution The impulse response of the desired filter is 1

(e
j

) e
j n

d =
1 0.0

2

 j n
hd(n) = Hd 1.e d

2 −
2

− 0.02

1 e j n

(e
j 0.02 n

− e− j 0.02 n)

sin 0.02 n

= = = jn
2 −0.02 2 jn n

hd(0) =

n = 0

0.02 cos 0.02 n
=

n = 0

= 0.02

The MATLAB calculation of coefficients follows (good for all n except 0 where we fill in the

value 0.02):

% Generate hdn = (sin (0.02*pi*n)) / (pi*n) and stem plot

n = -50: 50, hdn = (sin(0.02*pi*n)) ./(pi*n), stem(n, hdn)

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (sin (0.02*pi*n)) / (pi*n)')

n = -50 to 50

Warning: Divide by zero.

hdn = -0.0000 0.0004 0.0008 0.0013 0.0017 0.0022 0.0027 0.0032

0.0037 0.0042 0.0047 0.0052 0.0057 0.0063 0.0068 0.0074 0.0079
0.0085 0.0090 0.0095 0.0101 0.0106 0.0112 0.0117 0.0122 0.0127

0.0132 0.0137 0.0142 0.0147 0.0151 0.0156 0.0160 0.0164 0.0168

0.0172 0.0175 0.0178 0.0182 0.0184 0.0187 0.0190 0.0192 0.0194

0.0195 0.0197 0.0198 0.0199 0.0199 0.0200 NaN 0.0200 0.0199

0.0199 0.0198 0.0197 0.0195 0.0194 0.0192 0.0190 0.0187 0.0184

0.0182 0.0178 0.0175 0.0172 0.0168 0.0164 0.0160 0.0156 0.0151

0.0147 0.0142 0.0137 0.0132 0.0127 0.0122 0.0117 0.0112 0.0106

0.0101 0.0095 0.0090 0.0085 0.0079 0.0074 0.0068 0.0063 0.0057

0.0052 0.0047 0.0042 0.0037 0.0032 0.0027 0.0022 0.0017 0.0013
0.0008 0.0004 -0.0000

The following MATLAB plot of coefficients is good for all n except at n = 0.

d (sin 0.02 n)

 dn
d (n)

dn

-3

x 10
20

hd(n) = (sin (0.02*pi*n)) / (pi*n)

15

10

5

0

-5
-50 -40 -30 -20 -10 0 10 20 30 40 50

n

MATLAB plots of magnitude and phase response of the 9-coefficient narrower band LP filter

follow:

%Magnitude and phase response of 9-coefficient LP filter

%Filter coefficients

b9ex7= [0.0198 0.0199 0.0199 0.0200 0.02 0.0200 0.0199 0.0199 0.0198],

a=[1]

w=-pi: pi/256: pi;

Hw9ex7=freqz(b9ex7, a, w);

subplot(2, 1, 1), plot(w, abs(Hw9ex7)); legend ('9 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw9ex7)); legend ('9 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

h
d
(n

)

0.2

0.15

0.1

0.05

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

9 coefficients

9 coefficients

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

Ex1, 9 coefficients

Ex6, 9 coefficients

The MATLAB plots below enable us to compare (only visually) the magnitude responses

of the two 9-coefficient filters, the only difference being that Ex 1 has a band width of 0.2π while

Ex 2 is very narrow at 0.02π.

% Magnitude responses compared: Ex 1 and Ex 7 (9-coefficient LP filters)

%Filter coefficients

b9ex1=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468],

b9ex7= [0.0198 0.0199 0.0199 0.0200 0.02 0.0200 0.0199 0.0199 0.0198],

a=[1]

w=-pi: pi/256: pi;

Hw9ex1=freqz(b9ex1, a, w);

Hw9ex7=freqz(b9ex7, a, w);

plot(w, abs(Hw9ex1), w, abs(Hw9ex7), 'k')

legend ('Ex1, 9 coefficients', 'Ex7, 9 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

From the plots it clear that the narrow-band filter of Example 6 is no where near either the band

width or the gain specified. In contrast, the wider band width filter of Example 1 is relatively

much closer to specification.

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

M
a
g
n
it
u
d
e

 o
f
H

(
)

Ex1, 51 coefficients

Ex6, 51 coefficients

In the MATLAB plots below we have increased the number of coefficients to 51 for both

filters, the only difference being that Ex 1 has a band width of 0.2π while Ex 2 is very narrow at

0.02π.

% Magnitude responses compared: Ex 1 and Ex 7 (51-coefficient LP filters)

%Filter coefficients
b51ex1=[0.0, 0.0078 0.0132 0.0138 0.0089 -0.0, -0.0098 -0.0168 -
0.0178 -0.0117 0.0, 0.0134 0.0233 0.0252 0.0170 -0.0, -0.0208 -

0.0 0.0170 0.0252, 0.0233 0.0134 0.0 -0.0117 -0.0178 -0.0168 -

0.0098 -0.0 0.0089, 0.0138 0.0132 0.0078 0.0],

%

b51ex7= [0.0127 0.0132 0.0137 0.0142 0.0147 0.0151 0.0156

0.0160 0.0164 0.0168 0.0172 0.0175 0.0178 0.0182 0.0184 0.0187

0.0190 0.0192 0.0194 0.0195 0.0197 0.0198 0.0199 0.0199 0.0200

0.02 0.0200 0. 0199 0. 0199 0. 0198 0. 0197 0. 0195 0. 0194 0. 0192

0.0190 0.0187 0.0184 0.0182 0.0178 0.0175 0.0172 0.0168 0.0164

0.0160 0.0156 0.0151 0.0147 0.0142 0.0137 0.0132 0.0127],

a=[1]

w=-pi: pi/256: pi;

Hw51ex1=freqz(b51ex1, a, w); Hw51ex7=freqz(b51ex7, a, w);

plot(w, abs(Hw51ex1), w, abs(Hw51ex7), 'k')

legend ('Ex1, 51 coefficients', 'Ex7, 51 coefficients');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

From the plots it clear that the narrow-band filter of Example 6 still has a long way to go. In

contrast, the wider band width filter of Example 1 is almost there.

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

M
a

g
n
it
u
d
e

 o
f
H

(
)

0.0378 -0.0432 -0.0312 0.0, 0.0468 0.1009 0.1514 0.1871 0.2

0.1871 0.1514 0.1009 0.0468 0.0 -0.0312 -0.0432 -0.0378 -0.0208 -

d d

d d d

We turn now to filtering plus quadrature phase shift. These applications include

integrators, differentiators, and Hilbert transform devices. For all of these the desired transfer

function is imaginary, i.e., H (e
j

) = j HI(ω), with HR(ω) = 0

Example 4.4.8 [The ideal differentiator] In the analog situation the ideal differentiator is given

by the transfer function H(s) = s with the frequency response H(Ω) = jΩ, for 0 Ω . The

digital version of the ideal differentiator may be defined as

H (e
j

) or H () = jω, – ω

Note H () = jω = e
j / 2

has a magnitude of H () = , and a phase H () = / 2 (see

figure).

ω

ω

Since Hd () is periodic in ω with period 2, we can expand in into a Fourier series as

Hd () = hd

− j n

(n) e
n = −

where the Fourier coefficients hd(n) (the impulse response) are given by 1
j n

Substituting

hd(n) = Hd () e d
2 −

Hd () = jω, we get 1
j e

j n
d =

j

j n −

e j n

hd(n) = e 1. d

2 − 2
 jn

− − jn

|Hd(ω)|

π

–π π

–π

Hd(ω)

π/2

–π π

–π/2

 2

2

cos n

n

0,

 −

– =

=
j (e − (−)e) e

 j n − j n j n

2 jn (jn)
2
 −

= (e j n + e− j n) – j e j n − e− j n
 j 2 n2

 2n 2

cos n
=

n

sin n
 n2

sin n

cos n

n
– 0, n = non-zero integers

where we have used the fact that
 n2

= 0 for non-zero integer values of n. For n = 0 the value

of hd(0) is evaluated from the defining equation, viz.,
1 j

hd(0) = j e j 0 d = 1
 j d = = 0

Thus

2 −
2

− 2 −

hd(n)= , n = non-zero integers

n = 0

As a specific case choose a filter length N = 9 and evaluate hd(n) for –4 n 4.

%Ideal Differentiator

% Generate hdn = (cos(n*pi)) /(n) and stem plot

n = -50: 50, hdn = (cos(n*pi)) ./(n), stem(n, hdn)

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (cos(n*pi)) /(n)')

n = –50 to 50

Warning: Divide by zero.

hdn =[-0.0200 0.0204 -0.0208 0.0213 -0.0217 0.0222 -0.0227 0.0233

-0.0238 0.0244 -0.0250 0.0256 -0.0263 0.0270 -0.0278 0.0286 -

0.0294 0.0303 -0.0313 0.0323 -0.0333 0.0345 -0.0357 0.0370 -
0.0385 0.0400 -0.0417 0.0435 -0.0455 0.0476 -0.0500 0.0526 -

0.0556 0.0588 -0.0625 0.0667 -0.0714 0.0769 -0.0833 0.0909 -
0.1000 0.1111 -0.1250 0.1429 -0.1667 0.2000 -0.2500 0.3333 -

0.5000 1.0000 0 -1.0000 0.5000 -0.3333 0.2500 -0.2000 0.1667 -

0.1429 0.1250 -0.1111 0.1000 -0.0909 0.0833 -0.0769 0.0714 -
0.0667 0.0625 -0.0588 0.0556 -0.0526 0.0500 -0.0476 0.0455 -

0.0435 0.0417 -0.0400 0.0385 -0.0370 0.0357 -0.0345 0.0333
-0.0323 0.0313 -0.0303 0.0294 -0.0286 0.0278 -0.0270 0.0263 -

0.0256 0.0250 -0.0244 0.0238 -0.0233 0.0227 -0.0222 0.0217 -
0.0213 0.0208 -0.0204 0.0200]

We can see the odd symmetry of hd(n) from the following stem plot (note that the correct

value of hd(0) = 0; the MATLAB segment used here has hd(0) = ∞ which is not correct).

hd(n) = (cos(n*pi)) /(n)
1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
-50 -40 -30 -20 -10 0 10 20 30 40 50

n

The frequency response

%Ideal Differentiator

%9-tap filter coefficients

b9=[-0.2500 0.3333 -0.5000 1.0000 0 -1.0000 0.5000 -0.3333

0.2500],

a=[1]

%101-tap filter coefficients

b101=[-0.0200 0.0204 -0.0208 0.0213 -0.0217 0.0222 -0.0227 0.0233

-0.0238 0.0244 -0.0250 0.0256 -0.0263 0.0270 -0.0278 0.0286 -

0.5000 1.0000 0 -1.0000 0.5000 -0.3333 0.2500 -0.2000 0.1667 -

w=-pi: pi/256: pi;

Hw9=freqz(b9, a, w);

Hw101=freqz(b101, a, w);

plot(w, abs(Hw9), w, abs(Hw101), 'k')

legend ('9 coefficients', '101 coefficients');

h
d
(n

)

0.0294 0.0303 -0.0313 0.0323 -0.0333 0.0345 -0.0357 0.0370 -

0.0385 0.0400 -0.0417 0.0435 -0.0455 0.0476 -0.0500 0.0526 -

0.0556 0.0588 -0.0625 0.0667 -0.0714 0.0769 -0.0833 0.0909 -

0.1000 0.1111 -0.1250 0.1429 -0.1667 0.2000 -0.2500 0.3333 -

0.1429 0.1250 -0.1111 0.1000 -0.0909 0.0833 -0.0769 0.0714 -

0.0667 0.0625 -0.0588 0.0556 -0.0526 0.0500 -0.0476 0.0455 -

0.0435 0.0417 -0.0400 0.0385 -0.0370 0.0357 -0.0345 0.0333 -

0.0323 0.0313 -0.0303 0.0294 -0.0286 0.0278 -0.0270 0.0263 -

0.0256 0.0250 -0.0244 0.0238 -0.0233 0.0227 -0.0222 0.0217 -

0.0213 0.0208 -0.0204 0.0200],

π/2

–π π

–π/2
d

d

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

Magnitude Response

4

3.5

3

2.5

2

1.5

1

0.5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Example 4.4.9 [The Hilbert transformer] This is used to generate signals that are in phase
quadrature to an input sinusoidal signal (or, more generally, an input narrowband waveform).
That is, if the input to a Hilbert transformer is the signal xa(t) = cos Ω0t, the output is ya(t) = sin

Ω0t. The Hilbert transformer is used in communication systems in various modulation schemes.
The frequency response of the Hilbert transformer is (Figure)

H (e
j

) = – j sgn(), –

where the sgn(ω) is the signum function defined as

sgn(ω) = 1 if ω is positive

–1 if ω is negative

|Hd()|

Hd()

Since j = e

j / 2
we may also express

H (e
j

) also as

9 coefficients

101 coefficients

1

–π π

M
a

g
n
it
u
d
e

 o
f
H

(
)

e
j n

jn

d

d

hd(n) = Hd () e d = j e d + (− j) e d

hd(0) = Hd () e d = j1d + (− j)1d

H (e j) = – e j / 2 = –j = 1 at –/2, 0

e
j / 2

= j = 1 at /2, – 0

Note that the magnitude H (e
j

) = 1 for all ω and Hd() changes from /2 to –/2 at ω = 0.

The filter coefficients are the Fourier coefficients given by

1
j n 1 0

j n

 j n

2 −
2 − 0

 j n
0 (− j)

= 2
j

e
jn

−

2

 0

=
1 ((1− e

− j n
) −(e

j n
−1)) =

1 (2 − e

− j n − e j n)

2 n

2 − 2cos n
=

2 n
=

1− cos n

n

2 n

, n ≠ 0

For n = 0, hd(0) may be evaluated from the defining equation:

1
j 0 1 0

2 −

=
j (

0

2 − 0

)–
j (

)= 0

Thus

2 − 2 0

hd(n) = 2/n, n odd

0, n even (including 0)

As a specific case choose a filter length N = 9 and evaluate hd(n) for –4 n 4.

Generate the filter coefficients:

%Hilbert Transform

%Generate hdn = 2/(n*pi) for odd n & hdn = 0 for even n, and stem plot

n = -50: 50, hdn = 2 ./(n*pi), stem(n, hdn)

n = –50 to 50 (Entered hdn = 0 by hand for even n)

Warning: Divide by zero.

0

We copy and paste the above coefficients and do a stem plot:

%Hilbert Transform

+

hdn =[0 -0.0130 0 -0.0135 0 -0.0141 0 -0.0148 0 -0.0155 0 -
0.0163 0 -0.0172 0 -0.0182 0 -0.0193 0 -0.0205 0 -0.0220 0 -

0.0236 0 -0.0255 0 -0.0277 0 -0.0303 0 -0.0335 0 -0.0374 0 -
0.0424 0 -0.0490 0 -0.0579 0 -0.0707 0 -0.0909 0 -0.1273 0 -

0.2122 0 -0.6366 Inf 0.6366 0 0.2122 0 0.127 3 0 0.0909
0.0707 0 0.0579 0 0.0490 0 0.0424 0 0.0374 0 0.0335 0

0.0303 0 0.0277 0 0.0255 0 0.0236 0 0.0220 0 0.0205 0

0.0193 0 0.0182 0 0.0172 0 0.0163 0 0.0155 0 0.0148 0
0.0141 0 0.0135 0 0.0130 0]

%Stem plot hdn = 2/(n*pi) for odd n & hdn = 0 for even n

n = -50: 50,

hdn =[0 -0.0130 0 -0.0135 0 -0.0141 0 -0.0148 0 -0.0155 0 -0.0163

0 -0.0172 0 -0.0182 0 -0.0193 0 -0.0205 0 -0.0220 0 -0.0236 0 -

0.0255 0 -0.0277 0 -0.0303 0 -0.0335 0 -0.0374 0 -0.0424 0 -

0.0490 0 -0.0579 0 -0.0707 0 -0.0909 0 -0.1273 0 -0.2122 0 -
0.6366 0 0.6366 0 0.2122 0 0.1273 0 0.0909 0 0.0707 0
0.0579 0 0.0490 0 0.0424 0 0.0374 0 0.0335 0 0.0303 0

0.0277 0 0.0255 0 0.0236 0 0.0220 0 0.0205 0 0.0193 0

0.0182 0 0.0172 0 0.0163 0 0.0155 0 0.0148 0 0.0141 0

0.0135 0 0.0130 0],

stem(n, hdn)
xlabel('n'), ylabel('hd(n)'); grid;

title ('hd(n) = 2/(n*pi) for odd n & hdn = 0 for even n')

hd(n) = 2/(n*pi) for odd n & hdn = 0 for even n

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8
-50 -40 -30 -20 -10 0 10 20 30 40 50

n

Frequency response

%Hilbert Transform

%Comparison of 9 coefficients vs. 101 coefficients

%9-tap filter coefficients

b9=[0 -0.2122 0 -0.6366 0 0.6366 0 0.2122 0],

a=[1]

b101 =[0 -0.0130 0 -0.0135 0 -0.0141 0 -0.0148 0 -0.0155 0 -

0.2122 0 -0.6366 0 0.6366 0 0.2122 0 0.1273 0 0.0909 0

h
d
(n

)

0.0163 0 -0.0172 0 -0.0182 0 -0.0193 0 -0.0205 0 -0.0220 0 -

0.0236 0 -0.0255 0 -0.0277 0 -0.0303 0 -0.0335 0 -0.0374 0 -

0.0424 0 -0.0490 0 -0.0579 0 -0.0707 0 -0.0909 0 -0.1273 0 -

9 coefficients

101 coefficients

0.0707 0 0.0579 0 0.0490 0 0.0424 0 0.0374 0 0.0335 0

0.0303 0 0.0277 0 0.0255 0 0.0236 0 0.0220 0 0.0205 0

0.0193 0 0.0182 0 0.0172 0 0.0163 0 0.0155 0 0.0148 0

0.0141 0 0.0135 0 0.0130 0]

w=-pi: pi/256: pi;
Hw9=freqz(b9, a, w);

Hw101=freqz(b101, a, w);

plot(w, abs(Hw9), w, abs(Hw101), 'k')

legend ('9 coefficients', '101 coefficients');

title('Magnitude Response');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

Magnitude Response

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

M
a

g
n
it
u
d
e

 o
f
H

(
)

Window functions [Ref. S.K. Mitra] We want to see the frequency behavior of window
functions by themselves. Note that depending on convenience we shall define the window

functions either over – (N–1)/2 n (N–1)/2 or over 0 ≤ n ≤ (N–1). In the former case the
phase function will be zero; in the latter case, used especially in MATLAB, the phase has a
negative slope.

There are fixed windows and adjustable windows. Among the fixed windows we have (in
addition to the rectangular window) the following tapered windows:

1. Bartlett (triangular) window

2. Hann (aka Hanning or von Hann) window

3. Hamming window

4. Blackman window

These windows result in a fixed amount of ripple in the frequency response of the designed filter.

The Kaiser window is an adjustable window which allows some control over the ripple.

Bartlett: w(n) = 1−

N −1
, – (N–1)/2 n (N–1)/2

 2 n
Hann: w(n) = 0.5 + 0.5 cos , – (N–1)/2 n (N–1)/2

 N −1
 2 n

Hamming: w(n) = 0.54 + 0.46 cos , – (N–1)/2 n (N–1)/2
 N −1

 2 n 4 n
Blackman: w(n) = 0.42 + 0.5 cos + 0.08 cos , – (N–1)/2 n (N–1)/2

 N −1 N −1

2 n

The following MATLAB multiplot gives a graphical comparison of the above window

functions. Note that all are discrete sequences; to make it easy on the eyes some are plotted as

continuous lines and some as discrete.

%Window functions defined over n = –(N–1)/2 to (N–1)/2

N = 31; n = -(N-1)/2: (N-1)/2;

wR = n-n+1; %Rectangular

wBa = 1 - 2* abs(n)/(N-1); %Bartlett

wHn = 0.5 + 0.5 * cos(2*pi*n/(N-1)); %Hamming

wHm = 0.54 + 0.46 * cos(2*pi*n/(N-1)); %Hamming

wBl = 0.42 + 0.5 * cos(2*pi*n/(N-1)) + 0.08 * cos(4*pi*n/(N-1)); %Blackman

%Multiplot. All are discrete sequences.

%To make it easy on the eyes some are plotted with continuous lines.

plot (n, wR, 'o', n, wBa, 'b', n, wHn, 'k', n, wHm, 'b*', n, wBl, 'k--');

legend ('Rectangular', 'Bartlett', 'Hanning', 'Hamming', 'Blackman');

xlabel('n'), ylabel('w(n)'); grid; title ('Window functions')

1

0.9

0.8

0.7

Window functions

Rectangular

Bartlett

Hanning

Hamming

 Blackman

0.6

0.5

0.4

0.2

0.1

0
-15 -10 -5 0 5

n

10 15

w
(n

)

Blackman

%Window functions defined over n = –(N–1)/2 to (N–1)/2

N = 31; n = -(N-1)/2: (N-1)/2;

wHn = 0.5 + 0.5 * cos(2*pi*n/(N-1)); %Hanning

wHm = 0.54 + 0.46 * cos(2*pi*n/(N-1)); %Hamming

wBl = 0.42 + 0.5 * cos(2*pi*n/(N-1)) + 0.08 * cos(4*pi*n/(N-1)); %Blackman

%

subplot(3, 1, 1), stem(n, wHn); legend ('Hanning');

xlabel('n'), ylabel('w(n)'); grid

subplot(3, 1, 2), stem(n, wHm); legend ('Hamming');

xlabel('n'), ylabel('w(n)'); grid

subplot(3, 1, 3), stem(n, wBl); legend ('Blackman');

xlabel('n'), ylabel('w(n)'); grid

1

0.5

0
-15

1

0.5

0
-15

1

0.5

-10 -5 0

n

-10 -5 0

n

5 10 15

Hamming

5 10 15

0
-15 -10 -5 0

n

5 10 15

Hanning

w
(n

)
w

(n
)

w
(n

)

= 1e

The rectangular window defined over – (N–1)/2 n (N–1)/2 is given by

wR(n) = 1, –(N–1)/2 n (N–1)/2

0, elsewhere

Rectangular window w(n)

1

−
N −1

2

n

0 N − 1

2

%Rectangular window defined over n = –(N–1)/2 to (N–1)/2

% w(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

N = 11; n = -(N-1)/2: (N-1)/2; wn = n-n+1;

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid

1

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0
-5 -4 -3 -2 -1 0 1 2 3 4 5

n

The Fourier transform (spectrum) of the window is

W (e
j)= w(n)e

− j n

n = −

(N −1) / 2

− j n

n = −(N −1) / 2

w
(n

)

()

= 1e

j N −1 j N −1 − j N

 N −1 N −3 N −1
j j − j

= e
2 + e

 2 + … + e
j

+ 1 + e
− j

 + … + e 2

We can simplify the above in one of two ways. One possibility is W(e)= e
2

− j − j 2 − j (N −1) 2

1 − e

 (1+ e + e + ... + e) = e

1 − e

− j

N terms
j e− jN / 2 (e jN / 2 − e− j N / 2) = (e j N / 2 − e− jN / 2) = e 2

 ()

 N −1

 e
− j / 2 e j / 2 − e− j / 2

 (e j / 2 − e− j / 2)

=

Using L’Hopital’s rule,

W (e
j

)

sin (N / 2)

sin (/ 2)

(N / 2) cos (N / 2) = = N

 =0
(1/ 2) cos (/ 2) = 0

20 log10 W (e
j

) =0 = 20 log10 N

In frequency response plots this is normally regarded as a reference point, that is, as the 0 dB
level. That is, the expression for W e

j
is normalized by dividing it by its value at dc, N in this

case:

W (e
j)=

1 sin (N / 2)

N sin (/ 2)

The second method to simplify W (e
j) is to combine pairs of terms, one from each end

of the expression, into a cosine (or sine, in the case of odd symmetry):

W (e
j)= w(n)e

− j n

n = −
 N −1

(N −1) / 2

− j n

n = −(N −1) / 2
 N −3 N −1

j j − j

= e

2 + e 2 + … + e
j

 + 1 + e − j + … + e 2

= 1 + 2 cos ω + 2 cos 2ω + … + 2 cos
 N −1

 N −1
 2

This consists of 1 +

 terms and should be normalized by dividing by N.
2

Using the equation W (e
j)=

1

N

sin (N / 2)
, its zero-crossings occur when (N

sin (/ 2)

2) equals

integer multiples of π, that is,

(N 2) = ± kπ or ω = k(2π/N), k≠ 0

The spectrum between the zero-crossings at – (2π/N) and (2π/N) is called the main lobe, the

remaining lobes are called side lobes. The width of the main lobe is

Width of the main lobe = 2(2π/N) = 4π/N

Width of each side lobe = 2π/N

As the length of the window, N, is increased the lobes become narrower; also the height of the

main lobe increases (= N). However, with reference to the normalized frequency response

W (e
j)=

1

N

sin (N / 2)

sin (/ 2)

j

0
the height of the main lobe, W (e

j
) =, stays at 1 (or 0 dB) while the side lobes keep getting

smaller with increasing N.

In the MATLAB segment below the window is defined over 0 ≤ n ≤ (N–1) rather than
over – (N–1)/2 ≤ n ≤ (N–1)/2.

%Frequency response of rectangular window defined over n = 0 to N–1

% h(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

b11= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

a= [1]

w=-pi: pi/256: pi;

Hw11=freqz(b11, a, w);

subplot(2, 1, 1), plot(w, abs(Hw11)); legend ('Magnitude (Length = 11)');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

subplot(2, 1, 2), plot(w, angle(Hw11)); legend ('Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

Note in the plot below that the height of the main lobe is 11 (= N). The width of the main lobe is

taken as the separation between the zero crossings on either side of ω = 0:

Width of main lobe = 4π/N = 4π/11
From the plot, by eyeballing, we can gather:

1. For a given window length the side lobes have the same width.

2. For a given window length the magnitude of the side lobes decreases with

increasing frequency

15

10

5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Magnitude (Length = 11)

Phase

M
a

g
n
it
u
d
e

 o
f
H

(
)

P
h
a
s
e
 o

f
H

(
)

Normalized frequency r In the MATLAB segment below the window is defined over 0 ≤ n ≤

(N–1). Further we define the normalized frequency r = ω/π. As ω varies from –π to π the

normalized frequency varies from –1 to 1.

%Magnitude response of rectangular window defined over n = 0 to N–1

% h(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

b11=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

a=[1]

w=-pi: pi/256: pi; r = w/pi;

Hw11=freqz(b11, a, w);

subplot(2, 1, 1), plot(w, abs(Hw11)); legend ('Length = 11');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

%

%Normalized frequency r = ω/π

Hr11=freqz(b11, a, pi*r);

subplot(2, 1, 2), plot(r, abs(Hr11)); legend (' Length = 11');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

Note in the plot below that as ω goes from –π to π the normalized frequency r goes from –1 to 1.

15

10

5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

15

10

5

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

Length = 11

Length = 11

M
a

g
n
it
u
d
e

 o
f
H

(
)

M
a

g
n
it
u
d
e

 o
f
H

(r
)

Normalized magnitude In the MATLAB segment below we go another step: we normalize the

magnitude by dividing it by N. The window is defined over 0 ≤ n ≤ (N–1) and the normalized

frequency is r = ω/π. As ω varies from –π to π the normalized frequency varies from –1 to 1.

%Magnitude response rectangular window defined over n = 0 to N–1

% h(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

N = 11; b11= ones(1, 11); a=[1];

w=-pi: pi/256: pi; r = w/pi;

%

%Normalized magnitude H(ω)/N

Hw11n= freqz(b11, a, w)/N;

subplot(2, 1, 1), plot(w, abs(Hw11n)); legend (' Length = 11');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)');grid;

title ('Normalized magnitude')

%

%Normalized magnitude and normalized frequency

Hr11n= freqz(b11, a, pi*r)/N;

subplot(2, 1, 2), plot(r, abs(Hr11n)); legend (' Length = 11');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid;

title ('Normalized magnitude')

Note in the plot below that the height of the main lobe is 1 since it is normalized.

Normalized magnitude

1

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Normalized magnitude

1

0.5

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

Length = 11

Length = 11

M
a

g
n
it
u
d
e

 o
f
H

(
)

M
a

g
n
it
u

d
e

 o
f

H
(r

)

Comparison of two rectangular windows of lengths 11 and 31 In the MATLAB segment

below we go another step: we normalize the magnitude by dividing it by N. The window is

defined over 0 ≤ n ≤ (N–1) and the normalized frequency is r = ω/π. As ω varies from –π to π the

normalized frequency varies from –1 to 1.

%Magnitude response rectangular window defined over n = 0 to N–1

% Comparison of two rectangular windows of lengths 11 and 31

N1 = 11; b11= ones(1, N1); N2 = 31; b31= ones(1, N2); a=[1];

w=-pi: pi/512: pi; r = w/pi;

%

%Length 11, normalized magnitude and normalized frequency

Hr11n= freqz(b11, a, pi*r)/N1;

subplot(2, 1, 1), plot(r, abs(Hr11n)); legend ('Length = 11');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

%

%Length 31, normalized magnitude and normalized frequency

Hr31n= freqz(b31, a, pi*r)/N2;

subplot(2, 1, 2), plot(r, abs(Hr31n)); legend ('Length = 31');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

Only the first side lobe is of concern since all the other side lobes are smaller. From the plot

below the maximum of the first side lobe is a little over 20% of the height of the main lobe in

both windows.

1

0.5

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

1

0.8

0.4

0.2

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

Length = 11

Length = 31

M
a

g
n
it
u
d
e

 o
f
H

(r
)

M
a

g
n
it
u
d
e

 o
f
H

(r
)

Two rectangular windows of lengths 11 and 31 compared on a multi-plot In the MATLAB

segment below we compare the two window lengths on the same multi-plot. As before, the

window is defined over 0 ≤ n ≤ (N–1) and the normalized frequency is r = ω/π. As ω varies from

–π to π the normalized frequency varies from –1 to 1.

%Magnitude response rectangular window defined over n = 0 to N–1

% Comparison of two rectangular windows of lengths 11 and 31

N1 = 11; b11= ones(1, N1); N2 = 31; b31= ones(1, N2); a=[1];

w=-pi: pi/768: pi; r = w/pi;

%

%Length 11, normalized magnitude and normalized frequency

Hr11n= freqz(b11, a, pi*r)/N1;

%

%Length 31, normalized magnitude and normalized frequency

Hr31n= freqz(b31, a, pi*r)/N2;

%

plot(r, abs(Hr11n), r, abs(Hr31n), 'k'); legend ('Length = 11', 'Length = 31');

title('Comparison window lengths 11 vs. 31');
xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

From the plot, by eyeballing, we can gather that for a given window length the magnitude

of the side lobes decreases with increasing frequency. Further, as the window length

increases the height of a specific side lobe (such as the first side lobe) decreases: for

instance the height of the first side lobe for N = 31 is smaller than that of the first side

lobe for N = 11.

Comparison window lengths 11 vs. 31

1

0.9

0.8

0.6

0.5

0.4

0.3

0.2

0.1

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

Length = 11

Length = 31

M
a

g
n
it
u
d
e

 o
f
H

(r
)

+ 2

The Hamming window defined over – (N–1)/2 n (N–1)/2 is

wHam(n) = 0.54 + 0.46 cos[2 n /(N −1)] , – (N–1)/2 n (N–1)/2

0, elsewhere

%Hamming window defined over n = –(N–1)/2 to (N–1)/2

% w(n) = 0.54 + 0.46 cos(2*pi*n/(N-1))

N = 31; n = -(N-1)/2: (N-1)/2; wn = 0.54 + 0.46 * cos(2*pi*n/(N-1)),

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Hamming window')

n = -5 -4 -3 -2 -1 0 1 2 3 4 5

w(n) = {0.0800 0.0901 0.1198 0.1679 0.2322 0.3100 0.3979 0.4919 0.5881

0.6821 0.7700 0.8478 0.9121 0.9602 0.9899 1.0000 0.9899 0.9602 0.9121

0.8478 0.7700 0.6821 0.5881 0.4919 0.3979 0.3100 0.2322 0.1679 0.1198

0.0901 0.0800}

Hamming window

1

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-15

-10 -5 0

n

5 10 15

The Fourier transform (spectrum) of the window is

W (e
j)= w(n)e

− j n

n = −

(N −1) / 2

(N −1)/ 2

= {0.54 + 0.46 cos 2 n /(N −1)}e
− j n

n = −(N −1)/ 2

(N −1) / 2

= 0.54 e
− j n

+ 0.46{cos 2 n /(N −1)}e
− j n

n = −(N −1) / 2 n = −(N −1)/ 2
(N −1) / 2 j 2 n /(N −1) + − j 2 n /(N −1)

= 0.54 sin (N / 2)

sin (/ 2)
0.46

e e
e

− j n

n = −(N −1)/ 2

= …

w
(n

)

()

=0

= 0.54 sin (N / 2) sin [(N / 2) − N /(N −1)]

sin (/ 2)
+ 0.23

sin [(/ 2) − /(N −1)]

sin [(N / 2) + N /(N −1)]
+ 0.23

sin [(/ 2) + /(N −1)]

The magnitude at dc is

W (e
j

) = 0.54 N + 2 (0.23)

sin[N /(N −1)]

sin[/(N −1)]

This is calculated below for N = 11, 21, 31 and 41:

%Magnitude at DC

N = 11:10:41,

WdcN = 0.54*N + 0.46* sin(pi*N./(N-1))./sin(pi./(N-1))

N = 11 21 31 41

WdcN = 5.4800 10.8800 16.2800 21.6800

The width of the main lobe is taken as the separation between the zero crossings on either

side of ω = 0. This is obtained by setting W e
j

= 0 and solving for ω; it is given as

Width of main lobe (Hamming) = 8π/N

twice that of the rectangular window.

The Hamming window, defined over the interval 0 n N–1, is given by

wHam(n) = 0.54 – 0.46 cos[2 n /(N −1)] , 0 n N–1
0, elsewhere

For N = 11, the Hamming window is given by wHam(n) = 0.54 – 0.46 cos(n / 5) , 0 n 10.

Frequency response of Hamming window:

%Magnitude response of 11-point Hamming window defined over n = 0 to N–1

% WHam = b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n))

N = 11; n = 0: N-1; b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n));

a=[1]

w=-pi: pi/256: pi;

Hw11=freqz(b11, a, w);

subplot(2, 1, 1), plot(w, abs(Hw11)); legend ('Magnitude (Length = 11)');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid

title('Hamming window, Frequency response');

subplot(2, 1, 2), plot(w, angle(Hw11)); legend ('Phase');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid

In the phase plot below the phase reaches –π in the interval 0 ≤ ω ≤ 1 and is therefore adjusted by

adding 2π; this is not due to a zero-crossing. The same applies to the phase adjustment in the

interval –1 ≤ ω ≤ 0.

Hamming window, Frequency response

6

4

2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

4

2

0

-2

-4

-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Magnitude (Length = 11)

Phase

P
h
a
s
e
 o

f
H

(
)

M
a

g
n
it
u
d
e

 o
f
H

(
)

Length = 11

%Magnitude response of Hamming window defined over n = 0 to N–1

%Length 11

N = 11; n = 0: N-1; b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1];

w=-pi: pi/768: pi; r = w/pi; % normalized frequency

Hr11n= freqz(b11, a, pi*r); % Frequency response

% Plot

plot(r, abs(Hr11n)); legend ('Length = 11');

title('Hamming window, Frequency response');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

Hamming window, Frequency response

6

5

4

3

2

1

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

M
a

g
n
it
u
d
e

 o
f
H

(r
)

%Magnitude response of Hamming window defined over n = 0 to N–1

%Length 11

N = 11; n = 0: N-1; b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1];

w=-pi: pi/768: pi; r = w/pi; % normalized frequency

%Magnitude at dc

WdcN = 0.54*N + 0.46* sin(pi*N/(N-1))/sin(pi/(N-1)),

Hr11n= freqz(b11, a, pi*r)/WdcN; % normalized frequency response

% Plot

plot(r, abs(Hr11n)); legend ('Length = 11');

title('Hamming window, Normalized frequency response');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

Hamming window, Normalized frequency response

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

Length = 11

M
a

g
n
it
u
d
e

 o
f
H

(r
)

%Magnitude response of Hamming window defined over n = 0 to N–1

%Length 31

N = 31; n = 0: N-1; b31 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1];

w=-pi: pi/768: pi; r = w/pi; % normalized frequency

Hr31n= freqz(b31, a, pi*r); % Frequency response

% Plot

plot(r, abs(Hr31n)); legend ('Length = 31');

title('Hamming window, Frequency response');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

Hamming window, Frequency response

18

16

14

12

10

8

6

4

2

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

Length = 31

M
a

g
n
it
u
d
e

 o
f
H

(r
)

%Magnitude response of Hamming window defined over n = 0 to N–1

%Length 31

N = 31; n = 0: N-1; b31 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1];

w=-pi: pi/2048: pi; r = w/pi; % normalized frequency

%Magnitude at dc

WdcN = 0.54*N + 0.46* sin(pi*N/(N-1))/sin(pi/(N-1)),

Hr31n= freqz(b31, a, pi*r)/WdcN; % normalized frequency response

% Plot

plot(r, abs(Hr31n)); legend ('Length = 31');

title('Hamming window, Normalized frequency response');

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid

Observations:

1. In the plot below the magnitude of the side lobes appears to stay about the same

with increasing frequency for the first few lobes, but beyond r = 0.6 there is a

discernible (to the eye) fall-off in the height of the side lobes. Relative to the

rectangular window, however, we may say the side lobe height stays about the

same with increasing frequency.
2. The width of the side lobe appears to stay constant with increasing frequency.

Hamming window, Normalized frequency response

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Frequency r

Length = 31

M
a

g
n
it
u
d
e

 o
f
H

(r
)

Hanning window

%Hanning window defined over n = –(N–1)/2 to (N–1)/2

% w(n) = 0.5 + 0.5 * cos(2*pi*n/(N-1))

N = 31; n = -(N-1)/2: (N-1)/2; wn = 0.5 + 0.5 * cos(2*pi*n/(N-1)),

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Hanning window')

Hanning window

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-15

-10 -5 0

n

5 10 15

w
(n

)

()

Blackman window

%Blackman window defined over n = –(N–1)/2 to (N–1)/2

% w(n) = 0.5 + 0.5 * cos(2*pi*n/(N-1))

N = 31; n = -(N-1)/2: (N-1)/2;

wn = 0.42 + 0.5 * cos(2*pi*n/(N-1)) + 0.08 * cos(4*pi*n/(N-1)),

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Blackman window')

Blackman window

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-15

-10 -5 0

n

5 10 15

The width of the main lobe is taken as the separation between the zero crossings on either
side of ω = 0. This is obtained by setting W e

j
= 0 and solving for ω; it is given as

Width of main lobe (Blackman) = 12π/N

thrice that of the rectangular window.

w
(n

)

Bartlett window

%Bartlett window defined over n = –(N–1)/2 to (N–1)/2

% w(n) = 1 - 2* abs(n)/(N-1)

N = 31; n = -(N-1)/2: (N-1)/2; wn = 1 - 2* abs(n)/(N-1),

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Bartlett window')

Bartlett window

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-15

-10 -5 0

n

5 10 15

w
(n

)

4.5 Choosing between FIR and IIR filters

IIR Filter FIR Filter

Use IIR when the only important

requirements are

1. sharp cutoff frequency and

2. high throughput as IIR filters,

especially those using elliptic

characteristics, will have fewer

coefficients than FIR

Use FIR if

1. the number of coefficients is not a

problem and

2. in particular, if very little or no

phase distortion is desired

Some DSP processors have architectures

that are tailored/designed for FIR filters.

The choice between FIR and IIR filters depends largely on the relative advantages of the two
types of filters.

(1) Linear phase FIR filters can have exactly linear phase response. This means no phase

distortion. This is an important requirement in, for example, data transmission, biomedicine,

digital audio, and image processing.

The phase response of IIR filters is nonlinear, especially at the band edges.

(2) Stability FIR filters realized non-recursively are always stable. The stability of IIR filters

cannot always be guaranteed.

(3) The effects of finite word length such as round off noise and coefficient quantization errors

are much less severe in FIR than in IIR.

(4) FIR requires more coefficients for sharp cut-off filters than IIR. Thus for a given amplitude

response specification, more processing time and storage will be required for FIR

implementation. However, one can readily take advantage of the computational speed of the FFT

and multirate techniques to improve significantly the efficiency of FIR implementation.

(5) Analog filters can be readily transformed into equivalent IIR digital filters meeting similar

specifications. This is not possible with FIR filters as they have no analog counterpart. However,

with FIR it is easier to synthesize filters of arbitrary frequency response.

(6) In general, FIR is algebraically more difficult to synthesize, if CAD support is not available.

Digital Signal Processing – 5

5 Multirate DSP

Decimation, Interpolation, Sampling rate conversion, Filter design and

Implementation of sampling rate conversion.

Contents:

Time and frequency scaling in continuous-time systems

Transformation of the independent variable

Down-sampling

Up-sampling

Cascading sampling rate converters

Identities

FIR implementation of sampling rate conversion

Polyphase structures

Polyphase structure for a decimator

Discrete-time systems with different sampling rates at various parts of the system are called

multirate systems. They are linear and time-varying systems. Integer sampling rate converters

change the sampling frequency by an integer factor and rational sampling rate converters by a

rational number. Here is a sampling of sampling rates in commercial applications (Mitra):

Sampling Rates

Digital Audio Video

Broadcasting – 32 kHz

CD – 44.1 kHz

DAT – 48 kHz

Composite Video Signal

• NTSC – 14.3181818 MHz

• PAL – 17.734475 MHz

 Digital Component Video Signal

• Luminance – 13.5 MHz

• Color difference – 6.75 MHz

X(Ω)

Time and frequency scaling in continuous-time systems

Illustration An audio signal recorded on cassette tape at a certain speed could be played back at

a higher speed than that at which it was recorded. This is called time scaling, in particular,

compression in the time domain, and results in an inverse effect in the frequency domain, i.e., an

expansion of the frequency spectrum. Similarly when the audio signal is played back at a slower

speed than the recording speed we have expansion in the time domain resulting in a

corresponding compression of the spectrum in the frequency domain.

Given the signal x(t) and its Fourier transform X(Ω), represented notationally by

x(t) — X(Ω)

then time scaling results in

1
x(at) —

a

If a > 1 the scaling corresponds to compression in time. If, for instance, a = 2, we may visualize
a new signal y1(t) = x(2t); with t = 1, for instance, the value of x, that is, x(2) that occurred at 2
seconds occurs at 1 second in the case of y1, that is, y1(1) – which is compression in time.

t Ω
0 1 –C 0 C

0 1/2 1

t
–2C 0

Ω
C 2C

t
0 1 2

Ω
–C/2 0 C/2 C

x(2t)

B

x(t)

A

B

X(Ω/2)

x(t/2)

A

B

X(2Ω)

X(Ω/a)

If x(t) is an audio signal recorded on tape then x(2t) could be the signal x(t) played back at twice

the speed at which x(t) was recorded. The signal x(2t) varies more rapidly than x(t) and the

playback frequencies are higher.

If a < 1 the scaling corresponds to expansion in time. If, for instance, a = 1/2, then x(t/2)
is the signal x(t) played back at half the speed at which x(t) was recorded. The signal x(t/2) varies
slower than x(t) and the playback frequencies are lower. Again, we may visualize this as a new
signal y2(t) = x(t/2); the value of x(.) that occurred at t/2 occurs at t in the case of y2(.) – which is
expansion in time.

Time expansion and frequency compression is found in data transmission from space

probes to receiving stations on earth. To reduce the amount of noise superposed on the signal, it

is necessary to keep the bandwidth of the receiver as small as possible. One means of doing this

is to reduce the bandwidth of the signal: store the data collected by the probe, and then transmit it

at a slower rate. Since the time-scaling factor is known, the signal can be reproduced at the

receiver.

The corresponding operations in the case of discrete-time systems are not quite so

straight forward owing to

1. The need to band limit the continuous-time signal prior to sampling, and

2. The need to avoid aliasing in the process of sampling

Example 5.1 Consider the 4 Hz signal x(t) = cos 2π4t which is obviously band-limited to Fmax =
4 Hz. It is sufficient to sample it at 8 Hz. Alternatively, the signal can be sampled at, say, 16 Hz
or 20 Hz etc. Suppose that it has been over-sampled by a factor of, say, 6 at Fs = 48 Hz to give
x(n) = cos 2π4n(1/48) = cos (πn/6).

(a) If it is desired subsequently to generate from x(n) another signal x1(n) that is a

discrete-time version of x(t) sampled at Fs1 = 16 Hz (sampling rate reduced by a
factor of 3), then can we do this by simply dropping two samples of x(n) for every

sample that we keep? That is x1(n) = x(3n). This is called down-sampling.
(b) How do we generate from x(n) another signal x2(n) that is a discrete-time version of

x(t) sampled at, say, Fs2 = 96 Hz (sampling rate doubled)? This is called up-
sampling.

(c) Can we generate from x(n) another signal x3(n) that is a discrete-time version of x(t)
sampled at Fs3 = 6 Hz?

We pick up on this problem again after covering transformation of the independent variable.

Transformation of the independent variable

Time scaling (Refer also to Section 7.5 of Signals and Systems, Oppenheim and Willsky.) Given

the sequence x(n), the sequence y(n) = x(2n) is obtained by skipping odd-numbered samples in

x(n) and retaining the even-numbered ones. The extension to y(n) = x(Mn) means we retain

sample numbers 0, M, 2M, 3M, …, and skip the intervening M–1 samples between those we

keep. The original sequence x(n) is obtained by sampling a continuous signal x(t) at a certain rate

(perhaps over-sampling). The signal y(n) = x(Mn) is then obtained by reducing the sampling rate

by a factor of M on the continuous-time signal x(t). This is known as down-sampling or

decimation or sampling rate compression.

Similarly the process of constructing the sequence y(n) = x(n/L) from the sequence x(n)

means we derive y(n) by inserting (L–1) sequence points with zero value between points of x(n).

This is called up-sampling or interpolation or sampling rate expansion. (Inserting (L–1) zeros is

just one way of interpolating. It is also possible for the up-sampler to be followed by a digital

system that replaces the inserted zeros with more appropriate values based on a linear

combination of the x(n) samples.)

In general, the result of time scaling a discrete-time signal is not just a stretched or

compressed version of the original but possibly a totally different sequence/waveform.

Example 5.2.1 Given that x(t) = e
−5t

u(t) is sampled at 50 Hz, find an expression for x(n). Plot

x(t), x(n) and x(2n). Sketch the spectrum of x(n).

Solution The sampling time is T = 0.02 sec. Replacing t with nT we get x(nT) = e
−5nT

u(nT) , or

x(n) = (e−0.1)n

u(n) = (0.905)
n
u(n) .

We show below three plots: (1) The continuous-time signal x(t), (2) The sampled (at 50 Hz)

version x(n), and (3) x(2n), the 2-fold down-sampled version of x(n); this is equivalent to

sampling x(t) at 25 Hz.

t = 0 : 1/512: 1; xt = exp (-5*t); %x(t) evaluated at 512 points

subplot(3, 1, 1), plot(t, xt); legend ('x(t) = exp(-5t)');

xlabel ('time, sec.'), ylabel('x(t)'); grid; title ('x(t) – Continuous-time')

%

t1 = 0 : 0.02: 1; xn = exp (-5*t1); %Sampled at 50 Hz.

subplot(3, 1, 2), stem(t1, xn); legend ('x(n) at 50 Hz');

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 0.02 sec')

%

t2 = 0 : 0.04: 1; xt2 = exp (-5*t2); %Sampled at 25 Hz

subplot(3, 1, 3), stem(t2, xt2); legend ('2-fold down-sampled');

xlabel ('time, sec.'), ylabel('x(2n)'); grid; title ('x(nT) at T = 0.04 sec.')

x(t) – Continuous-time

1

0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.5

time, sec.

x(nT) at T = 0.02 sec

x(n) at 50 Hz

0
0 0.1

0.2

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.5

time, sec.

x(nT) at T = 0.04 sec.

2- fold down-sampled

0
0 0.1

0.2

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1

time, sec.

x(t) = exp(-5t)

x
(2

n
)

x
(n

)
x
(t

)

Spectrum of x(t)

Note that X(s) = ℒ (e−5t
u(t)) = 1 (s + 5) . Shown below is the MATLAB plot of the

magnitude spectrum |X(jΩ)| of the continuous-time signal x(t) using the function plot. Omega is a
vector, consequently we use “./” instead of “/” etc. The main point to be made here is that X(jΩ)
extends asymptotically to ∞, so, strictly speaking, x(t) is not band-limited. Consequently, the
spectrum X(ω) of the sampled signal x(n) (shown later below) has some built-in aliasing.

t = 0 : 1/512: 1; xt = exp (-5*t); %x(t) evaluated at 512 points

subplot(3, 1, 1), plot(t, xt); legend ('x(t) = exp(-5t)');

xlabel ('time'), ylabel('x(t)'); grid; title ('x(t) – Continuous-time')

%

Omega = -6*pi: pi/256: 6*pi; X = 1./(5.+ j .*Omega);

subplot(3, 1, 2), plot(Omega, abs(X), 'k'); legend ('Spectrum of x(t)');

xlabel ('Omega, rad/sec'), ylabel('|X(Omega)|'); grid; title ('Magnitude')%

subplot(3, 1, 3), plot(Omega, angle(X), 'k'); legend ('Spectrum of x(t)');

xlabel ('Omega, rad/sec'), ylabel('Phase of X(Omega)'); grid; title ('Phase')

x(t) – Continuous-time

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Magnitude

0.2

0.1

0
-20 -15 -10 -5 0 5 10 15 20

Omega, rad/sec

Phase

2

0

-2
-20 -15 -10 -5 0 5 10 15 20

Omega, rad/sec

DTFT

Coming to the discrete-time signal, the spectrum of x(n) = a
n
u(n) = (0.905)

n
u(n)

X (e
j

)=

a
n

e
− j n

=
 1

=
 1

1− ae

− j
1 − 0.905e

− j

is its

n = 0

The MATLAB segment is

t1 = 0 : 0.02: 1; xn = exp (-5*t1); %Sampled at 50 Hz.

subplot(3, 1, 1), stem(t1, xn); legend ('x(n) at 50 Hz');

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 0.02 sec')

%

x(t) = exp(-5t)

|X
(O

m
e

g
a
)|

x
(t

)
P

h
a
s
e
 o

f
X

(O
m

e
g
a
)

 Spectrum of x(t)

x(n) = e
−n / 2

u(n) = a
n
u(n)

a = e
−1/ 2

= 0.606
a

a2

a3

a4

n

b = [1]; %Numerator coefficient

a = [1, -0.905]; %Denominator coefficients

w = -6*pi: pi/256: 6*pi; [Xw] = freqz(b, a, w);

subplot(3, 1, 2), plot(w, abs(Xw)); legend ('Spectrum of x(n)');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of X(\omega)'); grid

subplot(3, 1, 3), plot(w, angle(Xw)); legend ('Spectrum of x(n)');

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of X(\omega)'); grid

1

0.5

x(nT) at T = 0.02 sec

x(n) at 50 Hz

0
0 0.1

20

10

0.2

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1

time, sec.

0
-20 -15 -10 -5 0 5 10 15 20

Frequency , rad/sample

2

0

-2
-20 -15 -10 -5 0 5 10 15 20

Frequency , rad/sample

Example 5.2.2 Given x(n) = e

−n / 2
u(n), find (a) x(5n/3), (b) x(2n), (c) x(n/2).

Answer The sequence

x(n) = e
− n / 2

u(n)= (e−1/ 2)n

u(n) = (0.606)
n
u(n) = a

n
u(n)

where a = e
−1/ 2

= 0.606, is sketched below:

1

0 1 2 3 4 5 6

Spectrum of x(n)

Spectrum of x(n)

x
(n

)
M

a
g
n
it
u
d
e

 o
f

X
(

)
P

h
a
s
e
 o

f
X

(
)

(a) With y(n) = x(5n/3), we evaluate y(n) for several values of n (we have assumed here that x(n)

is zero if n is not an integer):

y(0) = x(5 . 0/ 3) = x(0) = e
−0 / 2

= 1

y(1) = x(5 . 1/ 3) = x(5 / 3) = 0

y(2) = x(5 . 2/ 3) = x(10 / 3) = 0

y(3) = x(5 . 3/ 3) = x(5) = e
−5 / 2

= a
5

…

y(6) = x(5 . 6 / 3) = x(10) = e
−10/ 2

= a
10

…

The general expression for y(n) can be written as

y(n) = x(5n/3) = e
−(5n / 3)/ 2

, n as specified below

= e
−5n / 6

, n = 0, 3, 6, …

0, otherwise

n = 0 1 2 3 4 5 6 7 8 9 10

y(n) = 1 0 0 a5 0 0 a10 0 0 a15 0

The sequence is sketched below:

1

n

0 1 2 3 4 5 6

(b) With y(n) = x(2n), we evaluate y(.) for several values of n:

y(0) = x(2 . 0) = x(0) = 1
y(1) = x(2 . 1) = x(2) = a2

y(2) = x(2 . 2) = x(4) = a4

y(3) = x(2 . 3) = x(6) = a6

…

The general expression for y(n) can be written as

y(n) = x(2n) = e–(2n)/2, n as specified below

= e–n, n ≥ 0

0, otherwise

y(n) = x(5n/3) = e–5n/ 6, n = 0, 3, 6, …

0, otherwise

a = e–1/ 2 = 0.606

a5

a10

0 1 2 3 4 5 6

n = 0 1 2 3 4 5

y(n) = 1 a2 a4 a6 a8 a10

The sequence y(.) is made up of every other sample of x(.). This is down-sampling or

decimation by a factor of 2 (or, compression in time). Note that some of the original sample

values have disappeared. The sequence is sketched below.

1

n

0 1 2 3 4 5 6

(c) With y(n) = x(n/2) = e
−n / 4

u(n), we evaluate y(.) for several values of n (again, we have

assumed here that x(n) is zero if n is not an integer):

y(0) = x(0/2) = x(0) = 1

y(1) = x(1/2) = x(0.5) = 0

y(2) = x(2/2) = x(1) = a

y(3) = x(3/2) = x(1.5) = 0
…

The general expression for y(n) can be written as

y(n) = x(n/2) = e–(n/2)/2, n as specified below

= e–n/ 4, n = 0, 2, 4, …

0, otherwise

n = 0 1 2 3 4 5 6

y(n) = 1 0 a 0 a2 0 a3

The sequence y(.) is constructed by inserting one zero between successive samples of x(.). This is

up-sampling or interpolation by a factor of 2 (or expansion in time). The sequence is sketched

below:

1

n

x(n) = e–n n ≥ 0

0, otherwise

a2
a = e–1/ 2 = 0.606

a4

a6

a8

x(n) = e–n/ 4 n = 0, 2, …

0, otherwise

–1/ 2

a a = e = 0.606

a2

a3

To get back to the problem raised earlier, given the sequence x(n) obtained from x(t) at a

rate (1/T)

x(t) ‹ x(nT) ‹ x(n), rate (1/T)

we want to obtain the sequence x(n) which corresponds to a sampling rate (1/ T) where T ≠ T

x(t) ‹ x(n T) ‹ x(n) , rate (1/ T)

There are two approaches to do this:

1. Convert x(n) to x(t) and resample at (1/ T) to generate x(n) . This is not ideal

because of the imperfections in the A/D-H(z)-D/A originally involved in

generating x(n). Or,

2. Change the sampling rate entirely with discrete-time operations.

Example 5.2.3 Consider the 4 Hz signal x(t) = cos 2π4t which is obviously band-limited to Fmax

= 4 Hz. It is sufficient to sample it at 8 Hz. Suppose that it has been over-sampled by, say, a

factor of 6 at Fs = 48 Hz to give x(n) = cos 2π4n(1/48) = cos (πn/6).
If it is desired subsequently to generate from x(n) another signal x1(n) that is a discrete-

time version of x(t) sampled at Fs1 = 16 Hz (sampling rate reduced or down-sampled by a factor
of 3), then can we do this by dropping two samples of x(n) for every sample that we keep? In this
specific example this is possible since a sampling rate of 16 Hz is clearly greater than 2Fmax of 8
Hz. Thus the down-sampled version is obtained by replacing n in x(n) by 3n

x1(n) = x(3n) = cos (π3n/6) = cos (πn/2) ‹ (1)

Let us compare this with what we would get if we were to sample x(t) = cos 2π4t directly at 16

Hz. We simply replace t by nT = n(1/16)

x1(n) = cos 2π4n(1/16) = cos (πn/2) ‹ (2)

The results in (1) and (2) are the same. (QED)

We show below three plots: (1) The continuous-time signal x(t), (2) The sampled (at 48

Hz) version x(n), and (3) x(3n), the 3-fold down-sampled version of x(n); this is equivalent to

sampling x(t) at 16 Hz.

t = 0 : 1/128: 0.5; xt = cos (2*pi*4*t); %x(t) evaluated at 128 points

subplot(3, 1, 1), plot(t, xt); legend ('4-Hz Cosine');

xlabel ('time, sec.'), ylabel('x(t)'); grid; title ('x(t) – Continuous-time')

%

t1 = 0 : 1/48: 0.5; xn = cos (2*pi*4*t1); %Sampled at 48 Hz

subplot(3, 1, 2), stem(t1, xn); legend ('x(n) at 48 Hz');

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 1/48 = 0.020 sec.')

%

t3 = 0 : 1/16: 0.5; x1n = cos (2*pi*4*t3); %Sampled at 16 Hz

subplot(3, 1, 3), stem(t3, x1n); xlabel ('time, sec.'), ylabel('x(3n)');

grid; title ('3-fold down-sampled, x(nT) at T = 1/16 = 0.0625 sec.')

x(t) – Continuous-time

1

0

-1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time, sec.

x(nT) at T = 1/48 = 0.020 sec.

1

0

-1
0 0.05 0.1

0.15 0.2 0.25 0.3 0.35

time, sec.

0.4 0.45 0.5

3-fold down-sampled, x(nT) at T = 1/16 = 0.0625 sec.

1

0

-1
0 0.05 0.1

0.15 0.2 0.25 0.3 0.35

time, sec.

0.4 0.45 0.5

Alternatively, assuming x(t) is not available, x1(n) could be obtained as follows:

1. Recover x(t) by passing x(n) through a DAC

2. Sample the resulting x(t) at Fs1 = 16 Hz

We take it, however, that this option is not desirable.

The above analysis assumes that we know the frequency content of the base band signal,
x(t). Generally this is not the case. Given the sequence x(n) that was obtained by sampling at a
rate, say Fs, we do not know what is the maximum frequency, Fmax, contained in the underlying
analog signal, x(t). Assuming it was originally band-limited and properly sampled, it is safest to
assume that the base band signal was band-limited to Fs/2 (= Fmax) and not lower. In such a case
simply dropping one or more samples of x(n) for every sample we keep will not work. If we
want to reduce the sampling rate by a factor of, say, K, then we would have to band-limit the
precursor of x(n) to (Fs/2)/K = (Fs/2K) and then sample it at the K-fold reduced sampling rate to
achieve the required decimation. This amounts to down sampling x(n) by a factor of K. (If the
signal x(t) originally actually contained a maximum frequency of Fs/2 then subsequent down
sampling will result in unavoidable loss of information. But if it was band limited to significantly
less than Fs/2 then down-sampling without loss of information is possible.)

The band-limiting mentioned above may be done either in the continuous-time domain or
in the discrete-time domain. The procedure in the continuous time domain is as follows: Imagine
that x(t) is recovered from x(n); x(t) is then band-limited to Fs/2K by passing it through an ideal
low pass filter described by

H(F) = 1, 0 ≤ F < Fs/2K

0, Fs/2K ≤ F ≤ Fs/2

4-Hz Cosine

x(n) at 48 Hz

x
(3

n
)

x
(n

)
x
(t

)

x(t) x1(t) x1(n)

The band-limited signal, denoted x1(t) is then sampled at the reduced rate of Fs/K to generate
x1(n). This method is generally undesirable because of all the imperfections inherent in originally
generating x(n) from x(t) at a sampling rate of Fs, converting x(n) back into x(t), then band-
limiting x(t) to Fs/2K to generate x1(t) and then sampling x1(t) at a sampling rate of Fs/K to
generate x1(n).

Sampling rate decimation Reducing the sampling rate by an integer factor in the discrete-time

domain is shown in the following block diagram. The down arrow in $K indicates down

sampling by a factor of K. The filter H(z) is a digital anti-aliasing filter whose output v(n) is a

low pass filtered version of x(n).

x(n) v(n) y(n)

If the filter H(z) is implemented as a linear phase FIR filter with (M+1) coefficients

specified as {br, r = 0 to M}, (some call it “Mth order”), then
M

v(n) = br x(n − r)
r = 0

We desire the output y(n) to be a down-sampled version of x(n), that is
M

y(n) = v(Kn) = br x(Kn − r)
r = 0

Example 5.2.4 Consider the 4 Hz signal x(t) = cos 2π4t which is obviously band-limited to Fmax

= 4 Hz. It is sufficient to sample it at 8 Hz. Suppose instead that it has been over sampled, say,

by a factor of 6 at Fs = 48 Hz to give x(n) = cos 2π4n(1/48) = cos (πn/6).
Can we generate from x(n) another signal x3(n) that is a discrete-time version of x(t)

sampled at Fs3 = Fs/8 = 6 Hz? This is down sampling by a factor of 8. We simply replace t by nT
= n(1/6) to get

x3(n) = cos 2π4n(1/6) = cos (8πn/6) = x(8n) = {x(0), x(8), x(16), …}

In other words, x3(n) is made up of every 8th sample of x(n). For every sample value of x(n) we
keep we discard the next 7 samples. We know, however, that a sampling frequency of 6 Hz does
not satisfy the sampling theorem; in this case down sampling has been taken too far.

We show below three plots: (1) The sampled (at 48 Hz) version x(n) – this is repeated

from above, (2) x(2n), the 2-fold down-sampled version of x(n); this is equivalent to sampling

x(t) at 24 Hz, and (3) x(8n), the 8-fold down-sampled version of x(n); this is equivalent to

sampling x(t) at the unacceptably low rate of 6 Hz.

t1 = 0 : 1/48: 0.5; xn = cos (2*pi*4*t1); %Sampled at 48 Hz

subplot(3, 1, 1), stem(t1, xn); legend ('x(n) at 48 Hz');

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 1/48')

%

t2 = 0 : 1/24: 0.5; xt2 = cos (2*pi*4*t2); %Sampled at 24 Hz

$K

H(z)

Sampler,

Rate = Fs/K

H(F)

subplot(3, 1, 2), stem(t2, xt2); xlabel ('time, sec.'), ylabel('x(2n)');

grid; title ('2-fold down-sampled, x(nT) at T = 1/24 sec.')

%

t4 = 0 : 1/6: 0.5; x3n = cos (2*pi*4*t4); %Sampled at 6 Hz

subplot(3, 1, 3), stem(t4, x3n); xlabel ('time, sec.'), ylabel('x(8n)');

grid; title ('8-fold down-sampled, x(nT) at T = 1/6 sec.')

x(nT) at T = 1/48

1

0

-1
0 0.05 0.1

0.15 0.2 0.25 0.3 0.35

time, sec.

0.4 0.45 0.5

2-fold down-sampled, x(nT) at T = 1/24 sec.

1

0

-1
0 0.05 0.1

0.15 0.2 0.25 0.3 0.35

time, sec.

0.4 0.45 0.5

8-fold down-sampled, x(nT) at T = 1/6 sec.

1

0

-1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time, sec.

Example 7.2.5 To show visually a case of down sampling that is not satisfactory, consider x4(n)
generated from x(n) by down sampling by a factor of 12, i.e., x4(n) = x(12n). This is also
obtained by sampling at 48/12 = 4 Hz:

x4(n) = x(nT) = cos 2π4n(1/4) = cos (2πn) = cos (12πn/6) = x(12n)

In this case cos (2πn) = 1 for all n, so that

x4(n) = 1 for all n

which has no resemblance to x(n), making it visually obvious that down sampling has been taken
too far. Depending on at what point in the cycle the samples are taken, x4(n) equals a constant
(including 0), for all n.

Down-sampling

x(n) at 48 Hz

x
(8

n
)

x
(2

n
)

x
(n

)

Assume that x(n) is obtained from an underlying continuous-time signal x(t) by sampling at Fx
Hz. Assume that x(t) was originally band limited to Fx/2 Hz. On the digital frequency (ω) scale
this amounts to x(n) being band limited to π.

We now wish to generate a signal y(n) by down-sampling x(n) by a factor of M, that is,

we are reducing the sampling rate by a factor of M. This amounts to:

1. Converting x(n) to x(t) using a D/A converter.

2. Band limiting x(t) to Fx/2M Hz. Assume that no information is lost due to this
band limiting.

3. Resampling x(t) at Fx/M Hz. to produce y(n).

Equivalently the above task is accomplished entirely in the digital domain by

1. Band limiting x(n) to π/M. Assume that no information is lost due to this step.

2. Down-sampling the above x(n) by a factor of M to produce y(n).

We may view y(n) as though it were generated by sampling an underlying analog signal y(t) at a

rate Fy = Fx/M Hz.
Given the signal x(n) that was obtained at a certain sampling rate the new signal y(n), the

down-sampled version of x(n), with a sampling rate that is (1/M) of that of x(n), obtained from

x(n), is given by:

y(n) = x(Mn)

and is made up of every Mth sample value of x(n); the intervening (M–1) sample values of x(n)

are dropped. This amounts to

y(0) = x(0), y(1) = x(M), y(2) = x(2M), y(3) = x(3M), …

The time between samples of y(.) is M times that between samples of x(.), or the sampling

frequency of y(.) is reduced by a factor of M from that of x(.). The block diagram of a down

sampler is shown below.

x(n) y(n) = x(Mn) x(n) y(n) = x(3n)

Example 5.3.1 As an example, if x(n) = a
n
u(n) , a < 1, is the sequence:

n = 0 1 2 3 4 5 6 7 8
x(n) = {1 a a2 a3 a4 a5 a6 a7 a8 . . .}

then y(n) = x(2n), with M = 2, is its 2-fold down-sampled version and is obtained by keeping

every other sample of x(n) and dropping the samples in between:

n = 0 1 2 3 4 5
y(n) = {1 a2 a4 a6 a8 a10 . . .}

↓3
↓M

Down sampler

p(n)

1

T[.]

 =

In this example it is understood that the time between samples of y(n) is twice that between

samples of x(n), or, the sampling rate of y(n) is one-half of that of x(n).

Example 7.3.2 Test the system y(n) = x(Mn), where M is a constant, for time-invariance.

x(n) y(n) = T[x(n)] = x(Mn)

Solution See also Unit I. For the input x(n) the output is

y(n) = T[x(n)] = x(Mn)

Delay this output by n0 to get

y(n–n0) = x(M(n–n0)) = x(Mn–Mn0) ‹ (A)

Next, for the delayed input x(n–n0) the output is

y(n, n0) = T[x(n–n0)] = x(Mn) = x(Mn–n0) ‹ (B)

→e see that (A) ≠ (B), that is, y(n–n0) and y(n, n0) are not equal. Delaying the input is not
equivalent to delaying the output. So the system is not time-invariant. In other words the down-
sampling operation is a time-varying system.

Spectrum of a down-sampled signal Given the signal x(n) whose spectrum is X(ω) or X(ejω) we

want to find the spectrum of y(n), the down-sampled version of x(n), denoted by y(n) — Y(ω).

Consider the periodic train of impulses, p(n), with period M

p(n) = 1, n = 0, ±M, ±2M, …

0, otherwise

–M x(n) M 2M n

The discrete Fourier series representation (see Example 1 in Unit II) of p(n) is

M −1

p(n) = Pk

k = 0

e j 2 k n / M , 0 ≤ n ≤ M–1

The Fourier coefficients are given by
M −1

Pk = 1 p(n) e − j 2 k n / M 1 , 0 k M–1
M n = 0 M

 ()

= X (e− j 2 k / M z1/ M)

Thus the DFS for p(n) is 1

M −1

p(n) = e
j 2 k n / M

, 0 ≤ n ≤ M–1
M k = 0

Define the signal x(n)

x(n) = x(n) p(n) = x(n), n = 0, ±M, ±2M, …

0, otherwise

The sequence x(n) consists of values of x(n) whenever n = 0, ±M, ±2M, …, and zeros in between

those points.

y(n) = x(Mn) = x(Mn)

Define the down-sampled version y(n)

y(n) = x(Mn) = x(Mn) p(Mn) = x(Mn)

The signal y(n) consists of values of x(Mn) at n = 0, ±1, ±2, …, but no zeros in between.

With y(n) = x(Mn) = x(Mn) our objective is to find the spectrum Y(ω). Keep in mind that

X(ω) periodic in ω since x(n) is a discrete-time sequence; and the same is true of Y(ω). Now the

z-transform of y(n) is

Y(z) = y(n)z
−n

= x(Mn)z
−n

n =− n =−

Set Mn = k: then n = k/M and the summation limits n = {– ∞ to ∞} become k = {– ∞ to ∞}. Thus

Y(z) = x(k)z
−k / M

= x(n)z
−n / M

k = − n =−

Here x(n) = 0 except when n is a multiple of M. Substituting x(n) p(n) for x(n) in the above

equation,

Y(z) = x(n) p(n)z
−n / M

n =−

Substituting 1
M −1

e
j 2 k n / M

for p(n) (from the DFS) in the above equation,
M k = 0

 M −1

j 2 k n / M −n / M

M −1

Y(z) = x(n) 1 e z =
1
 x(n)e

j 2 kn / M
z

−n / M

n =− M
M −1

k = 0

 M k =0 n =−

=
 1

x(n) e− j 2 k / M z1/ M −n

M k = 0 n = −

p(n)

x(n) x(n)
X ↓M

= X

= 1
M −1

X (e− j 2 k / M z1/ M)
M k = 0

Substituting z = e
j

gives us the DTFT, Y(ω) or Y (e
j

) ,
Y(ω)= Y (z) j =

1 M −1

(− j 2 k / M e j / M)
M −1 1

(j (−2 k) / M)

z = e
M

 X e =
M X e

M −1
 −

k =
2

0k
1
M k = 0 M

k = 0

MATLAB. To demonstrate the stretching and shifting of X(ω) to X((ω–2πk)/M) for k = 1
and M =2, that is, X((ω–2π)/2). This is done in 3 steps: (1) X(ω) , (2) X(ω/2), and (3) X((ω–
2π)/2)

w = -2*pi: pi/256: 2*pi;

subplot(3, 1, 1), plot(w, cos(w));

xlabel ('\omega, rad/sample'), ylabel('X(\omega)'); grid; title ('X(\omega)')

%

subplot(3, 1, 2), plot(w, cos(w/2));

xlabel ('\omega, rad/sample'), ylabel('X(\omega /2)'); grid;

title ('Stretched by factor 2: X(\omega /2)')

%

subplot(3, 1, 3), plot(w, cos((w-2*pi)/2));

xlabel ('\omega, rad/sample'), ylabel('X((\omega – 2\pi)/2)'); grid;

title ('And shifted by 2\pi: X((\omega – 2\pi)/2)')

X()
1

0

-1

-8-6-4-2

0

, rad/sample

2 4 6 8

Stretched by factor 2: X(/2)
1

0

-1

-8-6-4-2

0

, rad/sample

2 4 6 8

And shifted by 2: X((– 2)/2)

1

0

-1
-8 -6 -4 -2 0

, rad/sample

2 4 6 8

where, for simplicity, we have used the notation X(ω) instead of X (e
j

) . This expression for

Y (e
j

) is a sum of M terms. Note that the function X(ω-2πk) is a shifted (by 2πk) version of

X(ω) and X(ω/M) is a stretched (by a factor M) version of X(ω). Thus Y (e
j

) is the sum of M

uniformly shifted and stretched versions of X (e
j

) each scaled by the factor (1/M). The shifting

X
((

 –

 2

)/
2
)

X
(

 /
2

)
X

(
)

X(ω)

 A

X (/ M)

M

 A/M

M −1

2 k = 0

in multiples of 2π corresponds to the factor (ω–2πk) in the argument of X(.), and the stretching

by the factor M corresponds to the M in (ω–2πk)/M. Note that the amount of shift is also affected

by the factor M, that is, the amount of shift doesn’t stay at 2πk but ends up being 2πk/M.

The expression for Y (e
j

) contains a total of M versions of X (e
j

) , one original and (M–

1) shifted replicas. Each of these is also stretched by a factor of M, so X (e
j

) should have been

preshrunk, that is, band limited, to π/M before undertaking the down-sampling. Writing out the

expression for Y (e
j

) in full, we have
−

 2 k

Y (e
j

)=
1

 X
M k = 0 M
1 − 2 1 − 2 (M −1)

= X + X + ... + X
M M M M

1
The first term that makes up Y (e

j
) , that is, X , is shown in the figure below. The figure

M M
implicitly uses M = 2. In general there will be (M–1) shifted replicas of this term.

–3π –2π –π –π/M 0 π/M π 2π 3π
ω

–3π –2π –π –π/M 0 π/M π 2π 3π
ω

In particular, for M 2=−1 2,

we h−av2e k 1 − 2

Y (e
j

)=
1
 X = X + X 2 k = 0

 2 2 2 2
1

= X + X −
2 2 2

This is also written in the form
2−1

Y(e j)= 1
 X (e j (−2 k) / 2) = 1 X (e j / 2)+ X (e j (−2) / 2)

2

=
1 X (e

j / 2)+ X (e
j / 2− j)=

2

1 X (e
j / 2)+ X (− e

j / 2)
2

To recapitulate, before we decided to down sample X(ω) was originally band limited to π
on the digital frequency scale (that is, Fx /2 Hz). We then band limited it to π/M (that is, Fx /2M
Hz) and down sampled by a factor of M.

Aliasing Down-sampling by a factor of M, in itself, is simply retaining every Mth sample while

dropping all samples in between. If, therefore, prior to down-sampling, the signal x(n) is indeed

band-limited to π/M then we generate the down-sampled version y(n) by simply taking every Mth

sample of x(n). This process is shown below in block diagram fashion. If in this set-up x(n) is not

band-limited as required then the spectrum of y(n) will contain overlapping spectral components

of x(n) due to stretching, i.e., X (/ M) will overlap X (− 2 / M), etc. This results in aliasing.

x(n) y(n)

Band-limiting x(n) to π/M (if not done already) is done by an anti-aliasing filter (digital

low pass filter) with a cut-off frequency of π/M. The general process of decimation then consists

of filtering followed by down sampling shown in block diagram below.

y(n)

Unlike an analog anti-aliasing filter associated with an ADC, the filter in this diagram is a digital

anti-aliasing filter specified as

H(ω) = 1, 0 ≤ |ω| < π/M

0, π/M ≤ |ω| ≤ π

Note that π corresponds to Fx/2 and π/M corresponds to Fx/2M where Fx is the sampling
frequency of x(n).

Typically, in order to avoid (delay) distortion, the filter H(z) is a linear phase FIR filter

with (N+1) coefficients {h(r), r = 0 to N}. The output, v(n), of the low pass filter is then given by

convolution
N

v(n) = h(r) x(n − r)
r = 0

and the decimated signal is

x(n) v(n)

π/M –π/M

H(z)
Low pass filter

|H(ω)|

1

ω

↓M

Down sampler

↓M

Down sampler

↓2

= ,

N

y(n) = v(nM) = h(r) x(nM − r)
r = 0

In summary, in order to down sample a signal by a factor of M:

• The signal should have been originally over-sampled by a factor of M (that is
originally band limited to π/M and over-sampled). In this case the signal is down-

sampled straightaway; no pre-filter is needed. OR

• The signal, assumed originally band limited to π, should be band-limited to π/M
by a pre-filter; the signal is then down-sampled. In this case there will be some

loss of information.

Example 5.3.3 Consider the signal x(n) = a
n
u(n) , a < 1.

a) Determine the spectrum X(ω)

b) If x(n) is applied to a decimator that reduces the sampling rate by a factor of 2

determine the output spectrum

c) Show that the spectrum in part (b) is simply the Fourier transform of x(2n)

d) Plot the spectra of x(n) and x(2n) for a = 0.905

Solution [See also Unit I]
a) The spectrum of x(n) is given by its DTFT

X(ω) = x(n) e
− j n

= an
e

− j n
= (a e

− j)n

n = −

1
=

n = 0
ae− j

n = 0

< 1

1− ae
− j

This spectrum is not band-limited but we may pretend it is. This may also be obtained as X(ω)

= X (z)
z = e j .

x(n) y(n) = x(2n)
b) The spectrum of y(n) = xM(−21 n)isg−iv2en bky

Y () =
1

 X
M k = 0 M

which, with M = 2, becom1es − 2 k 1

Y () =
1
 X = X + X −

2 k = 0 2 2 2 2
1 1 1 1 1 1

= +

2 1− ae− j / 2 1 − ae− j ((/ 2) −)

2 1− ae− j / 2
+

1 − ae− j / 2e j
1 1 1 1

=
2 1− ae− j / 2

+
1 + ae− j / 2

=

1 − a2e− j

c) The Fourier transform of y(n) = x(2n) = a
2 n

u(2n) = a
2 n

u(n) is

Y(ω) = a2 n
e

− j n
 = (a2 e− j 1 a2e− j < 1

d) The spectra.

n = 0

)n

n = 0

1 − a2e− j

b = [1]; %Numerator coefficient

a1 = [1, -0.905]; a2 = [1, -0.819]; %Denominator coefficients

w = -pi: pi/256: pi; %A total of 512 points

[X1w] = freqz(b, a1, w); [X2w] = freqz(b, a2, w)

subplot(2, 1, 1), plot(w, abs(X1w)); legend ('Spectrum of x(n)');

,

=

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of X1(\omega)'); grid

subplot(2, 1, 2), plot(w, abs(X2w)); legend ('Spectrum of x(2n)');

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of X2(\omega)'); grid

15

10

5

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

6

4

2

0
-4 -3 -2 -1 0 1 2 3 4

Frequency , rad/sample

Spectrum of x(n)

Spectrum of x(2n)

M
a

g
n
it
u
d
e

 o
f

X
1
(

)
M

a
g
n
it
u
d
e

 o
f

X
2
(

)

T[.]

Up-sampling

Assume that x(n) is obtained from the continuous-time signal x(t) by sampling at Fx Hz. We now
wish to generate a signal y(n) by up-sampling x(n) by a factor of L, that is, we are increasing the
sampling rate by a factor of L. This amounts to

1. Converting x(n) to x(t) using a D/A converter.

2. Resampling x(t) at LFx Hz to produce y(n).
We may view y(n) as though it were generated by sampling an underlying analog signal y(t) (or
x(t) for that matter) at a rate Fy = LFx Hz. As in the case of down-sampling we prefer to do this
entirely in the digital domain.

Given the signal x(n) that was obtained at a certain sampling rate we can obtain a new

signal y(n) from x(n) with a sampling rate that is L times that of x(n). The signal y(n), an up-

sampled version of x(n), is given by:

y(n) = x(n/L), n = 0, ±L, ±2L, …

0, otherwise

and is constructed by placing (L–1) zeros between every pair of consecutive samples of x(n). The

time between samples of y(n) is (1/L) of that between samples of x(n), or the sampling frequency

of y(n) is increased by a factor of L from that of x(n). The block diagram of an up-sampler is

shown below.

x(n) y(n) = x(n/L) x(n) y(n) = x(n/3)

Example 5.4.1 As an example, if x(n) = a
n
u(n) , a < 1, is the sequence:

n = 0 1 2 3 4 5 6 7 8
x(n) = {1 a a2 a3 a4 a5 a6 a7 a8 . . .}

then y(n) = x(n/2), with L = 2, is its 2-fold up-sampled version and is obtained by inserting a 0
between each pair of consecutive values in x(n)

n = 0 1 2 3 4 5 6 7 8 9 10
y(n) = {1 0 a 0 a2 0 a3 0 a4 0 a5 . . .}

In this example it is understood that the time between samples of y(n) is one half of that between

samples of x(n), or, the sampling rate of y(n) is twice that of x(n).

Example 5.4.2 Test the system y(n) = x(n/L), where L is a constant, for time-invariance.

x(n) y(n) = T[x(n)] = x(n/L)

↑3
↑L

Up sampler

Solution See also Unit I. The system y(n) = x(n/L) in itself only partially defines an up-sampler.

But the following goes to show that the up-sampling operation is a time-varying system. For the

input x(n) the output is

y(n) = T[x(n)] = x(n/L)

Delay this output by n0 to get

y(n–n0) = x((n–n0)/L) = x((n/L)–(n0/L)) ‹ (A)

Next, for the delayed input x(n–n0) the output is

y(n, n0) = T[x(n–n0)] = x(n/L) = x((n/L)–n0) ‹ (B)

→e see that (A) ≠ (B), that is, y(n–n0) and y(n, n0) are not equal. Delaying the input is not
equivalent to delaying the output. So the system y(n) = x(n/L) is not time-invariant. Therefore the
up sampler defined by

y(n) = x(n/L), n = 0, ±L, ±2L, …

0, otherwise

is not time-invariant; it is a time-varying system.

Spectrum of an up-sampled signal Given the signal x(n) whose spectrum is X(ω) or X(ejω) we

want to find the spectrum of y(n), the up-sampled version of x(n), denoted by y(n) — Y(ω).

The signal y(n), with a sampling rate that is L times that of x(n), is given by:

y(n) = x(n/L), n = 0, ±L, ±2L, …

0, otherwise

We obtain the z-transform and from it the spectrum:

Y(z) = y(n)z
−n

= x(n / L) z
−n

+ 0 z
−n

n =−

n = 0, L, 2 L,... n = otherthan kL
k = all integers

= x(n / L) z
−n

n = 0, L, 2 L,...

Set n/L = k: this leads to n = kL, and the summation indices n = {0, ±L, ±2L, ±3L, …} become k
= {–∞ to ∞}, so that

−

Y(z) = x(k) z
−k L

=
k = −

Setting z = e
j

gives us the spectrum

 x(k) (z
L) k

=
k = −

X (z
L)

Y (e
j

) = Y (z)
z = e j

= X (e
jL) or Y(ω) = X(ωL)

Thus Y(ω) is an L-fold compressed version of X(ω); the value of X(.) that occurred at ωL occurs

at ω, (that is, at ωL/L) in the case of Y(.). In going from X to Y the frequency values are pushed in

toward the origin by the factor L. For example, the frequency ωL is pushed to ωL/L, the

frequency π is pushed to π/L, 2π is pushed to 2π/L, etc.

Shown below are the spectra X(ω) and Y(ω) for 2-fold up-sampling, that is, L = 2. Note

that X(ω) is periodic to start with so that the frequency content of interest is in the base range (–π

≤ ω ≤ π) with replicas of this displaced by multiples of 2π from the origin on either side. Due to

X(ω)

 A

–3π –2π –π –π/L 0 π/L π 2π 3π

Y(ω)

 A

L = 2

Y(ω) after anti-image filtering

 A

L = 2

up-sampling the frequency content of X(ω) in the range (–π ≤ ω ≤ π) is compressed into the

range (–π/L ≤ ω ≤ π/L) of Y(ω), that is, into (–π/2 ≤ ω ≤ π/2), centered at ω = 0. The first replica

of X(ω) in the range (π ≤ ω ≤ 3π), centered at 2π, is compressed to the range (π/2 ≤ ω ≤ 3π/2) of

Y(ω), centered at π; its counterpart, in (–3π ≤ ω ≤ –π), centered at –2π, is compressed to (–3π/2 ≤

ω ≤ –π/2), centered at –π. If, for the purpose of discussion, we consider the range (0, 2π) as one

fundamental period then the replica in the range (π/2, 3π/2) of Y is an image (spectrum) and

needs to be filtered out with a low pass filter (anti-imaging filter) of band-width π/2. With L = 2

this is the only image in (0, 2π).

Furthermore, while the spectrum X(ω) is periodic with a period = 2π, the spectrum Y(ω),

on account of the image, is a 2-fold periodic repetition of the base spectrum in (–π/2 ≤ ω ≤ π/2);

the image spectrum is actually spurious/unwanted; further the periodicity of Y(ω) is still 2π.

ω

–3π –2π –π –π/L 0 π/L π 2π 3π
ω

–3π –2π –π –π/L 0 π/L π 2π 3π
ω

These observations can be extended to larger values of L. For L = 3, for instance, there

will be two image spectra (a 3-fold periodic repetition of the base spectrum in (–π/3 ≤ ω ≤ π/3),

and the anti-imaging filter band width will be π/3.

In general, up-sampling of x(n) by a factor of L involves

• Inserting L–1 zeros between successive pairs of sample values of x(n).

• The spectrum Y(ω) of the up-sampled signal is an L-fold compressed version of

X(ω). As a result Y(ω) contains L–1 images and is an L-fold periodic repetition of
the base spectrum in (–π/L ≤ ω ≤ π/L).

• The anti-imaging filter band width is π/L.

The over-all scheme of up-sampling is shown in block diagram below. Unlike an analog

anti-imaging filter associated with a DAC, the filter in this diagram is a digital anti-imaging

filter.

x(n)

In this diagram the pass band gain of the anti-imaging filter is shown as 1. This gain is

actually chosen equal to L to compensate for the fact that the average value of y(n) is 1/L times

the average value of x(n) due to the presence of the inserted zeros.

H(ω) = L, 0 ≤ |ω| < π/L

0, π/L ≤ |ω| ≤ π

Note that π corresponds to Fx/2 and π/L corresponds to Fx/2L where Fx is the sampling frequency
of x(n).

The output of the low pass filter is given by the convolution sum

y(n) = h(n − r) v(r)
r = −

where its input is

v(r) = x(r/L), r = 0, ±L, ±2L, …

0, otherwise

Now v(r) = 0 except at r = kL, where k is all integers from –∞ to ∞. Thus we have

v(kL) = x(kL/L) = x(k)

The convolution sum may be written as

h(n − r) v(r) = h(n − kL) v(kL) = h(n − kL) x(k)
r = −

so that the interpolated signal is

k = − k = −

y(n) = h(n − kL) x(k)
k = −

Illustration Given the signal x(n) = {1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, …}, its 2-fold up-
sampled version is obtained by inserting a 0 between each pair of consecutive samples in x(n):

y(n) = {1, 0, a, 0, a2, 0, a3, 0, a4, 0, a5, 0, a6, 0, a7, 0, a8, 0, a9, 0, a10, …}

v(n) y(n) ↑L

Up sampler

π/L –π/L

H(z)
Low pass filter

|H(ω)|

1

ω

Intuitively, even visually, y(n) contains higher (or, more) frequencies than x(n) because of the

inserted zeros. For instance, consider the first two or three samples in each sequence. In the case

of x(n) the changes from 1 to a to a2 are smoother than the fluctuations in y(n) from 1 to 0 to a to

0 to a2; these latter fluctuations are the higher frequencies not originally contained in x(n). It is

these higher frequencies that are represented by the image in the spectrum of y(n) prior to anti-

imaging filtering. The anti-imaging filter removes or smoothes out the higher frequency

fluctuations from the up-sampled version; this smoothing is manifested in the form of the

interpolated zeros being replaced by nonzero values.

Cascading sampling rate converters

Given a discrete-time signal x(n) we may want to convert its sampling rate by a non integer

factor, in particular, by a rational number. For instance, we may be interested in x(3n/2). This

involves a 2-fold up-sampling and a 3-fold down-sampling for a net down sampling by a factor

of 1.5 (= 3/2). The sequence x(3n/5) involves a 5-fold up-sampling and a 3-fold down-sampling

for a net up-sampling by a factor of 1.67 (= 5/3).

In general, in a cascade of an M-fold down-sampler and an L-fold up-sampler the

positions of the two samplers are inter-changeable with no difference in the input-output

behavior if and only if M and L are co-prime (relatively prime, that is, M and L do not have a

common factor). The sequence x(3n/2) may be generated by cascading the up-sampler and the

down-sampler in either order, that is, down followed by up or vice versa. However, a cascade of

a 6-fold down-sampler (M = 6) followed by a 4-fold up-sampler (L = 4) is not the same as a

cascade of a 4-fold up-sampler followed by a 6-fold down-sampler even though in both cases

M/L = 6/4. This is because M and L have a common factor, that is, the rational number M/L is not

in its reduced form. The ratio M/L should be reduced to 3/2; then the 3-fold down-sampler and

the 2-fold up-sampler are interchangeable in position.

Example 5.5.1 Given x(n) = e–n/2 u(n), find x(5n/3).

Answer We borrow this from an earlier section. Our objective is to present the earlier solution

and then reformulate it in the context of cascading up- and down-samplers. The sequence

x(n) = e–n/2 u(n) = (e–1/2)n u(n) = (0.606)n u(n) = an u(n)

where a = e–1/2 = 0.606, is sketched below:

x(n) = e–n/2 u(n) = an u(n)

1 a = e–1/ 2 = 0.606

a

a2

a3

a4

n

0 1 2 3 4 5 6

With y(n) = x(5n/3), we evaluate y(.) for several values of n (we have assumed here that x(n) is

zero if n is not an integer):

y(0) = x(5 . 0 / 3) = x(0) = e–0/ 2 = 1

y(1) = x(5 . 1 / 3) = x(5 / 3) = 0

y(2) = x(5 . 2 / 3) = x(10 / 3) = 0

y(3) = x(5 . 3 / 3) = x(5) = e–5/ 2 = a5
…

y(6) = x(5 . 6 / 3) = x(10) = e–10/ 2 = a10

…

The general expression for y(n) can be written as

y(n) = x(5n/3) = e–(5n/3)/2, n as specified below

= e–5n/ 6, n = 0, 3, 6, …

0, otherwise

The sequence is sketched below:

1

. .

. .}

n

0 1 2 3 4 5 6

We shall recast this problem in terms of cascading the up- and down-samplers. In the

expression y(n) = x(5n/3) there is a 3-fold up-sampling and a 5-fold down-sampling. Since the

numerator 5 is greater than the denominator 3 there is a net down-sampling by a factor of 1.67

(= 5/3). Let us first do a 3-fold up-sampling of x(n) followed by a 5-fold down-sampling of the

resulting sequence. That is, given the sequence x(n)

x(n) yu(n) = x(n/3) y(n) = x(5n/3)

n = 0 1 2 3 4 5 6 7 8 9 10 . .

x(n) = {1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 . .}

y(n) = x(5n/3) = e–5n/ 6, n = 0, 3, 6, …

0, otherwise

a = e–1/ 2 = 0.606

a5

a10

↓5 ↑3

n = 0 1 2 3 4 5 6 7 8 9 10 11 12.
y(n) = {1 0 0 a5 0 0 a10 0 0 a15 0 0 a20

we define yu(n) = x(n/3), and then y(n) = yu(5n) = x(5n/3). The sequences yu(n) and y(n) are given
below.

yu(n) = x(n/3) = e–n/6 u(n/3) = an/3 n = 0, 3, 6, …

0, otherwise

yu(n) = x(n/3)

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . .
yu(n) = {1 0 0 a 0 0 a2 0 0 a3 0 0 a4 0 0 a5 }

y(n) = yu(5n) = x(5n/3) = e–5n/6 u(5n/3) = a5n/3 n = 0, 3, 6, …

0, otherwise

y(n) = yu(5n) = x(5n/3)
n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . .

y(n) = {1 0 0 a5 0 0 a10 0 0 a15 0 0 a20 0 0 a25 }

Alternatively, we may first do a 5-fold down sampling followed by a 3-fold up-sampling:

x(n) yd(n) = x(5n) y(n) = x(5n/3)

yd(n) = x(5n) = {1, a5, a10, a15, a20, … }
y(n) = yd(n/3) = x(5n/3) = {1, 0, 0, a5, 0, 0, a10, 0, 0, a15, 0, 0, a20, … }

The net effect is that between the first two terms (1 and a5) of the final output y(.) we

have dropped four original terms and inserted two zeros.

Example 5.5.2 Given x(n) = e–n/2 u(n), find x(3n/5). Here there is a 5-fold up-sampling and a 3-

fold down sampling. Since the denominator is bigger there is a net up-sampling by a factor of

1.67.

x(n) = {1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, …}

Method A Up-sampling followed by down sampling is given below. The 5-fold up-sampled
signal, yu(n), is obtained by inserting 4 zeros shown in bold face between every pair of
consecutive samples in x(n)

yu(n) = x(n/5)
= {1, 0, 0, 0, 0, a, 0, 0, 0, 0, a2, 0, 0, 0, 0, a3, 0, 0, 0, 0, a4, 0, 0, 0, 0,

a5, 0, 0, 0, 0, a6, 0, 0, 0, 0, a7, 0, 0, 0, 0, a8, 0, 0, 0, 0, a9,

0, 0, 0, 0, a10, …}

The 3-fold down-sampled signal, y1(n), is obtained by keeping every third sample in yu(n) and
discarding the rest (shown underlined)

yu(n) = = {1, 0, 0, 0, 0, a, 0, 0, 0, 0, a2, 0, 0, 0, 0, a3, 0, 0, 0, 0, a4, 0, 0, 0, 0,

↑3 ↓5

a5, 0, 0, 0, 0, a6, 0, 0, 0, 0, a7, 0, 0, 0, 0, a8, 0, 0, 0, 0, a9,

0, 0, 0, 0, a10, …}

y1(n) = yu(3n) = x(3n/5)

= {1, 0, 0, 0, 0, a3, 0, 0, 0, 0, a6, 0, 0, 0, 0, a9, 0, …}

Method B Down-sampling followed by up sampling is given below. The 3-fold down-sampled
signal, yd(n), is obtained by keeping every third sample in x(n) and discarding the rest (shown
umderlined)

x(n) = {1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11,…}

yd(n) = x(3n) = {1, a3, a6, a9, a12,…}

The 5-fold up-sampled signal, y2(n), is obtained by inserting 4 zeros shown in bold face between
every pair of samples in yd(n)

y2(n) = yd(n/5) = x(3n/5)

y2(n) = {1, 0, 0, 0, 0, a3, 0, 0, 0, 0, a6, 0, 0, 0, 0, a9, 0, 0, 0, 0, a12, …}

= {1, 0, 0, 0, 0, a3, 0, 0, 0, 0, a6, 0, 0, 0, 0, a9, 0, 0, 0, 0, a12, …}

It is seen that y1(n) = y2(n).

Example 5.5.3 Given that x(n) = {1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, …} is the input,

1. Find the output y1(n) of a cascade of a 2-fold up-sampler followed by a 4-fold down
sampler.

2. Find the output y2(n) of a cascade of a 4-fold down sampler followed by a 2-fold up-
sampler.

Solution Note that the down-sampling factor M = 4 and the up-sampling factor L = 2 are not co-
prime since they have a factor in common. The ratio M/L = 4/2, as given, is not in its reduced
form. As a result we do not expect that y1(n) and y2(n) will be equal. Specifically, in the first case
we have

x(n) = {1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, …}

Up-sample by inserting a zero (shown bold face) between consecutive samples of x(n) resulting

in yu(n)

yu(n) = x(n/2) = {1, 0, a, 0, a2, 0, a3, 0, a4, 0, a5, 0, a6, 0, a7, 0, a8, 0, a9, 0, a10, …}

Down-sample by keeping every fourth sample of yu(n) and discarding the three samples in
between resulting in y1(n)

y1(n) = yu(4n) = x(4n/2) = {1, a2, a4, a6, a8, a10, …}

In the second case

x(n) = {1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, …}

yd(n) = x(4n) = {1, a4, a8, a12, …}

F = = 0.6 F

.F

Interpolator Decimator

x(n) y(n)

Fx LFx LFx LFx LFx/M

↓M

Hd(z)

Hu(z)

↑L

x(n) v(n) w(n) y(n)
H(z)

Fx LFx/M

LFx

↓M

↑L

y2(n) = yd(n/2) = x(4n/2) = {1, 0, a4, 0, a8, 0, a12, …}

It is seen that y1(n) ≠ y2(n).

Sampling Rate Conversion by a Rational Factor L/M Here the sampling rate is being
converted by a non-integral factor such as 0.6 or 1.5. That is, given x(n) with a sampling rate of
Fx we want to obtain y(n) with a sampling rate of Fy of, say, 0.6Fx (decimation) or 1.5Fx
(interpolation).

Take, for instance L/M = 3/5. Here the basic approach is to first interpolate (up-sample)

by a factor of L = 3 and then decimate (down-sample) by a factor of M = 5. The net effect of the

cascade of interpolation followed by decimation is to change the sampling rate by a rational
factor L/M, that is,

 L 3
Fy = x x x

 M 5

The corresponding signal is given by y(n) = x(5n/3), ignoring the filters involved. (This can also

be done by first down-sampling and then up-sampling).

The block diagram of the scheme where the interpolator precedes the decimator is shown

below.

Rational sampling rate conversion

In general, if L < M we have a rational decimator and if L > M we have a rational

interpolator. In this set-up interpolation is done before decimation in order to work at the higher

sampling rate so as to preserve the original spectral characteristics of x(n). Recall that unless x(n)

was originally over-sampled, decimation in itself or decimation prior to interpolation will modify

the spectrum of x(n) irrecoverably.

The above configuration has an added benefit that the two filters Hu(z) and Hd(z) in series
(which operate at the same sampling rate) can be combined into a single equivalent low pass
filter with a frequency response of H(ω) = Hu(ω)Hd(ω). The simplified configuration is shown
below.

Rational sampling rate conversion

The bandwidth of the anti-imaging filter Hu(z) is π/L rad., and that of the anti-aliasing
filter Hd(z) is π/M rad., so that the bandwidth of the composite anti-imaging and anti-aliasing
filter H(ω) is

ωc = min

,

 L M
and the frequency response is given by

H(ω) = L, 0 ≤ |ω| < ωc

0, ωc ≤ |ω| ≤ π

In the time domain, the output of the up-sampler, v(n), is given by

v(n) = x(n/L), n = 0, ±L, ±2L, …

0, otherwise

and the output of the linear time-invariant filter H(z) is

w(n) = h(n − k) v(k)
k = −

Since v(k) = 0 except at k = rL, where r is an integer between –∞ to ∞, we set k = rL. As k goes

from –∞ to ∞, r goes from –∞ to ∞, and v(rL) = x(rL/L) = x(r).

w(n) = h(n − rL) v(rL) = h(n − rL) x(r) = h(n − kL) x(k)
r = −

Finally the output of the down sampler is

r = − k = −

y(n) = w(Mn) = h(Mn − kL) x(k)
k = −

In summary, sampling rate conversion by the factor L/M can be achieved by first
increasing the sampling rate by L, accomplished by inserting L–1 zeros between successive
samples of the input x(n), followed by linear filtering of the resulting sequence to eliminate
unwanted images of X(ω) and, finally, by down-sampling the filtered signal by the factor M to
get the output y(n). The sampling rates are related by Fy = (L/M)Fx. If Fy > Fx, that is, L > M, the
low pass filter acts as an anti-imaging post-filter to the up-sampler. If Fy < Fx, that is, L < M, the
low pass filter acts as an anti-aliasing pre-filter to the down-sampler.

x(n) v(n) w(n) y(n)

Fx 5Fx/2

5Fx

↓2

H(z)

↑5

x(n) v(n) w(n) y(n)

Fx 2Fx/5

2Fx

↓5

H(z)

↑2

Example 5.5.4 The signal x(t) = cos 2π2t + 0.8 sin 2π4t is sampled at 40 Hz to generate x(n).

a) Give an expression for x(n)

b) Design a sampling rate converter to change the sampling frequency of x(n) by a

factor of 2.5. Give an expression for y(n).

c) Design a sampling rate converter to change the sampling frequency of x(n) by a

factor of 0.4. Give an expression for y(n).

Solution

a) x(n) = cos 2π2nT + 0.8 sin 2π4nT = cos πn/10 + 0.8 sin πn/5

b) The rate conversion factor is L/M = 2.5 = 5/2. We do this by first up-sampling by a factor of 5,

then down-sampling by a factor of 2. Roughly speaking, y(n) = x(2n/5).

Rational sampling rate conversion

The up-sampling requires an anti-imaging LP filter of bandwidth of π/L = π/5 rad., and a

gain of 5. The down-sampling requires an anti-aliasing LP filter of band width π/M = π/2 rad.

When the up-sampler precedes the down-sampler we have the following configuration where the

filter has the smaller of the two band widths, that is, π/5 rad. The gain is 5 and is always

determined by the up-sampler.

Write equations for v(n), w(n), and y(n) based on the above diagram and assuming H(z) is

an FIR filter of N coefficients.

c) The rate conversion factor is L/M = 0.4 = 2/5. We do this by first up-sampling by a factor of 2,

then down-sampling by a factor of 5. Roughly speaking, y(n) = x(5n/2). Band width of filter =

π/5 rad., and gain = 2, once again determined by the up-sampler.

Rational sampling rate conversion

Write equations for v(n), w(n), and y(n) based on the above diagram and assuming H(z) is

an FIR filter N coefficients.

Multistage conversion The composite anti-imaging and anti-aliasing LP filter band width is π/L

or π/M whichever is smaller. That is, the filter band width is determined by the larger number of

L and M. However, if either L or M is a very large number the filter bandwidth is very narrow.

Stage 1 Stage 2

↓M2 H2(z) ↑L2 ↓M1 H1(z) ↑L1

Narrowband FIR (linear phase) filters can require a very large number of coefficients (see Unit

VI, FIR Filters, Example 6). This can pose problems in

1. Increased storage space for coefficients,

2. Long computation time, and

3. Detrimental finite word length effects

The latter drawback is minimized by using a multistage sampling rate converter where the

conversion ratio L/M is factored into the product of several ratios each of which has its own

smaller L and M valu

es. If

, f

or in

stance, the ratio L/M is split into the product of two ratios

L L

 L

=
1

2

M M1 M 2

where the L’s and M’s on the right hand side are smaller, we may implement the rate conversion

in two stages as shown below

Example 7.5.5 [Rational sampling rate converter][CD, DAT] Digital audio tape (DAT) used

in sound recording studios has a sampling rate of 48 kHz, while a compact disc (CD) is recorded

at a sampling rate of 44.1 kHz. Design a sampling rate converter that will convert the DAT

signal x(n) to a signal y(n) for CD recording.

Over-sampling analog-to-digital converter (ADC) [Ref. SKMitra, Sec 4.8.4] A practical

difficulty with analog to digital conversion is the need for a low pass analog anti-aliasing

prefilter to band limit the signal to less than half of the sampling rate. High-order analog filters

are expensive, and they are also difficult to keep in calibration. The combination of over-

sampling followed by down-sampling can be used to transfer some of the anti-aliasing burden

from the analog into the digital domain, and thereby use a simpler low order analog filter.

As an example, a typical compact disk encoding system may employ an over-sampling

sigma-delta A/D converter which over-samples at 3175.2 kHz which is then brought down to the

CD sampling rate of 44.1 kHz. This amounts to over-sampling by a factor of 72 (= 3175.2/44.1).

Suppose the range of frequencies of interest in the signal x(t) is 0 ≤ |F| ≤ FM. Normally
we would band-limit x(t) to the maximum frequency FM with a sharp cut-off analog low pass
filter and sample it at a rate of Fs = 2FM at least (strictly, Fs ≥ 2FM). Suppose that we instead
over-sample x(t) by an integer factor M, at Fs = M (2FM). This significantly reduces the
requirements for the anti-aliasing filter which may be specified more leniently as

Ha(s) = 1, 0 |F| FM

0, MFM |F| < ∞

x

Though this is still an ideal low pass filter in the pass band and stop band, its transition band

width is no longer zero and it may be approximated with an inexpensive first- or second-order

Butterworth filter as shown below.

|Ha(F)| with over-sampling

Hz

|Ha(F)| without over-sampling

1

Hz

We are paying the price of a higher sampling rate for the benefit of a cheaper analog

anti-aliasing filter. The result is a discrete-time signal that is sampled at a much higher rate than
2FM. Following the sampling operation, we can reduce this sampling rate to the minimum value
using a decimator. The resulting structure of the over-sampling ADC is shown in the block
diagram below. There are two anti-aliasing filters, a low-order analog filter Ha(s) with cut-off
frequency FM rad/sec., and a high-order digital filter Hd(z), with a cut-off frequency (π/M)
rad/sample.

x(t)

Over-sampling AD converter

x(n)

M(2FM)

samples/sec

y(n)

2FM

samples/sec

A second benefit of using the over-sampling ADC is the reduction in quantization noise.

If q is the quantization step size (precision), then the quantization noise in x(n) is 2
= q

2
12 ,

and the noise appearing in the output y(n) in the above scheme is
2
=

2
M = q

2
12 M , a

y x

reduction by a factor of M.

Pass Stop Band

0 FM MFM F,

Pass
Transition band
(Unspecified) Stop Band

1

0 FM MFM F,

↓M Hd(z) ADC Ha(s)

↓M

Identities

A sampling rate converter (the $M or ‡L operation) is a linear time-varying system. On the other
hand, the filters Hd(z) and Hu(z) are linear time-invariant systems. In general, the order of a
sampling rate converter and a linear time-invariant system cannot be interchanged. We derive
below several identities, two of which are known as noble identities (viz., identities 3 and 6, all
the others being special cases), which help to swap the position of a filter with that of a down-
sampler or up-sampler by properly modifying the filter.

Recall that the input-output description of a down-sampler is

y(n) = x(Mn) — Y(z) = 1 M

−1

X (e− j 2 k / M z1/ M) — Y(ejω) = 1
M−1

X (e j (−2 k) / M)
M

and the same for an up-sampler is

k = 0 M k = 0

y(n) = x(n/L), n = 0, ±L, ±2L, … — Y(z) = X(zL) — Y(ejω) = X(ejωL)

0, otherwise

which we use in the following development.

Example 7.6.1 Show that the following systems are equivalent.

x(n) a v(n) y(n) x(n)

In the structure on the left the process of generating y(.) consists of multiplying every input

sample x(.) by a and then, in the down-sampling process, dropping (M–1) of these products for

every Mth one we keep. The structure on the right is more efficient computationally: the (M–1)

samples are dropped first and every Mth is multiplied by a, that is, only the samples that are
100(M −1)

retained are multiplied. The number of multiplications is reduced by %.
M

Example 5.6.2 Show that the following systems are equivalent.

x(n) x(n) a v(n) y(n)

In the structure on the left the process of generating y(.) consists of first up-sampling, that is,

inserting zeros between consecutive points of x(n) and then multiplying by a. In the process the
(L–1) zeros are also multiplied. The structure on the right is more efficient computationally: the

sequence x(n) is first multiplied and then the zeros inserted. The number of multiplications is
100(L −1)

reduced by %.
L

w(n) a y(n)
↓M

w(n) a y(n)
↑L ↑L

y(n)

y2(n)
↓M

↓M

M =

M k = 0 M k = 0

2

Identity #1 If we use the notation $M{.} to mean the down-sampling of the signal in braces, then

we have

$M{a x1(n) + b x2(n)} = $M{a x1(n)} + $M{b x2(n)} ‹ (1)

= a $M{x1(n)} + b $M{x2(n)} ‹ (2)

In words, the result of down-sampling the weighted sum of signals equals the weighted sum of

the down-sampled signals. In other words, the two block diagrams below are equivalent.

x1(n) a x1(n) a y1(n)

x2(n) b

w(n)

y(n)

x2(n) b

In the diagram on the left the weighted sum of two inputs is down-sampled:

w(n) = a x1(n) + b x2(n) — W(ejω) = a X1(e
jω) + b X2(e

jω)

The output and its spectrum are then given by

output.

y(n) = w(Mn)
M −1

Y(e
jω

) = 1
W (e j (−2 k) / M)

k 0
M −1 M −1

=
a

 X 1 (e j (−2 k) / M)+ b
 X 2(e j (−2 k) / M) ‹ (A)

In the diagram on the right the weighted inputs are down-sampled and added to form the

M −1

y1(n) = a x1(Mn) — Y1(e
jω) =

 a
 X

(e j (−2 k) / M)

M
jω b

k = 0
M −1

y2(n) = b x2(Mn) — Y2(e) = X (e j (−2 k) / M)

The output and its spectrum are given by

y(n) = y1(n) + y2(n)

M −1

M k = 0

M −1

Y(ejω) = Y1(e
jω) + Y2(e

jω) = a
 X 1 (e j (−2 k) / M) + b X (e j (−2 k) / M)‹ (B)

M

Equations (A) and (B) are identical. QED.

k = 0 M k = 0

Eventually, by virtue of Example 6.1, the down-samplers are moved to the upstream side

of the multipliers which would correspond to Eq. (2).

Identity #2 A delay of M sample periods before an M-fold down-sampler is the same as a delay

of one sample period after the down-sampler.

↓M

1

2

y1(n) y(n)
↓M z–M

 (

M =

M =

X e

()

x(n) x(n)

and

In the first case (diagram on the left) we have

y1(n) = x(n–M) — Y1(z) = z–M X(z) ‹ (1)

 1
M −1

−

y(n) = y1(Mn) — Y(z) =

Note from (1) that

Y (e− j 2 k / M z1/ M) = Y (z)

Y1 e
j 2

M k = 0

= z
−M

X (z)

k / M
z

1/ M) ‹ (2)

1 1 z = e− j 2 k / M z1 / M z =e− j 2 k / M z1 / M

= (e− j 2 k / M z1/ M)− M
X (e− j 2 k / M z1/ M)

Substituting this in (2) we have
M −1

Y(z) = 1
 (e− j 2 k / M z1/ M)−M

X (e− j 2 k / M z1/ M)
k 0

M −1 M −1

=
 1

 (e j 2 k M / M z −M / M)X (e− j 2 k / M z1/ M) =
 1

 (1 z −1)X (e− j 2 k / M z1/ M)
M k = 0

M −1

M k = 0

= z–1 1
 X (e− j 2 k / M z1/ M) ‹ (A)

k 0

In the second case (diagram on the right) we have
1

y2(n) = x(nM) — Y2(z) =
M

M −1

k = 0

(−2 k / M 1/ M) ‹ (3)

y(n) = y2(n–1) — Y(z) = z–1 Y2(z) ‹ (4)

Substituting from (3) into (4) we have
1 M −1

Y(z) = z–1 Y2(z) = z–1 X e
−2 k / M

z
1/ M

‹ (B)
M k = 0

Equations (A) and (B) are identical. QED.

Identity #3 (Noble identity) An M-fold down-sampler followed by a linear time invariant filter

H(z) is equivalent to a linear time invariant filter H(zM) followed by an M-fold down-sampler.

Note that the second identity is a special case of this identity with H(z) = z–1 and H(zM) = z–M.

x(n)

x(n) y2(n) y(n)

For the system consisting of the filter followed by the down-sampler we have

Y1(z) = H(zM) X(z)

y2(n) y(n)
z–1

↓M

y1(n) y(n)
↓M

H(z) ↓M

H(zM)

z

1 (

1 1

()

M =

M =

X e

X e

Y(z) =
 1 M −1

M k= 0
Y e

− j 2 k / M z1/ M)

Note that

Y (e− j 2 k / M z1/ M) = Y (z)

= H(z
M) X (z)

z = e− j 2 k / M z1 / M

Thus

z = e− j 2 k / M z1/ M

= H (e− j 2 k / M z1/ M)M
X (e− j 2 k / M z1/ M)

= H (e− j 2 k M / M z M / M) X (e− j 2 k / M z1/ M)
= H (1z) X (e− j 2 k / M

z
1/ M) = H(z) X (e− j 2 k / M

z
1/ M)

M −1

Y(z) = 1
 H (z) X (e− j 2 k / M z1/ M)
k 0

M −1

= H(z) 1
 X (e− j 2 k / M z1/ M) ‹ (A)
k 0

For the system consisting of the down sampler followed by the filter we have
y2(n) = x(nM)

1
Y2(z) =

M

M −1

k = 0

(−2 k / M 1/ M)

1
Y(z) = H(z) Y2(z) = H(z)

M

M −1

k = 0

(−2 k / M 1/ M) ‹ (B)

Equations (A) and (B) are identical. Thus the two systems are equivalent.

z

z

x(n)

↑L

↑L

H(zL) ↓L

z–L
↓L

Identity #4 (This identity contains no summing junction as does identity #1.) Eventually, by

virtue of Example 6.2, the up-samplers are moved to the downstream side of the multipliers.

a y1(n)

v(n)

a y1(n)

x(n) v(n)

b y2(n) v(n)
b y2(n)

Identity #5 A delay of one sample period before an L-fold up-sampler is the same as a delay of L

sample periods after the up-sampler.

x(n)

x(n) y2(n) y(n)

For the system consisting of the up-sampler preceded by z–1 we have

Y1(z) = z–1 X(z)
Y(z) = Y1(z

L) = z–L X(zL) ‹ (A)

For the system consisting of the up-sampler followed by z–L we have

Y2(z) = X(zL)
Y(z) = z–L Y2(z) = z–L X(zL) ‹ (B)

Since equations (A) and (B) are identical the two systems are equivalent.

Identity #6 (Noble identity) An L-fold up-sampler preceded by a linear time invariant filter H(z)

is equivalent to a linear time invariant filter H(zL) preceded by an L-fold up-sampler. Note that

the fifth identity is a special case of this identity with H(z) = z–1 and H(zL) = z–L.

x(n)

x(n) y2(n) y(n)

For the system consisting of the filter followed by the up-sampler we have

Y1(z) = H(z) X(z)

Y(z) = Y1(z
L) = H(zL) X(zL) ‹ (A)

y1(n) y(n)
↓L

y1(n) y(n)
↓L

H(z)

z–1

↑L

For the system consisting of the up-sampler followed by the filter we have

Y2(z) = X(zL)
Y(z) = H(zL) Y2(z) = H(zL) X(zL) ‹ (B)

Since equations (A) and (B) are identical the two systems are equivalent.

FIR implementation of sampling rate conversion

The anti-aliasing filter in a decimator and the anti-imaging filter in an interpolator may each be

either an FIR or an IIR filter, the former being preferred since it offers linear phase. We give here

the FIR implementation.

Implementation of Decimator The process of decimation consists of an anti-aliasing (low pass)

filter followed by a down-sampler. We repeat below the block diagram developed earlier.

y(n)

Taking the filter H(z) to be an FIR filter, the decimator is implemented as shown below,
using a direct form structure for H(z). Note that the coefficients {bi, i = 0 to (N–1)}, used in
earlier formulations, are the same as {h(i), i = 0 to (N–1)} used in this diagram. Further, the FIR
filter here is implemented with N coefficients rather than (N+1) coefficients.

y(n) x(n)

h(0)

v(n)

h(1)

h(2)

h(N–2)

h(N–1)

z–1

z–1

z–1

$M

x(n) v(n)

π/M –π/M

H(z)
Low pass filter

|H(ω)|

1

ω

↓M

Down sampler

z–1

The implementation equations which correspond to the above structure are
N −1

v(n) = h(r) x(n − r)
r = 0

N −1

and y(n) = v(Mn) = h(r) x(Mn − r)
r = 0

We first compute v(n) for all values of n. Then y(n) is obtained by retaining every Mth value of

v(.), dropping the intervening (M–1) values. In other words there are (M–1) computations of v(.)

that could be avoided.

We may use identity #1 to move the down-sampler to the left of the adders and the result
of Example 6.1 to move it to the upstream side of the multipliers as shown below. As a result the

100(M −1)
number of multiplications is reduced by %.

M

x(n)

Implementation of Interpolator The process of interpolation consists of an up-sampler

followed by an anti-imaging (low pass) filter. We repeat below the block diagram developed

earlier.

x(n)

z–1

$M

z–1

y(n) ‡L

Up sampler

H(z)

Anti-imaging filter

|H(ω)|

1

ω

h(0)

y(n)

h(1)

h(2)

h(N–2)

h(N–1)

$M

$M

$M

$M

Taking the filter H(z) to be an FIR filter, the interpolator is implemented as shown below,
using a direct form structure for H(z). Note that the coefficients {bi, i = 0 to (N–1)}, used in
earlier formulations, are the same as {h(i), i = 0 to (N–1)} used in this diagram. Further, the FIR
filter here is implemented with N coefficients rather than (N+1) coefficients.

We shall find it more convenient to use the transposed form of the FIR filter rather than

the structure actually shown here, so here follows a digression on the transposed structure.

x(n) h(0)

y(n)

h(1)

h(2)

h(N–2)

h(N–1)
z–1

z–1

z–1

‡L

Original Transpose

Start of Digression

Transposed Structure According to the transposition theorem the transposed form of a filter

has the same transfer function as the filter. The transposed form of a given filter structure is

found as follows:
1. Construct the signal flow graph of the filter.

2. Reverse the direction of arrow on every branch.

3. Interchange the inputs and outputs.

4. Reverse the roles of all nodes: an adder becomes a pick-off point and a pick-off

point becomes an adder.

If we apply this procedure to the FIR structure in the above interpolator the result is the transpose

shown below. The intermediate steps are omitted.

Start of Aside

As an aside note that the FIR structure is simple enough that the following algebraic

manipulation can be used to proceed from the original FIR structure to the transpose structure.

Let the system function be

u(n)
h(0)

v(n)

h(1)

h(2)

h(N–2)

h(N–1)

z–1

z–1

z–1

z–1

u(n)
h(0)

v(n)

h(1)

h(2)

h(N–2)

h(N–1)
z–1

z–1

z–1

V (z)

U (z)
= H(z) = h(0) + h(1)z

−1
+ h(2)z

−2
+ h(3)z

−3
+ h(4) z

−4
+ … + h(N −1)z

−(N−1)

This may be rearranged as

V (z) = H (z)U (z)

= h(0)U(z) + h(1)z
−1

U(z) + h(2) z
−2

U(z) + h(3) z
−3

U(z) + h(4) z
−4

U(z) + …

+ h(N −1) z
−(N −1)

U (z)

= h(0)U(z) + z
−1

(1h)(U(z) + z
−1

(h(2)U(z) + z
−1

(h(3)U(z) + …

… + z
−1

(h(N − 2)U(z) + z
−1

h(N −1)U(z)))))

This last equation, proceeding from right to left, performs the following in the time domain:

• Multiply u(n) by h(N −1), giving h(N −1)u(n)

• Delay by 1 unit, givingh(N −1)u(n −1)

• Add to h(N − ,2g)uiv(inn)g h(N − 2)u(n) + h(N −1)u(n −1)

• Delayby 1 unit, giving h(N − 2)u(n −1)+ h(N −1)u(n − 2)

• Add to h(N −,3g)uiv(nin)g h(N − 3)u(n) + h(N − 2)u(n−1) + h(N −1)u(n − 2)

• Delayby 1 unit, giving h(N −3)u(n−1)+h(N −2)u(n−2)+ h(N −1)u(n−3)

• …

• Add to h(0)u(n)

all of which yields the implementation of the difference equation

v(n) = h(0)u(n) + h(1) u(n −1) + h(2)u(n − 2) + …

…+h(N − 2)u(n− N − 2)+ h(N −1)u(n− N −1)

Further, the equation

V (z) = h(0)U(z) + z
−1

(1h)(

U(z) + z

−1
(h(2)U(z) + z

−1
(h(3)U(z) + …

… + z
−1

(h(N − 2)U(z) + z
−1

h(N −1)U(z)))))

also suggests the transpose structure previously developed according to the rules.

End of Aside

End of Digression

Transpose

Resumption of Implementation of Interpolator Using the transposed form of the FIR filter the

structure of the interpolator appears as below:

x(n)

h(0)

“u(n)”

y(n)

“v(n)”

h(1)

h(2)

h(N–2)

h(N–1)

z–1

z–1

z–1

z–1

‡L

x(n) h(0)

h(1)

h(2)

h(N–2)

h(N–1)

We may use identity #4 and the result of Example 6.2 to move the up-sampler to the right

of the multipliers as shown below. As a result the number of multiplications is reduced by

100(L − 1)
%.

L

 ‡L

z–1

 ‡L

z–1

‡L

z–1

y(n)

‡L

 ‡L

z–1

0 m1

Polyphase structures

The polyphase structure for FIR Filters was developed for the efficient implementation of

sampling rate converters; however, it can be used in other applications. Further, the polyphase

structure can be developed for any filter, FIR or IIR. We give below an introduction.

Polyphase Structure for FIR Filters The impulse response of the FIR filter h(n) is of finite

length, N. The system function with N coefficients is
N −1

H(z) = h(n) z
−n

= h(0) + h(1)z
−1

+ h(2)z
−2

+ h(3)z
−3

+ h(4) z
−4

+ … + h(N −1)z
−(N−1)

n = 0

We shall use another parameter M: we shall divide the number of coefficients into M groups (or

branches or phases), modulo M. In other words the N terms in H(z) are arranged into M branches

with each branch containing at most (Int (N −1/ M)+1)terms.

Type 1 polyphase decomposition For illustration, let N = 11 and M =2 so that one group

contains 6 coefficients and the other 5 as developed below:
10

H(z) = h(n) z
−n

= h(0) + h(1) z
−1

+ h(2) z
−2

+ h(3) z
−3

+ h(4) z
−4

+ … + h(10) z
−10

n = 0

= h(0) + h(2) z
−2

+ h(4) z
−4

+ h(6) z
−6

+ h(8)z
−8

+ h(10) z
−10

› 1st group

+ h(1)z
−1

+ h(3)z
−3

+ h(5)z
−5

+ h(7)z
−7

+ h(9) z
−9

› 2nd group

= h(0) + h(2) z
−2

+ h(4) z
−4

+ h(6) z
−6

+ h(8) z
−8

+ h(10) z
−10

+ z
−1

{ h(1) + h(3) z
−2

+ h(5) z
−4

+ h(7) z
−6

+ h(9) z
−8

}

Define

Int (N −1/ M)= integer part of the argument

P0(z) = h(0) + h(2)z
−1

+ h(4) z
−2

+ h(6)z
−3

+ h(8)z
−4

+ h(10)z
−5

=

Int (N −1 / M)

(More generally, P0(z) = h(Mn + 0) z
−n

)
n = 0

Int (11−1/

2)

h(2n + 0) z
−n

n = 0

Int (11−1/ 2)

P1(z) = h(1)+ h(3) z
−1

+ h(5) z
−2

+ h(7) z
−3

+ h(9) z
−4

= h(2n +1) z
−n

n = 0

(h(11) = 0)

(More generally, P1(z) =

In this specific case we have

Int (N −1/ M)

h(Mn + 1) z
−n

)
n = 0

1

Y (z)

X (z)
= H(z) = P (z

2
) + z

−1
P (z

2
) = z

−m
P (z

2
)

n = 0

0 1

0 1 z P m

x(n)
P0(z

2)
y(n)

P1(z
2)

z–1

This decomposition of H(z) is known as type 1 polyphase decomposition. The

corresponding structure is shown below. The functions P (z
2
) and P (z

2
) can each be

implemented as a direct form.

By observing the expressions for P0(z) and P1(z) we can further generalize the functions
Pm(z) for any m as

Pm(z) =

Int (N−1/ M)

h(Mn + m) z
−n

), m = 0 to (M–1)
n = 0

Further, the system function becomes
M −1

Y (z)
X (z) = H(z) = P (z

M
) + z

−1
P (z

M
) + … + −(M −1)

M −1 (z
M

) =
m = 0

z
−m

P (z
M

)

Example 5.8.1 As another example, let N = 11 and M =3.
10

H(z) = h(n) z
−n

= h(0) + h(1) z
−1

+ h(2) z
−2

+ h(3) z
−3

+ h(4) z
−4

+ … + h(10) z
−10

n = 0

= h(0) + h(3) z
−3

+ h(6) z
−6

+ h(9) z
−9

– 1st group

Define

+ h(1)z
−1

+ h(4) z
−4

+ h(7) z
−7

+ h(10)z
−10

+ h(2) z
−2

+ h(5) z
−5

+ h(8) z
−8

H(z) = h(0) + h(3) z
−3

+ h(6) z
−6

+ h(9) z
−9

+ z
−1

{ h(1) + h(4) z
−3

+ h(7) z
−6

+ h(10) z
−9

}

+ z
−2

{ h(2)+ h(5) z
−3

+ h(8) z
−6

}

Int (N −1/ M)= integer part of the argument

Int (11−1 / 3)

– 2nd group

– 3rd group

P0(z) = h(0) + h(3) z
−1

+ h(6) z
−2

+ h(9) z
−3

= h(3n + 0)z
−n

n = 0

Int (N −1 / M)

(More generally, P0(z) = h(Mn + 0) z
−n

)
n = 0

P1(z) = h(1) + h(4) z
−1

+ h(7) z
−2

+ h(10)z
−3

=

Int (N −1/ M)

Int (11−1/ 3)

h(3n + 1) z
−n

n = 0

(More generally, P1(z) = h(Mn + 1) z −n)
n = 0

P1(z
3)

z–1

P2(z) = h(2)+ h(5)z

−1
+ h(8)z

−2
=

(More generally, P2(z) =

In this specific case we have

Int (11−1/ 3)

h(3n + 1) z
−n

n = 0

Int (N−1/ M)

h(Mn +1)z
−n

)
n = 0

(h(11) = 0)

Y (z) = H(z) = P (z
3
)+ z

−1
P (z

3
) + z

−2
P (z

3
) = 2 z

−m
P (z

3
)

0 1 2 m

X (z) m = 0

x(n) y(n)

P2(z
3)

z–1

P0(z
3)

0 1 z P m

x(n) y(n)

(M–1)th

Delay

PM–1(z
M)

z–1

PM–2(z
M)

z–1

Pm(zM)

z–1

P2(z
M)

z–1

P1(z
M)

z–1

P0(z
M)

Generalization As mentioned earlier, in the general case for an arbitrary M (≤ N) we have
Int (N −1/ M)

Pm(z) = h(Mn + m) z
−n

, m = 0 to (M–1)
n = 0

and
Y (z)
X (z)

= H(z) = P (z

M
) + z

−1
P (z

M
) + … +

−(M −1)

M −1

(z
M

) =

M −1

m = 0

z
−m

P (z
M

)

This overall operation is known as polyphase filtering.

0 1 z P

0 1 M −1

0 1 z P

k

Type 2 polyphase decomposition Given
M −1

Y (z)
X (z) = H(z) = P (z

M
) + z

−1
P (z

M
) + … + −(M −1)

M −1 (z
M

) =
m = 0

z
−m

Pm (z
M

)

set m = M–1–k: as m goes from 0 to M–1, k goes from M–1 to 0. Thus
0

H(z) = z
−(M −1−k)

PM −1−k (z
M

)
k = M −1

Let
Q (z M) = z −(M −1−k) P (z M)

k M −1−k

This gives us the type 2 polyphase decomposition
0 M −1

k Qk (z
M

) = Q (z
M

) + Q (zM) + … + Q (zM)
k = M −1 k = 0

Type 3 polyphase decomposition Given
M −1

Y (z)
X (z) = H(z) = P (z

M
) + z

−1
P (z

M
) + … + −(M −1)

M −1 (z
M

) =
m = 0

z
−m

Pm (z
M

)

set m = –k: as m goes from 0 to M–1, k goes from 0 to –(M–1) to 0. Thus
−(M −1)

H(z) = zk P− (z
M

)

Let

k = 0

R (z
M

) = z
k
P (z

M
)

k −k

0 2 4 6 1 3 5

1 3 5

0 2

1

0

x(n)

y(n)

P1(z
2)

z–1

P0(z
2)

x(n)

y(n)

P1(z
2)

z–1

P0(z
2)

h0 h2 h4 h6

x(n)

y(n)

z–1

h5 h3 h1

z–2 z–2 z–2

Example 5.8.2 For the system
6

H(z) = h(n) z
−n

= h(0) + h(1)z
−1

+ h(2)z
−2

+ h(3)z
−3

+ h(4)z
−4

+ h(5)z
−5

+ h(6)z
−6

n = 0

= { h + h z
−2

+ h z
−4
+ h z }

−6
+ { h z

−
+
1

h z −+3 h z }−5

= { h0 + h2 z
−2

+ h z
−4

+ h z }
−6

+ z
−1

{ h + h z
−2

+ h z
−4

}

P0(z) = h + h z
−
+
1
 h4 z −+2 h6 z

P1(z) = h1 + h3 z
−1

+ h z −2

The structure is shown below (left). As mentioned earlier P (z
2
) and P (z

2
) can each be

0 1

implemented as a direct form.

Polyphase realization Canonical polyphase realization

The structure shown on the right is obtained by moving the delay element z
−1

to the right of

P (z
2
) these two being in series in the second phase. In this latter case the two systems P (z

2
)

1 0

and P (z
2
) can share the same delay elements (that is, storage locations) even though each has its

own set of coefficients, thus resulting in a canonical polyphase realization, shown below.

P (z

2
)

P (z
2
)

1

4

5

6

−3

Polyphase Structure for IIR Filters The anti-aliasing filter in a decimator and the anti-imaging

filter in an interpolator may each be either an FIR or an IIR filter. The polyphase structure can be

developed for any filter, FIR or IIR, and any finite value of M. We now proceed to the case

where h(n) is an infinitely long sequence:

H(z) = h(n) z
−n

= …+ h(−M) z
M

+… h(−2) z
2
+ h(−1) z

1

n = −

+ h(0)+ h(1) z
−1

+ h(2) z
−2

+…+ h(M −1) z
−(M −1)

+ h(M) z
−M

+ h(M +1) z
−(M +1)

…

Once again we arrange the terms into M groups or branches in a modulo-M fashion. Each branch

contains infinitely many terms. The terms are arranged in tabular form below:

H(z) = h(n) z
−n

n = −

1st branch‹ … + h(−M) z
M

 + h(0) + h(M) z
−M

 …

2nd branch‹ … + h(−M +1) z
M −1

 + h(1) z
−1

 + h(M +1) z
−(M +1)

 …

 … … + h(2) z
−2

 + h(M + 2) z
−(M +2)

 …

 … … … … …

ith branch‹ … h(−M + i −1) z
−(−M +i−1)

 h(i −1)z
−(i−1)

 h(M +i−1)z
−(M +i−1)

 …

 … … … … …
 … + h(−2) z

2
 +h(M −2)z

−(M −2)
 +h(2M −2)z

−(2M −2)
 …

Mth branch‹ … + h(−1) z
1

 + h(M −1) z
−(M −1)

 + h(2M −1) z
−(2M −1)

 …

H(z) = […+h(−M)z
M

+h(0)+ h(M)z
−M

+h(2M)z
−2M

+…] 1st row

+[…+h(−M +1)z
M−1

+h(1)z
−1

+h(M +1)z
−(M +1)

+…] 2nd row

+ […] + …

+ […+ h(−M + i −1) z
−(−M +i−1)

+ h(i −1)z
−(i−1)

+ h(M + i −1) z
−(M +i−1)

+ h(2M + i −1) z
−(2M +i−1)

+…]

We factor out

ith row to get

Define

…

+ […+ h(−2) z
2
+ h(M − 2) z

−(M −2)
+ h(2M − 2) z

−(2M −2)
+…]

+ […+ h(−1) z
1
+ h(M −1) z

−(M −1)
+ h(2M −1) z

−(2M −1)
+…] Mth row

z
0
from the first row(branch), z

−1
from the 2nd row, and, in general, z

−(i−1)
from the

H(z) = […+h(−M)z
M

+h(0)+ h(M)z
−M

+h(2M)z
−2M

+…] 1st row

+ z
−1

[…+h(−M +1)z
M

+h(1)+h(M +1)z
−M

+…] 2nd row

+ z
−2

[…] + …

+ z
−(i−1)

[…+h(−M +i−1)z
M

+h(i−1)+h(M +i−1)z
−M

+h(2M +i−1)z
−2M

+…]

…

+ z
−(M −2)

[…+h(−2) z
M

+h(M − 2)+h(2M − 2)z
−M

+…]

+ z
−(M −1)

[…+ h(−1) z
M

+ h(M −1)+ h(2M −1) z
−M

+…]

y(n)

z–1

P0(z
3)

0

m

2

m = 0

so that

P0 (z
M

) = […+h(−M)z
M

+ h(0)+ h(M) z
−M

+h(2M)z
−2M

+…] = h(nM)z
−nM

n = −

P (z) = […+ h(−M)z + h(0)+ h(M) z
−1

+ h(2M) z
−2

+…] =

h(nM) z
−n

Similarly,

1

n = −

In general

P (z) = […+ h(−M +1) z + h(1)+ h(M +1) z
−1

+ h(2M +1) z
−2

+…]=

P (z) = h(nM + m)z
−n ,0 to (Mm–=1)

h(nM +1) z
−n

n = −

n = −

And the system function can now be written
M −1

H (z) = z −m
Pm (z

M
)

m = 0

This is called the M-component polyphase decomposition of H(z). The M functions Pm (z) are the

polyphase components of H(z). This overall operation is known as polyphase filtering.

As an example, for M = 3, we have

 Y (z) = H (z) = z
−m

P (z
3
) = P (z

3
)+ z

−1
P (z

3
) + z

−2
P (z

3
)

X (z)
m 0 1 2

Y(z) = P (z
3
) X (z)+ z

−1
P (z

3
) X (z)+ z

−2
P (z

3
) X (z)

0 1 2

This last equation leads to the structure below (left):

x(n)

We may also rearrange the output equation as
Y(z) = P (z

3
) X (z)+ z

−1
P (z

3
) X (z)+ z

−2
P (z

3
) X (z)

0 1 2

= P (z
3
) X (z)+ z

−1
{ P (z

3
) X (z)+ z

−1
P (z

3
) X (z)}

0 1 2

This last equation leads to the polyphase structure shown above (right), known as the transpose

polyphase structure because it is similar to the transpose FIR filter realization.

P2(z
3)

z–1

P1(z
3)

x(n) y(n)

P2(z
3)

z–1

P1(z
3)

z–1

P0(z
3)

0 1 M −1

x(n) v(n) y(n) $M

Down sampler

H(z)

|H(ω)|

ω

–π/M π/M

Polyphase structure for a decimator

The decimator block diagram is shown below: it consists of an anti-aliasing filter, H(z), which

could be an FIR or an IIR filter, followed by an M-fold down sampler.

We replace the filter H(z) by its M-component polyphase decomposition

M −1

H (z) = z −m
Pm (z

M
)

m = 0

The sub filters P (z
M

) , P (z
M

) , …, P (
M
z) could be FIR or IIR depending on H(z). The block

diagram then appears as below.

y(n) x(n) v(n)

(M–1)th

Delay

PM–1(z
M)

z–1

PM–2(z
M)

z–1

Pm(zM)

z–1

P2(z
M)

z–1

P1(z
M)

z–1

$M P0(z
M)

$M

m

m

m m

z–1

$M

z–1

We may use identity #1 to move the down-sampler to the immediate right of P (z
M

) in

each branch, and then use identity #3 to move the down-sampler from the immediate right to the

immediate left of Pm (.) while at the same time changing Pm (
Mz) to Pm (z) . The result appears as

below. It can be seen from this diagram that in this structure the number of multiplications is

reduced by a factor of M.

x(n)

(M–1)th

Delay

**** Continuing with the development, comparing

P (z) = h(rM + m) z
−r

r = −

with the defining equation of the z-transform

P (z) = p (r)z
−r

r = −

we identify

pm (r) = h(rM + m)

Note that M is a constant and m is a parameter. Upon substituting for Pm (z) in the system function
M −1

H (z) = z −m
Pm (z

M
)

m = 0

we have

$M

$M

z–1

z–1

$M

y(n)

PM–1(z)

PM–2(z)

Pm(z)

P2(z)

P1(z)

P0(z)

0

z–1

M −1 M −1

H(z) =
m = 0

z −m

 h(rM + m) (z M)−r

r = −

= h(rM + m)z
−(rM + m)

m = 0 r = −

M −1

= pm (r) z −(rM + m)

m = 0 r = −

The output transform is

M −1

The output is

Y (z) = H(z) X (z) = pm

m = 0 r = −

(r) X (z) z
−(rM + m)

 M −1 M −1

y(n) = ʓ-1 pm (r) X(z) z = pm (r) Z X (z) z
−(rM + m)

−1 −(rM + m)

Define

m = 0 r = − m = 0 r = −

M −1

= pm (r) x(n − rM + m)
m = 0 r = −

xm (r) = x(rM − m)

Note that M is a constant and m is a parameter.

xm (−r=) x(−rM − m)

Shifting the sequence by n units we get

xm (n − =r) x(n − rM − m)

The output now may be written
M −1

y(n) = pm (r) xm (n − r)
m = 0 r = −

Define the operation of polyphase convolution as

y(m) = pm (n)* xm (n) = pm (r) xm (n − r)
r = −

Then

M −1 M −1

y(n) = pm (n)* xm (n) = ym (n)
m = 0 m = 0

This overall operation is known as polyphase filtering.

UNIT-4 FINITE WORD LENGTH EFFECTS

Finite Wordlength Effects

All the signals and systems are digital in DSP. The digital implementation has finite accuracy. When numbers are

represented in digital form, errors are introduced due to their finite accuracy. These errors generate finite precision

effects or finite wordlength effects.

Let us consider an example if the first order IIR filter to illustrate how errors are encountered in

discretization. Such filter can be described as,

y(n)= y(n-1)+x(n) ... (1)

The z-transform of above equation gives

z[y(n)]= z[y(n-1)+x(n)]

X(z)= z−1 Y(z)+X(z)

Hence the transfer function

1 z
H(z)= =

1− z −1 z −

Here observe that ‘ ’ is the filter coefficient when this filter is implemented on some DSP processor or

software, ‘ ’ can have only discrete values. Let the discrete values of be represented by .

Hence the actual transfer function which is implemented is given as,

z
H (z) =

z −

The transfer function given by above equation is slightly different from H(z). Hence the actual frequency

response will be different from desired response.

The input x(n) is obtained by sampling the analog input signal. Since the quantizer takes only fixed(discrete)

values of x(n) ,error is introduced. The actual input can be denoted by x(n) .

x(n) =x(n)+e(n)

Here e(n) is the error introduced during A/D conversion process due to finite wordlength of the quantizer.

Similarly error is introduced in the multiplication of and y(n-1) in equation(1). This is because the product

 y(n-1) has to be quantized to one of the available discrete values. This introduces error. These errors generate

finite wordlength effects.

Finite Wordlength Effects in IIR Digital Filters

When an IIR filter is implemented in a small system, such as an 8-bit microcomputer, errors arise in representing

the filter coefficients and in performing the arithmetic operations indicated by the difference equation. These

errors degrade the performance of the filter and in extreme cases lead to instability.

Before implementing an IIR filter, it is important to ascertain the extent to which its performance will be

degraded by finite wordlength effects and to find a remedy if the degradation is not acceptable. The effects of

these errors can be reduced to acceptable levels by using more bits but this may be at the expense of increased

cost.

The main errors in digital IIR filters are:

i. ADC Quantization Noise:

This noise is caused by representing the samples of the input data ,by only a small number of bits.

ii. Coefficient quantization errors:

These errors are caused by representing the IIR filter coefficients by a finite number of bits.

iii. Overflow errors

These errors are caused by the additions or accumulation of partial results in a limited register length.

iv. Product round-offerrors

These errors are caused when the output ,and results of internal arithmetic operations are rounded to the permissible

wordlength.

Finite Wordlength Effects in FFT Filters

As in most DSP algorithms, the main errors arising from implementing FFT algorithms using fixed point arithmetic

are

i. Round off errors

These errors are produced when the product W k B is truncated or rounded to the system wordlength.

ii. Overflow errors

These errors result when the output of a butterfly exceeds the permissible wordlength.

iii. Coefficient quantization errors

These errors result from representing the twiddle factors using a limited number of bits.

LIMIT CYCLES

5.2.1 Overflow oscillations

Limit Cycle: The finite wordlength effects are analyzed using the linear model of the digital systems. But

nonlinearities are introduced because of quantization of arithmetic operations. Because of these nonlinearities,

the stable digital filter under infinite precision may become unstable under finite preision.Because of this instability,

oscillating periodic output is generated.Such output is called limit cycle.The limit cycle occur in IIR filters due to

feedback paths.

Types of Limit Cycles

There are two types of limit cycles.

(1) Granular and

(2) Overflow.

1. Granular Limit Cycles

The granular limit cycles are of low amplitude. These cycles occur in digital filters when the input signal levels

are very low. The granular limit cycles are of two types. They are

i. Inaccessible limit cycles

ii. Accessible limit cycles.

2. Overflow Limit Cycles

Overflow limit cycles occur because of overflow due to addition in digital filters implemented with finite precision.

The amplitudes of overflow limit cycles are very large and it can cover complete dynamic range of the register.

This further leads to overflow causing cumulative effect. Hence overflow limit cycles are more serious than

granular limit cycles.

+
w(n)

+
s0

-a 1 -b 1
+ +

z -1

-a 2 -b 2

z -1

1

-1 0

-1

1 2 v

Transfer Characteristics and Example

f(v)

Figure: Transfer characteristics of adder having overflow limit cycles

Because of overflow limit cycle oscillations the output fluctuates between minimum and maximum values.

The above figure shows the transfer characteristic of an adder that exihibit overflow limit cycle oscillations. Here

f(v) indicates addition operation. Consider the addition of following two numbers in sign magnitude form.

7

x1 = 0.111 i.e.,
8

−
2

5

x2 = 0.101 i.e.,
8

Then
x + x

 = 1.010 i.e.,
1 2 8

Here overflow has occured in addition due to finite precision and the digit before decimal point makes the

number negative.

Signal Scaling:

Need for Scaling: Limit cycle oscillations can be avoided by using the nonlinear transfer characteristic. But it

introduces distortion in the output. Hence it is better to perform signal scaling such that overflow or underflow

does not occur and hence limit cycle oscillations can be avoided.

Implementation of Signal Scaling

Figure shows the direct form-II structure of IIR filter. Let the input x(n)be scaled by a factor s0 before the

summing node to prevent overflow. With the scaling, the transfer function will be,

H(z)= s b0 + b1z −1 + b2z −2

= s
 B(z)

0
1+ a z

−1
+ a z

−2 0
A(z)

1 2

x(n) y(n)

Figure: Direct form-II realization for second order IIR filter

Let us define the transfer function

H
’(z)=

W(z)

X(z)

From figure we can write above transfer function as,

1 2

()

0

0

0

2 2 2

2

 ()

)

H’(z) =
s0

1+ a z
−1 + a z−2

1 2

Since

Since,

A(z)= 1+ a z
−1

+ a z
−2

H
’(z)=

s0

A z

H’(z)=
W(z)

X(z)’

(or)

W(z)
=

X(z)

W(z)=

s0

A(z)
s X(z)

A(z)

Let S(z)=
1

A(z)’ , then above equation becomes,

W(z)= s S(z)X(z)

Evaluating z-transform on unit circle, we put z = e j in above equation,

W(e
j)= s S(e

j)X(e
j)

Taking inverse Fourier transform of above equation,

(n)=
1
W(e

j)ejn
d =

1
s S(e

j)X(e
j)e

jn
d

2 2
0

Hence

2 (n)= S(e
j)X(e

j)e
jn

d
2

Schwartz inequality states that,

 x1(t)x 2 (t)dt x1 (t) dt x 2 (t) dt

Using this relation we can write above equation as,
2 02 j

2 j
2

 (n)
 s

4
2

S(e) d. X(e) d

,

since,

2

e jn
= 1

2 1 j 2 1 j 2

 (n) s 0

2

S(e
) d.

 2
 d

Parseval’s theorem states that

 1

X(e j)

2

= x
2 (n). Then above equation can be written as,

n=0

 1 2

2 (n) s

2
S e

j
d. x

2 (n)
0

 2 n=0

s20

4
2

 X(e

()

d = =

()

We have put z = e j . Hence dz = je jd or

dz dz
, since

je
j

jz e
j

= z

Putting these values in equation
 1 2 dz

2 (n) s

2

 S e
j

. .x
2 (n)

 2
1

 jz n=0 dz
 s

2
 x

2 (n). S z .

2

 0
n=0 2j z

Here S(z)
2
= S(z).S(z−1). Then we have,

2 (n) s

2

x
2 (n).

 1
S(z).S(z−1)z−1

dz
0

n=0 2j

Here the integration is executed over a closed contour i.e.
2 (n) s

2x
2 (n).

1
 S(z).S(z

−1)z
−1

dz

 ()
 () () (−) −

0

n=0 2j C

(or) 2
n x

2
n

n=0

s
2
S z .S z

1
z

1
dz

0 C

Here
2 (n) represents instantaneous energy of signal after first summing node. And x

2 (n)represents

instantaneous energy of input signal. Overflow will not occur if

2 (n) x

2 (n)
n=0

For this equation to be true we get following condition from equation

1 S(z).S(z−1)z−1
dz = 1

s2

0
2j C

S
(
z
)

=
1

Earlier we have defined . Hence above condition becomes,

A(z)

2 1 z−1dz
s

0
 () (−1) = 1

2

s

2
=

j C A z .A z

1

−1

 (or) 0 1 z dz

2j C A(z).A(z−1)

Above equation gives the value of scaling factor s0 to avoid overflow

0

v(n)
+

(n)

5.3 ROUND OFF NOISE IN IIR DIGITAL FILTERS
Statistical Model for Analysis of Round-off Error Multiplication:

We perform arithmetic operations like addition and multiplication some errors will be occured. Those errors are

called arithmetic errors. The results of arithmetic operations are required to be quantized so that they can occupy

one of the finite set of digital levels. Such operation can be visualized as multiplier (or other arithmetic operation)

with quantizer at its output.

u(n) v(n)

Figure: Quantization of multiplication or product

The above process can be represented by a statistical model for error analysis. The output (n) and error

e (n) in product quantization process.i.e.,

(n) = (n) + e (n)

The statistical model is shown below.

u(n) v(n)

e(n)

Figure: Statistical model for analysis of round-off error multiplication

For the analysis purpose following assumptions are made.

i) The error sequence e tihe sample sequence of a stationary white noise process.

ii e (n) is having uniform distribution over the range of quantization error.

iii) The sequence e (n) is uncorrelated with the sequence (n) and input sequence x(n).

Computational output round off noise

Product Round-off Errors and its Reduction:

The results of product or multiplication operations are quantized to fit into the finite wordlength,when the digital

filters are implemented using fixed point arithmetic. Hence errors generated in such operation are called product

round off errors.

The effect of product Round-off errors can be analyzed using the statistical model of the quantization

process. The noise due to product round-off errors reduces the signal to noise ratio at the output of the filter.

Some times this ratio may be reduces below acceptable levels. Hence it is necessary to reduce the effects of

product round-off errors.

There are two solutions available to reduce product round-off errors.

a) Error feedback structures and

b)State space structure.

The error feedback structures use the difference between the unquantized and quantized signal to reduce

the round-off noise. The difference between unquantized and quantized signal is fed back to the digital filter

structure in such a way that output noise power due to round-off errors is reduced.

v(n)
Q

z -1

- +

e(n)
+

K
+

v(n)
Q

z -1

x

q

First Order Error-feedback Structure to reduce Round-off Error:

The results of product or multiplication operations are quantized to fit into the finite wordlength, when the digital

filters are implemented using fixed point arithmetic. Hence errors generated in such operation are called product

round off errors.

The effect of product round-off errors can be analyzed using the statistical model of the quantization

process.

Let the quantization error signal be given as the difference between unquantized signal y(n) and quantized signal

 (n) .i.e.,

e(n) = y(n)- (n)

x(n) y(n)

Figure: First order error feedback structure to reduce product round-off error

This error signal is fed back in the structure such that round-off noise is reduced. Such structure for first order

digital filter is shown in figure.

The incorporation of quantization error feedback as shown in figure helps in reducing the noise power at the

output . This statement can be proved mathematically.

Round-off Errors in FFT Algorithms:

FFT is used in large number of applications. Hence it is necessary to analyze the effects due to finite wordlengths

in FFT algorithms. The most critical error in FFT computation occurs due to arithmetic round-off errors.

The DFT is used in large number of applications such as filtering, correlation, spectrum analysis etc. In

such applications DFT is computed with the help of FFT algorithms. Therefore it is important to study the

quantization errors in FFT algorithms. These quantization effects mainly take place because of round-off errors.

These errors are introduced when multiplications are performed in fixed point arithmetic.

FFT algorithms require less number of multiplications compared to direct computation of DFT. But it

does not mean that quantization errors are also reduced in FFT algorithms.

Let
2

 represents the variance of output DFT coefficients i.e., X (k) .

For N-point DFT x is given as,

2 1
x =

3N

......(1)

For direct computation of DFT, the variance of quantization errors in multiplications is given as,

2
=

N
.

2

......(2)

q
3

Here
2
is variance of quantization errors and is step size which is given as,

 = 2−b ... (3)

q

x

q

x

q

 q

And b is the number of bits to represent one level.

Hence equation (2) becomes,

2 = N
.2−2b

.....(4)

3

The signal to noise power ratio at the output (i.e., DFT coefficients) can be considered as the measure of

quantization errors. This ratio is the ratio of variance of DFT coefficients (2) to the variance of quantization

errors (2) i.e.,

Signal to noise ratio in direct computation of

From equation (1) and equation (2) we have,

1

DFT =

2

 2
 q Direct DFT

2

= 3N
2b

 2

 q Direct DFT

= -(5)
N 2

.2−2b N2

3

When DFT is computed using FFT algorithms, the variance of the signal remains same i.e.,

2 1

x = from equation (1) (6)
3N

But with algorithms the variance of the quantization errors is given as,

2 = 2
.2−2b

......(7)

3
Hence signal to noise ration in FFT algorithms is,

1

2 = 3N 22b

x

2
FFT

2 − =
.2 2b

2N

3

In the above expression, the signal to noise ration is inversely proportional to N. whereas in direct DFT

computation the signal to noise ratio is inversely proportional to N2 as given by equation (5). This means

quantization errors increase fast with increase in ‘N’ in direct computation of DFT. But in FFT algorithms the

quantization errors increase slowly with increase in ‘N’.

Product of Round-off Errors in IIR Digital Filters:

The results of product or multiplication operations are quantized to fit into the finite wordlength, when the digital

filters are implemented using fixed point arithmetic. Hence errors generated in such operation are called product

round off errors.

Product round-off error analysis is an extensive topic.Our presentation here will be brief and aims to

make you aware of the nature of the errors, their effects and how to reduce them if necessary.

The basic operations in IIR filtering are defined by the familiar second- order difference equation:

2 2

y(n) = bk x(n − k) − ak y(n − k)
k =0 k =1

Where x(n-k) and y(n-k) are the input and output data samples,and bk and ak are the filter coefficients. In

practice these variables are often represented as fixed point numbers. Typically , each of the products bk x(n-k)

x

x(n)

b 0
s 1

y(n)

s1

b 1
s 1

-a 1

z -1

z -1

z -1

z -1

and ak y(n-k) would require more bits to represent than any of the operands. For example, the product of a B-bit

data and a B-bit coefficient is 2B bits long.

Truncation or rounding is used to quantize the products back to the permissible wordlength. Quantizing

the products leads to errors,popularly known as round-off errors,in the output data and hence a reduction in the

SNR. These errors can also lead to small-scale oscillations in the output of the digital filter,even when there is no

input to the filter.

)

(b)

Figure: Representation of the product quantization error: (a) a block diagram representation of the

quantization process; (b) a linear model of the quantization process

The figure(a) represents a block diagram of the product quantization process,and figure (b) represents a

linear model of the effect of product quantization. The model consists of an ideal multiplier,witk infinite precision,

in series with an adder fed by a noise sample, e(n), representing the error in the quantized product ,where we have

assumed,for simplicity,that x(n),y(n), and K are each represented by B bits. Thus

y(n) = Kx(n) + e(n)

The noise power, due to each product quantization, is given by

2
=

q 2

r
12

Where r symbolizes the round-off error and q is the quantization step defined by the wordlength to which

product is quantized. The round-off noise is assumed to be a random variable with zero mean and constant

variance. Although this assumption may not always be valid, it is useful in assesing the performance of the filter.

Product of Round-off Errors on Filter Performance:

The effects of round-off errors on filter performance depend on the type of filter structure used and the point at

which the results are quantized.

The above figure represents the quantization noise model for the direct form building block. It is assumed

in the figure that the input data,x(n),output data,y(n),and the filter coefficients are represented as B-bit numbers

(including the sign bit). The products are quantized back to B bits after multiplication by rounding (or truncation).

e(n)

b 2 -a 2
s 1

Figure: Product quantization noise model for the direct form filter section. All the noise sources in (a) have

x(n) B b its 2B

b0
s 1

B b its y(n)

B

s1

e1

2B

B B

2B

b 1
s 1

-a 1

e2

2B

B

B

b2
s 1

2B

-a 2

e3

z -1

z-1

z-1

z-1

(a) x(n) K 2B bits B b its
Q

y(n

x(n) K 2B b its

B b its

y(n)

c(n)

1/s

5q
2

12

+

 =

+

 =

z-1

been combined in (b) as they feed to the same point

Since all five noise sources, e1 to e5 in figure(a),feed to the same point (that is into the middle adder), the

total output noise power is the sum of the individual noise powers(figure(b)).

e 1
e2

x(n)

 B bits w(n) B B bits

x(n)

w(n)

e 1(n)

w(n-1)

B 2B

-a 1

s 1b 0

2B

s 1 b 1

e 6(n)

B

y(n) 1/s 1 s1b 0

w (n-1)

s b

y(n)

e3(n)

B 2B
 -a

w(n - 2)

2B
 s b

e 5 (n)

B

-a 1

z -1

1 1

-b 2
2 1 2

e 2 (n)

e 4 (n)

-a 2

w (n-2)

s1b 2

Figure: Product quantization noise model for the canonic filter section. The noise sources feeding the same

point in (a) have been combined in (b)

2 5q 1 1 dz 2 5q

2

 or =
2

 F (z)F (z −
) s1 =

2

f (k) s
2

 1
2

= F (z) 2s1 12 2 j c
z 12 k =0

2

1
Where F(z) =

1+ a z −1 + a z−2
1 2

f(k) = Z
−1F (z) tihs e inverse z-transform of F(z),which is also the impulse response from each noise source to

q2

the filter output, . 2
2

is the L2 norm squared and
12

 is the intrinsic product round-off noise power. The total

noise power at the filter output is the sum of the product round-off noise and the ADC quantization noise.

2
= 2 2

0 A or

q2

 h
2 + 2 2 q2

2

= H (z) 5s
F (z)

2

=
12 k =0

(k) 5s 1 f
k =0

(k)
 12

2
2 1 2

For canonic section, figure(a) , the noise model again includes a scale factor as this generates a round-off

error of its own. The noise sources e1(n) to e3 (n) all feed to the left adder, whilst the noise sources e4 (n) to

e6 (n) feed directly into the filter output. Combination of the noise sources feeding to the same point leads to the

noise model of figure(b). Assuming uncorrelated noise sources, the total noise contribution is simply the sum of

the individual noise contributions:
3q 2 f

2
(k) +

3q
2

F (z) +1
2

or

12 k =0 12 12 2

z -1

z-1

0

r

r r

()

= 3 1 1 +

Where f(k) is the impulse response from the noise source e1

transfer function given by
b + b z

−1
+ b z

−2

to the filter output, and F(z) the corresponding

F (z) = s1
0 1

1+ a z
−1

2

+ a z
−2

 = s1 H(z)
1 2

The total noise (ADC+round-off noises) at the filter output is given by
2 2 2

 0 = 0 A + or

q
2

+ s h (k)

 2

 h (k)
2 2 2

31+ s
2

H (z) + H (z)

12 k =0 k =0 12 2 2

HOMDSET TO PREVENT OVERFLOW
Prevent Overflow Limit Cycle Oscillations: The overflow limit cycles occur because of overflow due to addition

in digital filters implemented with finite precision. The amplitudes of overflow limit cycles are very large and it

can cover complete dynamic range of the register.

The specific design of filter coefficients do not assure prevention of overflow limit cycle oscillations. The

transfer characteristic can be modified to avoid overflow limit cycle oscillations.

f(v)

v

Figure: Prevention of overflow limit cycle oscillations

As shown in figure when an overflow or underflow is sensed, the output of the adder is set to its full scale

value of 1. This prevents oscillatory output. This nonlinearity of the characteristic causes very small distortion

in the output because overflow/underflow occurs rarely.

Scaling is also used to prevent overflow limit cycle oscillations. Limit cycle free structures are normally

used to avoid the effects of limit cycles.

Characteristics of a Limit Cycle Oscillation with respect to the System by the following Difference equation

y(n) = 0.95 y(n −1) + x(n) .

Let y (n) be the output of the system after the product term 0.95 y(n −1) is quantized after rounding. i.e.,

y (n)= Q 0.95y(n −1)+ x(n)

Let

0.75
x n = for n = 0

 0 for n 0

Let b = 4 bits are used to represent the quantized product excluding sign bit.

With n=0

2 2 1
q

1

-1 0

-1

1

 =

2

r r r

r r r r

r

r r r r r

10

r

r

r r r r r

10

r

r

r r r r r

r

r

r r

y (n)= Q 0.95y (n −1)+ x(n)

 y (0)= Q 0.95y (−1)+ x(0) = Q 0.95 0+ 0.75

Since yr (−1)= 0 = 0.75

0.7510 = 0.112

 4-bits rounded value of 0.112 will be 0.1100 i.e., 0.75 only.

 y (0)= 0.75 after 4 bits rounding

With n = 1

y (1) = Q 0.95y (0)+ x(1) = Q 0.95 0.75+ 0 = Q 0.7125

0.7125 = 0.1 0 1 1 0 1 1 0 0 1 1 0 0

Note that 0.7125 requires infinite binary digits for its representation. Let us round it to 4 bits.

 Q 0.712510 = 0.1 0 1 12 upto 4 bits

But decimal equivalent of 0.1 0 1 1 is 0.6875.

 yr (1) = 0.6875

This means the actual value of y (1) = 0.7125 is changes to 0.6875 due to 4-bits quantization.

With n = 2

y (2)= Q 0.95y (1)+ x(2) = Q 0.965875 0+ = Q 0.653125

0.653125 = 0.1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0

 Q 0.65312510 = 0.1 0 1 02

 y (2)= 0.625

With n = 3

upto 4 bits = 0.62510

y (3) = Q 0.95y (2)+ x(3)

0.5937510 = 0.1 0 1 0 12

= Q 0.96525 0+ = Q 0.59375

 Q 0.5937510 = 0.1 0 1 12

 y (3)= 0.625

upto 4 bits = 0.625

Thus y (2)= y (3)== 0.625

Thus the system enters into limit oscillation when n = 2 .

To calculate dead band

Consider equation
6/2

y(n−1)
1− a

2

2

1− 0.95

 / 2
=

1
Here

2b

=
1

= 0.0625

24

y(n −1)
0.0625/2

 0.625

Dead band = [-0.625, +0.625]

Signal Scaling to Prevent Limit Cycle Oscillations: This is zero input condition. Following table lists the

values of y(n) before and after quantization. Here the values are rounded to nearest integer value.

n y(n) before quantization y(n) after quantization

-1 12 12

0 10.8 11

1 9.72 10

2 8.748 9

3 7.8732 8

4 7.08588 7

5 6.377292 6

6 5.7395628 6

7 5.1656065 5

8 4.6490459 5

Table: Values of y(n) before and after quantization

From table observe that if y(−1) 5 , y(n)= y(−1) for n 0 for zero input. Hence the dead band will be − 5,5.

Since the values are rounded to nearest integer after quantization, the step size will be = 1. Hence

dead band can also be calculated as follows:

y(n−1)= ,Here = 0.9 , y(n −1)=
1−

1/ 2

1− 0.9
5

Thus the dead band is 5−5, .

Dynamic Range Scaling to Prevent the Effects of Overflow: The overflow can take place at some internal

nodes when the digital filters are implemented by using fixed point arithmetic. Such nodes can be inputs/outputs

of address or multipliers. This overflow can take place even if the inputs are scaled. Because of such overflow at

intermediate points,produces totally undesired output or oscillations. The overflow can be avoided by scaling the

internal signal levels with the help of scaling multipliers. These scaling multipliers are inserted at the apprppriate

points in the filter structure to avoid possibilities of overflow. Sometimes these scaling multipliers are absorbed

with the existing multipliers in the structure to reduce the total number and complexity.

At which node the overflow will take place is not known in advance. This is because the overflow

depends upon type of input signal samples. Hence whenever overflow takes place at some node, the scaling

should be done dynamically. Hence dynamic range scaling in the filter structure can avoid the effects of overflow.

Let ur (n) be the signal sample at r th node in the structure. Then the scaling should ensure that,

ur (n) 1 for all r and n.

 =

f
2(i)

i=0

RADTE OFF BETWEEN ROUND-OFF AND OVERFLOW NOISE, MEASUREMENT OF

COEFFICIENT QUANTIZATION EFFECTS THROUGH POLE-ZERO MOVEMENT

Errors in Rounding and Truncation Operations : The computations like multiplication or addition are performed

the result is truncated or rounded to nearest available digital level. This operation introduces an error. Hence the

performance of the system is changed from expected value.

Truncation Error: This error is introduced whenever the number is represented by reduced number of bits.

Let Qt (x) be the value after truncation ,then truncation error will be,

 r = Qt (x) − (x)

Here x is the original value of the number.

Rounding Error : This error is introduced whenever the number is rounded off to the nearest digital level.The

number of bits used to represent the rounded number are generally less than the number of bits required for actual

number.

Let Qr (x) be the value after rounding.Then rounding error will be,

 r = Qr (x) − x

Here x is the original value of a number.

Tradeoff between roundoff and overflow noise:

Scaling operation

Scaling is a process of readjusting certain internal gain parameters in order to constrain internal signals to a range

appropriate to the hardware with the constraint that the transfer function from input to output should not be

changes.

The filter in figure with unscaled node x has the transfer function

H(z) = D(z)+F(z)G(z) (1)

To scale the node x, we divide F(z) by some number and multiply G(z) by the same number as in

figure. Although the transfer function does not change by this operation, the signal level at node x has been

changes. The scaling parameter can be chosen to meet any specific scaling rule such as

l1 scaling: = f(i)
i=0

......(2)

l2 scaling: = …..(3)

Where f(i) is the unit-sample response from input to the node x and the parameter can be interpreted

to represent the number of standard deviations

D(z)

IN OUT

F(z) x

(a)

G(z)

D(z)

IN

F(z)/ x1 G(z)

OUT

(b)

Figure: A filter with unscaled node x and (b) A filter with scaled node x’

Representable in the register at node x if the input is unit-variance white noise. If the input is bound by

u(n) 1 , then,

x(n) = f (i)u(n − i) f (i)(4)
i=0 i=0

Equation represents the true bound on the range of x and overflow is completely avoided by l1 scaling in (2),

which is the most stringent scaling policy.

In many cases, input can be assumed to be white noise. Although we cannot compute the variance at node

x. for unit-variance white noise input,

 2 2

E x (n) =f
i=0

(i)(5)

Since most input signals can be assumed to be white noise, l2 scaling is commonly used. In addition, (5) can be

easily computed. Since (5) is the variance (not a strict bound), there is a possibility of overflow, which can be

reduced by increasing in (3). For large values of , the internal variables are scaled conservatively so that no

overflow occurs. However, there is a trade –off between overflow and roundoff noise, since increasing deteriorates

the output SNR (signal to noise ratio).

a

u(n

x(n)

u(n x(n)

(ro u n d o ff e rro r)

Figure: Model of roundoff error

Roundoff Noise: If two W-bit fixed point fraction numbers are multiplies together, the product is (2W-1) bit

long. This product must eventually be quantized to W-bits by rounding or truncation. For example, consider the

1st –order IIR filter shown in figure. Assume that the input wordlength is W=8bits. If the multiplier coefficient

wordlength is also the same, then to maintain full precision in the output we need to increase the output wordlength

by 8 bits per iterations. This is clearly infeasible. The alternative is to roundoff (or truncate) the output to its

nearest 8-bit representation.

8 bits

15 bits

) +

8 bits
D

) + D

2

A

b CT

u(n) x(n+ 1) z -1
x(n) y(n)

P e(X)

Figure: Error probability distribution

The result of such quantization introduces roundoff noise e(n). For mathematical ease a system with

roundoff can be modeled as an infinite precision system with an external error input. For example in the previous

case (shown in figure) we round off the output of the multiply add operation and an equivalent model is shown in

figure.

Although rounding is not a linear operation, its effect at the output can be analyzed using linear system

theory with the following assumptions about e(n):

1. E(n) is uniformly distributed white noise.

2. E(n) is a wide –sense stationary random process, i.e., mean and covariance of e(n) are independent of the

time index n.

3. E(n) is uncorrelated to all other signals such as input and other noise signals.

Let the wordlength of the output be W-bits, then the roundoff error e(n) can be given by

− 2−(w−1)

2
e(n)

2 −(w−1)

2

.....(6)

Since the error is assumed to be uniformly distributed over the interval given in (6), the corresponding

probability distribution is shown in figure, where is the length of the interval (i.e., 2−(w−1)).

Let us compute the mean E[e(n)] and variance Ee2 (n) of this error function.
 1 x

Ee(n)= 2 xP (x)dx =

+− e

2

2 2 = 0

2 −
2

.....(7)

Note that since mean is zero, variance is simply Ee2 (n)

Ee2 (n)= 2 x
2
P (x)dx =

 1 x

3 2 =

= 2
−2w

− e 3 …...(8)
2 −

12 3
2

d

e(n)

−

x

e

Figure: Signal flow graph

In other words (8) can be rewritten as

2
= 2−2w

......(9)

e
3

Where
2
is the variance of the roundoff error in a finite precision, W-bit wordlength system. Since the

variance is proportional to 2−2w , increase in wordlength by 1 bit decreases the error by a factor of 4.

The purpose of analyzing roundoff noise is to determine its effect at the output signal. If the noise
variance at the output is not negligible in comparison to the output signal level, the worlength should be increase

or some low noise structures should be used. Therefore, we need to compute SNR at the output, not just the noise

gain to the output. In the noise analysis, we use a double length accumulator model, which means rounding is

performed after two (2w-1)-bit products are added. Also, notice that multipliers are the sources for roundoff

noise.

Effects of Coefficient Quantization in FIR filters: Let us consider the effects of coefficient quantization in FIR

filters. Consider the transfer function of the FIR filter of length M,

M −1

H(z) = h(n)z
−n

n=0

The quantization of h(n) takes place during implementation of filter. Let the quantized coefficeints be

denoted by h(n) and e(n) be the error in quantization. Then we can write,

h(n) = h(n)+e(n)

And the new filter transfer function becomes,

M −1 M −1 M −1 M −1

H (z) = h(n)z −n = h(n) + e(n)z −n = h(n)z −n + e(n)z −n = H(z)+E(z)
n=0 n=0 n=0 n=0

M −1

Where, E(z)= e(n)z −n

n=0

H(z)

Figure: Model of FIR filter with quantizer coefficients

Here observe that the FIR filter with quantized coefficients can be modelled as parallel connection of two

FIR filters H(z) and E(z).

In the figure, H(z) is the FIR filter with unquantized coefficients, and E(z) is the FIR filter representing

coefficient quantization error.

The frequency response of FIR filter with quantized coefficients as,

+

E(z)

H(z)

r

r

H () = H () + E()

Here E() is the error in the desired frequency response which is given as,

M −1

E() = e(n)e
− jn

n=0

Consider the magnitude of error i.e.,

M −1

E() = e(n)e
− jn

n=0

M −1

 E() e(n) e− jn
n=0

M −1

 e(n)
n=0

(e

− jn = 1)

The upper bound is reached if all the errors have same sign and have the maximum value in the range. If
we consider e(n) to be statistically independent random variables, then more realistic bound is given by standard

derivation of E() i.e.;

 E () is the standard derivation of error in frequency response i.e., E().

DEADBAND EFFECTS

Deadband and Deadband of First Order Filter: Dead band is the range of output amplitudes over which limit

cycle oscillations takeplace

Dead band of first order filter

Consider the first order filter,

y(n)= y(n −1)+ x(n)

Here y(n −1) is the product term. After rounding it to ‘b’ bits we get,

y(n)= Q y(n −1)+ x(n)

When limit cycle oscillations take place,

Q y(n −1)= y(n −1)

…..(1)

The error due to rounding is less than
2

. Hence,

Qy(n −1)− y(n −1)

2

From equation (1) above equation can be written as,

 y(n −1)− y(n −1)

2

 y(n −1)1−

 y(n−1)

2

 / 2

1−

UNIT-4

 Finite Word length Effects

 Introduction

Practical digital filters must be implemented with finite precision numbers and arithmetic. As a

result, both the filter coefficients and the filter input and output signals are in discrete form. This

leads to four types of finite word length effects.

Discretization (quantization) of the filter coefficients has the effect of perturbing the location of

the filter poles and zeroes. As a result, the actual filter response differs slightly from the ideal response.

This deterministic frequency response error is referred to as coefficient quantization error.

The use of finite precision arithmetic makes it necessary to quantize filter calculations by rounding

or truncation. Roundoffnoiseis thaterror in thefilter output that resultsfrom roundingor truncating

calculations within the filter. As the name implies, this error looks like low-level noise at the filter

output.

Quantization of the filter calculations also renders the filter slightly nonlinear. For large signals

this nonlinearity is negligible and roundoff noise is the major concern. However, for recursive filters

with a zero or constant input, this nonlinearity can cause spurious oscillations called limit cycles.

With fixed-point arithmetic it is possible for filter calculations to overflow. The term overflow

oscillation, sometimes also called adder overflow limit cycle, refers to a high-level oscillation that

can exist in an otherwise stable filter due to the nonlinearity associated with the overflow of internal

filter calculations.

In this chapter, we examine each of these finite word length effects. Both fixed-point and

floating- point number representations are considered.

+

−

≤

≥

− ≤

≤

= = = =

− + = = =

≤ ≤ + + =

≤

 Number Representation

In digital signal processing, (B 1)-bit fixed-point numbers are usually represented as two’s-

complement signed fractions in the format

b0 · b−1b−2 · · · b−B

The number represented is then

X = −b0 + b−12−1 + b−22−2 + · · · + b−B 2−B (3.1)

where b0 is the sign bit and the number range is 1 X < 1. The advantage of this representation

is that the product of two numbers in the range from 1 to 1 is another number in the same range.

Floating-point numbers are represented as

X = (−1)s m2c (3.2)

where s is the sign bit, m is the mantissa, and c is the characteristic or exponent. To make the

representation of a number unique, the mantissa is normalized so that 0.5 m < 1.

Although floating-point numbers are always represented in the form of (3.2), the way in which

this representation is actually stored in a machine may differ. Since m 0.5, it is not necessary to

store the 2−1-weight bit of m, which is always set. Therefore, in practice numbers are usually stored

as

X = (−1)s (0.5 + f)2c (3.3)

where f is an unsigned fraction, 0 f < 0.5.

Most floating-point processors now use the IEEE Standard 754 32-bit floating-point format for

storing numbers. According to this standard the exponent is stored as an unsigned integer p where

p = c + 126 (3.4)

Therefore, a number is stored as
X = (−1)s (0.5 + f)2p−126 (3.5)

where s is the sign bit, f is a 23-b unsigned fraction in the range 0 f < 0.5, and p is an 8-b

unsigned integer in the range 0 p 255. The total number of bits is 1 23 8 32. For

example, in IEEE format 3/4 is written (1)0(0.5 0.25)20 so s 0, p 126, and f 0.25.

The value X 0 is a unique case and is represented by all bits zero (i.e., s 0, f 0, and p 0).

Although the 2−1-weight mantissa bit is not actually stored, it does exist so the mantissa has 24 b

plus a sign bit.

 Fixed-Point Quantization Errors

In fixed-point arithmetic, a multiply doubles the number of significant bits. For example, the

product of the two 5-b numbers 0.0011 and 0.1001 is the 10-b number 00.000 110 11. The extra bit

to the left of the decimal point can be discarded without introducing any error. However, the least

significant four of the remaining bits must ultimately be discarded by some form of quantization so

that the result can be stored t o 5 b for use in other calculations. In the example above this results in

0.0010 (quantization by rounding) or 0.0001 (quantization by truncating). When a sum of products

calculation is performed, the quantization can be performed either after each multiply or after all

products have been summed with double-length precision.

1

{}

1

We will examine three types of fixed-point quantization—rounding, truncation, and magnitude

truncation. If X is an exact value, then the rounded value will be denoted Qr (X), the truncated value

Qt (X), and the magnitude truncated value Qmt (X). If the quantized value has B bits to the right of

the decimal point, the quantization step size is

O = 2−B (3.6)

Since rounding selects the quantized value nearest the unquantized value, it gives a value which is

never more than ±O/2 away from the exact value. If we denote the rounding error by

‹r = Qr (X) − X (3.7)

then
O

−
2

≤ ‹r ≤

O

(3.8)

2

Truncation simply discards the low-order bits, giving a quantized value that is always less than or

equal to the exact value so

− O < ‹t ≤ 0 (3.9)

Magnitude truncation chooses the nearest quantized value that has a magnitude less than or equal

to the exact value so

− O < ‹mt < O (3.10)

The error resulting from quantization can be modeled as a random variable uniformly distributed

over the appropriate error range. Therefore, calculations with roundoff error can be considered

error-free calculations that have been corrupted by additive white noise. The mean of this noise for

rounding is

m‹r = E{‹r }=
O

∫

O/2

−O/2

‹r d‹r = 0 (3.11)

where E represents the operation of taking the expected value of a random variable. Similarly, the

variance of the noise for rounding is

σ 2 = E{(‹r − m‹)2}=

∫

O/2
O2

(‹r − m‹)2 d‹r =

(3.12)

‹r

Likewise, for truncation,

O −O/2 12

O
m‹t = E{‹t } = −

2

2 2 O2

and, for magnitude truncation

σ‹t
= E{(‹t − m‹t) }=

12
(3.13)

m‹mt = E{‹mt }= 0

2 2 O2

σ‹mt
= E{(‹mt − m‹mt) }=

3
(3.14)

r r

−

‹

εr

εr

r

r
m m

 Floating-Point Quantization Errors

With floating-point arithmetic it is necessary to quantize after both multiplications and additions.

The addition quantization arises because, prior to addition, the mantissa of the smaller number in

the sum is shifted right until the exponent of both numbers is the same. In general, this gives a sum

mantissa that is too long and so must be quantized.

We will assume that quantization in floating-point arithmetic is performed by rounding. Because

of the exponent in floating-point arithmetic, it is the relative error that is important. The relative

error is defined as

ε =
Qr (X) − X

=
‹r

(3.15)

Since X = (−1)s m2c , Qr (X) = (−1)s Qr (m)2c and

ε =
Qr (m) − m

=
‹

(3.16)

If the quantized mantissa has B bits to the right of the decimal point, |‹| < O/2 where, as before,

O = 2−B . Therefore, since 0.5 ≤ m < 1,

|εr | < O (3.17)

If we assume that ‹ is uniformly distributed over the range from O/2 to O/2 and m is uniformly

distributed over 0.5 to 1,

mεr = E
.

m

Σ
= 0

‹ 2 2 1
 O/2 ‹2

σ 2 = E

.. Σ Σ

=

∫ ∫

2

d‹ dm

O2

=
6

=

(0.167)2 −2B

(3.18)

In practice, the distribution of m is not exactly uniform. Actual measurements of roundoff noise

in [1] suggested that

σ 2 ≈ 0.23O2 (3.19)

while a detailed theoretical and experimental analysis in [2] determined

σ 2 ≈ 0.18O2 (3.20)

From (3.15) we can represent a quantized floating-point value in terms of the unquantized value

and the random variable εr using

Qr (X) = X(1 + εr) (3.21)

Therefore, the finite-precision product X1X2 and the sum X1 + X2 can be written

f l(X1X2) = X1X2(1 + εr) (3.22)

and
f l(X1 + X2) = (X1 + X2)(1 + εr) (3.23)

where εr is zero-mean with the variance of (3.20).

1/2

X X

εr m O −O/2 m

x

x

x

/= =

{ − }

x

.

o

o

 Roundoff Noise

To determine the roundoff noise at the output of a digital filter we will assume that the noise due

to a quantization is stationary, white, and uncorrelated with the filter input, output, and internal

variables. This assumption is good if the filter input changes from sample to sample in a sufficiently

complex manner. It is not valid for zero or constant inputs for which the effects of rounding are

analyzed from a limit cycle perspective.

To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters is often

calculated for the case of azero-mean white noise filter inputsignal x(n) ofvariance σ 2. Thissimplifies

calculation of the output roundoff noise because expected values of the form E x(n)x(n k) are

zero for k 0 and give σ 2 when k 0. This approach to analysis has been found to give estimates

of the output roundoff noise that are close to the noise actually observed for other input signals.

Another assumption that will be made in calculating roundoff noise is that the product of two
quantization errors is zero. To justify this assumption, consider the case of a 16-b fixed-point

processor. In this case a quantization error is of the order 2−15, while the product of two quantization

errors is of the order 2−30, which is negligible by comparison.

If a linear system with impulse response g(n) is excited by white noise with mean mx and variance

σ 2, the output is noise of mean [3, pp.788–790]

and variance

my = mx

∞

n=

.

−∞

g(n) (3.24)

2 2
∞

2

σy = σx

n=

.

−∞

g (n) (3.25)

Therefore, if g(n) is the impulse response from the point where a roundoff takes place to the filter
output, the contribution of that roundoff to the variance (mean-square value) of the output roundoff

noise is given by (3.25) with σ 2 replaced with the variance of the roundoff. If there is more than one

source of roundoff error in the filter, it is assumed that the errors are uncorrelated so the output noise

variance is simply the sum of the contributions from each source.

 Roundoff Noise in FIR Filters

The simplest case to analyze is a finite impulse response (FIR) filter realized via the convolution

summation
N −1

y(n) = h(k)x(n − k) (3.26)

k=0

When fixed-point arithmetic is used and quantization is performed after each multiply, the result of

the N multiplies is N -times the quantization noise of a single multiply. For example, rounding after

each multiply gives, from (3.6) and (3.12), an output noise variance of

σ 2 = N
2−2B

12
(3.27)

Virtually all digital signal processor integrated circuits contain one or more double-length accumu-

lator registers which permit the sum-of-products in (3.26) to be accumulated without quantization.

In this case only a single quantization is necessary following the summation and

σ 2 =
2−2B

12
(3.28)

=

x

o x εr

For the floating-point roundoff noise case we will consider (3.26) for N 4 and then generalize

the result to other values of N . The finite-precision output can be written as the exact output plus

an error term e(n). Thus,

y(n) + e(n) = ({[h(0)x(n)[1 + ε1(n)]

+ h(1)x(n − 1)[1 + ε2(n)]][1 + ε3(n)]

+ h(2)x(n − 2)[1 + ε4(n)]}{1 + ε5(n)}

+ h(3)x(n − 3)[1 + ε6(n)])[1 + ε7(n)] (3.29)

In (3.29), ε1(n) represents the error in the first product, ε2(n) the error in the second product, ε3(n)

the error in the first addition, etc. Notice that it has been assumed that the products are summed in

the order implied by the summation of (3.26).

Expanding (3.29), ignoring products of error terms, and recognizing y(n) gives

e(n) = h(0)x(n)[ε1(n) + ε3(n) + ε5(n) + ε7(n)]

+ h(1)x(n − 1)[ε2(n) + ε3(n) + ε5(n) + ε7(n)]

+ h(2)x(n − 2)[ε4(n) + ε5(n) + ε7(n)]

+ h(3)x(n − 3)[ε6(n) + ε7(n)] (3.30)

Assuming that the input is white noise of variance σ 2 so that E{x(n)x(n − k)} is zero for k /= 0, and

assuming that the errors are uncorrelated,

E{e2(n)}= [4h2(0) + 4h2(1) + 3h2(2) + 2h2(3)]σ 2σ 2

(3.31)

In general, for any N ,

N −1

x εr

σ 2 = E{e2(n)} =

Σ

Nh2(0) +
.

(N + 1 − k)h2(k)

Σ

σ 2σ 2
(3.32)

Notice that if the order of summation of the product terms in the convolution summation is changed,

then the order in which the h(k)’s appear in (3.32) changes. If the order is changed so that the h(k)

with smallest magnitude is first, followed by the next smallest, etc., then the roundoff noise variance

is minimized. However, performing the convolution summation in nonsequential order greatly

complicates data indexing and so may not be worth the reduction obtained in roundoff noise.

 Roundoff Noise in Fixed-Point IIR Filters

To determine the roundoff noise of a fixed-point infinite impulse response (IIR) filter realization,

consider a causal first-order filter with impulse response

h(n) = anu(n) (3.33)

realized by the difference equation
y(n) = ay(n − 1) + x(n) (3.34)

Due to roundoff error, the output actually obtained is

ŷ(n) = Q{ay(n − 1) + x(n)} = ay(n − 1) + x(n) + e(n) (3.35)

k=1

.

| | =

1 − |a|

− | | | |≤ − | |

| |→

where e(n) is a random roundoff noise sequence. Since e(n) is injected at the same point as the input,

it propagates through a system with impulse response h(n). Therefore, for fixed-point arithmetic

with rounding, the output roundoff noise variance from (3.6), (3.12), (3.25), and (3.33) is

2 O2 ∞
2

O2 ∞
2n

2−2B 1

σo =

12
n=

.

−∞

h (n) =
12

a

n=0
=

12 1 − a2
(3.36)

With fixed-point arithmetic there is the possibility of overflow following addition. To avoid over-
flow it is necessary to restrict the input signal amplitude. This can be accomplished by either placing

a scaling multiplier at the filter input or by simply limiting the maximum input signal amplitude.

Consider the case of the first-order filter of (3.34). The transfer function of this filter is

jω Y (ejω) 1 H (e

so

) =
X(ejω)

=
ejω − a

(3.37)

and

H (ejω) 2
1

1 + a2 − 2a cos(ω)

|H (ejω)|max =
1

(3.38)

(3.39)

The peak gain of the filter is 1/(1 a) so limiting input signal amplitudes to x(n) 1 a will

make overflows unlikely.

An expression for the output roundoff noise-to-signal ratio can easily be obtained for the case

where the filter input is white noise, uniformly distributed over the interval from −(1 − |a|) to

(1 − |a|) [4, 5]. In this case

σ 2 =
∫ 1−|a|

x2 dx = (1 − |a|)2 (3.40)

so, from (3.25),

x
2(1 − |a|)

2

−(1−|a|) 3

1 (1 − |a|)2

Combining (3.36) and (3.41) then gives

σy =
3

1 − a2

(3.41)

σ 2 2−2B 1 1 − a2 2−2B 3

 o =

. Σ .

3

Σ

=

(3.42)

Notice that the noise-to-signal ratio increases without bound as a 1.

Similar results can be obtained for the case of the causal second-order filter realized by the difference

equation

y(n) = 2r cos(θ)y(n − 1) − r2y(n − 2) + x(n) (3.43)

This filter has complex-conjugate poles at re±jθ and impulse response

1
h(n) =

sin(θ)
rn sin[(n + 1)θ]u(n) (3.44)

Due to roundoff error, the output actually obtained is

ŷ(n) = 2r cos(θ)y(n − 1) − r 2y(n − 2) + x(n) + e(n) (3.45)

σ 2
y 12 1 − a2 (1 − |a|)2

12 (1 − |a|)2

1 1

=

=

+

Σ
sat

.
1+

2
r

cos(θ)
Σ

− 1+
2

r
 cos(θ)

Σ
 +

Σ
1−

2
r

4r2 Σ
sat

.
1+

2
r

cos(θ)
Σ

− 1+
2

r
 cos(θ)

Σ
 +

Σ
1−

2
r

y

There are two noise sources contributing to e(n) if quantization is performed after each multiply,

and there is one noise source if quantization is performed after summation. Since

∞
1 2

n=

.

−∞

the output roundoff noise is

h2(n)
 + r 1

1 − r2 (1 + r2)2 − 4r2 cos2(θ)
(3.46)

2 2−2B

1 + r2 1

σo = ν
12

1 − r2 (1 + r2)2 − 4r2 cos2(θ)

(3.47)

where ν = 1 for quantization after summation, and ν = 2 for quantization after each multiply.

To obtain an output noise-to-signal ratio we note that

H (ejω)
1

1 − 2r cos(θ)e−jω + r2e−j 2ω

(3.48)

and, using the approach of [6],

jω 2 1 |H (e)|max = .
 2

 2 2 2

(3.49) Σ

where
sat(µ) =

1 µ > 1
µ −1 ≤ µ ≤ 1

−1 µ < −1

(3.50)

2 o = ν

2−2B

1 + r2 3

2 12 1 − r2 (1 + r2)2 − 4r2 cos2(θ)
1

× .
 2

 2 2 2

(3.51)
Σ

Figure 3.1 is a contour plot showing the noise-to-signal ratio of (3.51) for ν = 1 in units of the noise

variance of a single quantization, 2−2B/12. The plot is symmetrical about θ = 90◦, so only the range

from 0◦ to 90◦ is shown. Notice that as r → 1, the roundoff noise increases without bound. Also

notice that the noise increases as θ → 0◦.

It is possible to design state-space filter realizations that minimize fixed-point roundoff noise [7] –

[10]. Depending on the transfer function being realized, these structures may provide a roundoff

noise level that is orders-of-magnitude lower thanfor a nonoptimal realization. The price paid for this

reduction in roundoff noise is an increase in the number of computations required to implement the

filter. For an N th-order filter the increase is from roughly 2N multiplies for a direct form realization

to roughly (N 1)2 for an optimal realization. However, if the filter is realized by the parallel or

cascade connection of first- and second-order optimal subfilters, the increase is only to about 4N

multiplies. Furthermore, near-optimal realizations exist that increase the number of multiplies to

only about 3N [10].

r r r

σ

Following the same approach as for the first-order case then gives

r r r
2

σ

2

4r2 sin(θ)
Σ

sin(θ)
Σ

1 2

2 2

y εr x εr

FIGURE 3.1: Normalized fixed-point roundoff noise variance.

 Roundoff Noise in Floating-Point IIR Filters

For floating-point arithmetic it is first necessary to determine the injected noise variance of each

quantization. For the first-order filter this is done by writing the computed output as

y(n) + e(n) = [ay(n − 1)(1 + ε1(n)) + x(n)](1 + ε2(n)) (3.52)

where ε1(n) represents the error due to the multiplication and ε2(n) represents the error due to the

addition. Neglecting the product of errors, (3.52) becomes

y(n) + e(n) ≈ ay(n − 1) + x(n) + ay(n − 1)ε1(n)

+ ay(n − 1)ε2(n) + x(n)ε2(n) (3.53)

Comparing (3.34) and (3.53), it is clear that

e(n) = ay(n − 1)ε1(n) + ay(n − 1)ε2(n) + x(n)ε2(n) (3.54)

Taking the expected value of e2(n) to obtain the injected noise variance then gives

E{e2(n)} = a2E{y2(n − 1)}E{ε2(n)}+ a2E{y2(n − 1)}E{ε2(n)}

+ E{x2(n)}E{ε2(n)}+ E{x(n)y(n − 1)}E{ε2(n)} (3.55)

To carry this further it is necessary to know something about the input. If we assume the input

is zero-mean white noise with variance σ 2, then E{x2(n)} = σ 2 and the input is uncorrelated with x x

past values of the output so E{x(n)y(n − 1)}= 0 giving

E{e2(n)}= 2a2σ 2σ 2 + σ 2σ 2 (3.56)

x

σ
σ

.

o y εr x εr

y x

σ 2
=

1 + a2

y εr y εr

.

y

and

σ 2 =
.

2a2σ 2σ 2 + σ 2σ 2
Σ

∞

h2(n)

2a2σ 2 + σ 2

2

However,

=
1 − a2

σεr
(3.57)

2 2
∞

2 σ 2

σy = σx

so n=

.

−∞

h (n) =
1 − a2

(3.58)

2 1 + a2 2 2 1 + a2
2 2

σo =
(1 − a2)2

σεr
σx =

1 − a2
σεr

σy (3.59)

and the output roundoff noise-to-signal ratio is

o 2

2 1 − a2 εr

(3.60)

Similar results can be obtained for the second-order filter of (3.43) by writing

y(n) + e(n) = ([2r cos(θ)y(n − 1)(1 + ε1(n)) − r2y(n − 2)(1 + ε2(n))]

× [1 + ε3(n)]+ x(n))(1 + ε4(n)) (3.61)

Expanding with the same assumptions as before gives

e(n) ≈ 2r cos(θ)y(n − 1)[ε1(n) + ε3(n) + ε4(n)]

− r2y(n − 2)[ε2(n) + ε3(n) + ε4(n)]+ x(n)ε4(n) (3.62)

and
E{e2(n)} = 4r2 cos2(θ)σ 23σ 2 + r2σ 23σ 2

+ σ 2σ 2 − 8r3 cos(θ)σ 2 E{y(n − 1)y(n − 2)} (3.63)

However,

x εr εr

E{y(n − 1)y(n − 2)}

= E{[2r cos(θ)y(n − 2) − r2y(n − 3) + x(n − 1)]y(n − 2)}

= 2r cos(θ)E{y2(n − 2)}− r2E{y(n − 2)y(n − 3)}

= 2r cos(θ)E{y2(n − 2)}− r2E{y(n − 1)y(n − 2)}

=
2r cos(θ)

σ 2

(3.64)

1 + r2 y

so

16r4 cos2(θ)
E{e2(n)}= σ 2 σ 2 +

Σ

3r4 + 12r2 cos2(θ) −

2

Σ

σ 2 σ 2
(3.65)

and

εr x

2 2
∞

2

1 + r εr y

σo = E{e (n)}
n=−∞

h (n)

16r4 cos2(θ)
= ξ

Σ

σ 2 σ 2 +

Σ

3r4 + 12r2 cos2(θ) −
2

Σ

σ 2 σ 2
Σ

(3.66)

εr x 1 + r εr y

n=−∞

=

o
εr

εr
=

.

where from (3.46),
∞

1 2

ξ =

n=−∞

h2(n)
 + r 1

1 − r2 (1 + r2)2 − 4r2 cos2(θ)
(3.67)

Since σ 2 = ξσ 2, the output roundoff noise-to-signal ratio is then
y x

 σ 2

2
y

= ξ

Σ

1 + ξ

Σ

3r4 + 12r2 cos2(θ) −

16r4 cos2(θ)

1 + r2

ΣΣ

σ 2

(3.68)

Figure 3.2 is a contour plot showing the noise-to-signal ratio of (3.68) in units of the noise variance

of a single quantization σ 2 . The plot is symmetrical about θ 90◦, so only the range from 0◦ to

90◦ is shown. Notice the similarity of this plot to that of Fig. 3.1 for the fixed-point case. It has been

observed that filter structures generally have very similar fixed-point and floating-point roundoff

characteristics [2]. Therefore, the techniques of [7] – [10], which were developed for the fixed-point

case, can also be used to design low-noise floating-point filter realizations. Furthermore, since it

is not necessary to scale the floating-point realization, the low-noise realizations need not require

significantly more computation than the direct form realization.

FIGURE 3.2: Normalized floating-point roundoff noise variance.

 Limit Cycles

A limit cycle, sometimes referred to as a multiplier roundoff limit cycle, is a low-level oscillation

that can exist in an otherwise stable filter as a result of the nonlinearity associated with rounding (or

truncating) internal filter calculations [11]. Limit cycles require recursion to exist and do not occur

in nonrecursive FIR filters.

σ

8

{} ±

1

1

1

As an example of a limit cycle, consider the second-order filter realized by

7 5

y(n) = Qr

.

8
y(n − 1) −

8
y(n − 2) + x(n)

Σ

(3.69)

where Qr represents quantization by rounding. This is stable filter with poles at 0.4375 j 0.6585.
Consider the implementation of this filter with 4-b (3-b and a sign bit) two’s complement fixed-point

arithmetic, zero initial conditions (y(−1) = y(−2) = 0), and an input sequence x(n) = 3 δ(n),

where δ(n) is the unit impulse or unit sample. The following sequence is obtained;

3 3
.

8

Σ

=
8 21 3

.

64

Σ

=
8

3 1

.

32

Σ

=
8 1 1

.

−
8

Σ

= −
8

 3 1

.

−
16

Σ

= −
8

.

−
32

Σ

= 0

5 1

.

64

Σ

=
8

(3.70)
7 1

.

64

Σ

=
8

.

32

Σ

= 0
5 1

.

−
64

Σ

= −
8

7 1 .

−
64

Σ

= −
8

.

−
32

Σ

= 0

5 1

.

64

Σ

=
8

.

Notice that while the input is zero except for the first sample, the output oscillates with amplitude

1/8 and period 6. Limit cycles are primarily of concern in fixed-point recursive filters. As long as floating-point
filters are realized as the parallel or cascade connection of first- and second-order subfilters, limit

cycles will generally not be a problem since limit cycles are practically not observable in first- and

second-order systems implemented with 32-b floating-point arithmetic [12]. It has been shown that

such systems must have an extremely small margin of stability for limit cycles to exist at anything

other than underflow levels, which are at an amplitude of less than 10−38 [12].

y(0) = Q r

y(1) = Q

r

y(2) = Q

r

y(3) = Q

r

y(4) = Q

r

y(5) = Q

r

y(6) = Q

r

y(7) = Q

r

y(8) = Q

r

y(9) = Q

r

y(10) = Q

r

y(11) = Q

r

y(12) =

.

Q

r

−

{ }= −

 X − 2 X ≥ 1

There are at least three ways of dealing with limit cycles when fixed-point arithmetic is used. One

is to determine a bound on the maximum limit cycle amplitude, expressed as an integral number

of quantization steps [13]. It is then possible to choose a word length that makes the limit cycle

amplitude acceptably low. Alternately, limit cycles can be prevented by randomly rounding calcula-

tions up or down [14]. However, this approach is complicated to implement. The third approach

is to properly choose the filter realization structure and then quantize the filter calculations using

magnitude truncation [15, 16]. This approach has the disadvantage of producing more roundoff

noise than truncation or rounding [see (3.12)–(3.14)].

 Overflow Oscillations

With fixed-point arithmetic it is possible for filter calculations to overflow. This happens when two

numbers of the same sign add to give a value having magnitude greater than one. Since numbers

with magnitude greater than one are not representable, the result overflows. For example, the two’s

complement numbers 0.101 (5/8) and 0.100 (4/8) add to give 1.001 which is the two’s complement

representation of 7/8.

The overflow characteristic of two’s complement arithmetic can be represented as R

where

R{X}= X −1 ≤ X < 1
X + 2 X < −1

(3.71)

For the example just considered, R 9/8

7/8.

An overflow oscillation, sometimes also referred to as an adder overflow limit cycle, is a high-

level oscillation that can exist in an otherwise stable fixed-point filter due to the gross nonlinearity

associated with the overflow of internal filter calculations [17]. Like limit cycles, overflow oscillations

require recursion to exist and do not occur in nonrecursive FIR filters. Overflow oscillations also do

not occur with floating-point arithmetic due to the virtual impossibility of overflow.

As an example of an overflow oscillation, once again consider thefilter of (3.69) with 4-bfixed-point

two’s complement arithmetic and with the two’s complement overflow characteristic of (3.71): 7 5

y(n) = Qr

.

R

Σ

8
y(n − 1) −

8
y(n − 2) + x(n)

ΣΣ

(3.72)

In this case we apply the input

3 5
x(n) = −

4
δ(n) −

8
δ(n − 1)

3 5

giving the output sequence

=

.

−
4

, −
8

, 0, 0, ·· ·

Σ

, (3.73)

3 3 3

y(0) = Qr

.

R

Σ

−
4

ΣΣ

= Qr

.

−
4

Σ

= −
4

41 23 3

y(1) = Qr

.

R

Σ

−
32

ΣΣ

= Qr

.

32

Σ

=
4

9 7 7
y(2) = Qr

.

R

Σ

8

ΣΣ

= Qr

.

−
8

Σ

= −
8

79 49 3

y(3) = Qr

.

R

Σ

−
64

ΣΣ

= Qr

.

64

Σ

=
4

{}

±

y(4) = Qr

.

R

Σ

y(5) = Qr

.

R

Σ

y(6) = Qr

.

R

Σ

Σ

9

8 8

ΣΣ

= Qr

.

77 51 3

(3.74)

y(7) = Qr

.

R

Σ

−
64

ΣΣ

= Qr

.

64

Σ

=
4

9 7 7

y(8) = Qr

.

R

Σ

8

ΣΣ

= Qr

.

−
8

Σ

= −
8

.

This is a large-scale oscillation with nearly full-scale amplitude.

There are several ways to prevent overflow oscillations in fixed-point filter realizations. The most

obvious is to scale the filter calculations so as to render overflow impossible. However, this may

unacceptably restrict the filter dynamic range. Another method is to force completed sums-of-

products to saturate at 1, rather than overflowing [18, 19]. It is important to saturate only the

completed sum, since intermediate overflows in two’s complement arithmetic do not affect the

accuracy of thefinal result. Mostfixed-point digital signal processors providefor automatic saturation

of completed sums if their saturation arithmeticfeature is enabled. Yet another way to avoid overflow

oscillations is to use a filter structure for which any internal filter transient is guaranteed to decay to

zero [20]. Such structures are desirable anyway, since they tend to have low roundoff noise and be

insensitive to coefficient quantization [21].

 Coefficient Quantization Error

Each filter structure has its ownfinite, generally nonuniformgrids of realizable pole and zero locations

when the filter coefficients are quantized to a finite word length. In general the pole and zero locations

desired in filter do not correspond exactly to the realizable locations. The error in filter performance

(usually measured in terms of a frequency response error) resulting from the placement of the poles

and zeroes at the nonideal but realizable locations is referred to as coefficient quantization error.

Consider the second-order filter with complex-conjugate poles

λ = re±jθ

= λr ± jλi

= r cos(θ) ± jr sin(θ) (3.75)

and transfer function
1

H (z) =
1 − 2r cos(θ)z−1 + r2z−2

(3.76)

realized by the difference equation

y(n) = 2r cos(θ)y(n − 1) − r2y(n − 2) + x(n) (3.77)

Figure 3.3 from [5] shows that quantizing the difference equation coefficients results in a nonuniform

grid of realizable pole locations in the z plane. The grid is defined by the intersection of vertical lines

corresponding to quantization of 2λr and concentric circles corresponding to quantization of −r2.

77 51 3

64 Σ

= Qr

.

−
64

Σ

= −
4

7 7

−

79

ΣΣ

= Qr

.
8

Σ

49

=

3

64

−
64

Σ

= −
4

= ±

FIGURE 3.3: Realizable pole locations for the difference equation of (3.76).

The sparseness of realizable pole locations near z 1 will result in a large coefficient quantization

error for poles in this region.

Figure 3.4 gives an alternative structure to (3.77) for realizing the transfer function of (3.76). Notice

that quantizing the coefficients of this structure corresponds to quantizing λr and λi . As shown in

Fig. 3.5 from [5], this results in a uniform grid of realizable pole locations. Therefore, large coefficient

quantization errors are avoided for all pole locations.

It is well established that filter structures with low roundoff noise tend to be robust to coefficient

quantization, and visa versa [22]– [24]. For this reason, the uniform grid structure of Fig. 3.4 is

also popular because of its low roundoff noise. Likewise, the low-noise realizations of [7]– [10] can

be expected to be relatively insensitive to coefficient quantization, and digital wave filters and lattice

filters that are derived from low-sensitivity analog structures tend to have not only low coefficient

sensitivity, but also low roundoff noise [25, 26].

It is well known that in a high-order polynomial with clustered roots, the root location is a very

sensitive function of the polynomial coefficients. Therefore, filter poles and zeros can be much

more accurately controlled if higher order filters are realized by breaking them up into the parallel

or cascade connection of first- and second-order subfilters. One exception to this rule is the case

of linear-phase FIR filters in which the symmetry of the polynomial coefficients and the spacing

of the filter zeros around the unit circle usually permits an acceptable direct realization using the

convolution summation.

Given a filter structure it is necessary to assign the ideal pole and zero locations to the realizable

locations. This isgenerally done bysimply rounding or truncating thefilter coefficients to the available

number of bits, or by assigning the ideal pole and zero locations to the nearest realizable locations. A

more complicated alternative is to consider the original filter design problem as a problem in discrete

FIGURE 3.4: Alternate realization structure.

FIGURE 3.5: Realizable pole locations for the alternate realization structure.

optimization, and choose the realizable pole and zero locations that give the best approximation to

the desired filter response [27]– [30].

 Realization Considerations

Linear-phase FIR digital filters can generally be implemented with acceptable coefficient quantization

sensitivity using the direct convolution sum method. When implemented in this way on a digital

signal processor, fixed-point arithmetic is not only acceptable but may actually be preferable to

floating-point arithmetic. Virtually all fixed-point digital signal processors accumulate a sum of

products in a double-length accumulator. This means that only a single quantization is necessary to

compute an output. Floating-point arithmetic, on the other hand, requires a quantization after every

multiply and after every add in the convolution summation. With 32-b floating-point arithmetic

these quantizations introduce a small enough error to be insignificant for many applications.

When realizing IIR filters, either a parallel or cascade connection of first- and second-order sub-

filters is almost always preferable to a high-order direct-form realization. With the availability of

very low-cost floating-point digital signal processors, like the Texas Instruments TMS320C32, it is

highly recommended that floating-point arithmetic be used for IIR filters. Floating-point arithmetic

simultaneously eliminates most concerns regarding scaling, limit cycles, and overflow oscillations.

Regardless of the arithmetic employed, a low roundoff noise structure should be used for the second-

order sections. Good choices are given in [2] and [10]. Recall that realizations with low fixed-point

roundoff noise also have low floating-point roundoff noise. The use of a low roundoff noise struc-

ture for the second-order sections also tends to give a realization with low coefficient quantization

sensitivity. First-order sections are not as critical in determining the roundoff noise and coefficient

sensitivity of a realization, and so can generally be implemented with a simple direct form structure.

UNIT -5

Nomenclature- TMS320C2407 DSP CONTROLLER

TMS 320 family overview -Architectural
Overview

 Two Event Managers (A and B)

 General Purpose (GP) timers

 PWM generators for digital motor control

 Analog-to-digital converter

 Controller Area Network (CAN) interface

 Serial Peripheral Interface (SPI) –

synchronous serial port

 Serial Communications Interface (SCI) –

asynchronous serial port

 General-Purpose bi-directional digital I/O

(GPIO) pins

 Watchdog Timer (“time-out” DSP reset

device for system integrity

INTRODUCTION TO THE TMSLF2407 DSP CONTROLLER

1. Introduction

The Texas Instruments TMS320LF2407 DSP Controller (referred to as the

LF2407 in this text) is a programmable digital controller with a C2xx DSP central

processing unit (CPU) as the core processor. The LF2407 contains the DSP core

processor and useful peripherals integrated onto a single piece of silicon. The

LF2407 combines the powerful CPU with on-chip memory and peripherals. With

the DSP core and control-oriented peripherals integrated into a single chip, users

can design very compact and cost-effective digital control systems.

The LF2407 DSP controller offers 40 million instructions per second (MIPS)

performance. This high processing speed of the C2xx CPU allows users to compute

parameters in real time rather than look up approximations from tables stored in

memory. This fast performance is well suited for processing control parameters in

applications such as notch filters or sensorless motor control algorithms where a

large amount of calculations must be computed quickly.

While the “brain” of the LF2407 DSP is the C2xx core, the LF2407 contains

several control-orientated peripherals onboard (see Fig. 1.1). The peripherals on the

LF2407 make virtually any digital control requirement possible. Their applications

range from analog to digital conversion to pulse width modulation (PWM)

generation. Communication peripherals make possible the communication with

external peripherals, personal computers, or other DSP processors. Below is a brief

listing of the different peripherals onboard the LF2407 followed by a graphical

layout depicted in Fig. 1.1.

The LF2407 peripheral set includes:

 Two Event Managers (A and B)

 General Purpose (GP) timers

 PWM generators for digital motor control

 Analog-to-digital converter

 Controller Area Network (CAN) interface

 Serial Peripheral Interface (SPI) – synchronous serial port

 Serial Communications Interface (SCI) – asynchronous serial port

 General-Purpose bi-directional digital I/O (GPIO) pins

 Watchdog Timer (“time-out” DSP reset device for system integrity)

 Brief Introduction to Peripherals

The following peripherals are those that are integrated onto the LF2407 chip.

Refer to Fig. 1.1 to view the pin-out associated with each peripheral.

Event Managers (EVA, EVB)

There are two Event Managers on the LF2407, the EVA and EVB. The Event

Manager is the most important peripheral in digital motor control. It contains the

necessary functions needed to control electromechanical devices. Each EV is

composed of functional “blocks” including timers, comparators, capture units for

triggering on an event, PWM logic circuits, quadrature-encoder–pulse (QEP)

circuits, and interrupt logic.

The Analog-to-Digital Converter (ADC)

The ADC on the LF2407 is used whenever an external analog signal needs to

be sampled and converted to a digital number. Examples of ADC applications range

from sampling a control signal for use in a digital notch filtering algorithm or using

the ADC in a control feedback loop to monitor motor performance. Additionally, the

ADC is useful in motor control applications because it allows for current sensing

using a shunt resistor instead of an expensive current sensor.

The Control Area Network (CAN) Module

While the CAN module will not be covered in this text, it is a useful peripheral

for specific applications of the LF2407. The CAN module is used for multi-master

serial communication between external hardware. The CAN bus has a high level of

data integrity and is ideal for operation in noisy environments such as in an

automobile, or industrial environments that require reliable communication and data

integrity.

Serial Peripheral Interface (SPI) and Serial Communications Interface (SCI)

The SPI is a high-speed synchronous communication port that is mainly used

for communicating between the DSP and external peripherals or another DSP

device. Typical uses of the SPI include communication with external shift registers,

display drivers, or ADCs.

The SCI is an asynchronous communication port that supports asynchronous

serial (UART) digital communication between the CPU and other asynchronous

peripherals that use the standard NRZ (non-return-to-zero) format. It is useful in

communication between external devices and the DSP. Since these communication

peripherals are not directly related to motion control applications, they will not be

discussed further in this text.

Watchdog Timer (WD)

The Watchdog timer (WD) peripheral monitors software and hardware

operations and asserts a system reset when its internal counter overflows. The WD

timer (when enabled) will count for a specific amount of time. It is necessary for the

user’s software to reset the WD timer periodically so that an unwanted reset does

not occur. If for some reason there is a CPU disruption, the watchdog will generate a

system reset. For example, if the software enters an endless loop or if the CPU

becomes temporarily disrupted, the WD timer will overflow and a DSP reset will

occur, which will cause the DSP program to branch to its initial starting point. Most

error conditions that temporarily disrupt chip operation and inhibit proper CPU

function can be cleared by the WD function. In this way, the WD increases the

reliability of the CPU, thus ensuring system integrity.

General Purpose Bi-Directional Digital I/O (GPIO) Pins

Since there are only a finite number of pins available on the LF2407 device,

many of the pins are multiplexed to either their primary function or the secondary

GPIO function. In most cases, a pin’s second function will be as a general-purpose

input/output pin. The GPIO capability of the LF2407 is very useful as a means of

controlling the functionality of pins and also provides another method to input or

output data to and from the device. Nine 16-bit control registers control all I/O and

shared pins. There are two types of these registers:

 I/O MUX Control Registers (MCRx) – Used to control the multiplexer

selection that chooses between the primary function of a pin or the general-

purpose I/O function.

 Data and Direction Control Registers (PxDATDIR) – Used to control the

data and data direction of bi-directional I/O pins.

Joint Test Action Group (JTAG) Port

The JTAG port provides a standard method of interfacing a personal computer

with the DSP controller for emulation and development. The XDS510PP or

equivalent emulator pod provides the connection between the JTAG module on the

LF2407 and the personal computer. The JTAG module allows the PC to take full

control over the DSP processor while Code Composer StudioTM is running. Figure

1.2 shows the connection scheme from computer to the DSP board.

Figure 1.2 PC to DSP connection scheme.

Computer

Parallel Port

XDS510 PP

Plus

Emulator

Pod

TI LF2407

Evaluation

Module

(EVM)

Phase Locked Loop (PLL) Clock Module

The phase locked loop (PLL) module is basically an input clock multiplier that

allows the user to control the input clocking frequency to the DSP core. External to

the LF2407, a clock reference (can oscillator/crystal) is generated. This signal is fed

into the LF2407 and is multiplied or divided by the PLL. This new (higher or lower

frequency) clock signal is then used to clock the DSP core. The LF2407’s PLL

allows the user to select a multiplication factor ranging from 0.5X to 4X that of the

external clock signal. The default value of the PLL is 4X.

Memory Allocation Spaces

The LF2407 DSP Controller has three different allocations of memory it can

use: Data, Program, and I/O memory space. Data space is used for program

calculations, look-up tables, and any other memory used by an algorithm. Data

memory can be in the form of the on-chip random access memory (RAM) or

external RAM. Program memory is the location of user’s program code. Program

memory on the LF2407 is either mapped to the off-chip RAM (MP/MC- pin =1) or

to the on-chip flash memory (MP/MC- = 0), depending on the logic value of the

MP/MC-pin.

I/O space is not really memory but a virtual memory address used to output data

to peripherals external to the LF2407. For example, the digital-to-analog converter

(DAC) on the Spectrum DigitalTM evaluation module is accessed with I/O memory.

If one desires to output data to the DAC, the data is simply sent to the configured

address of I/O space with the “OUT” command. This process is similar to writing to

data memory except that the OUT command is used and the data is copied to and

outputted on the DAC instead of being stored in memory.

3. Types of Physical Memory

Random Access Memory (RAM)

The LF2407 has 544 words of 16 bits each in the on-chip DARAM. These

544 words are partitioned into three blocks: B0, B1, and B2. Blocks B1 and B2 are

allocated for use only as data memory. Memory block B0 is different than B1 and

B2. This memory block is normally configured as Data Memory, and hence

primarily used to hold data, but in the case of the B0 block, it can also be configured

as Program Memory. B0 memory can be configured as program or data memory

depending on the value of the core level “CNF” bit.

 (CNF=0) maps B0 to data memory.

 (CNF=1) maps B0 to program memory.

The LF2407 also has 2K of single-access RAM (SARAM). The addresses

associated with the SARAM can be used for both data memory and program

memory, and are software configurable to the internal SARAM or external memory.

Non-Volatile Flash Memory

The LF2407 contains 32K of on-chip flash memory that can be mapped to

program space if the MP/MC-pin is made logic 0 (tied to ground). The flash

memory provides a permanent location to store code that is unaffected by cutting

power to the device. The flash memory can be electronically programmed and

erased many times to allow for code development. Usually, the external RAM on the

LF2407 Evaluation Module (EVM) board is used instead of the flash for code

development due to the fact that a separate “flash programming” routine must be

performed to flash code into the flash memory. The on-chip flash is normally used

in situations where the DSP program needs to be tested where a JTAG connection is

not practical or where the DSP needs to be tested as a “stand-alone” device. For

example, if a LF2407 was used to develop a DSP control solution to an automobile

braking system, it would be somewhat impractical to have a DSP/JTAG/PC

interface in a car that is undergoing performance testing.

4. Software Tools

Texas Instrument’s Code Composer StudioTM (CCS) is a user-friendly Windows-

based debugger for developing and debugging software for the LF2407. CCS allows

users to write and debug code in C or in TI assembly language. CCS has many

features that can aid in developing code. CCS features include:

 User-friendly Windows environment

 Ability to use code written in C and assembly

 Memory displays and on-the-fly editing capability

 Disassembly window for debugging

 Source level debugging, which allows stepping through and setting

breakpoints in original source code

 CPU register visibility and modification

 Real-time debugging with watch windows and continuousrefresh

 Various single step/step over/ step-into command icons

 Ability to display data in graph formats

 General Extension Language (GEL) capability, allows the user to create

functions that extend the usefulness of CCSTM

1.4.1 Becoming Aquatinted with Code Composer Studio(CCS)

This exercise will help you become familiar with the software and emulation

tools of the LF2407 DSP Controller. CCSTM, the current emulation and debugging

software, is user-friendly and a powerful development tool.

The hardware required for this exercise and all others is the Spectrum Digital

TMS320LF2407 EVM package, which includes LF2407 EVM board and the

XDS510PP Plus JTAG emulator pole. You will also need a Windows-based

Introduction to the C2xx DSP Core and Code Generation

The heart of the LF2407 DSP Controller is the C2xx DSP core. This core is a 16-

bit fixed point processor, meaning that it works with 16-bit binary numbers. One can

think of the C2xx as the central processor in a personal computer. The LF2407 DSP

consists of the C2xx DSP core plus many peripherals such as Event Managers, ADC,

etc., all integrated onto one single chip. This chapter will discuss the C2xx DSP core,

subcomponents, and instruction set.

The C2xx core has its own native instruction set of assembly mnemonics or

commands. Through the use of CCS and the associated compiler, one has the

freedom of writing code in both C language and the native assembly language.

However, to write compact, fast executing programs, it is best to compose code in

assembly language. Due to this reason, programming in assembly will be the focus

of this book. However, we will also include an example of a software tool called

VisSimTM, by Visual Solutions. VisSim allows users to simulate algorithms and

develop code in “block” form. More on VisSim will be presented in the Appendix.

1. The Components of the C2xx DSP Core

The DSP core (like all microprocessors) consists of several subcomponents

necessary to perform arithmetic operations on 16-bit binary numbers. The following

is a list of the multiple subcomponents found in the C2xx core which we will discuss

further:

 A 32-bit central arithmetic logic unit (CALU)

 A 32-bit accumulator (used frequently in programs)

 Input and output data-scaling shifters for the CALU

 A (16-bit by 16-bit) multiplier

 A product-scaling shifter

 Eight auxiliary registers (AR0 – AR7) and an auxiliary register arithmetic

unit (ARAU)

Each of the above components is either accessed directly by the user code or is

indirectly used during the execution of an assembly command.

Central Arithmetic Logic Unit (CALU)

The C2xx performs 2s-complement arithmetic using the 32-bit CALU. The

CALU uses 16-bit words taken from data memory, derived from an immediate

instruction, or from the 32-bit multiplier result. In addition to arithmetic operations,

the CALU can perform Boolean operations. The CALU is somewhat transparent to

19

the user. For example, if an arithmetic command is used, the user only needs to

write the command and later read the output from the appropriate register. In this

sense, the CALU is “transparent” in that it is not accessed directly by the user.

Accumulator

The accumulator stores the output from the CALU and also serves as another

input to the CALU (many arithmetic commands perform operations on numbers that

are currently stored in the accumulator; versus other memory locations). The

accumulator is 32 bits wide and is divided into two sections, each consisting of 16

bits. The high-order bits consist of bits 31 through 16, and the low-order bits are

made up of bits 15 through 0. Assembly language instructions are provided for

storing the high- and low-order accumulator words to data memory. In most cases,

the accumulator is written to and read from directly by the user code via assembly

commands. In some instances, the accumulator is also transparent to the user

(similar to the CALU operation in that it is accessed “behind the scenes”).

Scaling Shifters

The C2xx has three 32-bit shifters that allow for scaling, bit extraction,

extended arithmetic, and overflow-prevention operations. The scaling shifters make

possible commands that shift data left or right. Like the CALU, the operation of the

scaling shifters is “transparent” to the user. For example, the user needs only to use a

shift command, and observe the result. Any one of the three shifters could be used

by the C2xx depending on the specific instruction entered. The following is a

description of the three shifters:

 Input data-scaling shifter (input shifter): This shifter left-shifts 16-bit

input data by 0 to 16 bits to align the data to the 32-bit input of the CALU.

For example, when the user uses a command such as “ADD 300h, 5”, the

input shifter is responsible for first shifting the data in memory address

“300h” to the left by five places before it is added to the contents of the

accumulator.

 Output data-scaling shifter (output shifter): This shifter left-shifts data

from the accumulator by 0 to 7 bits before the output is stored to data

memory. The content of the accumulator remains unchanged. For example,

when the user uses a command such as “SACL 300h, 4”, the output shifter

is responsible for first shifting the contents of the accumulator to the left by

four places before it is stored to the memory address “300h”.

 Product-scaling shifter (product shifter): The product register (PREG)

receives the output of the multiplier. The product shifter shifts the output of
the PREG before that output is sent to the input of the CALU. The product

shifter has four product shift modes (no shift, left shift by one bit, left shift

by four bits, and right shift by six bits), which are useful for performing

multiply/accumulate operations, fractional arithmetic, or justifying

fractional products.

Multiplier

The multiplier performs 16-bit, 2s-complement multiplication and creates a 32-

bit result. In conjunction with the multiplier, the C2xx uses the 16-bit temporary

register (TREG) and the 32-bit product register (PREG).

The operation of the multiplier is not as “transparent” as the CALU or shifters.

The TREG always needs to be loaded with one of the numbers that are to be

multiplied. Other than this prerequisite, the multiplication commands do not require

any more actions from the user code. The output of the multiply is stored in the

PREG, which can later be read by the user code.

Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indirect

addressing to access data memory (more on indirect addressing will be covered later

along with assembly programming). Eight auxiliary registers (AR0 through AR7)

support the ARAU, each of which can be loaded with a 16-bit value from data

memory or directly from an instruction. Each auxiliary register value can also be

stored in data memory. The auxiliary registers are mainly used as “pointers” to data

memory locations to more easily facilitate looping or repeating algorithms. They are

directly written to by the user code and are automatically incremented or

decremented by particular assembly instructions during a looping or repeating

operation. The auxiliary register pointer (ARP) embedded in status register ST0

references the auxiliary register. The status registers (ST0, ST1) are core level

registers where values such as the Data Page (DP) and ARP located. More on the

operation and use of auxiliary registers will be covered in subsequent chapters.

 Mapping External Devices to the C2xx Core and the Peripheral

Interface

Since the LF2407 contains many peripherals that need to be accessed by the

C2xx core, the C2xx needs a way to read and write to the different peripherals. To

make this possible, peripherals are mapped to data memory (memory will be

covered shortly). Each peripheral is mapped to a corresponding block of data

memory addresses. Where applicable, each corresponding block contains

configuration registers, input registers, output registers, and status registers. Each

peripheral is accessed by simply writing to the appropriate registers in data memory,

provided the peripheral clock is enabled (see System Configuration registers).

The peripherals are linked to the internal memory interface of the CPU through

the PBUS interface shown in Fig. 2.1. All on-chip peripherals are accessed through

the Peripheral Bus (PBUS). All peripherals, excluding the WD timer counter, are

clocked by the CPU clock (which has a selectable frequency), and must be enabled

via the system configuration registers.

Figure 2.1 Functional block diagram of the LF2407 DSP controller.

 System Configuration Registers

The System Control and Status Registers (SCSR1, SCSR2) are used to

configure or display fundamental settings of the LF2407. For example, these

fundamental settings include the clock speed (clock pre-scale setting) of the

LF2407, which peripherals are enabled, microprocessor/microcontroller mode, etc.

Bits are controlled by writing to the corresponding data memory address or the logic

level on an external pin as with the microprocessor/microcontroller (MP/MC) select

bit. The bit descriptions of these two registers (mapped to data memory) are listed

below.

System Control and Status Register 1 (SCSR1) — Address 07018h

15 14 13 12 11 10 9 8

Reserved CLKSRC LPM1 LPM0 CLK PS2 CLK PS1 CLK PS0 Reserved

R–0

7

RW–0

6

RW–0

5

RW–0

4

RW–1

3

RW–1

2

RW–1

1

R–0

0

ADC

CLKEN

SCI

CLKEN

SPI

CLKEN
CAN

CLKEN

EVB

CLKEN

EVA

CLKEN
Reserved ILLADR

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 R–0 RC–0

Note: R = read access, W = write access, C = clear, -0 = value after reset.

Synthesized ASIC gates

P bus

I/O

registers

Interrupts

reset, etc.

ADC

control

WD

CAN

SCI

SPI

Event

Managers

(EVA and EVB)

P bus I/F

Mem I/F

SARAM

(up to 2K 16)

Flash/ROM

(up to 32K 16)

Logic

I/F

C2xx CPU + JTAG

+ 544 x 16 DARAM

ADC

Bit 15 Reserved

Bit 14 CLKSRC. CLKOUT pin source select

0 CLKOUT pin has CPU Clock (40 MHz on a 40-MHz device) as

the output

1 CLKOUT pin has Watchdog clock as the output

Bits 13–12 LPM (1:0). Low-power mode select

These bits indicate which low-power mode is entered when the

CPU executes the IDLE instruction.

Description of the low-power modes:

LPM(1:0) Low-Power mode selected

00 IDLE1 (LPM0)

01 IDLE2. (LPM1)

1x HALT (LPM2)

Bits 11–9 PLL Clock prescale select. These bits select the PLL multiplication

factor for the input clock.

CLK

PS2

CLK

PS1

CLK

PS0

System Clock Frequency

0 0 0 4 x Fin

0 0 1 2 x Fin

0 1 0 1.33 x Fin

0 1 1 1 x Fin

1 0 0 0.8 x Fin

1 0 1 0.66 x Fin

1 1 0 0.57 x Fin

1 1 1 0.5 x Fin

Note: Fin is the input clock frequency.

Bit 8 Reserved

Bit 7 ADC CLKEN. ADC module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 6 SCI CLKEN. SCI module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 5 SPI CLKEN. SPI module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 4 CAN CLKEN. CAN module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 3 EVB CLKEN. EVB module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 2 EVA CLKEN. EVA module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Note: In order to modify/read the register contents of any peripheral, the clock to

that peripheral must be enabled by writing a 1 to the appropriate bit.

Bit 1 Reserved

Bit 0 ILLADR. Illegal Address detect bit

If an illegal address has occurred, this bit will be set. It is up to

software to clear this bit following an illegal address detect. This

bit is cleared by writing a 1 to it and should be cleared as part of

the initialization sequence. Note: An illegal address will cause a

Non-Maskable Interrupt (NMI).

System Control and Status Register 2 (SCSR2) — Address 07019h

15-8

Reserved

7

6

5

4

RW–0

3

2

1

0

Reserved I/P QUAL WD

OVERRIDE
XMIF HI–Z BOOT EN MP/MC DON PON

 RW–0 RC–1 RW –0 RW–BOOT
EN pin

RW–
MP/MC pin

RW–1 RW–1

Note: R = read access, W = write access, C = clear, -0 = value after reset.

Bits 15–7 Reserved. Writes have no effect; reads are undefined

Bit 6 Input Qualifier Clocks.

An input-qualifier circuitry qualifies the input signal to the CAP1–

6, XINT1/2, ADCSOC, and PDPINTA/B pins in the 240xA

devices. The I/O functions of these pins do not use the input-

qualifier circuitry. The state of the internal input signal will

change only after the pin is held high/low for 6 (or 12) clock

edges. This ensures that a glitch smaller than (or equal to) 5 (or

11) CLKOUT cycles wide will not change the internal pin input

state. The user must hold the pin high/low for 6 (or 12) cycles to

ensure that the device will see the level change. This bit

determines the width of the glitches (in number of internal clock

cycles) that will be blocked. Note that the internal clock is not the

same as CLKOUT, although its frequency is the same as

CLKOUT.

0 The input-qualifier circuitry blocks glitches up to 5 clock cycles

long

1 The input-qualifier circuitry blocks glitches up to 11 clock cycles

long

Note: This bit is applicable only for the 240xA devices, not for the 240x devices

because they lack an input-qualifier circuitry.

Bit 5 Watchdog Override. (WD protect bit)

After RESET, this bit gives the user the ability to disable the WD

function through software (by setting the WDDIS bit = 1 in the

WDCR). This bit is a clear-only bit and defaults to a 1 after reset.

Note: This bit is cleared by writing a 1 to it.

0 Protects the WD from being disabled by software. This bit cannot

be set to 1 by software. It is a clear-only bit, cleared by writing a 1

1 This is the default reset value and allows the user to disable the

WD through the WDDIS bit in the WDCR. Once cleared,

however, this bit can no longer be set to 1 by software, thereby

protecting the integrity of the WD timer

Bit 4 XMIF Hi-Z Control

This bit controls the state of the external memory interface

(XMIF) signals.

0 XMIF signals in normal driven mode; i.e., not Hi-Z (high

impedance)

1 All XMIF signals are forced to Hi-Z state

Bit 3 Boot Enable

This bit reflects the state of the BOOT_EN / XF pin at the time of

reset. After reset and device has “booted up”, this bit can be

changed in software to re-enable Flash memory visibility or return

to active Boot ROM.

0 Enable Boot ROM — Address space 0000 — 00FF is now

occupied by the on-chip Boot ROM Block. Flash memory is

totally disabled in this mode. Note: There is no on-chip boot ROM

in ROM devices (i.e., LC240xA)

1 Disable Boot ROM — Program address space 0000 — 7FFF is

mapped to on-chip Flash memory in the case of LF2407A and

LF2406A. In the case of LF2402A, addresses 0000 – 1FFF are

mapped

Bit 2 Microprocessor/Microcontroller Select

This bit reflects the state of the MP/MC pin at time of reset. After

reset, this bit can be changed in software to allow dynamic

mapping of memory on and off chip.

0 Set to Microcontroller mode — Program Address range 0000 —

7FFF is mapped internally (i.e., Flash)

1 Set to Microprocessor mode — Program Address range 0000 —

7FFF is mapped externally (i.e., customer provides external

memory device.)

Bits 1–0 SARAM Program/Data Space Select

DON PON SARAM status

0 0 SARAM not mapped (disabled), address space allocated to
 external memory

0 1 SARAM mapped internally to Programspace

1 0 SARAM mapped internally to Data space

1 1 SARAM block mapped internally to both Data and
 Program spaces. This is the default or reset value

Note: See memory map for location of SARAM addresses

 Memory

Memory is required to hold programs, perform operations, and execute

programming instructions. There are three main blocks of memory which are

present on the LF2407 chip: B0, B1, and B2. Additionally, there are two different

memory “spaces” (program, data) in which blocks are used. We will discuss exactly

what each memory “block” and memory “space” is, and what each is used for.

1. Memory Blocks and Types

A block of memory on the LF2407 is simply a specified range of memory

addresses (each address consists of a 16-bit word of memory). There are three main

memory blocks on the LF2407 that can be specified via the Linker Command File

(we will discuss the Linker Command File and other files types when we cover

programming).

The LF2407 has 544 16-bit words of on-chip Double Access Random Access

Memory (DARAM) that are divided into three main memory blocks named B0, B1,

and B2. In addition to the DARAM, there are also 2000 16-bit words of Single

Access Random Access Memory (SARAM). The main difference between

DARAM and SARAM is that DARAM memory can be accessed twice per clock

cycle and SARAM can only be accessed once per cycle. Thus, DARAM reads and

writes twice as fast as SARAM.

In addition to the RAM present on the LF2407, there is also non-volatile Flash

memory. Unlike RAM, the Flash memory does not lose its contents when the

LF2407 loses power. Flash memory can only be written to by “flashing” the

memory, which is a process that can only be done manually by a user. Therefore,

Flash memory on the LF2407 is used only to store a program that is to be run. As

stated in Chapter 1, it is only necessary to use the Flash memory if the DSP is to be

run independently from a PC and JTAG interface. Though we introduce Flash

memory, it will not be covered in this text. However, the reader is encouraged to

consult the Texas Instruments documentation on Flash memory. Flash memory can

prove to be a valuable code development tool when it comes time to test a LF2407

program where having a PC connected is impractical.

2. Memory Space and Allocation

There are two ways of using the physical memory on board the LF2407: storing

a program or storing data.

A program that is to be run must be stored in memory that is mapped to

program space. Likewise, only memory that is in data space may be used to store

data. Program memory is written to when a program is loaded into the LF2407. Data

memory is normally written to during the execution of a program, where the

program might use the data memory as temporary storage for calculation variables

and results.

Memory blocks B1 and B2 are configured as data memory. The B0 block is

primarily intended to hold data, but can be configured to act as either program or

data memory, depending on the value of the CNF bit in Status Register ST1. CNF =

0 maps B0 in data memory, while CNF = 1 maps B0 in program memory.

The memory addresses associated with the SARAM can be configured for both

data memory and program memory, and are also software configurable to either

access external memory or the internal SARAM. When configured for internal, the

SARAM can be used as data or program memory. However, when configured as

external, these addresses are used for off-chip program memory. SARAM is useful

if more memory is needed for data than the B0, B1, and B2 blocks can provide. The

SARAM addresses should be configured to either program or data space via the

Linker Command File.

The on-chip flash in the LF2407 is mapped to program memory space when the

external MP/MC-pin is pulled low. When the MP/MC-pin is pulled high, the

program memory is mapped to external memory addresses, access via memory that

is physically external to the LF2407. In the case of the Spectrum Digital EVM,

external memory is installed on the board and a jumper pulls the MP/MC pin high or

low.

2.5.3 Memory Maps

Program Memory

When a program is loaded into the LF2407, the code resides in and is run from

program memory space. In addition to storing the user code, the program memory

can also store immediate operands and table information. Figure 2.2 shows the

various program memory addresses (in hexadecimal) and how they are used.

0000h

003Fh
0040h
0043h
0044h

7FFFh
8000h

FDFFh
FE00h

FEFFh
FF00h

FFFFh

Interrupt
vectors

Code security passwords

User code in
flash memory

External

Reserved
(CNF = 1)

(External if CNF = 0)

On-chip
DARAM (B0)

(CNF = 1)

(External if CNF = 0)

32K on-chip flash (MP/MC = 0)
External (MP/MC = 1)

0000h-0001h

0002h-0003h

0004h-0005h

0006h-0007h

0008h-0009h

000Ah-000Bh

000Ch-000Dh

000Eh-000Fh

0010h-0021h

0022h-0023h

0024h-0025h

0026h-0027h

0028h-003Fh

Figure 2.2 Program memory map for LF2407. (Courtesy of Texas Instruments)

Reset

Interrupt level 1

Interrupt level 2

Interrupt level 3

Interrupt level 4

Interrupt level 5

Interrupt level 6

Reserved

Software interrupts

TRAP

NMI

Reserved

Software interrupts

Two factors determine the configuration of program memory:

CNF bit:

The CNF bit determines if B0 memory is in on-chip program space:

CNF = 0. The 256 words are mapped as external memory.

CNF = 1. The 256 words of DARAM B0 are configured for program use.

At reset, B0 is mapped to data space (CNF = 0).

MP/MC pin:

The level on the MP/MC pin determines if program instructions

are read from on-chip Flash/ROM or external memory:

MP/MC = 0. The device is configured in microcontroller mode. The on-

chip flash EEPROM is accessible. The device fetches the reset

vector from on-chip memory.

MP/MC = 1. The device is configured in microprocessor mode. Program

memory is mapped to external memory.

Data Memory

For the execution of a program, it is necessary to store calculation results or

look up tables in memory. The memory allocated for this function is called data

memory. In order to store a value to a data memory address (dma), the

corresponding memory block must reside in data memory space. Blocks B1 and B2

discussed earlier permanently reside in data space, while block B0 and the SARAM

are configurable for either program or data.

Data memory space has the second functionality of providing an easy way to

access on-chip configuration registers and peripherals. Each user configurable

peripheral has associated registers in data memory addresses that may be written to

or read from as needed. For example, the control registers for the analog-to-digital

converter (ADC) are each located in the data memory range of 70A0h to 70BFh.

The internal data memory includes the memory-mapped registers, DARAM blocks,

and peripheral memory-mapped registers. The remaining 32K words of memory

(8000h to FFFFh) form part of the external data memory.

a

Hex

0000

005F
0060

007F
0080

00FF
0100

01FF
0200

02FF
0300

03FF
0400

04FF

0500

07FF
0800

0FFF

1000

6FFF
7000

73FF
7400

743F

7440

74FF
7500

753F

7540

77EF
77F0

77F3

77F4

77FF

7800

7FFF

8000

FFFF

Indicatesthat access tothese

addressescausesanonmaskablein-

terrupt(NMI).

Indicatesaddressesthatarere-

servedfortest.

Reserved
Interrupt-maskregister

Illegal

Eventmanager- EVA

Eventmanager- EVB

Hex

0000

0003

0004

0005

0006

0007

005F

7000-700F

7010-701F

7020-702F

7030-703F

7040-704F

7050-705F

7060-706F

7070-707F

7080-708F

7090-709F

70A0-70BF

70C0-70FF

7100-710E

710F-71FF

7200-722F

7230-73FF

7400-7408

7411-7419

7420-7429

742C-7431

7432-743F

7500-7508

7511-7519

7520-7529

752C-7531

* AvailableinLF2407Aonly
7532-753F

Figure 2.3 Data memory map for the LF2407. (Courtesy of Texas Instruments)

External*

Illegal

 Illegal

Peripheralframe2(PF2)

Peripheralframe1(PF1)

SARAM(2K)

 Illegal

Reserved

On-chipDARAMB1

 Illegal

On-chipDARAMB2

Memory-mappedregisters

andreserved

Reserved

On-chipDARAMB0

Illegal

Peripheralframe3(PF3)

 Illegal

Codesecuritypasswords

Reserved

SPI

Illegal

CANmailbox

Illegal

CAN controlregisters

Illegal

ADC controlregisters

DigitalI/Ocontrolregisters

Illegal

External-interruptregisters

SCI

Illegal

Watchdogtimerregisters

controlregisters

Systemconfigurationand

Illegal

 ndreserved

Interruptflagregister

Emulationregisters

Reserved

 Reserved

Illegal

General-purposetimerregisters

Compare,PWM,and

deadband registers

CaptureandQEPregisters

Interruptmask,vector,and

flagregisters

 Illega l

General-purposetimerregisters

Compare,PWM,and

deadbandregisters

CaptureandQEPregisters

Interruptmask,vector,and

flagregisters

 Reserved

Input/Output (I/O) Space

I/O space is solely used for accessing external peripherals such as the digital-to-

analog converter (DAC) on the LF2407 EVM. It is not to be confused with the I/O

functionality of pins. The assembly instruction “OUT” is used to write to an address

that is mapped to I/O space. Figure 2.4 depicts the basic memory map of the I/O

space on the LF2407.

0000h

FEFF
FF00

FF0E

FF0F

FF10

FFFE

FFFF

Figure 2.4 Memory map of I/O space. (Courtesy of Texas Instruments)

Within program, data, and I/O space are addresses that are reserved for system

functionality and may not be written to. It is important that the user pay attention to

what memory ranges are used by the program and where the program is to be

loaded. It is important to make sure the Linker Command File is configured properly

and the correct Data Page (DP) is set to avoid inadvertently writing to an undesired

or reserved memory address.

Detailed information on the memory map is given in the Texas Instruments

TMS320LF/LC240xA DSP Controllers Reference Guide - System and Peripherals;

Literature Number: SPRU357A.

6. Memory Addressing Modes

There are three basic memory addressing modes used by the C2xx instruction

set. The three modes are:

 Immediate addressing mode (does not actually access memory)

 Direct addressing mode

 Indirect addressing mode

External

Reserved

Flash control

mode register*

Reserved

Wait-state generator

control register*

 Immediate Addressing Mode

In the immediate addressing mode, the instruction contains a constant to be

manipulated by the instruction. Even though the name “immediate addressing”

suggests that a memory location is accessed, immediate addressing is simply

dealing with a user-specified constant which is usually included in the assembly

command syntax. The “#” sign indicates that the value is an immediate address (just

a constant). The two types of immediate addressing modes are:

Short-immediate addressing. The instructions that use short-immediate addressing

have an 8-bit, 9-bit, or 13-bit constant as the operand.

For example, the instruction:

LACL #44h ;loads lower bits of accumulator with

;eight-bit constant (44h in this case)

Note: The LACL command will work only with a short 8-bit constant. If you want to

load a long 16-bit constant, then use the LACC command.

Long-immediate addressing. Instructions that use long-immediate addressing have

a 16-bit constant as an operand. This 16-bit value can be used as an absolute

constant or as a 2s-complement value.

For example, the instruction:

LACC #4444h ;loads accumulator with up to a 16-bit

;constant (4444h in this case)

If you need to use registers or access locations in data memory, you must use

either direct or indirect addressing.

 Direct Addressing Mode

In direct addressing, data memory is first addressed in blocks of 128 words

called data pages. The entire 64K of data memory consists of 512 DPs labeled 0

through 511, as shown in the Fig. 2.5. The current DP is determined by the value in

the 9-bit DP pointer in status register ST0. For example, if the DP value is “0 0000

0000”, the current DP is 0. If the DP value is “0 0000 0010”, the current data page is

2. The DP of a particular memory address can be found easily by dividing the

address (in hexadecimal) by 80h. For example:

For the data memory address 0300h, 300h/80h = 6h so the DP pointer is 6h.

Likewise, the DP pointer for 200h is 4h.

.

.

.

.

.

. .
1111 1111 1 111 1111

. .
Page 511: FF80h-FFFFh

DP Value

0000 0000 0
.
.
.

0000 0000 0

0000 0.000 1
.
.

0000 0000 1

0000 0.001 0
.
.

0000 0001 0

Offset

000 0000
.

111 1111

000.0000
.

111 1111

000.0000
.

111 1111

Data Memory

Page 0: 0000h-007Fh

Page 1: 0080h-00FFh

Page 2: 0100h-017Fh
.

.

.

.

. . .

. . .

. . .

. . .

. . .

1111 1111 1
. 000 0000

Figure 2.5 Data pages and corresponding memory ranges. (Courtesy of Texas

Instruments)

In addition to the DP, the DSP must know the particular word being referenced

on that page. This is determined by a 7-bit offset. The 7-bit offset is simply the 7

least significant bits (LSBs) of the memory address. The DP and the offset make up

the 16-bit memory address (see Fig. 2.6).

Data page pointer (DP) Instruction register (IR)

16-bit data-memory address

Figure 2.6 Data page and offset make up a 16-bit memory address.

When you use direct addressing, the processor uses the 9 DP bits and the 7

LSBs of the instruction to obtain the true memory address. The following steps

should be followed when using direct addressing:

9 bits

All 9 bits from DP 7 LSBs from IR

Offset (7 LSBs) Page (9 MSBs)

7 LSBs 0 8 MSBs

1. Set the DP. Load the appropriate value (from 0 to 511 in decimal or 0-1FF in

hex) into the DP. The easiest way to do this is with the LDP instruction.
The LDP instruction loads the DP directly to the ST0 register without

affecting any other bits of the ST0.

LDP

or
#0E1h ;sets the data page pointer to E1h

LDP #225 ;sets the data page pointer to 225 decimal

 ;which is E1 in hexadecimal

2. Specify the offset. For example, if you want the ADD instruction to use the

value at the second address of the current data page, you would write: ADD
1h

If the data page points to 300h, then the above instruction will add the contents

of 301h to the accumulator

Note: You do not have to set the data page prior to every instruction that uses direct

addressing. If all the instructions in a block of code access the same data page, you

can simply load the DP before the block. However, if various data pages are being

accessed throughout the block of code, be sure the DP is changed accordingly.

 Indirect Addressing Mode

Indirect addressing is a powerful way of addressing data memory. Indirect

addressing mode is not dependent on the current data page as is direct addressing.

Instead, when using indirect addressing you load the memory space that you would

like to access into one of the auxiliary registers (ARx). The current auxiliary

register acts as a pointer that points to a specific memory address.

The register pointed to by the ARP is referred to as the current auxiliary register

or current AR. To select a specific auxiliary register, load the 3-bit auxiliary register

pointer (ARP) with a value from 0 to 7. The ARP can be loaded with the MAR

instruction or by the LARP instruction. An ARP value can also be loaded by using

the ARx operand after any instruction that supports indirect addressing as seen

below.

Example of using MAR:

ADD * , AR1 ;Adds using current * , then makes AR1 the

;new current AR for future uses

Example of using LARP

LARP #2 ;this will make AR2 the current AR

The C2xx provides four types of indirect addressing options:

 No increment or decrement. The instruction uses the content of the

current auxiliary register as the data memory address but neither
increments nor decrements the content of the current auxiliary register.

 Increment or decrement by 1. The instruction uses the content of the

current auxiliary register as the data memory address and then increments
or decrements the content of the current auxiliary register by one.

 Increment or decrement by an index amount. The value in AR0 is the

index amount. The instruction uses the content of the current auxiliary

register as the data memory address and then increments or decrements the

content of the current auxiliary register by the index amount.

 Increment or decrement by an index amount using reverse carry. The

value in AR0 is the index amount. After the instruction uses the content of

the current auxiliary register as the data memory address, that content is

incremented or decremented by the index amount. The addition and

subtraction process is accomplished with the carry propagation reversed

and is useful in fast Fourier transforms algorithms.

Table 2.1 displays the various operands that are available for use with instructions

while using indirect addressing mode.

Table 2.1 Indirect addressing operands.

Operand Option Example

* No increment or decrement LT * loads the temporary register TREG with the content of
 the data memory address referenced by the current AR.

*+ Increment by 1 LT *+ loads the TREG with the content of the data memory

 address referenced by the current AR and then adds 1 to the
content of the current AR.

*- Decrement by 1 LT *- loads the TREG with the content of the data memory

 address referenced by the current AR and then subtracts 1

from the content of the current AR.

*0+ Increment by index amount LT *0+ loads the TREG with the content of the data memory

 address referenced by the current AR and then adds the

content of AR0 to the content of the current AR.

*0- Decrement by index amount LT *0- loads the TREG with the content of the data memory

 address referenced by the current AR and then subtracts the

content of AR0 from the content of the current AR.

*BR0+ Increment by index amount, LT *BR0+ loads the TREG with the content of the data

 adding with reverse carry memory address referenced by the current AR and then adds

the content of AR0 to the content of the current AR, adding

with reverse carry propagation.

*BR0- Decrement by index amount, LT *BR0- loads the TREG with the content of the data

 subtracting with reverse carry memory address referenced by the current AR and then

subtracts the content of AR0 from the content of the current

AR, subtracting with bit reverse carry propagation.

Example:

memory address).

LACC

or

LACC

or

LACC dma , you can use several way to address the dma (data

*

200h

LACC v ; where “v” is any variable assigned to data

memory

where *, 200h, and v are the data memory addresses

Boldface Characters Boldface characters must be included in the syntax.

Example: LAR dma, 16 ; direct addressing with left shift of 16

LAR AR1, 60h, 16 ; load auxiliary AR1 register with the memory

contents of 60h that was left shifted

16 bits

Example: LACC dma, [shift] ; optional left shift from 0, 15 ; defaults to 0

LACC main_counter, 8 ; shifts contents of the variable

“main_counter” data 8 places to the left

before loading accumulator

[] An optional operand may be placed in the placed here.

Example: LACC ind [, shift [, AR n]_] Indirect addressing

LACC *

LACC * ,5

LACC * ,0, AR3

;load Accum. w/contents of the memory

;location pointed to by the current AR.

;load Accum. with the contents of the memory

;location pointed to by the current AR after

;the memory contents are left shifted by 5

;bits .

;load Accum. with the contents of the memory

;location pointed to by the current AR after

;the memory contents are left shifted by 5

;bits . Now you have the option of choosing

;a new AR. In this case, AR3 will become the

;new AR.

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot

include x2 without also including x1.

It is optional when using indirect addressing to modify the data. Once you

supply a left shift value from 0…15 (even a shift of 0), then you have the option of

changing to a new current auxiliary register (AR).

The # sign is prefix that signifies that the number used is a constant as

opposed to memory location.

Example: RPT #15 ; this syntax is using short immediate addressing. It

will repeat the next instruction 15+1 times.

LACC #60h ;this will load the accumulator with the

 ;constant 60h

LACC 60h ;However, this instruction will load the

 ;accumulator with the contents in the data

 ;memory location 60h, not the constant #60h

We will now provide a few examples of using the instruction set. Example 2.1

performs a few arithmetic functions with the DSP core and illustrates the nature of

assembly programming. Programming with the assembly instruction set is somewhat

different than languages such as C. In a high-level language, to add two numbers we

might just code “c = a + b”. In assembly, the user must be sure to code everything

that needs to happen in order for a task to be executed. Take the following example:

Example 2.1 - Add the two numbers “2” and “3”:

LDP #6h ;loads the proper DP for dma 300h

SPLK #2, 300h ;store the number “2” in memory address 300h

LACL #3 ;load the accumulator with the number “3”

ADD

Another wa

300h

y:

;adds contents of 300h (“2”) to the contents

;of the accumulator(“3”); accumulator = 5

LDP #6h ;loads the proper DP for dma 300h

SPLK #2h, 300h ;store the number “2h” in memory address

SPLK

#3h, 301h

;300h

;stores the number “3h” into memory address

LACL

300h

;301h

;load the accumulator with the contents in

ADD

301h

;memory location 300h

;adds contents of memory address 301h (“3h”)

 ;to the contents of the accumulator (“2h”)

;accumulator = 5h

Looping algorithms are very common in all programming languages. In high-

level languages, the “For” and “While” loops can be used. However, in assembly,

we need a slightly different approach to perform a repeating algorithm. The

GENERAL PURPOSE INPUT/OUTPUT (GPIO) FUNCTIONALITY

3.1 Pin Multiplexing (MUX) and General Purpose I/O Overview

Due to the limited number of physical pins on the LF2407 DSP, it is necessary

to multiplex two functions onto most of the pins. That is, each pin can be

programmed for either a primary or secondary (GPI/O) function (see Fig. 3.1). Once

the pins on the LF2407 are multiplexed, the effective pin-out of the device is

doubled. This provides enough effective pin-out for six General Purpose Input

Output (GPIO) ports to be configured as the secondary function on most pins. Each

Input/Output Port (IOP) consists of eight pins when they are configured to their

secondary function.

Figure 3.1 Block diagram of the multiplexing of a single pin. (Courtesy of Texas

Instruments)

GPIO pins are grouped in sets of eight pins called ports. There are six ports

total, ports A through F. Even though the pins are grouped in ports, each pin can be

individually configured as primary or secondary (GPIO) functionality; and if GPIO,

then either input or output. The multiplexing of primary pin functions with

secondary GPIO functions provides a flexible method of controlling both the

dedicated and secondary pin functions.

Each multiplexed pin’s primary/secondary functionality is controlled by a

corresponding bit in the appropriate MUX control register. Additionally, when the

pin is in GPIO mode, there are port data and direction (PxDATDIR) control

registers which control the direction (input or output) and data of the port/pin. If the

pin is configured as an output, then the data (voltage) on the pin is determined by

what value is written to the pin’s data bit. Inversely, if the pin is configured as an

input, then the voltage level applied to the pin determines the value of the pin’s

corresponding data bit.

If the pin is configured as an output pin, it can either be set to a logic high “1”

(3.3 Volts) or a logic low “0” (0 Volts) by writing to its corresponding data bit in the

corresponding PxDATDIR register. If the pin is configured as an input, the pin’s

corresponding bit in the appropriate PxDATDIR register will be “1” if 3.3 Volts or

“0” if 0 Volts is applied to the pin. The data bits in the PxDATDIR can then be read

by the user code and the values used in the program. The input and output ports

provide a convenient way to input or output binary data (each pin = 1 bit). For

example, a seven-segment display could be controlled by a GPIO port configured as

output.

Note: There is no relationship between the GPIO pins and the I/O space of the

LF2407.

2. Multiplexing and General Purpose I/O Control Registers

The three MUX control registers and six data/direction control registers are all

mapped to data memory (see Table 3.1). They control all dedicated and shared pin

functions:

 I/O MUX Control Registers (MCRA, MCRB, MCRC): These 16-bit

registers determine whether a pin will operate in its primary function or

secondary GPIO function. Two ports are assigned to each MUX control
register. For example, the MCRA register controls ports A and B.

 Data and Direction Control registers (PxDATDIR): Once a pin is

configured in I/O mode by the appropriate MUX control register, the
appropriate PxDATDIR register is used to configure each pin as input or

output; and if output, whether the pin is high (3.3 Volts) or low (0 Volts).

Table 3.1 GPIO Control Register Summary

Data Memory

Address

Register Name Description

7090h
7092h
7094h
7098h
709Ah
709Ch
709Eh
7095h
7096h

MCRA
MCRB
MCRC
PADATDIR
PBDATDIR
PCDATDIR

PDDATDIR
PEDATDIR
PFDATDIR

I/O MUX Control Register A
I/O MUX Control Register B

I/O MUX Control Register C
I/O Port A Data and Direction Register
I/O Port B Data and Direction Register

I/O Port C Data and Direction Register
I/O Port D Data and Direction Register
I/O Port E Data and Direction Register
I/O Port F Data and Direction Register

3.2.1 I/O Multiplexing (MUX) Control Registers

I/O MUX Control Register A (MCRA) Configuration

15 14 13 12 11 10 9 8

MCRA.15 MCRA.14 MCRA.13 MCRA.12 MCRA.11 MCRA.10 MCRA.9 MCRA.8

RW –0

7

RW –0

6

RW –0

5

RW –0

4

RW –0

3

RW –0

2

RW –0

1

RW –0

0

MCRA.7 MCRA.6 MCRA.5 MCRA.4 MCRA.3 MCRA.2 MCRA.1 MCRA.0

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0

Note: R = read access, W = write access, -0 = value after reset.

 Pin Function Selected

Bit # Name.bit# (MCA.n = 1) (MCA.n = 0)
 (Primary) (Secondary)

0 MCRA.0 SCITXD IOPA0

1 MCRA.1 SCIRXD IOPA1

2 MCRA.2 XINT1 IOPA2

3 MCRA.3 CAP1/QEP1 IOPA3

4 MCRA.4 CAP2/QEP2 IOPA4

5 MCRA.5 CAP3 IOPA5

6 MCRA.6 PWM1 IOPA6

7 MCRA.7 PWM2 IOPA7

8 MCRA.8 PWM3 IOPB0

9 MCRA.9 PWM4 IOPB1

10 MCRA.10 PWM5 IOPB2

11 MCRA.11 PWM6 IOPB3

12 MCRA.12 T1PWM/T1CMP IOPB4

13 MCRA.13 T2PWM/T2CMP IOPB5

14 MCRA.14 TDIRA IOPB6

15 MCRA.15 TCLKINA IOPB7

I/O MUX Control Register B (MCRB) Configuration

Note: R = read access, W = write access, -0 = value after reset.

 Pin Function Selected

Bit # Name.bit # (MCB.n = 1) (MCB.n = 0)
 (Primary) (Secondary)

0 MCRB.0 W/R IOPC0

1 MCRB.1 BIO IOPC1

2 MCRB.2 SPISIMO IOPC2

3 MCRB.3 SPISOMI IOPC3

4 MCRB.4 SPICLK IOPC4

5 MCRB.5 SPISTE IOPC5

6 MCRB.6 CANTX IOPC6

7 MCRB.7 CANRX IOPC7

8 MCRB.8 XINT2/ADCSOC IOPD0

9 MCRB.9 EMU0 Reserved

10 MCRB.10 EMU1 Reserved

11 MCRB.11 TCK Reserved

12 MCRB.12 TDI Reserved

13 MCRB.13 TDO Reserved

14 MCRB.14 TMS Reserved

15 MCRB.15 TMS2 Reserved

I/O MUX Control Register C (MCRC) Configuration

15 14 13 12 11 10 9 8

Reserved Reserved MCRC.13 MCRC.12 MCRC.11 MCRC.10 MCRC.9 MCRC.8

7

6

RW –0

5

RW –0

4

RW –0

3

RW –0

2

RW –0

1

RW –0

0

MCRC.7 MCRC.6 MCRC.5 MCRC.4 MCRC.3 MCRC.2 MCRC.1 MCRC.0

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –1

Note: R = read access, W = write access, -0 = value after reset.

 Pin Function Selected

it # Name.bit# (MCC.n = 1)
(Primary)

(MCC.n = 0)
(Secondary)

0 MCRC.0 CLKOUT IOPE0

1 MCRC.1 PWM7 IOPE1

2 MCRC.2 PWM8 IOPE2

3 MCRC.3 PWM9 IOPE3

4 MCRC.4 PWM10 IOPE4

5 MCRC.5 PWM11 IOPE5

6 MCRC.6 PWM12 IOPE6

7 MCRC.7 CAP4/QEP3 IOPE7

8 MCRC.8 CAP5/QEP4 IOPF0

9 MCRC.9 CAP6 IOPF1

10 MCRC.10 T3PWM/T3CMP IOPF2

11 MCRC.11 T4PWM/T4CMP IOPF3

12 MCRC.12 TDIRB IOPF4

13 MCRC.13 TCLKINB IOPF5

14 MCRC.14 Reserved IOPF6

15 MCRC.15 Reserved Reserved

 55

Bits 7–0 IOPBn – Data Bits

If BnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If BnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

Port C Data and Direction Control Register (PCDATDIR)

15 14 13 12 11 10 9 8

C7DIR C6DIR C5DIR C4DIR C3DIR C2DIR C1DIR C0DIR

RW –0

7

RW –0

6

RW –0

5

RW –0

4

RW –0

3

RW –0

2

RW –0

1

RW –0

0

IOPC7 IOPC6 IOPC5 IOPC4 IOPC3 IOPC2 IOPC1 IOPC0

RW –†
 RW –†

 RW –†
 RW –†

 RW –†
 RW –†

 RW –†
 RW –x

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset, x = undefined.

Bits 15–8 CnDIR – Direction Bits

1 Configure corresponding pin as an input

2 Configure corresponding pin as an output

Bits 7–0 IOPCn – Data Bits
If CnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If CnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

Port D Data and Direction Control Register (PDDATDIR)

15-9 8

Reserved D0DIR

RW –0

7-1 0

Reserved IOPD0

RW –†

† The reset value of this bit depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–9 Reserved

Bit 8 D0DIR – Direction Bits

1 Configure corresponding pin as an input

2 Configure corresponding pin as an output

Bits 7–1 Reserved

Bit 0 IOPD0 – Data Bit

If D0DIR = 0, then:
0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If D0DIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

Port E Data and Direction Control Register (PEDATDIR)

15 14 13 12 11 10 9 8

E7DIR E6DIR E5DIR E4DIR E3DIR E2DIR E1DIR E0DIR

RW –0

7

RW –0

6

RW –0

5

RW –0

4

RW –0

3

RW –0

2

RW –0

1

RW –0

0

IOPE7 IOPE6 IOPE5 IOPE4 IOPE3 IOPE2 IOPE1 IOPE0

RW –†
 RW –†

 RW –†
 RW –†

 RW –†
 RW –†

 RW –†
 RW –x

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset, x = undefined.

Bits 15–8 EnDIR – Direction Bits

1 Configure corresponding pin as an input

2 Configure corresponding pin as an output

Bits 7–0 IOPEn – Data Bits

If EnDIR = 0, then:
0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If EnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

 57

Port F Data and Direction Control Register (PFDATDIR)

15 14 13 12 11 10 9 8

Reserved F6DIR F5DIR F4DIR F3DIR F2DIR F1DIR F0DIR

7

RW –0

6

RW –0

5

RW –0

4

RW –0

3

RW –0

2

RW –0

1

RW –0

0

Reserved IOPF6 IOPF5 IOPF4 IOPF3 IOPF2 IOPF1 IOPF0

 RW –†
 RW –†

 RW –†
 RW –†

 RW –†
 RW –†

 RW –†

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 Reserved

Bits 14–8 FnDIR – Direction Bits

0

1

Bit 7 Reserved

Configure corresponding pin as an input

Configure corresponding pin as an output

Bits 6–0 IOPFn – Data Bits

If FnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high

If FnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

3. Using the General Purpose I/O Ports

The GPIO functionality is relatively simple to use and provides a valuable way

of imputing and outputting data to and from the DSP. To use the GPIO functionality

of a particular pin or groups of pins, the following steps must be followed to

configure the DSP:

1. Set the bits in the appropriate MUX control register to configure the desired

pins for GPIO function. This can be done by writing a “0” to the

corresponding bits in the appropriate MUX. It may not be absolutely
necessary to do this due to the fact that upon a reset (power on) the pins in

the LF2407 are by default in their GPIO functionally. However,

configuring the MUX register anyway is good programming practice.

2. Now that the desired pins are configured as GPIO, set the Port Data and

Direction (PxDATDIR) register(s) that corresponds to the desired pins.

When configuring the PxDATDIR, the most significant bits control the

direction (input or output) and the lower bits determine (output) or display

INTERRUPTS ON THE TMS320LF2407

1. Introduction to Interrupts

The interrupts on the LF2407 allow the device hardware to trigger the CPU of

the LF2407 (CPU=C2xx DSP core) to break from the current task, branch to a new

section of code and start a new task, then return back to the initial task. The “new

task” referred to in the previous sentence is known as the Interrupt Service Routine

(ISR). The ISR is simply a separate user-written subroutine, which the core will

branch to every time a certain interrupt occurs.

For example, say the ADC is being used and we want the program to load the

conversion value into the accumulator every time the ADC finishes a conversion.

The ADC can be configured to generate an interrupt whenever a conversion is

finished. When the ADC generates its interrupt, the interrupt signal makes its way

through the interrupt hierarchy to the core and the core then branches to the

appropriate ISR.

In a more general sense, when an interrupt occurs, the core branches to the ISR

(GISR1, GISR2 etc… depending on the interrupt) where an interrupt service routine

is located. In the ISR, after the instructions are executed, the interrupt hierarchy is

“reset” to allow for future interrupts. This usually entails clearing the peripheral

level interrupt flag bit and clearing the INTM bit. These steps ensure that future

interrupts of the same origin will be able to pass through to the core. The final

instruction in the ISR is the RET command, which instructs the core to return to

where it was before the interrupt occurred.

2. Interrupt Hierarchy

This section will explain the different hierarchical levels and how an interrupt

request signal propagates through them. The different control registers and their

operations will be reviewed.

1. Interrupt Request Sequence

There are two levels of interrupt hierarchy in the LF2407 as seen in Fig. 4.1

below. There is an interrupt flag bit and an interrupt enable bit located in each

peripheral configuration register for each event that can generate an interrupt. The

peripheral interrupt flag bit is the first bit to be set when an interrupt generating

event occurs. The interrupt enable bit acts as a “gate”. If the interrupt enable bit is

not set, then the setting of the peripheral flag bit will not be able to generate an

interrupt signal. If the enable bit is set, then the peripheral flag bit will generate an

interrupt signal. That interrupt signal will then leave the peripheral level and go to

the next hierarchal level.

Once an interrupt signal leaves the peripheral level, it is then multiplexed

through the Peripheral Interrupt Expansion (PIE) module. The PIE module takes the

many individual interrupts and groups them into six priority levels (INT1 through

INT6). Once an interrupt reaches the PIE, a code identifying the individual interrupt

is loaded into the Peripheral Interrupt Vector Register (PIVR). This allows the ISR

to determine which interrupt was actually asserted when multiple interrupts from

the same level occur. After passing through the PIE module, the interrupt request

signal has now entered the upper level of hierarchy or the “CPU level”.

The six interrupt groupings from the PIE module feed into the CPU level. The

final stage of the CPU level is the CPU itself (C2xx core). From Fig. 4.1, we can see

the six interrupt levels and the many individual peripheral interrupts assigned to

priority level. Each of the six levels has a corresponding flag bit in the Interrupt

Flag Register (IFR). Additionally there is an Interrupt Mask Register (IMR) which

acts similar to the interrupt enable bits at the peripheral level. Each of the six bits in

the IMR behaves as a “gate” to each of the corresponding six bits in the IFR. If the

corresponding bits in both the IFR and IMR are both set, then the interrupt request

signal can continue through to the C2xx core itself.

Once the interrupt request signal has entered the CPU level and has passed

through the IFR/IMR, there is one more gateway the signal must pass through in

order to cause the core to service the interrupt. The Interrupt Mask (INTM) bit must

be cleared for the interrupt signal to reach the core. When the core acknowledges a

pending interrupt, the INTM bit is automatically set, thereby not allowing any more

interrupts from reaching the core while a current interrupt is being serviced.

When the core is finished with the current interrupt, only the flag bit in the IFR

is cleared automatically. The INTM bit and the peripheral level flag bit must be

cleared “manually” via software. When this is done, the core will acknowledge the

highest priority pending interrupt request signal.

Additionally, if an interrupt request signal occurs, but the signal never reaches

the core, all flag bits “downstream” of the point where the signal was halted will still

remain set until cleared by software. The IFR bits will be cleared if: (1) the interrupt

path to the core is opened, and the interrupt is acknowledged normally or

(2) the bit is cleared “manually” by software. If no interrupt request has occurred

but the peripheral level IF bit is set and the peripheral IE bit is later set without

clearing the IF bit, then an interrupt request signal will be asserted and the

corresponding IFR bit will be set.

Furthermore, in the event that two interrupts of different priority groupings

(INTx) occur at the same time, the highest priority interrupt will be acknowledged

first by the core.

PDPINTA

PDPINTB

ADCINT

XINT1

XINT2

SPIINT

RXINT

TXINT

CANMBINT

CANERINT

PIE

CMP1INT
CMP2INT
CMP3INT

T1PINT
T1CINT

T1UFINT
T1OFINT
CMP4INT
CMP5INT
CMP6INT

T3PINT
T3CINT

T3UFINT
T3OFINT

T2PINT
T2CINT

T2UFINT
T2OFINT

T4PINT
T4CINT

T4UFINT
T4OFINT

CAP1INT
CAP2INT
CAP3INT
CAP4INT
CAP5INT
CAP6INT

SPIINT

RXINT

TXINT

CANMBINT

CANERINT

ADCINT

XINT1
XINT2

Data Addr

bus bus

Figure 4.1 Interrupt hierarchy in the LF2407. (Courtesy of Texas Instruments)

INT1

PIRQR#
PIACKR#

PIVR#

Level 6

IRQGEN

Level 5

IRQGEN

Level 4

IRQGEN

Level 3

IRQGEN

Level 2

IRQGEN

Level 1

IRQGEN

INT6

IACK

INT5

INT4

INT3

CPU

INT2

P
IR

Q
R

1

P
IR

Q
R

0

4.2.2 Reset and Non-Maskable Interrupts

There are two special interrupts on the LF2407 which have not been covered

thus far; the Reset (RS) and the Non-Maskable Interrupt (NMI). Both of these

interrupts bypass the usual interrupt hierarchy and feed straight to the DSP core. A

reset causes the core to branch to address 0000h in program memory. Resets are

activated during power on, when the external RESET pin is brought to logic “0” (O

Volts), or by the Watchdog Timer. If the Watchdog is not disabled, it will pull the

reset pin to “0” if not periodically reset.

When an illegal memory space is written to, the illegal address flag (ILLADR)

in System Control and Status Register 1 (SCSR1) will be set. When this flag is set,

a non-maskable interrupt (NMI) will be generated, causing the core to branch to

address 0024h in program memory. The illegal address flag (ILLADR) will remain

set following an illegal address condition until it is cleared by software or a DSP

reset.

3. Interrupt Control Registers

This section will review the interrupt control registers. The IFR, IMR, and

PIVR registers as well as the INTM bit discussed in the previous section will be

presented in more detail. We will not discuss peripheral level interrupt bits in this

chapter, as they will be discussed in each section dealing with the specific

peripherals.

There are three registers used at the CPU level, the Interrupt Flag Register

(IFR), the Interrupt Mask Register (IMR), and the Peripheral Interrupt Vector

Register (PIVR). The IFR and IMR control the interrupt signal at the beginning of

the CPU level. The PIVR register, while actually loaded in the PIE, provides

information about the specific interrupt that occurred at the peripheral level. This

information can be used by the ISR in determining the source of the interrupt signal.

In addition to these registers, the INTM bit at the CPU level provides the final

“gateway” that the interrupt signal must pass through to reach the core itself.

In addition to the peripheral interrupts, there are two External Interrupts

(XINT1, XINT2). Their interrupt request operation is exactly like the peripheral

interrupts. However, external interrupts are triggered by a logic edge transition on

their external pin. The external interrupt control registers will also be discussed.

1. Interrupt Flag Register (IFR)

The IFR is a 16-bit (only 6 bits are really used) register mapped to address

0006h in data memory. The IFR is used to identify and clear pending interrupts at

the CPU level and contains the interrupt flag bits for the maskable interrupt priorities

INT1–INT6.

A flag bit in the IFR is set to “1” when an individual interrupt request signal

makes its way out of the peripheral level and into the CPU level. The particular flag

bit set depends on what priority the individual interrupt is grouped under. After the

interrupt is serviced, the IFR bit corresponding to the interrupt is automatically

cleared (to “0”) by the DSP.

In addition to triggering the CPU level during the standard interrupt process,

the IFR can also be read by software. If a desired situation occurred where the

INTM bit was set (meaning no interrupt signals make it to the core) and an interrupt

signal was generated at the below levels, the corresponding bit in the IFR would

still be set. In this situation, the IFR could be read by software to identify pending

interrupt requests.

If desired, to “manually” clear a bit in the IFR, software needs to write a “1” to

the appropriate bit (see IFR bit descriptions). The flag bits can be thought of as

“toggling” when a “1” is written to them. Loading the IFR into the accumulator,

then storing the contents of the IFR back into itself clears all bits in the IFR.

However, if the peripheral level interrupt flag bit is still set, the corresponding bit in

the IFR will immediately become set right after it is cleared.

Notes:

1. To clear an IFR bit, we must write a one to it, not a zero.

2. When an interrupt is acknowledged, only the IFR bit is cleared

automatically. The flag bit in the corresponding peripheral control register

is not automatically cleared. If an application requires that the control

register flag be cleared, the bit must be cleared by software.

3. IFR registers pertain to interrupts at the CPU level only. All peripherals

have their own interrupt mask and flag bits in their respective

control/configuration registers.

4. When an interrupt is requested by the INTR assembly instruction and the

corresponding IFR bit is set, the CPU does not clear the bit automatically.

If an application then requires that the IFR bit needs to be cleared, the bit

must be cleared by software.

Interrupt Flag Register (IFR) — Address 0006h

15-6 5 4 3 2 1 0

Reserved INT6 flag INT5 flag INT4 flag INT3 flag INT2 flag INT1 flag

0 RW1C–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0

Note: 0 = always read as zeros, R = read access, W1C = write 1 to this bit to clear

it, -0 = value after reset.

Bits 15–6 Reserved. These bits are always read as zeros.

Bit 5 INT6. Interrupt 6 flag. This bit is the flag for interrupts connected to

interrupt level INT6.

0 No INT6 interrupt is pending

1 At least one INT6 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 4 INT5. Interrupt 5 flag. This bit is the flag for interrupts connected to

interrupt level INT5.

0 No INT5 interrupt is pending

1 At least one INT5 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 3 INT4. Interrupt 4 flag. This bit is the flag for interrupts connected to

interrupt level INT4.

0 No INT4 interrupt is pending

1 At least one INT4 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 2 INT3. Interrupt 3 flag. This bit is the flag for interrupts connected to

interrupt level INT3.

0 No INT3 interrupt is pending

1 At least one INT3 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 1 INT2. Interrupt 2 flag. This bit is the flag for interrupts connected to

interrupt level INT2.

0 No INT2 interrupt is pending

1 At least one INT2 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 0 INT1. Interrupt 1 flag. This bit is the flag for interrupts connected to

interrupt level INT1.

0 No INT1 interrupt is pending

1 At least one INT1 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

 Interrupt Mask Register(IMR)

The Interrupt Mask Register (IMR) is a 16-bit (only 6 bits are used) register

located at address 0004h in data memory. It contains a mask bits for each of the six

interrupt priority levels INT1–INT6. When an IMR bit is “0”, the corresponding

interrupt is “masked”. When an interrupt is masked, the interrupt will be halted at

the CPU level; the core will not be able to receive the interrupt request signal,

regardless of the INTM bit status. When the interrupt’s IMR bit is set to “1”, the

interrupt will be acknowledged if the corresponding IFR bit is “1” and the INTM bit

is “0”. The IMR may also be read to identify which interrupts are masked or

unmasked.

Interrupt Mask Register (IMR) — Address 0004h

15-6 5 4 3 2 1 0

Reserved INT6 mask INT5 mask INT4 mask INT3 mask INT2 mask INT1 mask

0 RW RW RW RW RW RW

Note: 0 = always read as zeros, R = read access, W = write access, bit values are

not affected by a device reset.

Bits 15–6 Reserved. These bits are always read as zeros.

Bit 5 INT6. Interrupt 6 mask. This bit masks or unmasks interrupt level INT6.

0 Level INT6 is masked

1 Level INT6 is unmasked

Bit 4 INT5. Interrupt 5 mask. This bit masks or unmasks interrupt level INT5.

0 Level INT5 is masked

1 Level INT5 is unmasked

Bit 3 INT4. Interrupt 4 mask. This bit masks or unmasks interrupt level INT4.

0 Level INT4 is masked

1 Level INT4 is unmasked

Bit 2 INT3. Interrupt 3 mask. This bit masks or unmasks interrupt level INT3.

0 Level INT3 is masked

1 Level INT3 is unmasked

Bit 1 INT2. Interrupt 2 mask. This bit masks or unmasks interrupt level INT2.

0 Level INT2 is masked

1 Level INT2 is unmasked

Bit 0 INT1. Interrupt 1 mask. This bit masks or unmasks interrupt level INT1.

0 Level INT1 is masked

1 Level INT1 is unmasked

Note: A device reset does not affect The IMR bits.

 Peripheral Interrupt Vector Register(PIVR)

The Peripheral Interrupt Vector Register (PIVR) is a 16-bit read-only register

located at address 701Eh in data memory. Each interrupt has a unique code which is

loaded into the PIVR when in the PIE module. When a peripheral interrupt signal is

passed through the PIE module, the PIVR is loaded with the vector of the pending

interrupt which has the highest priority level. This assures that if two interrupts of

different priorities happen simultaneously, the higher priority interrupt will be

serviced first.

Peripheral Interrupt Vector Register (PIVR) — Address 701Eh

Note: R = read access, -0 = value after reset.

Bits 15–0 V15–V0. Interrupt vector. This register contains the peripheral

interrupt vector of the most recently acknowledged peripheral interrupt.

External Interrupt Control Registers

The external interrupts (XINT1, XINT2) are controlled by the XINT1CR and

XINT2CR control registers, respectively. If these interrupts are enabled in their

control registers, an interrupt will be generated when the XINT1 or XINT2 logic

transition occurs for at least 12 CPU clock cycles.

For example, if XINT1 was configured for generating an interrupt on a low (0

Volts) to high (3.3 Volts) transition and the XINT1 pin only went high for 6 clock

cycles, then back down to low, an interrupt request would not occur. However, if the

pin was brought high for 12 or more cycles, an interrupt request signal would be

generated.

External Interrupt 1 Control Register (XINT1CR) – Address 7070h

Note: R = read access, W = write access, C = clear by writing a 1, -0 = value after

reset.

Bit 15 XINT1 Flag

This bit indicates if the selected transition has been detected on

the XINT1 pin and is set whether or not the interrupt is enabled.

This bit is cleared by software writing a 1 (writing a 0 has no

effect), or by a device reset.
0 No transition detected

1 Transition detected

Note: the description in the TI user guide can be misleading: this bit is not cleared

automatically during the interrupt acknowledge sequence.

Bits 14–3 Reserved. Reads return zero; writes have no effect.

Bit 2 XINT1 Polarity

This read/write bit determines if interrupts are generated on the

rising edge or the falling edge of a signal on the pin.

0 Interrupt generated on a falling edge (high-to-low transition)

1 Interrupt generated on a rising edge (low-to-high transition)

Bit 1 XINT1 Priority

This read/write bit determines which interrupt priority is

requested. The CPU interrupt priority levels corresponding to low

and high priority are coded into the peripheral interrupt expansion

controller. These priority levels are shown in Table 2–2, 240xA

Interrupt Source Priority and Vectors, in Chapter 2 on page 2-9.

0 High priority

1 Low priority

Bit 0 XINT1 Enable

This read/write bit enables or disables external interrupt XINT1.

0 Disable interrupt

1 Enable interrupt

External Interrupt 2 Control Register (XINT2CR) – Address 7071h

Note: R = read access, W = write access, C = Clear by writing a 1, -0 = value after

reset.

Bit 15 XINT2 Flag

This bit indicates if the selected transition has been detected on

the XINT2 pin and is set whether or not the interrupt is

enabled. This bit is cleared by software writing a 1 (writing a 0

has no effect), or by a device reset.

0 No transition detected

1 Transition detected

Note: the description in the TI user guide can be misleading: this bit is not cleared

automatically during the interrupt acknowledge sequence.

Ch Sel (state 2)

ADCIN0

ADCIN1

ADCIN2

Analog MUX Result MUX

10

RESULT0

RESULT1

RESULT2

ADCIN15

SOC

EOC

Result

select

10

RESULT15

4 4

Autosequencer

state machine

Software

EVA

EVB

External pin (ADCSOC)

Note: Possible values are:

Channel select = 0 to 15

MAXCONV = 0 to 15

Start–of–sequence trigger

† 425–ns for LC2402A

Figure 5.1 Block diagram of ADC in cascaded sequencer mode. (Courtesy of

Texas Instruments)

Table 5.1 Comparasion table of dual (SEQ1 and SEQ2) versus cascaded

sequencer configuration

Feature Single 8–state

sequencer #1 (SEQ1)

Single 8–state

sequencer #2 (SEQ2)

Cascaded 16–state

sequencer (SEQ)

Start–of–conversion

triggers

Maximum number of

autoconversions

(i.e., sequence length)

EVA, software,

external pin

8

EVB, software

8

EVA, EVB, software,

external pin

16

Autostop at end–of–

sequence (EOS)

Yes Yes Yes

Arbitration priority

ADC conversion result

register locations

High

0 to 7

Low

8 to 15

Not applicable

0 to 15

CHSELSEQn bit field CONV00 to CONV07 CONV08 to CONV15 CONV00 to CONV15

 assignment

MAX CONV1

Ch Sel (state 0)
State

pointer

Ch Sel (state 3)

10–bit, 375–ns†

S/H + A/D

converter

MUX
select

Ch Sel (state 15)

Ch Sel (state 1)

THE EVENT MANAGERS (EVA, EVB)

This chapter explains the features and operation of the LF2407 Event Managers

(EV1, EV2). There are two identical event managers on board the LF2407 DSP. All

control orientated features of the LF2407 are centered in the EV. The event manager

peripheral is made up of components such as timers and pulse width modulation

(PWM) generators. We start with a brief overview of the EV without getting into

too much detail. Since the EV consists of several sub-components, we discuss in

detail the operation and functionality of each sub-component separately in

subsequent sections.

 Overview of the Event Manager(EV)

We start with the EV by reviewing the multiple functional modules of the

peripheral. The two EVs (EVA/B) are identical to one another in terms of

functionality and register/bit definition, but have different register names and

addresses. Since both EV1 and EV2 are identical, only the functionality of EV1 will

be explained.

Each EV module in the LF2407 contains the following sub-components:

x Interrupt logic

x Two general-purpose (GP) timers

x Three compare units

x PWM circuits that include space vector PWM circuits, dead-band
generation units, and output logic

x Three Capture Units

x Quadrature encoder pulse (QEP) circuit

Figure 6.1 shows a block diagram of the EVA module. Similarly, Fig. 6.2

illustrates the block diagram of EVB.

Like all peripherals, the EV registers occupy a range of 16-bit memory

addresses in data memory space. Most of these registers are programmable control

and data registers, but read-only status registers are also present. EVA registers are

located in the data memory range 7400h to 7431h. EVB registers are located in the

range of 7500h to 7531h. Some of the EV memory allocation range is for use by the

DSP only. These undefined registers and undefined bits of EV registers will just

read zero when read by user software. Writes also have no effect on these registers.

As a general rule, one should not write to reserved or illegal addresses in order to

avoid an illegal address non-maskable interrupt (NMI) from occurring.

101

)

Data
bus

16

240xA DSP core

ADDR bus Reset INT1,2,3,4 Clock

16

16
EV control registers

and control logic

ADC start of
conversion

16
GP timer 1
compare

16
GP timer 1

Output
logic

T1CMP/T
1PW M

TDIRA

TCLKINA

r
 CLKOUT

16

T1CON[4,5]

T1CON[8,9,10]

16 Full compare

units

16
GP timer 2
compare

3 SVPWM
state

machine

Output
logic

3 Dead
band
units

3
Output
logic

PW M1

PW M6

T2CMP/
T2PW M

16
GP timer 2

TCLKINA

CLKOUT

16 T2CON[4,5] T2CON[8,9,10]

TDIRA

16

MUX

16

Capture units

16

DIR

2

Clock

CAPCONA[14,13]

2

2
CAP1/QEP1
CAP2/QEP2

CAP3

Figure 6.1 Event Manager A (EVA) block diagram. (Courtesy of Texas

Instruments)

 Event Manager Interrupts

The interrupt system in the EV will be discussed first because each of the sub-

modules of the EVs have interrupt flags. The EV interrupt sub-system is slightly

different from that of the main interrupt system. Each EV has its own “local”

interrupt sub-system which includes its own interrupt mask and flag registers. After

the EV interrupts pass through the sub-system, they flow into the PIE just like any

other interrupt on the LF2407. The EV interrupts are arranged into three groups (A,

B, C). Each group (A,B,C) has its own mask and flag register and is assigned to

QEP

circuit

Prescaler

Prescale

)

a particular CPU interrupt priority level at the PIE. EV interrupts happen to be only

at the INT2, INT3, and INT4 CPU priority levels.

Data
bus

16

240xA DSP core

ADDR bus Reset INT1,2,3,4 Clock

16

16
EV control registers

and control logic

ADC start of
conversion

16
GP timer 3
compare

16
GP timer 3

16

Output
logic

T3CON[4,5]

T3CMP/
T3PW M

TDIRB

TCLKINB

 CLKOUT

T3CON[8,9,10]

16 Full compare

units

16
GP timer 4
compare

16
GP timer 4

3 SVPW M
state

machine

Output
logic

3 Dead
band
units

3
Output
logic

PW M7

PW M12

T4CMP/
T4PW M

TCLKINB

CLKOUT

16 T4CON[4,5] T4CON[8,9,10]

TDIRB

16

MUX

16

Capture units

16

DIR

2

Clock

CAPCONB[14,13]

2

2
CAP4/QEP3
CAP5/QEP4

CAP6

Figure 6.2 Event Manager B (EVB) block diagram. (Courtesy of Texas

Instruments)

The following are the sequential steps for interrupt response within the EV:

1. Interrupt source. When an EV interrupt condition occurs, the respective flag

bits in registers EVxIFRA, EVxIFRB, or EVxIFRC (x = A or B) are set.

As with other peripheral level flags, once set, these flags remain set until

explicitly cleared by the software. In other words, you must clear

Prescaler

Prescaler

QEP

circuit

)

theses flags “manually” through your software in order for future interrupts

to be recognized.

2. Interrupt enable. The EV interrupts can be individually enabled or

disabled by the EV interrupt mask registers EVxIMRA, EVxIMRB, and
EVxIMRC (x being either EV = A or B). To enable (unmask) an interrupt,

the user must set the corresponding bit to “1”. To disable (mask) the

interrupt, clear the corresponding bit to “0”. From now on, the interrupt is

handled like other peripheral interrupts as discussed earlier in the text.

3. PIE request. If both interrupt flag bits and interrupt mask bits are set, then

the interrupt request is passed to the PIE module. As with any other

peripheral interrupts, the PIE module will send the CPU a request for a

CPU level interrupt of the appropriate priority level based on the priority of
the received interrupts.

4. CPU response. On receiving a CPU level interrupt request, the respective

bit in the CPU interrupt flag register (IFR) will be set. If the corresponding

interrupt mask register (IMR) bit is set and INTM bit is cleared, then the

CPU recognizes the interrupt and issues an acknowledgement to the PIE

module. Following this, the CPU finishes executing the current instruction
and branches to the interrupt service routine via the interrupt vector. At this

time, the respective IFR bit will be cleared and the INTM bit will be set

disabling further interrupt recognition. The interrupt vector contains a

branch instruction for the interrupt service routine. From here, the user

software controls the interrupt servicing.

5. Interrupt software. The interrupt software can include two levels of

response.

a. GISR: The General Interrupt Service Routine (GISR) should do any

context save and read the PIVR register to decide which specific

interrupt occurred. Information on PIVR values and their

corresponding interrupts can be found in Tables 6.1 and 6.2. Since the

PIVR value for each interrupt is unique, it can be used to branch to the

interrupt service routine specific to this interrupt condition.

b. SISR: The Specific Interrupt Service Routine (SISR) level will

normally reside as a sub-section of the GISR. After executing the

interrupt specific service code, the routine should clear the interrupt

flag in the EVxIFRA, EVxIFRB, or EVxIFRC that caused the serviced

interrupt. Code will return the CPU to the pre-interrupt task after

enabling the CPU’s global interrupt bit INTM (clear INTM bit).

)

Table 6.1

EVA Interrupts

EVA Interrupts and Corresponding PIVR Values

Group Interrupt Priority within Vector Description/Source INT
 group (ID)

PDPINTA 1 (highest) 0020h Power Drive Protection Interrupt A 1

A CMP1INT 2 0021h Compare Unit 1 compare interrupt 2

CMP2INT 3 0022h Compare Unit 2 compare interrupt 2

CMP3INT 4 0023h Compare Unit 3 compare interrupt 2
T1PINT 5 0027h GP Timer 1 period interrupt 2

T1CINT 6 0028h GP Timer 1 compare interrupt 2

T1UFINT 7 0029h GP Timer 1 underflow interrupt 2

T1OFINT 8 (lowest) 002Ah GP Timer 1 overflow interrupt 2
B T2PINT 1 (highest) 002Bh GP Timer 2 period interrupt 3

T2CINT 2 002Ch GP Timer 2 compare interrupt 3

T2UFINT 3 002Dh GP Timer 2 underflow interrupt 3

T2OFINT 4 002Eh GP Timer 2 overflow interrupt 3
C CAP1INT 1 (highest) 0033h Capture Unit 1 interrupt 4

CAP2INT 2 0034h Capture Unit 2 interrupt 4

CAP3INT 3 0035h Capture Unit 3 interrupt 4

Table 6.2

EVB Interrupts

EVB Interrupts and Corresponding PIVR Values

Group Interrupt Priority within Vector Description/Source INT
 group (ID)

PDPINTB 1 (highest) 0019h Power Drive Protection Interrupt B 1

A CMP4INT 2 0024h Compare Unit 4 compare interrupt 2

CMP5INT 3 0025h Compare Unit 5 compare interrupt 2

CMP6INT 4 0026h Compare Unit 6 compare interrupt 2
T3PINT 5 002Fh GP Timer 3 period interrupt 2

T3CINT 6 0030h GP Timer 3 compare interrupt 2

T3UFINT 7 0031h GP Timer 3 underflow interrupt 2

T3OFINT 8 (lowest) 0032h GP Timer 3 overflow interrupt 2

B T4PINT 1 (highest) 0039h GP Timer 4 period interrupt 3

T4CINT 2 003Ah GP Timer 4 compare interrupt 3
T4UFINT 3 003Bh GP Timer 4 underflow interrupt 3

T4OFINT 4 003Ch GP Timer 4 overflow interrupt 3

C CAP4INT 1 (highest) 0036h Capture Unit 4 interrupt 4

CAP5INT 2 0037h Capture Unit 5 interrupt 4

CAP6INT 3 0038h Capture Unit 6 interrupt 4

)

EVA Interrupt Flag Register A (EVAIFRA) — Address 742Fh

 15-11 10 9 8

Reserved T1OFINT

FLAG

T1UFINT

FLAG

T1CINT

FLAG

7

R–0

6-4

3

RW 1C–0

2

RW 1C–0

1

RW 1C–0

0

T1PINT

FLAG
Reserved CMP3INT

FLAG

CMP2INT

FLAG

CMP1INT

FLAG

PDPINTA

FLAG

RW 1C–0 R–0 RW 1C–0 RW 1C–0 RW 1C–0 RW 1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T1OFINT FLAG. GP Timer 1 overflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 9 T1UFINT FLAG. GP Timer 1 underflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 8 T1CINT FLAG. GP Timer 1 compare interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 7 T1PINT FLAG. GP Timer 1 period interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP3INT FLAG. Compare 3 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

)

Bit 2 CMP2INT FLAG. Compare 2 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 1 CMP1INT FLAG. Compare 1 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 0 PDPINTA FLAG. Power drive protection interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

EVA Interrupt Flag Register B (EVAIFRB) — Address 7430h

15-4 3 2 1 0

Reserved T2OFINT

FLAG

T2UFINT

FLAG

T2CINT

FLAG

T2PINT

FLAG

R–0 RW 1C–0 RW 1C–0 RW 1C–0 RW 1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T2OFINT FLAG. GP Timer 2 overflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 2 T2UFINT FLAG. GP Timer 2 underflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 1 T2CINT FLAG. GP Timer 2 compare interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

)

Bit 0 T2PINT FLAG. GP Timer 2 period interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

EVA Interrupt Flag Register C (EVAIFRC) — Address 7431h

15-3 2 1 0

Reserved CAP3INT

FLAG

CAP2INT

FLAG

CAP1INT

FLAG

R–0 RW 1C–0 RW 1C–0 RW 1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP3INT FLAG. Capture 3 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 1 CAP2INT FLAG. Capture 2 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 0 CAP1INT FLAG. Capture 1 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

EVA Interrupt Mask Register A (EVAIMRA) — Address 742Ch

 15-11 10 9 8

Reserved T1OFINT

ENABLE

T1UFINT

ENABLE

T1CINT

ENABLE

7

R–0

6-4

3

RW –0

2

RW –0

1

RW –0

0

T1PINT

ENABLE

Reserved CMP3INT

ENABLE

CMP2INT

ENABLE

CMP1INT

ENABLE

PDPINTA

ENABLE

RW –0 R–0 RW –0 RW –0 RW –0 RW –1

Note: R = read access, W = write access, value following dash (–) = value after

reset.

)

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T1OFINT ENABLE

0 Disable

1 Enable

Bit 9 T1UFINT ENABLE

0 Disable

1 Enable

Bit 8 T1CINT ENABLE

0 Disable

1 Enable

Bit 7 T1PINT ENABLE

0 Disable

1 Enable

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP3INT ENABLE

0 Disable

1 Enable

Bit 2 CMP2INT ENABLE

0 Disable

1 Enable

Bit 1 CMP1INT ENABLE

0 Disable

1 Enable

Bit 0 PDPINTA ENABLE. This is enabled (set to 1) following reset.

0 Disable

1 Enable

EVA Interrupt Mask Register B (EVAIMRB) — Address 742Dh

15-4 3 2 1 0

Reserved T2OFINT

ENABLE

T2UFINT

ENABLE

T2CINT

ENABLE

T2PINT

ENABLE

R–0 RW –0 RW –0 RW –0 RW –0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T2OFINT ENABLE

0 Disable

1 Enable

Bit 2 T2UFINT ENABLE

0 Disable

1 Enable

Bit 1 T2CINT ENABLE

0 Disable

1 Enable

Bit 0 T2PINT ENABLE

0 Disable

1 Enable

EVA Interrupt Mask Register C (EVAIMRC) — Address 742Eh

15-3 2 1 0

Reserved CAP3INT

ENABLE

CAP2INT

ENABLE

CAP1INT

ENABLE

R–0 RW –0 RW –0 RW –0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP3INT ENABLE

0 Disable

1 Enable

Bit 1 CAP2INT ENABLE

0 Disable

1 Enable

Bit 0 CAP1INT ENABLE

0 Disable

1 Enable

EVB Interrupt Flag Register A (EVBIFRA) — Address 752Fh

 15-11 10 9 8

Reserved T3OFINT

FLAG

T3UFINT

FLAG

T3CINT

FLAG

7

R–0

6-4

3

RW 1C–0

2

RW 1C–0

1

RW 1C–0

0

T3PINT

FLAG
Reserved CMP6INT

FLAG

CMP5INT

FLAG

CMP4INT

FLAG

PDPINTB

FLAG

RW 1C–0 R–0 RW 1C–0 RW 1C–0 RW 1C–0 RW 1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

)

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T3OFINT FLAG. GP Timer 3 overflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 9 T3UFINT FLAG. GP Timer 3 underflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 8 T3CINT FLAG. GP Timer 3 compare interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 7 T3PINT FLAG. GP Timer 3 period interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP6INT FLAG.

Read: 0

1

Write: 0

1

Compare 6 interrupt.

Flag is reset

Flag is set

No effect

Resets flag

Bit 2 CMP5INT FLAG.

Read: 0

1

Write: 0

1

Compare 5 interrupt.

Flag is reset

Flag is set

No effect

Resets flag

Bit 1 CMP4INT FLAG.

Read: 0

1

Write: 0
1

Compare 4 interrupt.

Flag is reset

Flag is set

No effect

Resets flag

Bit 0 PDPINTB FLAG. Power drive protection interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

EVB Interrupt Flag Register B (EVBIFRB) — Address 7530h

15-4 3 2 1 0

Reserved T4OFINT

FLAG

T4UFINT

FLAG

T4CINT

FLAG

T4PINT

FLAG

R–0 RW 1C–0 RW 1C–0 RW 1C–0 RW 1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T4OFINT FLAG. GP Timer 4 overflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 2 T4UFINT FLAG. GP Timer 4 underflow interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 1 T4CINT FLAG. GP Timer 4 compare interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 0 T4PINT FLAG. GP Timer 4 period interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

EVB Interrupt Flag Register C (EVBIFRC) — Address 7531h

15-3 2 1 0

Reserved CAP6INT

FLAG

CAP5INT

FLAG

CAP4INT

FLAG

R–0 RW 1C–0 RW 1C–0 RW 1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP6INT FLAG. Capture 6 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 1 CAP5INT FLAG. Capture 5 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

Bit 0 CAP4INT FLAG. Capture 4 interrupt.

Read: 0

1

Write: 0

1

Flag is reset

Flag is set

No effect

Resets flag

EVB Interrupt Mask Register A (EVBIMRA) — Address 752Ch

 15-11 10 9 8

Reserved T3OFINT

ENABLE

T3UFINT

ENABLE

T3CINT

ENABLE

7

R–0

6-4

3

RW –0

2

RW –0

1

RW –0

0

T3PINT

ENABLE
Reserved CMP6INT

ENABLE

CMP5INT

ENABLE

CMP4INT

ENABLE

PDPINTB

ENABLE

RW –0 R–0 RW –0 RW –0 RW –0 RW –1

Note: R = read access, W = write access, -n = value after reset.

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T3OFINT ENABLE

0 Disable

1 Enable

Bit 9 T3UFINT ENABLE

0 Disable

1 Enable

Bit 8 T3CINT ENABLE

0 Disable

1 Enable

Bit 7 T3PINT ENABLE

0 Disable

1 Enable

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP6INT ENABLE

0 Disable

1 Enable

Bit 2 CMP5INT ENABLE

0 Disable

1 Enable

Bit 1 CMP4INT ENABLE

0 Disable

1 Enable

Bit 0 PDPINTB ENABLE. This is enabled (set to 1) following reset.

0 Disable

1 Enable

EVB Interrupt Mask Register B (EVBIMRB) — Address 752Dh

15-4 3 2 1 0

Reserved T4OFINT

ENABLE

T4UFINT

ENABLE

T4CINT

ENABLE

T4PINT

ENABLE

R–0 RW –0 RW –0 RW –0 RW –0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T4OFINT ENABLE

0 Disable

1 Enable

Bit 2 T4UFINT ENABLE

0 Disable

1 Enable

Bit 1 T4CINT ENABLE

0 Disable

1 Enable

Bit 0 T4PINT ENABLE

0 Disable

1 Enable

EVB Interrupt Mask Register C (EVBIMRC) — Address 752Eh

15-3 2 1 0

Reserved CAP6INT

ENABLE

CAP5INT

ENABLE

CAP4INT

ENABLE

R–0 RW –0 RW –0 RW –0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP6INT ENABLE

0 Disable

1 Enable

Bit 1 CAP5INT ENABLE

0 Disable

1 Enable

Bit 0 CAP4INT ENABLE

0 Disable

1 Enable

 General Purpose (GP) Timers

A General Purpose (GP) timer is simply a 16-bit counter, which may be

configured to count up, down, or continuously up and down. There are two GP

Timers in each EV: Timer1 and Timer2 for EVA and Timer3 and Timer4 for EVB.

Symm/asym
waveform

generator

All timers use the CPU clock as a general timing reference, but each individual

timer may use a “pre-scaled” or frequency reduced time base which is specified in

each timer’s control register.

A GP Timer may also be configured to generate an interrupt or trigger another

peripheral on certain events such as a timer overflow (timer reached period value),

underflow (timer reached zero), or compare (timer value reached compare value).

Some examples of uses for the GP Timers include: setting the sampling period for

the ADC by triggering the start of conversion; or providing the switching period for

the generation of a PWM signal.

Figure 6.3 shows a block diagram of a GP Timer. There are two cases that

apply to Fig. 6.3:

1. When “x” = 2, “y” = 1 and “n” = 2

2. When “x” = 4, “y” = 3 and “n” = 4

TxPW M

Interrupt flags

ADC start of
conversion

Internal
CPU clock

TCLKINA/B

TDIRA/B

Figure 6.3 General purpose timer configuration diagram.

TxCON GPTx
control register

MUX TnCON[0]

TyPR period register

(shadowed)

TxPR

period register
(shadowed)

GPTCONA/B
GP timer
control
register

TxCNT GP
timer counter

Control
logic

Compare

logic

TxCMPR
compare
register

(shadowed)

Output
logic

memory mapped register, another peripheral, or an external pin of the LF2407. Each

GP Timer has the following outputs:

x GP Timer compare outputs TxCMP, x = 1, 2, 3, 4 (external pins on the
LF2407)

x ADC start-of-conversion signal (connected to the ADC module)

x Underflow, overflow, compare match, and period match signals to its own

compare logic and to the compare units (connected to the compare units of
the EV)

x Counting direction indication bits (in the GPTCONA/B registers mapped to
data memory)

The General Purpose Timer Control Register (GPTCONA/B), configures the

action to be taken by the timers on different timer events, and indicates the counting

directions of the GP Timers. GPTCONA/B is readable and writeable, although

writing to the status bits in this register has no effect.

2. GP Counting Operation

GP Timers have four possible modes of counting operation:

1. Stop/Hold mode

2. Continuous Up-Counting mode

3. Directional Up/Down-Countingmode

4. Continuous Up/Down-Counting mode

Each timer is configured for desired counting mode in its corresponding Timer

Control register (TxCON). Each GP Timer is enabled by setting the Timer Enable

bit each timer’s control register. When the timer is enabled, the timer counts

according to the counting mode specified by the bits in the TxCON. The counting

direction of the GP Timers are reflected by their respective bit in GPTCONA/B.

When the timer is disabled (enable bit=0), counting is disabled and the prescaler of

that timer is reset to the default value of “x/1”.

Stop/Hold mode is like the “pause” button for the timer. In stop/hold mode the

GP Timer stops and holds at its current state. The timer counter, the compare output,

and the pre-scale select all remain unchanged.

Continuous Up-Counting Mode:

The continuous up-counting mode is useful in creating asymmetric PWM

signals. In the continuous up-count mode the following events occur:

1. The GP Timer in this mode counts up in sync with the pre-scaled input

clock until the value of the timer counter matches that of the period

register.

2. On the next rising edge of the input clock after the match, the GP Timer

resets to zero and starts counting up again.

3. The period interrupt flag of the timer is set one clock cycle after the match

between the timer counter and period register. If the flag is not masked, a

peripheral interrupt request is generated. An ADC start is sent to the ADC

module at the same time the flag is set if the period interrupt of this timer
has been selected by the appropriate bits in GPTCONA/B to start the ADC.

4. One clock cycle after the GP Timer becomes 00001, the underflow interrupt

flag of the timer is set. A peripheral interrupt request is generated by the

flag if it is unmasked. An ADC start is sent to the ADC module at the same

time if the underflow interrupt flag of this timer has been selected by the
appropriate bits in the GPTCONA/B to start the ADC.

The duration of the timer period is (TxPR) + 1 cycles of the scaled clock input

except for the first period. The duration of the first period is the same if the timer

counter is zero when counting starts. The initial value of the GP Timer can be any

value from 0h to FFFFh. When the initial value is greater than the value in the

period register, the timer counts up to FFFFh, resets to zero, and continues the

operation as if the initial value was zero. The overflow interrupt flag is set one

clock cycle after the value in TxCNT matches FFFFh. A peripheral interrupt request

is generated by the flag if it is unmasked.

When the initial value in the timer counter is the same as that of the period

register, the timer sets the period interrupt flag, resets to zero, sets the underflow

interrupt flag, and then continues the operation again as if the initial value was zero.

If the initial value of the timer is between zero and the contents of the period

register, the timer counts up to the period value and continues to finish the period as

if the initial counter value was the same as that of the period register.

The counting direction indication bit in GPTCONA/B is “1” for the timer in this

mode. Either the external or internal device clock can be selected as the input clock

to the timer. The TDIRA/B input is ignored by the GP Timer in this mode since we

are in an up-count only mode. The continuous up-count mode of the GP Timer is

particularly useful for the generation of edge-triggered or asynchronous PWM

waveforms and sampling periods in many motor and motion control systems. Figure

 shows the continuous up-counting mode of the GP Timer.

Timer value

TxCON[6]

Timer clock

Figure 6.4 Operation of continuous up-counting mode (TxPR = 3 or 2).

TxPR=4-1=3 TxPR=3-1=2

3 3

2 2 2

1 1 1

0 0 0 0

Directional Up/Down-Counting Mode:

A GP Timer in directional up/down-counting mode counts either up or down

according to the pre-scaled clock and TDIRA/B inputs. The input pin TDIRA/B

determines the direction of counting when the GP Timer is in directional up/down-

counting mode. When TDIRA/B is high, upward counting is specified; when

TDIRA/B is low, downward counting is specified.

When the TDIRA/B pin is held high, the GP Timer will count up until it

reaches the value of the period register. When the timer value equals that of its

period register the timer will reset to zero and start counting up to the period again.

The initial value of the timer can be any value between 0000h to FFFFh. In the case

that the initial value of the timer counter is greater than that of the period register,

the timer would count up to FFFFh before resetting itself to zero and continuing the

counting operation. When TDIRA/B pin is held low, the GP Timer will count down

from whatever initial value the counter was at until its count value becomes zero.

When its count value becomes zero, the value of the period register is automatically

loaded into the count value register and the timer begins counting down to zero.

In the directional up/down mode, the period, underflow, and overflow interrupt

flags, interrupts, and associated actions are generated on respective events in the

same manner as they are generated in the continuous up-counting mode. The

direction of counting is indicated for the timer in this mode by the corresponding

direction indication bit in GPTCONA/B: 1 means counting up; 0 means counting

down. Either the external clock from the TCLKINA/B pin or the internal device

clock can be used as the input clock for the timer in this mode. Figure 6.5 shows the

directional up-/down-counting mode of the GP Timers.

Timer
value

65533

65535
 65534 TxPR=3

3 3 3

2 2 2 2

1 1 1 1

0 0 0 0

TDIRA/B

TxCON[6

Timer
CLK

Figure 6.5 GP timer directional up/down-counting mode: prescale factor 1 and

TxPR = 3A.

Additionally, the directional up-/down-counting mode of GP Timer 2 and 4 can

also be used with the Quadrature Encoder Pulse (QEP) circuits in the EV module.

While the QEP circuits are active, they provide both the counting clock and

direction for GP Timers 2 or 4.

)

Continuous Up/Down-Counting Mode

The continuous up/down-counting mode is useful in generating symmetric

PWM waveforms. This mode of operation is the same as the directional up-/down-

counting mode, except for the fact that the TDIRA/B pin has no effect on the

counting direction. The counting direction changes from up to down when the timer

reaches the period value. The timer direction changes from down to up when the

timer reaches zero. Continuous up/down-counting mode is particularly useful in

generating centered or symmetric PWM waveforms.

The initial value of the GP Timer counter can be any value from 0h to FFFFh.

When the initial value is greater than that of the period register (TxPR), the timer

counts up to FFFFh, resets to zero, and continues the operation as if the initial value

were zero. If the initial value of the timer counter is the same as that of the period

register, the timer counts down to zero and continues again as if the initial value

were zero. If the initial value of the timer is between zero and the contents of the

period register, the timer will count up to the period value and continue to finish the

period as if the initial counter value were the same as that of the period register.

The counting direction indication bit in the GPTCONA/B indicates “1” when

the timer counts upward and “0” when the timer is counting downward. Either an

external clock reference from the TCLKINA/B pin or the internal CPU clock can be

selected as the input clock. Since the change of count direction is automatic in this

mode, the TDIRA/B pin has no effect. The period, underflow, and overflow

interrupt flags, interrupts, and associated actions are generated on the respective

events in the same manner as they are generated in other counting modes. Figure

6.6 shows the continuous up-/down-counting mode of the GP Timer.

TxPR=3

Timer period

2x(TxPR)

3

TxPR=2

Timer

period

2

Timer value 1

0

TxCON[6]

Timer clock

2 2 2

1 1 1 1

0 0

Figure 6.6 Continuous up/down counting mode (timer period register = 3 or 2).

Note: The period of the timer in this mode is 2*(TxPR) cycles of the scaled clock

input, except for the first period.

1

0

3. Control Registers Associated with the General Purpose Timers

Individual Timer Control Registers (TxCON), where x=1,2,3,4

The operational mode of each GP Timer is controlled by the timer’s

corresponding control register (TxCON). The bits in the TxCON configure:

1. What counting mode the timer is set for

2. Whether the internal (CPU) or an external clock is to be used for the clock

reference

3. Which of the eight input clock pre-scale factors (ranging from 1/1 to

1/128) is used

4. When (on which condition) the timer compare register is reloaded

5. Whether the timer is enabled or disabled

6. Whether the timer compare operation is enabled or disabled

7. Which period register is used by timer 2 (its own, or timer 1’s period

register (EVA))

8. Which period register is used by timer 4 (its own, or timer 3’s period

register (EVB))

In EVA, GP Timer 2 can be synchronized with GP Timer 1. Additionally, in

EVB, GP Timer 4 can be synchronized with GP Timer 3 by configuring T2CON

and T4CON, respectively, in the following ways:

EVA:

1. Set the T2SWT1 bit in T2CON to start GP Timer 2 counting with the

TENABLE bit in T1CON (both timer counters start simultaneously)

2. Initialize the timer counter in GP Timers 1 and 2 with different values

before starting synchronized operation
3. Specify that GP Timer 2 uses the period register of GP Timer 1 as its

period register (ignoring its own period register) by setting SELT1PR in

EVB:
T2CON

1. Set the T4SWT3 bit in T4CON to start GP Timer 4 counting with the

TENABLE bit in T3CON (thus, both timer counters start simultaneously)

2. Initialize the timer counters in GP Timers 3 and 4 with different values

before starting synchronized operation
3. Specify that GP Timer 4 uses the period register of GP Timer 3 as its

period register (ignoring its own period register) by setting SELT3PR in

T4CON

This allows the desired synchronization between GP Timer events. Since each

GP Timer starts the counting operation from its current value in the counter register,

one GP Timer can be programmed to start with a known delay after the other GP

Timer.

)

Timer x Control Register Bit Descriptions (TxCON; x = 1, 2, 3, or 4) —

Addresses: 7404h (T1CON), 7408h (T2CON), 7504h (T3CON), and 7508h

(T4CON)

15 14 13 12 11 10 9 8

Free Soft Reserved TMODE1 TMODE0 TPS2 TPS1 TPS0

RW –0

7

RW –0

6

RW –0

5

RW –0

4

RW –0

3

RW –0

2

RW –0

1

RW –0

0

T2SW T1/

T4SW T3†

TENABLE TCLKS1 TCLKS0 TCLD1 TCLD0 TECMPR SELT1PR/

SELT3PR†

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0

† Reserved in T1CON andT3CON

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–14 Free, Soft. Emulation control bits.

00 Stop immediately on emulation suspend

01 Stop after current timer period is complete on emulation suspend

10 Operation is not affected by emulation suspend

11 Operation is not affected by emulation suspend

Bit 13 Reserved. Reads return zero, writes have no effect.

Bits 12–11 TMODE1–TMODE0. Count Mode Selection.

00 Stop/Hold

01 Continuous-Up/-Down Count Mode

10 Continuous-Up Count Mode

11 Directional-Up/-Down Count Mode

Bits 10–8 TPS2–TPS0.

Input Clock Prescaler.

000=x/1 , 001=x/2, 010=x/4, 011=x/8, 100=x/16, 101=x/32,110=x/64

111=x/128 ; x = device (CPU) clock frequency

Bit 7 T2SWT1. In the case of EVA, this bit is T2SWT1. (GP Timer 2 start with

GP Timer 1.) Start GP Timer 2 with GP Timer 1’s timer enable bit. This

bit is reserved in T1CON.

T4SWT3. In the case of EVB, this bit is T4SWT3. (GP Timer 4 start with

GP Timer 3.) Start GP Timer 4 with GP Timer 3’s timer enable bit. This

bit is reserved in T3CON.

0 Use own TENABLE bit

1 Use TENABLE bit of T1CON (in case of EVA) or T3CON (in

case of EVB) to enable and disable operation ignoring own

TENABLE bit

Bit 6 TENABLE. Timer enable.

0 Disable timer operation (the timer is put in hold and the prescaler

counter is reset)

1 Enable timer operations

Bits 5–4 TCLKS1, TCLKS0. Clock Source Select.

5 4 Source

0 0 Internal

0 1 External

1 0 Reserved

1 1 QEP Circuit† (in case of Timer 2/Timer 4) Reserved (in
 case of Timer 1/Timer 3)

† This option is valid only if SELT1PR = 0

Bits 3–2 TCLD1, TCLD0. Timer Compare Register Reload Condition.

00 When counter is 0

01 When counter value is 0 or equals period register value

10 Immediately

11 Reserved

Bit 1 TECMPR. Timer compare enable.

0 Disable timer compare operation

1 Enable timer compare operation

Bit 0 SELT1PR. In the case of EVA, this bit is SELT1PR (Period register

select).

When set to 1 in T2CON, the period register of Timer 1 is chosen

for Timer 2 also, ignoring the period register of Timer 2. This bit

is a reserved bit in T1CON. SELT3PR. In the case of EVB, this

bit is SELT3PR (Period register select). When set to 1 in T4CON,

the period register of Timer 3 is chosen for Timer 4 also, ignoring

the period register of Timer 4. This bit is a reserved bit in T3CON.

0 Use own period register

1 Use T1PR (in case of EVA) or T3PR (in case of EVB) as period

register ignoring own period register

Overall GP Timer Control Registers (GPTCONA/B)

The control register GPTCONA/B specifies the action to be taken by the timers

on different timer events. This register also has timer direction status bits that

display the current direction of the timers. Also, the polarity of the GP Timer

compare outputs is configured here. Bits in GPTCONA/B can also configure

specific timers to trigger an ADC start signal when an underflow, compare match, or

period match occurs. This feature requires that the ADC also be configured to

)

accept the start of conversion signal from the GP Timer. Having the GP Timer

trigger provides for automatic synchronization between the GP Timer event and the

ADC.

GP Timer Control Register A (GPTCONA) Bit Descriptions — Address 7400h

Note: R = read access, W = write access, -n = value after reset.

Bit 15 Reserved. Reads return zero; writes have no effect.

Bit 14 T2STAT. GP Timer 2 Status. Read only.

0 Countingdownward

1 Counting upward

Bit 13 T1STAT. GP Timer 1 Status. Read only.

0 Countingdownward

1 Counting upward

Bits 12–11 Reserved. Reads return zero; writes have no effect.

Bits 10–9 T2TOADC. Start ADC with timer 2 event.

00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC

10 Setting of period interrupt flag starts ADC

11 Setting of compare interrupt flag starts ADC

Bits 8–7 T1TOADC. Start ADC with timer 1 event.

00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC

10 Setting of period interrupt flag starts ADC

11 Setting of compare interrupt flag starts ADC

Bit 6 TCOMPOE. Compare output enable. If PDPINTx is active this bit is set

to zero.

0 Disable all GP Timer compare outputs (all compare outputs are

put in the high-impedance state)

1 Enable all GP Timer compare outputs

15 14 13

Reserved T2STAT T1STAT

12-11

Reserved

10-9

T2TOADC

8-7

T1TOADC

RW –0 R–1 R–1 RW –0 RW –0 RW –0

6 5-4 3-2 1-0

TCOMPOE Reserved T2PIN T1PIN

RW –0 RW –0 RW –0 RW –0

Bits 5–4 Reserved. Reads return zero; writes have no effect.

Bits 3–2 T2PIN. Polarity of GP Timer 2 compare output.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 1–0 T1PIN. Polarity of GP Timer 1 compare output.

00 Forced low

01 Active low

10 Active high

11 Forced high

GP Timer Control Register B (GPTCONB) Bit Descriptions — Address 7500h

15 14 13 12-11 10-9 8-7

Reserved T4STAT T3STAT Reserved T4TOADC

T3TOADC

RW–0 R–1

6

R–1

5-

RW–0

4

3-

RW–0

2

1-0

RW–0

TCOMPOE

RW–0

Reserved

RW–0

T4PIN

RW–0

T3PIN

RW–0

Note: R = read access, W = write access, -n = value after reset.

Bit 15 Reserved. Reads return zero; writes have no effect.

Bit 14 T4STAT. GP Timer 4 Status. Read only.

0 Countingdownward

1 Counting upward

Bit 13 T3STAT. GP Timer 3 Status. Read only.

0 Countingdownward

1 Counting upward

Bits 12–11 Reserved. Reads return zero; writes have no effect.

Bits 10–9 T4TOADC. Start ADC with timer 4 event.

00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC

10 Setting of period interrupt flag starts ADC

11 Setting of compare interrupt flag starts ADC

Bits 8–7 T3TOADC. Start ADC with timer 3 event.

00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC

)

10 Setting of period interrupt flag starts ADC

11 Setting of compare interrupt flag starts ADC

Bit 6 TCOMPOE. Compare output enable. If PDPINTx is active this bit is set

to zero.

0 Disable all GP Timer compare outputs (all compare outputs are

put in the high-impedance state)

1 Enable all GP Timer compare outputs

Bits 5–4 Reserved. Reads return zero; writes have no effect.

Bits 3–2 T4PIN. Polarity of GP Timer 4 compare output.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 1–0 T3PIN. Polarity of GP Timer 3 compare output.

00 Forced low

01 Active low

10 Active high

11 Forced high

GP Timer Compare Registers (TxCMPR), x=1,2,3,4 – User Specified Value

Addresses 7402h (T1CMPR), 7406h (T2CMPR), 7502h (T3CMPR), 7506h

(T4CMPR)

The compare register associated with each GP Timer stores the value that will

be constantly compared with the current value of the GP Timer. When a compare

match occurs, the following events also occur:

1. A transition occurs on the associated compare output according to the bit

pattern in GPTCONA/B

2. The corresponding interrupt flag is set

3. A peripheral interrupt request is generated if the interrupt is unmasked

4. The compare operation of a GP Timer can be enabled or disabled by the

appropriate bit in TxCON
5. The compare operation and outputs can be enabled in any of the timer

counting modes, including the QEP circuit

GP Timer Period Registers (TxPR) – User Specified Value

Addresses 7403h (T1PR), 7407h (T2PR), 7503h (T3PR), 7507h (T4PR)

The period register determines the rate at which the timer resets itself or

changes direction (the period of the timer). This register in combination with the

input clock frequency (and clock pre-scale factor) determines the frequency of a

Output

logic

ACTR

full compare
action control register

(shadowed)

the same compare match. The PWM outputs associated with the compare units

allow for the generation of six PWM outputs per EV.

As shown in Fig. 6.10 the Compare Units Include:

x Three 16-bit compare registers (CMPR1, CMPR2, and CMPR3 for EVA; and
CMPR4, CMPR5, and CMPR6 for EVB), all double-buffered

x One 16-bit compare control register (COMCONA for EVA, and COM-

CONB for EVB)

x One 16-bit action control register (ACTRA for EVA, and ACTRB for EVB),
with an associated buffer register

x Six PWM (3-state; Low, High, High Z) output (compare output) pins (PWMy,
y = 1, 2, 3, 4, 5, 6 for EVA and PWMz, z = 7, 8, 9, 10, 11, 12 for EVB)

PWMy,y+1

Figure 6.10 Compare unit block diagram.

For EVA: x = 1, 2, 3; y = 1, 3, 5; z = 1

For EVB: x = 4, 5, 6; y = 7, 9, 11; z = 3

Inputs and Outputs of the Compare Units

The inputs to a compare unit include:

x Control signals from compare control registers

x GP Timer 1/3 (T1CNT/T3CNT) count value, underflow, and period match
signals

x System RESET

x The time base (counter value) for the compare units in EVA (CMPR1,2 ,3)
is GP Timer 1, and for EVB (CMPR4, 5, 6) is GP Timer 3.

TzCNT
GPTz
counter

Compare
logic

PWM circuits

CMPRx
full compare
register (shad

owed)

Sym/asym

waveform

generator

SVPW M

state

machine

MUX

The solution to this problem is to make sure that only one transistor in each leg

is on at a time. In theory, this is accomplished by feeding complementary PWM

gating signals to each of the two transistors in a leg. So when one transistor is on,

the other is off. In reality, all transistors turn on faster than they turn off. Therefore,

it is necessary to add a time delay (dead-band) between the PWM signals to allow

for the first transistor to fully turn off before the second one is turned on.

Figure 6.11 Basic three-phase inverter circuit.

6.4.3 Dead Band Generation

Unlike the GP Timer Compare PWM generation, the compare unit PWM

outputs allow for a programmable dead band. Each EV on the LF2407 has its own

programmable dead-band unit. The dead-band generators generate the dead-band

delay between the toggling of the independent and dependent PWM outputs. Dead

band solves the problem of inverter leg shoot through (short circuits). Figure 6.12

shows the interconnection between the dead band units and the compare units.

COMCONA[11-13]

COMCONA[9]

PHx

x=1,2,3

DTPHx

DTPHx_

PW M1

PW M6

COMCONA[12]

ACTRA[12-15]

Figure 6.12 Block diagram of PWM outputs showing dead-band units.

Udc

DTPHa Q1 DTPHb Q3 DTPHc Q5

Va Vb Vc

DTPHa_
Q2

DTPHb_
Q4

DTPHc_
Q6

GND

Dead

band

units

Compare

matches

GPT1 flags

Output

logic

ACTRA

full compare

action control

register

DBTCONA

dead–band

timer control

register

Compare Control Register A (COMCONA) — Address 7411h

15 14 13 12 11 10 9 8

C EN ABL E C L D 1 C L D 0 SVEN ABL E AC T R L D 1 AC T R L D 0 F C O M PO E PDPINTA
ST AT U S

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 R–

PDPINTA
PIN

7 - 0

Reserved

R– 0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CENABLE. Compare enable.

0 Disables compare operation. All shadowed registers (CMPRx,

ACTRA) become transparent

1 Enables compare operation

Bits14–13

00

01

10

11

CLD1, CLD0. Compare register CMPRx reload condition.

When T1CNT = 0 (that is, on underflow)

When T1CNT = 0 or T1CNT = T1PR (that is, on underflow or

period match)

Immediately

Reserved; result is unpredictable

Bit 12 SVENABLE. Space vector PWM mode enable.

0 Disables space vector PWM mode

1 Enables space vector PWM mode

Bits 11–10

00

01

10

11

ACTRLD1, ACTRLD0. Action control register reload condition.

When T1CNT = 0 (on underflow)

When T1CNT = 0 or T1CNT = T1PR (on underflow or period

match)

Immediately

Reserved

Bit 9 FCOMPOE. Compare output enable. Active PDPINTA clears this bit to

zero.

0 PWM output pins are in high-impedance state; that is, they are

disabled

1 PWM output pins are not in high-impedance state; that is, they are

enabled

Bit 8 PDPINTA STATUS. This bit reflects the current status of the PDPINTA

pin. (This bit is applicable to 240xA devices only — it is reserved on 240x

devices and returns a zero when read.)

Bits 7–0 Reserved. Read returns zero; writes have no effect.

Compare Control Register B (COMCONB) — Address 7511h

15 14 13 12 11 10 9 8

CENABLE CLD1 CLD0 SVENABLE ACTRLD1 ACTRLD0 FCOMPOE

PDPINTB
STATUS

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 R–

PDPINTB
PIN

7-0

Reserved

R–0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CENABLE. Compare enable.

0 Disable compare operation. All shadowed registers (CMPRx,

ACTRB) become transparent

1 Enable compare operation

Bits14–13

00

01

10

11

CLD1, CLD0. Compare register CMPRx reload condition.

When T3CNT = 0 (that is, on underflow)

When T3CNT = 0 or T3CNT = T3PR (that is, on underflow or

period match)

Immediately

Reserved; result is unpredictable

Bit 12 SVENABLE. Space vector PWM mode enable.

0 Disables space vector PWM mode

1 Enables space vector PWM mode

Bits 11–10

00

01

10

11

ACTRLD1, ACTRLD0. Action control register reload condition.

When T3CNT = 0 (on underflow)

When T3CNT = 0 or T3CNT = T3PR (on underflow or period

match)

Immediately

Reserved

Bit 9 FCOMPOE. Compare output enable. Active PDPINTB clears this bit to

zero.

0 PWM output pins are in high-impedance state; that is, they are

disabled

1 PWM output pins are not in high-impedance state; that is, they are

enabled

Bits 7–6 CMP4ACT1–0. Action on compare output pin 4, CMP4.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 5–4 CMP3ACT1–0. Action on compare output pin 3, CMP3.

00 Forced low

01 Active low

10 Active high

Bits 3–2 CMP2ACT1–0. Action on compare output pin 2, CMP2.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 1–0 CMP1ACT1–0. Action on compare output pin 1, CMP1.

00 Forced low

01 Active low

10 Active high

11 Forced high

Compare Action Control Register B (ACTRB) — Address 7513h

15 14 13 12 11 10 9 8

SVRDIR D2 D1 D0 CMP12ACT1 CMP12ACT0 CMP11ACT1 CMP11ACT0

RW –0

7

RW –0

6

RW –0

5

RW –0

4

RW –0

3

RW –0

2

RW –0

1

RW –0

0

CMP10ACT1 CMP10ACT0 CMP9ACT1 CMP9ACT0 CMP8ACT1 CMP8ACT0 CMP7ACT1 CMP7ACT0

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 SVRDIR. Space vector PWM rotation direction. Used only in space

vector PWM output generation.
0 Positive (CCW)

1 Negative (CW)

Bits 14–12 D2–D0. Basic space vector bits. Used only in space vector PWM

output generation.

Bits 11–10

00

01

CMP12ACT1–0. Action on compare output pin 12, CMP12.

Forced low

Active low

10 Active high

11 Forced high

Bits 9–8 CMP11ACT1–0. Action on compare output pin 11, CMP11.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 7–6 CMP10ACT1–0. Action on compare output pin 10, CMP10.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 5–4 CMP9ACT1–0. Action on compare output pin 9, CMP9.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 3–2 CMP8ACT1–0. Action on compare output pin 8, CMP8.

00 Forced low

01 Active low

10 Active high

11 Forced high

Bits 1–0 CMP7ACT1–0. Action on compare output pin 7, CMP7.

00 Forced low

01 Active low

10 Active high

11 Forced high

Dead-Band Timer Control Register A (DBTCONA) — Address 7415h

 15-12 11 10 9 8

Reserved DBT3 DBT2 DBT1 DBT0

 R–0 RW –0

3

RW –0

2

RW –0 RW –0

7 6 5 4 1-0

EDBT3 EDBT2 EDBT1 DBTPS2 DBTPS1 DBTPS0 Reserved

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 R–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–12 Reserved. Reads return zero; writes have no effect.

Bits 11–8 DBT3 (MSB)–DBT0 (LSB). Dead-band timer period. These bits define

the period value of the three 4-bit dead-band timers.

Bit 7 EDBT3. Dead-band timer 3 enable (for pins PWM5 and PWM6 of

Compare Unit 3).

0 Disable

1 Enable

Bit 6 EDBT2. Dead-band timer 2 enable (for pins PWM3 and PWM4 of

Compare Unit 2).

0 Disable

1 Enable

Bit 5 EDBT1. Dead-band timer 1 enable (for pins PWM1 and PWM2 of

Compare Unit 1).

0 Disable

1 Enable

Bits 4–2 DBTPS2 to DBTPS0. Dead-band timer prescaler.

000 x/1

001 x/2

010 x/4

011 x/8

100 x/16

101 x/32

110 x/32

111 x/32

x = Device (CPU) clock frequency

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Dead-Band Timer Control Register B (DBTCONB) — Address 7515h

 15-12 11 10 9 8

Reserved DBT3 DBT2 DBT1 DBT0

 R–0 RW –0

3

RW –0

2

RW –0 RW –0

7 6 5 4 1-0

EDBT3 EDBT2 EDBT1 DBTPS2 DBTPS1 DBTPS0 Reserved

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 R–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–12 Reserved. Reads return zero; writes have no effect.

Bits 11–8 DBT3 (MSB)–DBT0 (LSB). Dead-band timer period. These bits

define the period value of the three 4-bit dead-band timers.

Bit 7 EDBT3. Dead-band timer 3 enable (for pins PWM11 and PWM12 of

Compare 6).

0 Disable

1 Enable

Bit 6 EDBT2. Dead-band timer 2 enable (for pins PWM9 and PWM10 of

Compare 5).

0 Disable

1 Enable

Bit 5 EDBT1. Dead-band timer 1 enable (for pins PWM7 and PWM8 of

Compare 4).

0 Disable

1 Enable

Bits 4–2 DBTPS2 to DBTPS0. Dead-band timer prescaler.

000 x/1

001 x/2

010 x/4

011 x/8

100 x/16

101 x/32

110 x/32

111 x/32

x = Device (CPU) clock frequency

Bits 1–0 Reserved. Reads return zero; writes have no effect.

 Capture Units and Quadrature Encoded Pulse (QEP) Circuitry

The Capture Units on the LF2407 allow an event (rising/falling edge) on the

capture pin to be time stamped by a selected GP Timer. There are three Capture

Units in each EV, each with its own capture input pin (CAPx). Capture Units 1, 2,

and 3 are associated with EVA while Capture Units 4, 5, and 6 are associated with

EVB. Each EV module contains the following (shown in Figs. 6.14 and 6.15):

x One 16 bit capture control register per EV (CAPCOMA for EVA,

CAPCOMB for EVB) is used for configuring the Capture Unit
functionality.

x Three 16-bit, 2-level-deep First-In-First-Out (FIFO) stacks per EV

(CAPxFIFO); one FIFO stack for each Capture Unit; the “captured” timer
count value is stored here.

x One 16-bit capture status register (CAPFIFOA for EVA, CAPFIFOB for

EVB); provides information on the number of timer captures in each
capture FIFO.

16

16

EN

Edge
detect

RS

3
CAP1,2,3

Capture unit 3

cap. event

2–level
FIFO RS

stacks

6Edge
select

CAPCONA[2-7]

C

ADC start

8 CAPCONA[15]

Cap FIFO
status

clear

6

MUX

T1CNT GP
timer 1
counter

T2CNT GP
timer 2
counter

x Inputs of either GP Timer 1 or 2 (for EVA) and GP Timer 3 or 4 (for EVB) as
the time base.

x One capture pin per Capture Unit with user-specified transition detection

(rising edge, falling edge, or both edges). CAP1 through CAP3 for EVA,
and CAP4 through CAP6 for EVB.

x Six maskable interrupt flags, one for each Capture Unit.

2

CAPCONA[9,10]

CAPCONA[12-14]

APCONA[8]

CAPFIFOA[13-15]

Figure 6.15 EVA capture unit diagram. (Courtesy of Texas Instruments)

MUX

T1CNT GP
timer 3
counter

T2CNT GP
timer 4
counter

16

16

2–level
FIFO RS

stacks

EN

Edge
detect

RS

2

CAPCONB[9,10]

CAPCONB[12-14]

3

CAP4,5,6

Capture unit 6

cap. event

6Edge
select

CAPCONB[2-7]

ADC start

CAPCONB[8]

8 CAPCONB[15]

6

CAPFIFOB[13-15]

Figure 6.16 EVB Capture unit diagram. (Courtesy of Texas Instruments)

The Capture Units are useful in applications where the time of an external

trigger needs to be “captured”. For example, if we want to measure the time

between the rising edges of two pulses, we would configure the appropriate

registers for capture operation on a specific capture pin. At each rising edge, the

Capture Unit would then store the corresponding timer values. The user program

could then subtract the second capture value from the first value and determine the

time between the pulses.

The Capture Units are accompanied by the Quadrature Encoded Pulse (QEP)

circuitry which uses the GP Timers to “decode” a QEP signal. When the QEP mode

is selected, pins CAP1 and CAP2 (CAP4 and CAP5 in case of EVB) are used as

QEP inputs. More on the QEP circuitry will be discussed shortly.

Cap FIFO

status

clear

EVB:

1. Load GP Timer 4’s counter, period, and compare registers with desired

values; for simple QEP decoding, this is not required.

2. Configure T4CON to set GP Timer 4 in directional-up/down mode with the

QEP circuits as clock source, and enable the selected timer.

3. Configure CAPCONB to enable the QEP circuit.

Interrupt flags normally associated with the timer operation are still operational

with the QEP. Period, underflow, overflow, and compare interrupt flags for a GP

Timer with a QEP circuit clock are generated on respective matches. If the

respective interrupt flags are unmasked, timer interrupt requests will be generated.

6.5.4 Capture Unit / QEP ControlRegisters

Upon a RESET, all capture registers are cleared to zero. There are four 16-bit

registers that control the functionality of the Capture Units. These registers are

CAPCONA, CAPCONB, CAPFIFOA, and CAPFIFOB. In addition to these four

registers the individual timer control registers (TxCON, x = 1, 2, 3, or 4) control the

selected timer which acts as the time base for the Capture Unit. CAPCONA and

CAPCONB also control the QEP functionality.

Capture Control Register A (CAPCONA) — Address 7420h

15 14-13 12 11 10 9 8

CAPRES CAPQEPN CAP3EN Reserved CAP3TSEL CAP12TSEL CAP3TOAD

C

RW –0

7-

RW –0 RW –0 R–0

3-2

RW –0 RW –0 RW –0

6 5-4 1-0

CAP1EDGE CAP2EDGE CAP3EDGE Reserved

RW –0 RW –0 RW –0 R– 0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CAPRES. Capture reset. Always reads zero.

Note: This bit is not implemented as a register bit. Writing a 0 simply

clears the capture registers.

0 Clear all registers of Capture Units and QEP circuit to 0

1 No action

Bits 14–13 CAPQEPN. Capture Units 1 and 2 control.

00 Disables Capture Units 1 and 2; FIFO stacks retain their contents

01 Enables Capture Units 1 and 2

10 Reserved

11 Reserved

Bit 12 CAP3EN. Capture Unit 3 control.

0 Disables Capture Unit 3; FIFO stack of Capture Unit 3 retains its

contents

1 Enable Capture Unit 3

Bit 11 Reserved. Reads return zero; writes have no effect.

Bit 10 CAP3TSEL. GP Timer selection for Capture Unit 3.

0 Selects GP Timer 2

1 Selects GP Timer 1

Bit 9 CAP12TSEL. GP Timer selection for Capture Units 1 and 2.

0 Selects GP Timer 2

1 Selects GP Timer 1

Bit 8 CAP3TOADC. Capture Unit 3 event starts ADC.

0 No action

1 Starts ADC when the CAP3INT flag is set

Bits 7–6 CAP1EDGE. Edge detection control for Capture Unit 1.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 5–4 CAP2EDGE. Edge detection control for Capture Unit 2.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 3–2 CAP3EDGE. Edge detection control for Capture Unit 3.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Capture Control Register B (CAPCONB) — Address 7520h

15 14-13 12 11 10 9 8

CAPRES CAPQEPN CAP6EN Reserved CAP6TSEL CAP45TSEL CAP6TOADC

RW –0

7-

RW –0 RW –0 R–0 RW –0 RW –0 RW –0

6 5-4 3-2 1-0

CAP4EDGE CAP5EDGE CAP6EDGE Reserved

RW –0 RW –0 RW –0 RW –0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CAPRES. Capture reset. Always reads zero.

Note: This bit is not implemented as a register bit. Writing a 0 simply

clears the capture registers.

0 Clears all registers of Capture Units and QEP circuit to 0

1 No action

Bits 14–13

00

01

10

11

CAPQEPN. Capture Units 4 and 5 and QEP circuit control.

Disables Capture Units 4 and 5 and QEP circuit. FIFO stacks

retain their contents

Enables Capture Units 4 and 5, disable QEP circuit

Reserved

Enables QEP circuit. Disable Capture Units 4 and 5; bits 4–7 and

9 are ignored

Bit 12 CAP6EN. Capture Unit 6 control.

0 Disables Capture Unit 6; FIFO stack of Capture Unit 6 retains its

contents

1 Enables Capture Unit 6

Bit 11 Reserved. Reads return zero; writes have no effect.

Bit 10 CAP6TSEL. GP Timer selection for Capture Unit 6.

0 Selects GP Timer 4

1 Selects GP Timer 3

Bit 9 CAP45TSEL. GP Timer selection for Capture Units 4 and 5.

0 Selects GP Timer 4

1 Selects GP Timer 3

Bit 8 CAP6TOADC. Capture Unit 6 event starts ADC.

0 No action

1 Starts ADC when the CAP6INT flag is set

Bits 7–6 CAP4EDGE. Edge detection control for Capture Unit 4.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 5–4 CAP5EDGE. Edge detection control for Capture Unit 5.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 3–2 CAP6EDGE. Edge detection control for Capture Unit 6.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Capture Status Registers

The ability to write to the CAPFIFOx registers can be used as a programming

advantage. For example, if a “01” is written to the CAPnFIFO bits by user code, the

EV module is led to believe that there is already an entry in the FIFO. Subsequently,

every time the FIFO gets a new value, a capture interrupt will be generated. If a

write occurs to the CAPnFIFOA status bits at the same time as they are being

updated by hardware (because of a capture event), the user written data takes

precedence.

Capture FIFO Status Register A (CAPFIFOA) — Address 7422h

15 - 14 13 -1 2 11 - 10 9 - 8

R eserved C AP 3 FIFO C AP 2 FIFO C AP 1 FIFO

R – 0 RW – 0 RW – 0 RW – 0

 7 - 0

R e s erved

R– 0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–14 Reserved. Reads return zero; writes have no effect.

Bits 13–12 CAP3FIFO. CAP3FIFO Status

1. Empty

2. Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 11–10 CAP2FIFO. CAP2FIFO Status

1. Empty

2. Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 9–8 CAP1FIFO. CAP1FIFO Status

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 7–0 Reserved. Reads return zero; writes have no effect.

Capture FIFO Status Register B (CAPFIFOB) — Address 7522h

15 - 14 13 -1 2 11 - 10 9 - 8

R eserved C AP 6 FIFO C AP 5 FIFO C AP 4 FIFO

R – 0 RW – 0 RW – 0 RW – 0

 7 - 0

R e s erved

R– 0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–14 Reserved. Reads return zero; writes have no effect.

Bits 13–12 CAP6FIFO. CAP6FIFO Status

1. Empty

2. Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 11–10 CAP5FIFO. CAP5FIFO Status

1. Empty

2. Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 9–8 CAP4FIFO. CAP4FIFO Status
 00 Empty
 01 Has one entry
 10 Has two entries
 11 Had two entries and captured another one; first entry has been lost

Bits 7–0 Reserved. Reads return zero; writes have no effect.

 General Event Manager Information

Table 6.5 Event Manager A (EVA) Pins

Pin Name Description

CAP1/QEP1 Capture Unit 1 input, QEP circuit input 1

CAP2/QEP2 Capture Unit 2 input, QEP circuit input 2

CAP3 Capture Unit 3 input

PWM1 Compare Unit 1 output 1

PWM2 Compare Unit 1 output 2

PWM3 Compare Unit 2 output 1

PWM4 Compare Unit 2 output 2

PWM5 Compare Unit 3 output 1

PWM6 Compare Unit 3 output 2

T1CMP/T1PWM Timer 1 compare/PWM output

T2CMP/T2PWM Timer 2 compare/PWM output

TCLKINA External clock-in for timers in EVA (when

configured to operate from external clock)
TDIRA External timer direction input in EVA (when timer is

in directional up/down mode)

Table 6.6 Event Manager B (EVB) Pins

Pin Name Description

CAP4/QEP3 Capture Unit 4 input, QEP circuit input 3

CAP5/QEP4 Capture Unit 5 input, QEP circuit input 4

CAP6 Capture Unit 6 input

PWM7 Compare Unit 4 output 1

PWM8 Compare Unit 4 output 2

PWM9 Compare Unit 5 output 1

PWM10 Compare Unit 5 output 2

PWM11 Compare Unit 6 output 1

PWM12 Compare Unit 6 output 2

T3CMP/T3PWM Timer 3 compare/PWM output

T4CMP/T4PWM Timer 4 compare/PWM output

TCLKINB External clock-in for timers in EVB (when
configured to operate from external clock)

TDIRB External timer direction input in EVB (when timer is

in directional up/down mode)

NOTE: Most of the EV pins are mapped with a second function. In order to use the

EV, you must configure the appropriate pins to their EV function. For more

information on how pin sharing works and how to configure pins refer to Chapter 4.

Event Manager (EV) Register Addresses

Table 6.7 Addresses of EVA Timer Registers

Address Register Name

7400h

7401h

7402h

GPTCONA

T1CNT

T1CMPR

GP Timer control register A

Timer 1 counter register

Timer 1 compare register

Timer 1

Table 6.8 Addresses of EVB Timer Registers

Address Register Name

7500h GPTCONB GP Timer control register B

7501h T3CNT Timer 3 counter register

7502h T3CMPR Timer 3 compare register Timer 3

7503h T3PR Timer 3 period register

7504h T3CON Timer 3 control register

7505h T4CNT Timer 4 counter register

7506h T4CMPR Timer 4 compare register Timer 4

7507h T4PR Timer 4 period register

7508h T4CON Timer 4 control register

Table 6.9 Addresses of EVA Compare Control Registers

Address Register Name

7411h COMCONA Compare control register

7413h ACTRA Compare action control register

7415h DBTCONA Dead-band timer control register

7417h CMPR1 Compare register 1

7418h CMPR2 Compare register 2

7419h CMPR3 Compare register 3

7403h T1PR

7404h T1CON

7405h T2CNT

7406h T2CMPR

7407h T2PR

7408h T2CON

Timer 1 period register

Timer 1 control register

Timer 2 counter register

Timer 2 compare register Timer 2

Timer 2 period register

Timer 2 control register

Table 6.10 Addresses of EVB Compare Control Registers

Address Register Name
7511h COMCONB Compare control register

7513h ACTRB Compare action control register

7515h DBTCONB Dead-band timer control register

7517h CMPR4 Compare register 4
7518h CMPR5 Compare register 5

7519h CMPR6 Compare register 6

Address

Table 6.11 Addresses of EVA Capture Registers

Register Name

7420h

7422h

7423h

7424h

7425h

7427h

CAPCONA

CAPFIFOA

CAP1FIFO

CAP2FIFO

CAP3FIFO
CAP1FBOT

Capture control register

Capture FIFO status register

Two-level-deep capture FIFO stack 1
Two-level-deep capture FIFO stack 2

Two-level-deep capture FIFO stack 3

Bottom registers of FIFO stacks;

allows most recent CAPTURE value

to be read
7428h CAP2FBOT

7429h CAP3FBOT

Table 6.12 Addresses of EVB Capture Registers

Address Register Name

7520h CAPCONB Capture control register

7522h CAPFIFOB Capture FIFO status register

7523h CAP4FIFO Two-level-deep capture FIFO stack 4

7524h CAP5FIFO Two-level-deep capture FIFO stack 5

7525h CAP6FIFO Two-level-deep capture FIFO stack 6

7527h

7528h

CAP4FBOT

CAP5FBOT

Bottom registers of FIFO stacks,

allows most recent CAPTURE value

to be read

7529h CAP6FBOT

Table 6.13 Addresses of EVA Interrupt Registers

Address Register Name
742Ch EVAIMRA Interrupt mask register A

742Dh EVAIMRB Interrupt mask register B

742Eh EVAIMRC Interrupt mask register C

742Fh EVAIFRA Interrupt flag register A

7430h EVAIFRB Interrupt flag register B
7431h EVAIFRC Interrupt flag register C

Table 6.14 Addresses of EVB Interrupt Registers

Address Register Name

752Ch EVBIMRA Interrupt mask register A

752Dh EVBIMRB Interrupt mask register B

752Eh EVBIMRC Interrupt mask register C

752Fh EVBIFRA Interrupt flag register A

7530h EVBIFRB Interrupt flag register B

7531h EVBIFRC Interrupt flag register C

7. Exercise: PWM Signal Generation

As discussed in the previous sections, there are two ways to generate a PWM

signal on the LF2407: through the GP Timer compare operation, or the Compare

Units. This exercise will allow you to use your knowledge of the LF2407 DSP to

write code that will generate PWM signals on both the GP Timer and Compare Unit

outputs.

Procedure:

1. Write a program that outputs a fixed duty cycle “PWM” on a GP Timer 2

compare pin. Create the program so that the period of the PWM signal is 1

kHz and the duty cycle (on time/period) is fixed at 75%. The information
on the GP Timer compare operation in the previous section will be very

useful in writing this code.

2. View the output (1 kHz fixed duty cycle signal) on the

T1PWM/T1CMP/IOPB4 pin. The Spectrum Digital LF2407 EVM

schematic will be helpful in determining the location of this pin connection

on the EVM.
3. If available, connect this fixed duty cycle signal to a dc voltage converter

and use it to control the speed of a dc motor by varying the duty cycle of

the waveform.

4. Modify the above program to now create a sinusoidally modulated PWM

signal on the GP Timer Compare pin. To do this, a sinusoidal look-up

EXAMPLE TO GENERATE
PWM

PROGRAM FOR GENERATION OF SINGLE PULSE PWM USING TIMER 1

LDP #0E1
SPLK #1000H,MCRA
LDP # 0E8
SPLK #6042H,GPTCONA
SPLK #0000H,T1CNT
SPLK #800H,T1CMPR
SPLK #4000H,T1PR
SPLK #9042H,T1CON
H:B:H

EXPLANATION OF FIRST LINE

LDP #0E1 –LOAD DATA PAGE WITH 0E1 VALUE.
THIS IS DIRECT ADDRESSING
0,1110,0001 0E1 (DATA PAGE IS LOADED WITH THIS 9 BITS)

EXPLANATION OF SECOND LINE

 SPLK #1000H,MCRA store long constant 1000 in
MUX CONTROL REGISTER A.

 VALUE IS 1000 BUT WE DON’T KNOW THE ADDRESS OF MCRA REGISTER

TO LOAD 1000 ON MCRA. SO TO FRAME THE ADDRESS OF MCRA USE THE

PREVIOUS SLIDE.

 9+7 =16 BIT ADDRESS

 IN PREVIOUS SLIDE 16 BIT ADDRESS IS SPLITED AS 9

BITS(0E10,1110,0001) FROM DATA PAGE POINTER.AND REMAINING 7

FROM INSTRUCTION REGISTER 7 BIT LSB.

 AFTER READING THE SECOND LINE OF THE PROGRAM, THE INSTRUCTION

REGISTER LAST 7 LSB BITS AUTOMATICALLY LOADED BY THE MACHINE WITH

0010000.

 THEREFORE JOIN THIS ABOVE 9 BITS AND 7 BITS

 0111000010010000

 SPLIT THE ABOVE NUMBER WITH 4 NUMBERS EQUALLY

0111,0000,1001,00007090 REFER NEXT SLIDE FOR MCR A REGISTER

ADDRESS. I HOPE U UNDERSTOOD THE FIRST LINE OF THE PROGRAM.

LDP,#0E1

USEFUL REGISTERS WITH ADDRESS FOR PULSE
GENERATION PROGRAM

USEFUL REGISTERS WITH ADDRESS FOR
PULSE GENERATION PROGRAM

AFTER FRAMING THE 16 BIT ADDRESS 7090 OF MCRA
REGISTER

 THE VALUE 1000 IS LOADED IN THE MCRA REGISTER.

 WE WILL SEE WHAT HAPPENS IF WE LOAD 1000 IN MCRA

REGISTER.

AFTER LOADING 1000 IN MCRA REGISTER

 FROM THE PREVIOUS SLIDE WHAT WE UNDERSTOOD IS THAT

EXCEPT BIT 12 REMAINING BITS ARE SET AS “0”.

THAT MEANS IAM GOING TO USE TIMER 1 FOR PWM

GENEARTION AS WELL AS COMPARISION.

REMAINING AND ALL “0” MEANS SECONDARY FUCTION OF THE

PIN IS SELECTED SO THOSE PINS ARE GOING WORK AS GENERAL

I/O PORT PINS.

EXPLANATION OF THIRD LINE

LDP #0E8 –LOAD DATA PAGE WITH 0E8 VALUE.
THIS IS DIRECT ADDRESSING
0,1110,1000 0E8 (DATA PAGE IS LOADED WITH THIS 9 BITS)

EXPLANATION OF FOURTH LINE

 SPLK #6042H,GPTCONA store long constant 6042
in GENERAL PURPOSE TIMER CONTROL REGISTER A.

 VALUE IS 6042 BUT WE DON’T KNOW THE ADDRESS OF GPTCONA

REGISTER TO LOAD 6042 ON GPTCONA. SO TO FRAME THE ADDRESS OF

GPTCONA USE THE PREVIOUS SLIDE.

 9+7 =16 BIT ADDRESS

 IN PREVIOUS SLIDE 16 BIT ADDRESS IS SPLITED AS 9

BITS(0E80,1110,1000) FROM DATA PAGE POINTER.AND REMAINING 7

FROM INSTRUCTION REGISTER 7 BIT LSB.

 AFTER READING THEFOURTH LINE OF THE PROGRAM, THE INSTRUCTION

REGISTER LAST 7 LSB BITS AUTOMATICALLY LOADED BY THE MACHINE WITH

0000000.

 THEREFORE JOIN THIS ABOVE 9 BITS AND 7 BITS

 0111010000000000

 SPLIT THE ABOVE NUMBER WITH 4 NUMBERS EQUALLY

0111,0100,0000,0000

7400 REFER USEFUL REGISTERS WITH ADDRESS FOR PULSE

GENERATION PROGRAM SLIDE. I HOPE U UNDERSTOOD THE THIRD LINE OF

THE PROGRAM. LDP,#0E8

AFTER FRAMING THE 16 BIT ADDRESS 7400 OF GPTCONA
REGISTER

 THE VALUE 6042 IS LOADED IN THE GPTCONA REGISTER.

 WE WILL SEE WHAT HAPPENS IF WE LOAD 6042 IN GPTCONA

REGISTER.

AFTER LOADING 6042 IN GPTCON A

 WE KNOW THAT THIS IS TO GENERATE SINGLE PWM USING TIMER 1 SO BIT

13 IS “1”

 AND IF IN CASE TIMER 1 FAILURE I MAY USE TIMER 2 SO BIT 14 ALSO MADE

AS “1”.MOREOVER THAT “1” MEANS UPCOUNTING SELCTION.

 WHY UPCOUNTING KINDLY CHECK THE “EXAMPLE TO GENERATE PWM

 SLIDE”.

 I DON’T REQUIRED ADC FOR PWM GENERATION SO BIT 7 TO 10 IS “0”.

 BIT 6 IMPORTANT TO MAKE AS “1”. BECAUSE PWM IS GENERATED BY

COMAPRING TWO SIGNALS (IN THIS PROGRAM COMPARED AT 800). KINDLY

CHECK THE “EXAMPLE TO GENERATE PWM SLIDE”.

 I AM USING TIMER 1 AFTER COMPARISON I NEED PWM WITH ACTIVE HIGH

SO BIT 1 AND 0 MADE AS “1” “0”. CHECK THE “EXAMPLE TO GENERATE PWM

 SLIDE”.

 I HOPE U UNDERSTOOD THE FOURTH LINE OF THE PROGRAM. SPLK

#6042H,GPTCONA

LINE 5,6,7 EXPLANATION
SPLK #0000H,T1CNT
SPLK #800H,T1CMPR
SPLK #4000H,T1PR

 FIRST SIGNAL STARTS AT 0000 THAT’S WHY 0000H,T1CNT
TIMER 1 COUNT REGISTER IS LOADED WITH VALUE 0000.

 SECOND SIGNAL AND FIRCT SIGNAL ARE COMPARED AT
VALUE 800 . THAT’S WHY 800H,T1CMPR
TIMER 1 COMPARE REGISTER IS LOADED WITH VALUE 0000.

 PERIOD (OR) WIDTH OF THE FIRST SIGNAL IS DECIDED BY
THE VALUE LOADED IN THE TIMER 1 PERIOD REGISTER.
CHECK THE “EXAMPLE TO GENERATE PWM SLIDE”.

 ADDRESS FOR VARIOUS REGISTERS GIVEN BELOW.

 TRY BY YOURSELF TO GET THESE 16 BIT ADDRESS BY
TAKING LDP,#0E8.

 T1CNT7401
 T1CMPR 7402
 T1PR 7403

LINE 8,9 EXPLANATION

SPLK #9042H,T1CON
H:B:H

 BIT 15,14 “1””0” PWM GENERATION OPERATION WILL

NOT BE STOPPED WHILE SOMEOTHER PROGRAM INTERRUPTION

HAPPENS.

 BIT 12,11 “0””1” UPCOUNTING REQUIRED TO GENERATE
PWM SIGNAL.
 BIT 10 TO 8 DECIDE THE VARIOUS CLOCK
FREQUENCY(DECIDES THE OPERATING SPEED OF TIMER 1)
 BIT 7 USING TIMER 1 OWN BIT TO START TIMER.
 FOR EXAMPLE: IF WE SET BIT 7 AS “1” AND IF WE USED TIMER
2 FOR PWM GENERATION. THEN TIMER 2 CAN BE START BY
USING TIMER 1 BIT .
 NOTE: TIMER 2 CANNOT START TIMER 1.
 BIT 6 FOR TIMER ENABLE/DISABLE.
 BIT 5,4 TIMER 1 GOING TO USE INTERNAL CLOCK
FREQUENCY SO “0””0”.
 BIT 3,2 “0””0”. COUNTER REGISTER AS TO RELOAD TO 0000
(ONCE IT REACHES 4000 – T1PR VALUE AS PER THIS
EXAMPLE).TO GENERATE CONTINUOUS PWM SIGNAL.
 BIT 1 “1” TIMER1 COMPARE UNIT HAS TO BE ENABLED FOR
PWM GENERATION.
 BIT 0 SIMILAR TO BIT 7.

 H:B:H BRANCH TO H , WHERE IS H , ACTUALLY IT IS
STARTING OF THIS LINE .SO IT JUMP WITHIN THIS LINE ITSELF. IT
IS LIKE HALT THE PROGRAM.

	Introduction
	Number Representation
	Fixed-Point Quantization Errors
	Floating-Point Quantization Errors
	Roundoff Noise
	Roundoff Noise in FIR Filters
	Roundoff Noise in Fixed-Point IIR Filters
	Roundoff Noise in Floating-Point IIR Filters

	Limit Cycles
	Overflow Oscillations
	Coefficient Quantization Error
	Realization Considerations
	UNIT -5
	Brief Introduction to Peripherals
	Event Managers (EVA, EVB)
	The Analog-to-Digital Converter (ADC)
	The Control Area Network (CAN) Module
	Serial Peripheral Interface (SPI) and Serial Communications Interface (SCI)
	Watchdog Timer (WD)
	General Purpose Bi-Directional Digital I/O (GPIO) Pins
	Joint Test Action Group (JTAG) Port
	Phase Locked Loop (PLL) Clock Module
	Memory Allocation Spaces
	3. Types of Physical Memory Random Access Memory (RAM)
	Non-Volatile Flash Memory
	4. Software Tools
	1. The Components of the C2xx DSP Core
	Central Arithmetic Logic Unit (CALU)
	Accumulator
	Scaling Shifters
	Multiplier
	Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers
	Mapping External Devices to the C2xx Core and the Peripheral Interface
	System Configuration Registers
	System Control and Status Register 1 (SCSR1) — Address 07018h
	Bit 15 Reserved
	Bit 1 Reserved
	System Control and Status Register 2 (SCSR2) — Address 07019h
	Bit 6 Input Qualifier Clocks.
	Bit 4 XMIF Hi-Z Control
	Bit 3 Boot Enable
	Bit 2 Microprocessor/Microcontroller Select
	Bits 1–0 SARAM Program/Data Space Select
	Memory
	Program Memory
	CNF bit:
	MP/MC pin:
	Data Memory
	Input/Output (I/O) Space
	6. Memory Addressing Modes
	2. Multiplexing and General Purpose I/O Control Registers
	I/O MUX Control Register A (MCRA) Configuration
	I/O MUX Control Register B (MCRB) Configuration
	I/O MUX Control Register C (MCRC) Configuration
	Bits 7–0 IOPBn – Data Bits
	Port C Data and Direction Control Register (PCDATDIR)
	Bits 15–8 CnDIR – Direction Bits
	Bits 7–0 IOPCn – Data Bits
	Port D Data and Direction Control Register (PDDATDIR)
	Bits 15–9 Reserved
	Bits 7–1 Reserved
	Port E Data and Direction Control Register (PEDATDIR)
	Bits 15–8 EnDIR – Direction Bits
	Bits 7–0 IOPEn – Data Bits
	Port F Data and Direction Control Register (PFDATDIR)
	Bit 15 Reserved (1)
	Bit 7 Reserved
	Bits 6–0 IOPFn – Data Bits
	3. Using the General Purpose I/O Ports
	2. Interrupt Hierarchy
	3. Interrupt Control Registers
	Interrupt Flag Register (IFR) — Address 0006h
	Interrupt Mask Register (IMR) — Address 0004h
	Peripheral Interrupt Vector Register (PIVR) — Address 701Eh
	External Interrupt Control Registers
	External Interrupt 1 Control Register (XINT1CR) – Address 7070h
	Bit 15 XINT1 Flag
	Bit 2 XINT1 Polarity
	Bit 1 XINT1 Priority
	Bit 0 XINT1 Enable
	External Interrupt 2 Control Register (XINT2CR) – Address 7071h
	Bit 15 XINT2 Flag
	Overview of the Event Manager(EV)
	Event Manager Interrupts
	EVA Interrupts
	EVB Interrupts
	EVA Interrupt Flag Register A (EVAIFRA) — Address 742Fh
	EVA Interrupt Flag Register B (EVAIFRB) — Address 7430h
	EVA Interrupt Flag Register C (EVAIFRC) — Address 7431h
	EVA Interrupt Mask Register A (EVAIMRA) — Address 742Ch
	Bit 10 T1OFINT ENABLE
	Bit 9 T1UFINT ENABLE
	Bit 8 T1CINT ENABLE
	Bit 7 T1PINT ENABLE
	Bit 3 CMP3INT ENABLE
	Bit 2 CMP2INT ENABLE
	Bit 1 CMP1INT ENABLE
	EVA Interrupt Mask Register B (EVAIMRB) — Address 742Dh
	Bit 3 T2OFINT ENABLE
	Bit 2 T2UFINT ENABLE
	Bit 1 T2CINT ENABLE
	Bit 0 T2PINT ENABLE
	EVA Interrupt Mask Register C (EVAIMRC) — Address 742Eh
	Bit 2 CAP3INT ENABLE
	Bit 1 CAP2INT ENABLE
	Bit 0 CAP1INT ENABLE
	EVB Interrupt Flag Register A (EVBIFRA) — Address 752Fh
	EVB Interrupt Flag Register B (EVBIFRB) — Address 7530h
	EVB Interrupt Flag Register C (EVBIFRC) — Address 7531h
	EVB Interrupt Mask Register A (EVBIMRA) — Address 752Ch
	Bit 10 T3OFINT ENABLE
	Bit 9 T3UFINT ENABLE
	Bit 8 T3CINT ENABLE
	Bit 7 T3PINT ENABLE
	Bit 3 CMP6INT ENABLE
	Bit 2 CMP5INT ENABLE
	Bit 1 CMP4INT ENABLE
	EVB Interrupt Mask Register B (EVBIMRB) — Address 752Dh
	Bit 3 T4OFINT ENABLE
	Bit 2 T4UFINT ENABLE
	Bit 1 T4CINT ENABLE
	Bit 0 T4PINT ENABLE
	EVB Interrupt Mask Register C (EVBIMRC) — Address 752Eh
	Bit 2 CAP6INT ENABLE
	Bit 1 CAP5INT ENABLE
	Bit 0 CAP4INT ENABLE
	General Purpose (GP) Timers
	Continuous Up-Counting Mode:
	Directional Up/Down-Counting Mode:
	Continuous Up/Down-Counting Mode
	Individual Timer Control Registers (TxCON), where x=1,2,3,4
	EVA:
	EVB:
	Timer x Control Register Bit Descriptions (TxCON; x = 1, 2, 3, or 4) —
	Bits 10–8 TPS2–TPS0.
	Overall GP Timer Control Registers (GPTCONA/B)
	GP Timer Control Register A (GPTCONA) Bit Descriptions — Address 7400h
	GP Timer Control Register B (GPTCONB) Bit Descriptions — Address 7500h
	GP Timer Compare Registers (TxCMPR), x=1,2,3,4 – User Specified Value Addresses 7402h (T1CMPR), 7406h (T2CMPR), 7502h (T3CMPR), 7506h (T4CMPR)
	GP Timer Period Registers (TxPR) – User Specified Value
	Compare Control Register A (COMCONA) — Address 7411h
	Bits14–13
	Bits 11–10
	Compare Control Register B (COMCONB) — Address 7511h
	Bits14–13 (1)
	Bits 11–10 (1)
	Compare Action Control Register B (ACTRB) — Address 7513h
	Bits 11–10 (2)
	Dead-Band Timer Control Register A (DBTCONA) — Address 7415h
	Dead-Band Timer Control Register B (DBTCONB) — Address 7515h
	Capture Units and Quadrature Encoded Pulse (QEP) Circuitry
	EVB: (1)
	Capture Control Register A (CAPCONA) — Address 7420h
	Capture Control Register B (CAPCONB) — Address 7520h
	Bits 14–13
	Capture Status Registers
	Capture FIFO Status Register A (CAPFIFOA) — Address 7422h
	Capture FIFO Status Register B (CAPFIFOB) — Address 7522h
	General Event Manager Information
	Event Manager (EV) Register Addresses
	7. Exercise: PWM Signal Generation
	Procedure:

	EXAMPLE TO GENERATE
	LDP #0E1
	LDP #0E1 –LOAD DATA PAGE WITH 0E1 VALUE.
	THIS IS DIRECT ADDRESSING
	 FROM THE PREVIOUS SLIDE WHAT WE UNDERSTOOD IS THAT EXCEPT BIT 12 REMAINING BITS ARE SET AS “0”.

	EXPLANATION OF THIRD LINE
	LDP #0E8 –LOAD DATA PAGE WITH 0E8 VALUE.
	THIS IS DIRECT ADDRESSING
	 THE VALUE 6042 IS LOADED IN THE GPTCONA REGISTER.
	 NOTE: TIMER 2 CANNOT START TIMER 1.

