
SEE1203 – CONTROL SYSTEMS 

UNIT I 

SYSTEM CONCEPTS 
 

TYPES OF SYSTEMS 
 

Control systems are basically classified as – 
 

 Open-loop control system 

 Closed-loop control system 

In open-loop system the control action is independent of output. In closed-loop system control 

action is somehow dependent on output. Each system has at least two things in common, a 

controller and an actuator (final control element). The input to the controller is called reference 

input. This signal represents the desired system output.Open-loop control system is used for very 

simple applications where inputs are known ahed of time and there is no disturbance. Here the 

output is sensitive to the changes in disturbance inputs. Disturbance inputs are undesirable 

inputs that tend to deflect the plant outputs from their desired values. They must be calibrated 

and adjusted at regular intervals to ensure proper operation. Closed-loop systems are also called 

feedback control systems. Feedback is the property of the closed-loop systems which permits the 

output to be compared with the input of the system so that appropriate control action may be 

formed as a function of inputs and outputs. Feedback systems has the following features: 

- reduced effect of nonlinearities and distortion 

- Increased accuracy 

- Increased bandwidth 

- Less sensitivity to variation of system parameters 

- Tendency towards oscillations 

- Reduced effects of external disturbances 

The general block diagram of a control system is shown below. 
 
 

 

Figure: Closed-loop control system 



Some Definitions

Reference input – It is the actual signal input to the control system. 
Output (Controlled variable) – It is the actual response obtained from a control system. 
Actuating error signal – It is the difference between the reference input and feedback signal. 
Controller – It is a component required to generate control signal to drive the actuator.
Control signal – The signal obtained at the output of a controller is called control signal.
Actuator – It is a power device that produces input to the plant according to the control signal, so
that output signal approaches the reference input signal. 
Plant – The combination of object to be controlled and the actuator is called the plant. 
Feedback Element – It is the element that provides a mean for feeding back the output quantity
in order to compare it with the reference input. 
Servomechanism – It is a feedback control system in which the output is mechanical position,
velocity, or acceleration.

EXAMPLE OF CONTROL SYSTEMS

Toilet tank filling system:

 

Figure: Toilet tank filling system

Position control system: [antenna]



Figure: Position control system

Velocity control system: [audio/ video recorder]

Figure: Velocity control system



Clothes Dryer:

Figure: Automatic dryer

Temperature control system: [oven, refrigerator, house]

Figure: Temperature control system



Computer numerically controlled (CNC) machine tool:

(a)

(b)

Figure: CNC machine tool control system



BLOCK DIAGRAM ALGEBRA

A complex system is represented by the interconnection of the blocks for individual elements.
Evaluation  of  complex  system  requires  simplification  of  block  diagrams  by  block  diagram
rearrangement. Some of the important rules are given in figure below.

7. Combining Blocks in Parallel



8. Moving summing point : 

Example: Simplify the block diagram shown in Figure below.



Example: Obtain the transfer function C/R of the block diagram shown in Figure below.

           

                                  [Ans]



Example: Derive the transfer function of the system shown below.

                   (a)                     (b)

[Answer]

Example: Derive the transfer function of the system shown below.



Example: Find the transfer function of the following system.

    {Answer}

Example: Find the output of the system shown below.



For Input R1:

        ……………………………………………. (1)

For input R2:

……………………………………………. (2) 



{Answer}

SIGNAL FLOW GRAPH

SFG is a diagram that represents a set of simultaneous linear algebraic equations which describe 
a system. Let us consider an equation, Y aX= . It may be represented graphically as,

X                                   a                                       Y

where ‘a’ is called transmittance or transmission function. 

Definitions in SFG

Node – A system variable, the value of which equals the sum of all incoming signals at the node.

Branch – A directed line segment joining two nodes. 

Input/ Output node – node having only one outgoing/ incoming branch.

Path – A traversal of connected branches in the direction of branch arrows.

Forward path – A path from input to output node.

Loop – A closed path that originates and terminates on the same node. 

Self-loop – A loop containing one branch.

Non-touching loops – Loops which do not have a common node.

Gain – Transmittance of a branch.

Construction of SFGs

The SFG of a system can be constructed from the describing equations:
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SFG from Block Diagram

Each variable in the block diagram becomes a node, and each block becomes a branch.

Mason’s Gain Formulae



It is possible to write the overall transfer function of a system through inspection of SFG using

Mason’s gain formulae given by, ( ) /i i
i

T P= D Då .

where T = overall gain of the system, iP  = path gain of ith forward path,D = determinant of SFG,

iD = value of D for that part of the graph not touching the ith forward path.

1 2 31 j j j
j j j

P P PD = - + - +å å å ⋯= 1 – [sum of loop gain of all individual loops] + [sum of all

gain-products  of  two non-touching loops]  –  [sum of  all  gain-products of three non-touching

loops] + ;  

th product of  non-touching loopsjkP j k= .

Example

 

2.  There  are three individual loops with loop gains    

3. There is only one combination of two non-touching loops

 12 1 2 4 5P H H G G=

4. There are no combinations of more than two non-touching loops.

5. Hence, 

1. There are 6 forward paths with path gains



; ; 

3 4 5 6 1D = D = D = D =

Thus, 1 1 2 2 3 3 4 4 5 5 6 6P P P P P P
T

D + D + D + D + D + D
=

D
, where 1 1, ,P D D etc. are derived before.

Example

Draw the SFG and determine C/ R for the block diagram shown in Figure below.

                              {Answer}

Example

For the system represented by the following equations, find the transfer function X(s)/U(s) by
SFG technique.  
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{Answer}

Example

Using Mason’s gain formulae find C/R of the SFG shown in Figure below.

We need to Laplace transform the given sets of equations in
order to represent differentiated variables.



SEE1203 – CONTROL SYSTEMS 

 UNIT II 

TIME RESPONSE ANALYSIS OF CONTROL SYSTEM 
 

In time-domain analysis the response of a dynamic system to an input is expressed as a function 

of time. It is possible to compute the time response of a system if the nature of input and the 

mathematical model of the system are known. 

Usually, the input signals to control systems are not known fully ahead of time. In a radar 

tracking system, the position and the speed of the target to be tracked may vary in a random 

fashion. It is therefore difficult to express the actual input signals mathematically by simple 

equations. The characteristics of actual input signals are a sudden shock, a sudden change, a 

constant velocity, and constant acceleration. The dynamic behavior of a system is therefore 

judged and compared under application of standard test signals – an impulse, a step, a constant 

velocity, and constant acceleration. Another standard signal of great importance is a sinusoidal 

signal. 

The time response of any system has two components: transient response and the steady-state 

response. Transient response is dependent upon the system poles only and not on the type of 

input. It is therefore sufficient to analyze the transient response using a step input. The steady- 

state response depends on system dynamics and the input quantity. It is then examined using 

different test signals by final value theorem. 

STANDARD TEST SIGNALS 
 

a) Step signal: 

b) Ramp signal: 

c) Parabolic signal: 

d) Impulse signal: 
 
 

 

TIME-RESPONSE OF FIRST-ORDER SYSTEMS 
 

Let us consider the armature-controlled dc motor driving a load, such as a video tape. The objective is to 

drive the tape at constant speed. Note that it is an open-loop system. 



; If , 

;   

is the steady-state final  speed.  If the desired speed is ,  choosing the motor will  eventually reach the
desired speed. 

We are interested not only in final speed, but also in the speed of response. Here, is the time constant of
motor which is responsible for the speed of response.

The time response is plotted in the Figure in next page. A plot of is shown, from where it is seen that, for
the value of is less than 1% of its original value. Therefore, the speed of the motor will reach and stay
within 1% of its final speed at 5 time constants. 

Figure: Time responses

Let us now consider the closed-loop system shown below.



Here, 

where, and .

If , the response would be, .

If a is properly chosen, the tape can reach a desired speed. It will reach the desired speed in 5seconds.
Here, . Thus, we can control the speed of response in feedback system.

Although the time-constant is reduced by a factor , in the feedback system, the motor gain constant is
also reduced by the same factor. In order to compensate for this loss of gain, the applied reference
voltage must be increased by the same factor.

Ramp response of first-order system

Let,  for simplicity. Then, . Also, let, .

Then, ;       

The error signal is, 

Or, 



Thus, the first-order system will track the unit ramp input with a steady-state error , which is equal to the
time-constant of the system.

TIME-RESPONSE OF SECOND-ORDER SYSTEMS

Consider the antenna position control system. Its transfer function from r to y is,

where, we define, and . The constant is called the damping ratio and is called the natural frequency. The
system above is in fact a standard second order system.

The transfer function has two poles and no zero. Its poles are, 

.

Here, is called the damping factor, is called damped or actual frequency. 

The location of poles for different are plotted in Figure below. For, the two poles  are purely imaginary.
If , the two poles are complex conjugate. All possible cases are described in a table shown below.



Unit step response of second-order systems

Suppose, ;  

Or, 

Performing inverse Laplace transform, 

       

or,  

or, ,where, and

or,   

The plot of is shown in Figure. 

The steady-state response is, 

     

Thus, the system has zero steady-state error. 

The pole of dictates the response,  

     .

The response for different is shown in Figure below.



TIME DOMAIN SPECIALIZATION

Control  systems are  generally  designed  with  damping  less  than  one,  i.e.,  oscillatory  step  response.
Higher order control systems usually have a pair of complex conjugate poles with damping less than
unity that dominate over the other poles. Therefore the time response of second- and higher-order
control systems to a step input is generally of damped oscillatory nature as shown in Figure next (next
page). 

In specifying the transient-response characteristics of a control system to a unit step input, we usually
specify the following:

1. Delay time, 
2. Rise time, 
3. Peak time, 
4. Peak overshoot, 
5. Settling time, 
6. Steady-state error, 



1.  Delay time, : It is the time required for the response to reach 50% of the final value in first attempt.

2.  Rise time, : It is the time required for the response to rise from 0 to 100% of the final value for the
underdamped system. 

3.  Peak time, : It is the time required for the response to reach the peak of time response or the peak
overshoot.

4.  Settling time, : It is the time required for the response to reach and stay within a specified tolerance
band ( 2% or 5%) of its final value.

5.  Peak overshoot, : It is the normalized difference between the time response peak and the steady
output and is defined as, 

6.  Steady-state error, : It indicates the error between the actual output and desired output as ‘t’ tends
to infinity. 

.

Let us now obtain the expressions for the rise time, peak time, peak overshoot, and settling time for the
second order system.  

1.  Rise time, : Put  at ,,;.

2.  Peak time, : Put and solve for ; .



, 

Peak overshoot occurs at k = 1. .

3. Settling time, : For 2% tolerance band, , .

4.  Steady-state error, : It is found previously that steady-state error for step input is zero.

Let us now consider ramp input, .   

Then, 

.

Therefore, the steady-state error due to ramp input is.

STEADY STATE ERRORS

The steady-state performance of a stable control system is generally judged by its steady-state error to
step, ramp and parabolic inputs. For a unity feedback system, 

,.

It is seen that steady-state error depends upon the input and the forward transfer function. The steady-
state errors for different inputs are derived as follows:

ALGEBRIC CRITERIA

1. For unit-step input: 

; is called position error constant.

2. For unit-ramp input: 

; is called velocity error constant.

3. For unit-parabolic input: 

;  is called acceleration error const.

Types of Feedback Control System

The open-loop transfer function of a system can be written as, 

If n = 0, the system is called type-0 system, if n = 1, the system is called type-1 system, if n = 2, the system
is called type-2 system, etc. Steady-state errors for various inputs and system types are tabulated below.



ERROR CONSTANTS

The error  constants  for  non-unity  feedback systems may be obtained by  replacing  G(s)  by  G(s)H(s).
Systems of type higher than 2 are not employed due to two reasons:

1. The system is difficult to stabilize.
2. The dynamic errors for such systems tend to be larger than those 

       types-0, -1 and -2.

Effect of Adding a Zero to a System

Let a zero at s = -z be added to a second order system. Then we have,

.  

The multiplication term is adjusted to make the steady-state gain of the system unity. This gives   css = 1
when the input is unit step. Let cz(t) be the response of the system given by the above equation and c(t)
is the response without adding the pole. Manipulation of the above equation gives,

    

 The effect of added derivative term is to produce a pronounced early peak to the system response
which will be clear from the figure in the next page. Closer the zero to origin, the more pronounce the
peaking phenomenon. Due to this fact, the zeros on the real axis near the origin are generally avoided in
design. However, in a sluggish system the artful introduction of a zero at the proper position can improve
the transient response. We can see from equation (03) that as z increases, i.e., the zero moves further
into  the  left half  of  the  s-
plane,  its effect  becomes
less pronounced.  



Design Specifications of Second-order Systems

 A  control  system  is  generally  required  to  meet  three  time
response specifications: steady-state accuracy, damping factor 
(or  peak  overshoot,  Mp)  and  settling  time  ts.  Steady-state
accuracy requirement is met by suitable choice of  Kp, Kv, or Ka
depending on the type of the system. For most control systems 
in  the range of  0.7 – 0.28 (or  peak overshoot  of  5 – 40%) is
considered acceptable. For this range of , the closed-loop pole
locations are restricted to the shaded region of the s-plane as
shown in Figure.

For the antenna position control system,;;;. Here, is only the adjustable parameter. If we increase, will
increase and thus settling time will decrease. At the same time, will decrease, this indicates the increase
in peak overshoot. Thus by merely increasing gain, we cannot improve both transient and steady-state
error  specifications.  We  need  to  add  additional  components  to  the  system.  These  are  called
compensators. It will allow improvement of both transient and steady-state specifications. 

CONCEPTS OF STABILITY

BIBO stability: A system is said to be BIBO stable if for any bounded input, its output is also 
bounded. • Absolute stability: Stable /Unstable • Relative stability: Degree of stability (i.e. how 
far from instability) • A stable linear system described by a T.F. is such that all its poles have 
negative real parts



SEE1203 – CONTROL SYSTEMS 

UNIT 3 

THE CONCEPT OF STABILITY AND ROOT LOCUS TECHNIQUE 

THE CONCEPT OF STABILITY 

When a system is unstable, the output of the system may be infinite even though the input to the 

system was finite. This causes a number of practical problems. For instance, a robot arm 

controller that is unstable may cause the robot to move dangerously. Also, systems that are 

unstable often incur a certain amount of physical damage, which can become costly. 

Nonetheless, many systems are inherently unstable - a fighter jet, for instance, or a rocket at 

liftoff, are examples of naturally unstable systems. Although we can design controllers that 

stabilize the system, it is first important to understand what stability is, how it is determined, and 

why it matters. 

The chapters in this section are heavily mathematical, and many require a background in linear 

differential equations. Readers without a strong mathematical background might want to review 

the necessary chapters in the Calculus and Ordinary Differential Equations books (or equivalent) 

before reading this material. 

For most of this chapter we will be assuming that the system is linear, and can be represented 

either by a set of transfer functions or in state space. Linear systems have an associated 

characteristic polynomial, and this polynomial tells us a great deal about the stability of the 

system. Negativeness of any coefficient of a characteristic polynomial indicates that the system 

is either unstable or at most marginally stable. If any coefficient is zero/negative then we can say 

that the system is unstable. It is important to note, though, that even if all of the coefficients of 

the characteristic polynomial are positive the system may still be unstable. We will look into this 

in more detail below. 

A system is defined to be BIBO Stable if every bounded input to the system results in a bounded 

output over the time interval . This must hold for all initial times to. So long as we don't 

input infinity to our system, we won't get infinity output. 

A system is defined to be uniformly BIBO Stable if there exists a positive constant k that is 

independent of t0 such that for all t0 the following conditions: 
 

 

implies that 
 

There are a number of different types of stability, and keywords that are used with the topic of 

stability. Some of the important words that we are going to be discussing in this chapter, and the 



next few chapters are: BIBO Stable, Marginally Stable, Conditionally Stable, Uniformly 

Stable, Asymptoticly Stable, and Unstable. All of these words mean slightly different things. 

Consider the system: 

 

We can apply our test, selecting an arbitrarily large finite constant M, and an arbitrary input x 

such that -M < x < M. 

As M approaches infinity (but does not reach infinity), we can show that: 

 

And: 

 

So now, we can write out our inequality: 

 

 

And this inequality should be satisfied for all possible values of x. However, we can see that 

when x is zero, we have the following: 

 

Which means that x is between -M and M, but the value yx is not between y-M and yM. Therefore, 

this system is not stable. 

Poles and StabilitY 

When the poles of the closed-loop transfer function of a given system are located in the right-half 

of the S-plane (RHP), the system becomes unstable. When the poles of the system are located in 

the left-half plane (LHP) and the system is not improper, the system is shown to be stable. A 

number of tests deal with this particular facet of stability: TheRouth-Hurwitz Criteria, 

the Root-Locus, and the Nyquist Stability Criteria all test whether there are poles of the 

transfer function in the RHP. We will learn about all these tests in the upcoming chapters. 

If the system is a multivariable, or a MIMO system, then the system is stable if and only if every 

pole of every transfer function in the transfer function matrix has a negative real part and every 

transfer function in the transfer function matrix is not improper. For these systems, it is possible 

to use the Routh-Hurwitz, Root Locus, and Nyquist methods described later, but these methods 

must be performed once for each individual transfer function in the transfer function matrix. 



Let us remember our generalized feedback-loop transfer function, with a gain element of K, a 

forward path Gp(s), and a feedback of Gb(s). We write the transfer function for this system as: 

 

Where  is the closed-loop transfer function, and  is the open-loop transfer function. 

Again, we define the open-loop transfer function as the product of the forward path and the 

feedback elements, as such: 

 <---Note this definition now contradicts the updated definition in 

the "Feedback" section. 

Now, we can define F(s) to be the characteristic equation. F(s) is simply the denominator of the 

closed-loop transfer function, and can be defined as such: 

[Characteristic Equation] 

 

We can say conclusively that the roots of the characteristic equation are the poles of the transfer 

function. Now, we know a few simple facts: 

1. The locations of the poles of the closed-loop transfer function determine if the system is 

stable or not 

2. The zeros of the characteristic equation are the poles of the closed-loop transfer function. 

3. The characteristic equation is always a simpler equation than the closed-loop transfer 

function. 

These functions combined show us that we can focus our attention on the characteristic equation, 

and find the roots of that equation. 

State-Space and Stability 

As we have discussed earlier, the system is stable if the eigenvalues of the system matrix A have 

negative real parts. However, there are other stability issues that we can analyze, such as whether 

a system is uniformly stable, asymptotically stable, or otherwise. We will discuss all these topics 

in a later chapter. 

Marginal Stability 

When the poles of the system in the complex S-Domain exist on the complex frequency axis (the 

vertical axis), or when the eigenvalues of the system matrix are imaginary (no real part), the 

system exhibits oscillatory characteristics, and is said to be marginally stable. A marginally 

stable system may become unstable under certain circumstances, and may be perfectly stable 

under other circumstances.  



ROUTH STABILITY CRITERION: 

The Routh approximation method which has been suggested for the reduction of stable discrete 

time linear systems to guarantee stable models, uses the bilinear transformation. A stability 

theorem in the z-plane is presented which is shown to be an equivalent of the Routh criterion. An 

efficent method that avoids the bilinear transformation is presented by which the Routhdisrete 

models are derived directly in the z-plane. 

In control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a 

necessary and sufficient condition for the stability of a linear time invariant (LTI)control system. 

The Routh test is an efficient recursive algorithm that English mathematician Edward John 

Routh proposed in 1876 to determine whether all the roots of thecharacteristic polynomial of 

a linear system have negative real parts.
[1]

 German mathematician Adolf Hurwitz independently 

proposed in 1895 to arrange the coefficients of the polynomial into a square matrix, called the 

Hurwitz matrix, and showed that the polynomial is stable if and only if the sequence of 

determinants of its principal submatrices are all positive.
[2]

 The two procedures are equivalent, 

with the Routh test providing a more efficient way to compute the Hurwitz determinants than 

computing them directly. A polynomial satisfying the Routh–Hurwitz criterion is called 

a Hurwitz polynomial. 

The importance of the criterion is that the roots p of the characteristic equation of a linear 

system with negative real parts represent solutions e
pt

 of the system that are stable (bounded). 

Thus the criterion provides a way to determine if the equations of motion of a linear system have 

only stable solutions, without solving the system directly. For discrete systems, the 

corresponding stability test can be handled by the Schur–Cohn criterion, the Jury test and 

the Bistritz test. With the advent of computers, the criterion has become less widely used, as an 

alternative is to solve the polynomial numerically, obtaining approximations to the roots directly. 

The Routh test can be derived through the use of the Euclidean algorithm and Sturm's theorem in 

evaluating Cauchy indices. Hurwitz derived his conditions differently. 

Using Euclid's algorithm 

The criterion is related to Routh–Hurwitz theorem. Indeed, from the statement of that theorem, 

we have  where: 

 p is the number of roots of the polynomial ƒ(z) with negative Real Part; 

 q is the number of roots of the polynomial ƒ(z) with positive Real Part (let us remind 

ourselves that ƒ is supposed to have no roots lying on the imaginary line); 

 w(x) is the number of variations of the generalized Sturm chain obtained from 

 and  (by successive Euclidean divisions) where  for 

a real y. 

By the fundamental theorem of algebra, each polynomial of degree n must have n roots in the 

complex plane (i.e., for an ƒ with no roots on the imaginary line, p + q = n). Thus, we have the 



condition that ƒ is a (Hurwitz) stable polynomial if and only if p − q = n (the proof is given 

below). Using the Routh–Hurwitz theorem, we can replace the condition onp and q by a 

condition on the generalized Sturm chain, which will give in turn a condition on the coefficients 

of ƒ. 

Using matrices 

Let f(z) be a complex polynomial. The process is as follows: 

1. Compute the polynomials  and  such that 

 where y is a real number. 

2. Compute the Sylvester matrix associated to  and . 

3. Rearrange each row in such a way that an odd row and the following one have the same 

number of leading zeros. 

4. Compute each principal minor of that matrix. 

5. If at least one of the minors is negative (or zero), then the polynomial f is not stable. 

Example 

 Let  (for the sake of simplicity we take real coefficients) 

where  (to avoid a root in zero so that we can use the Routh–Hurwitz theorem). 

First, we have to calculate the real polynomials  and : 

 

Next, we divide those polynomials to obtain the generalized Sturm chain: 

  yields  

  yields  and the Euclidean division stops. 

Notice that we had to suppose b different from zero in the first division. The generalized Sturm 

chain is in this case . Putting , the 

sign of  is the opposite sign of a and the sign of by is the sign of b. When we 

put , the sign of the first element of the chain is again the opposite sign of a and the 

sign of by is the opposite sign of b. Finally, -c has always the opposite sign of c. 

Suppose now that f is Hurwitz-stable. This means that  (the degree 

of f). By the properties of the function w, this is the same as  and . 

Thus, a, b and c must have the same sign. We have thus found the necessary condition of 

stability for polynomials of degree 2. 



Routh–Hurwitz criterion for second, third, and fourth-order polynomials[edit] 

In the following, we assume the coefficient of the highest order (e.g.  in a second order 

polynomial) to be positive. If necessary, this can always be achieved by multiplication of the 

polynomial with . 

 For a second-order polynomial, , all the roots are in 

the left half plane (and the system with characteristic equation  is stable) if all the 

coefficients satisfy . 

 For a third-order polynomial , all the 

coefficients must satisfy , and  

 For a fourth-order polynomial , all 

the coefficients must satisfy , and 

 and  

 In general Routh stability criterion proclaims that all First column elements of Routh 

array is to be of same sign. 

This criterion is also known as modified Hurwitz Criterion of stability of the system. We will 

study this criterion in two parts. Part one will cover necessary condition for stability of the 

system and part two will cover the sufficient condition for the stability of the system. Let us 

again consider the characteristic equation of the system as 

1) Part one (necessary condition for stability of the system): In this we have two conditions 

which are written below: (a) All the coefficients of the characteristic equation should be positive 

and real. (b) All the coefficients of the characteristic equation should be non zero.  

2)Part two (sufficient condition for stability of the system): Let us first construct routh array. In 

order to construct the routh array follow these steps: (a) The first row will consist of all the even 

terms of the characteristic equation. Arrange them from first (even term) to last (even term). The 

first row is written below: a0 a2 a4 a6............ (b) The second row will consist of all the odd 

terms of the characteristic equation. Arrange them from first (odd term) to last (odd term). The 

first row is written below: a1 a3 a5 a7........... (c) The elements of third row can be calculated as: 

(1) First element : Multiply a0 with the diagonally opposite element of next column (i.e. a3) then 

subtract this from the product of a1 and a2 (where a2 is diagonally opposite element of next 

column) and then finally divide the result so obtain with a1. Mathematically we write as first 

element 

(2) Second element : Multiply a0 with the diagonally opposite element of next to next column 

(i.e. a5) then subtract this from the product of a1 and a4 (where a4 is diagonally opposite element 

of next to next column) and then finally divide the result so obtain with a1. Mathematically we 

write as second elemenT 



Similarly, we can calculate all the elements of the third row. (d) The elements of fourth row can 

be calculated by using the following procedure: (1) First element : Multiply b1 with the 

diagonally opposite element of next column (i.e. a3) then subtract this from the product of a1 and 

b2 (where b2 is diagonally opposite element of next column) and then finally divide the result so 

obtain with b1. Mathematically we write as first element 

(2) Second element :Multiply b1 with the diagonally opposite element of next to next column 

(i.e. a5) then subtract this from the product of a1 and b3 (where b3 is diagonally opposite 

element of next to next column) and then finally divide the result so obtain with a1. 

Mathematically we write as second element 

Similarly, we can calculate all the elements of the fourth row. Similarly, we can calculate all the 

elements of all the rows. Stability criteria if all the elements of the first column are positive then 

the system will be stable. However if anyone of them is negative the system will be unstable. 

Now there are some special cases related to Routh Stability Criteria which are discussed below: 

(1) Case one: If the first term in any row of the array is zero while the rest of the row has at least 

one non zero term. In this case we will assume a very small value (ε) which is tending to zero in 

place of zero. By replacing zero with (ε) we will calculate all the elements of the Routh array. 

After calculating all the elements we will apply the limit at each element containing (ε). On 

solving the limit at every element if we will get positive limiting value then we will say the given 

system is stable otherwise in all the other condition we will say the given system is not stable. (2) 

Case second : When all the elements of any row of the Routh array are zero. In this case we can 

say the system has the symptoms of marginal stability. Let us first understand the physical 

meaning of having all the elements zero of any row. The physical meaning is that there are 

symmetrically located roots of the characteristic equation in the s plane. Now in order to find out 

the stability in this case we will first find out auxiliary equation. Auxiliary equation can be 

formed by using the elements of the row just above the row of zeros in the Routh array. After 

finding the auxiliary equation we will differentiate the auxiliary equation to obtain elements of 

the zero row. If there is no sign change in the new routh array formed by using auxiliary 

equation, then in this we say the given system is limited stable. While in all the other cases we 

will say the given system is unstable 

ROOT LOCUS: 

In control theory and stability theory, root locus analysis is a graphical method for examining 

how the roots of a system change with variation of a certain system parameter, commonly 

a gain within a feedback system. This is a technique used as a stability criterion in the field 

of control systems developed by Walter R. Evans which can determinestability of the system. 

The root locus plots the poles of the closed loop transfer function in the complex S plane as a 

function of a gain parameter (see pole–zero plot). 

Uses 



 

Effect of pole location on a second order system's natural frequency and damping ratio. 

In addition to determining the stability of the system, the root locus can be used to design 

the damping ratio (ζ) and natural frequency (ωn) of a feedback system. Lines of constant 

damping ratio can be drawn radially from the origin and lines of constant natural frequency can 

be drawn as arcs whose center points coincide with the origin. By selecting a point along the root 

locus that coincides with a desired damping ratio and natural frequency, a gain K can be 

calculated and implemented in the controller. More elaborate techniques of controller design 

using the root locus are available in most control textbooks: for instance, lag, lead, PI, PD 

and PID controllers can be designed approximately with this technique. 

The definition of the damping ratio and natural frequency presumes that the overall feedback 

system is well approximated by a second order system; i.e. the system has a dominant pair 

of poles. This is often not the case, so it is good practice to simulate the final design to check if 

the project goals are satisfied. 

Example 

 

RL = root locus; ZARL = zero angle root locus 



Suppose there is a feedback system whose input is the signal X(s) and output is Y(s). The 

feedback system forward path gain is G(s); the feedback path gain is H(s). 

 

For this system, the overall transfer function is given by 

 

Thus the closed-loop poles (roots of the characteristic equation) of the transfer function are the 

solutions to the equation 1 + G(s)H(s) = 0. The principal feature of this equation is that roots may 

be found wherever G(s)H(s) = -1. 

In systems without pure delay, the product G(s)H(s) = -1 is a rational polynomial function and 

may be expressed as
[2]

 

 

where the −zi are the m zeros, the −pi are the m + n poles, and K is a scalar gain. Typically, a root 

locus diagram will indicate the transfer function's pole locations for varying values of K. A root 

locus plot will be all those points in the s-plane where G(s)H(s) = -1 for any value of K. 

The factoring of K and the use of simple monomials means the evaluation of the rational 

polynomial can be done with vector techniques that add or subtract angles and multiply or divide 

magnitudes. The vector formulation arises from the fact that each monomial term in the 

factored G(s)H(s), (s−a) for example, represents the vector from a to s. The polynomial can be 

evaluated by considering the magnitudes and angles of each of these vectors. According to 

vector mathematics, the angle of the result is the sum of all the angles in the numerator add 

minus the sum of all the angles in the denominator. Similarly, the magnitude of the result is the 

product of all the magnitudes in the numerator divided by the product of all the magnitudes in 

the denominator. It turns out that the calculation of the magnitude is not needed 

because K varies; one of its values may result in a root. So to test whether a point in the s-plane 

is on the root locus, only the angles to all the open loop poles and zeros need be considered. A 

graphical method that uses a special protractor called a "Spirule" was once used to determine 

angles and draw the root loci.  

From the function T(s), it can be seen that the value of K does not affect the location of the zeros. 

The root locus only gives the location of closed loop poles as the gain K is varied. The zeros of a 

system do not move. 



Using a few basic rules, the root locus method can plot the overall shape of the path (locus) 

traversed by the roots as the value of K varies. The plot of the root locus then gives an idea of the 

stability and dynamics of this feedback system for different values of K.  

Sketching root locus[edit] 

 Mark open-loop poles and zeros 

 Mark real axis portion to the left of an odd number of poles and zeros 

 Find asymptotes 

Let P be the number of poles and Z be the number of zeros: 

 

The asymptotes intersect the real axis at  (which is called the centroid) and depart at angle 

 given by: 

 

 

where  is the sum of all the locations of the poles, and  is the sum of all the locations of 

the explicit zeros. 

 Phase condition on test point to find angle of departure 

 Compute breakaway/break-in points 

The breakaway points are located at the roots of the following equation: 

 

Once you solve for z, the real roots give you the breakaway/reentry points. Complex roots 

correspond to a lack of breakaway/reentry. 

z-plane versus s-plane 

The root locus method can also be used for the analysis of sampled data systems by computing 

the root locus in the z-plane, the discrete counterpart of the s-plane. The equation z = e
sT

 maps 

continuous s-plane poles (not zeros) into the z-domain, where T is the sampling period. The 

stable, left half s-plane maps into the interior of the unit circle of the z-plane, with the s-plane 

origin equating to |z| = 1 (because e
0
 = 1). A diagonal line of constant damping in the s-plane 

maps around a spiral from (1,0) in the z plane as it curves in toward the origin. Note also that the 

Nyquist aliasing criteria is expressed graphically in the z-plane by the x-axis, where ωnT = π. 



The line of constant damping just described spirals in indefinitely but in sampled data systems, 

frequency content is aliased down to lower frequencies by integral multiples of the Nyquist 

frequency. That is, the sampled response appears as a lower frequency and better damped as well 

since the root in the z-plane maps equally well to the first loop of a different, better damped 

spiral curve of constant damping. Many other interesting and relevant mapping properties can be 

described, not least that z-plane controllers, having the property that they may be directly 

implemented from the z-plane transfer function (zero/pole ratio of polynomials), can be imagined 

graphically on a z-plane plot of the open loop transfer function, and immediately analyzed 

utilizing root locus. 

Since root locus is a graphical angle technique, root locus rules work the same in 

the z and s planes. 

The idea of a root locus can be applied to many systems where a single parameter K is varied. 

For example, it is useful to sweep any system parameter for which the exact value is uncertain in 

order to determine its behavior. 

 

 

 CONSTRUCTION OF ROOT LOCI: 

To facilitate the application of the root-locus method for systems of higher order than 2nd, rules 

can be established. These rules are based upon the interpretation of the angle condition and the 

analysis of the characteristic equation. The rules presented aid in obtaining the root locus by 

expediting the manual plotting of the locus. But for automatic plotting using a computer these 

rules provide checkpoints to ensure that the solution is correct. 

Though the angle and magnitude conditions can also be applied to systems having dead time, in 

the following we restrict to the case of the open-loop rational transfer functions according to Eq.  

  

 

 

or 

 

 

 

 



As this transfer function can be written in terms of poles and zeros  and  ( 

; )  can be represented by their magnitudes and angles 

 

    

 

 

or 

 

 

 

 

From Eq. (6.8) the magnitude condition 

 

 

 

 

and from Eq.  the angle condition 

   for   

 

 

follows. Here  and  denote the angles of the complex values  and , 

respectively. All angles are considered positive, measured in the counterclockwise sense. If for 

each point the sum of these angles in the  plane is calculated, just those particular points that 

fulfil the condition in Eq.  are points on the root locus. This principle of constructing a root-locus 

curve - as shown in Figure is mostly used for automatic root-locus plotting. 



 

Pole-zero diagram for construction of the root locus 

In the following the most important rules for the construction of root loci for  are listed: 

Symmetry 

    As all roots are either real or complex conjugate pairs so that the root locus is symmetrical to 

the real axis. 

Number of branches 

    The number of branches of the root locus is equal to the number of poles  of the open-loop 

transfer function. 

Locus start and end points 

    The locus starting points ( ) are at the open-loop poles and the locus ending points 

( ) are at the open-loop zeros.  branches end at infinity. The number of starting 

branches from a pole and ending branches at a zero is equal to the multiplicity of the poles and 

zeros, respectively. A point at infinity is considered as an equivalent zero of multiplicity equal 

to . 

Real axis locus 

    If the total number of poles and zeros to the right of a point on the real axis is odd, this point 

lies on the locus. 

Asymptotes 

    There are  asymptotes of the root locus with a slope of 



 

 

 

 

For  and 4 one obtains the asymptote configurations as shown in Figure 6.4. 

 

Asymptote configurations of the root locus 

Real axis intercept of the asymptotes 

    The real axis crossing  of the asymptotes is at 

 

 

 

 

Breakaway and break-in points on the real axis 

     At least one breakaway or break-in point  exists if a branch of the root locus is on the 

real axis between two poles or zeros, respectively. Conditions to find such real points are based 

on the fact that they represent multiple real roots. In addition to the characteristic equation for 

multiple roots the condition 

 

 

 

 

must be fulfilled, which is equivalent to 

 

 



 

 

for . If there are no poles or zeros, the corresponding sum is zero. 

Complex pole/zero angle of departure/entry 

    The angle of departure of pairs of poles with multiplicity  is 

 

 

 

 

and the angle of entry of the pairs of zeros with multiplicity  

 

 

 

 

Rule 9 Root-locus calibration 

    The labels of the values of  can be determined by using 

 

 

 

 

For  the denominator is equal to one. 

Asymptotic stability 

    The closed loop system is asymptotically stable for all values of  for which the locus lies in 

the left-half  plane. From the imaginary-axis crossing points the critical values  can be 

determined. 



The rules shown above are for positive values of . According to the angle condition of for 

negative values of  some rules have to be modified. In the following these rules are numbered 

as above but labelled by a *. 

Locus start and end points 

    The locus starting points ( ) are at the open-loop poles and the locus ending points 

( ) are at the open-loop zeros.  branches end at infinity. The number of starting 

branches from a pole and ending branches at a zero is equal to the multiplicity of the poles and 

zeros, respectively. A point at infinity is considered as an equivalent zero of multiplicity equal 

to . 

Real axis locus 

    If the total number of poles and zeros to the right of a point on the real axis is even including 

zero, this point lies on the locus. 

Asymptotes 

    There are  asymptotes of the root locus with a slope of 

 

 

 

 

Complex pole/zero angle of departure/entry 

    The angle of departure of pairs of poles with multiplicity  is 

 

 

 

 

and the angle of entry of the pairs of zeros with multiplicity  



 

 

 

 

The root-locus method can also be applied for other cases than varying . This is possible as 

long as  can be rewritten such that the angle condition according to Eq.  and the rules given 

above can be applied. This will be demonstrated in the following two examples. 

Given the closed-loop characteristic equation 

 

    

 

 

the root locus for varying the parameter  is required. The characteristic equation is therefore 

rewritten as 

 

    

 

 

This form then correspondents to the standard form 

 

    

 

 

to which the rules can be applied.  

Given the closed-loop characteristic equation 

 

    

 

 



it is required to find the effect of the parameter  on the position of the closed-loop poles. The 

equation is rewritten into the desired form 

 

    

 

 

 

Using the rules 1 to 10 one can easily predict the geometrical form of the root locus based on 

the distribution of the open-loop poles and zeros. Table 6.2 shows some typical distributions of 

open-loop poles and zeros and their root loci.  

Typical distributions of open-loop poles and zeros and the root loci 



 

 

 

For the qualitative assessment of the root locus one can use a physical analogy. If all open-loop 

poles are substituted by a negative electrical charge and all zeros by a commensurate positive 



one and if a massless negative charged particle is put onto a point of the root locus, a movement 

is observed. The path that the particle takes because of the interplay between the repulsion of the 

poles and the attraction of the zeros lies just on the root locus.  

 

 



SEE1203 – CONTROL SYSTEMS 

UNIT 4 

FREQUENCY RESPONSE ANALYSIS 
 

Frequency response is the quantitative measure of the output spectrum of a system or 

device in response to a stimulus, and is used to characterize the dynamics of the system. It 

is a measure of magnitude and phase of the output as a function of frequency, in 

comparison to the input. In simplest terms, if a sine wave is injected into a system at a 

given frequency, a linear system will respond at that same frequency with a certain 

magnitude and a certain phase angle relative to the input. Also for a linear system, 

doubling the amplitude of the input will double the amplitude of the output. In addition, if 

the system is time-invariant (so LTI), then the frequency response also will not vary with 

time. Thus for LTI systems, the frequency response can be  seen  as  applying  the  

system's transfer function to a purely imaginary number argument representing the 

frequency of the sinusoidal excitation.[1] 

Two applications of frequency response analysis are related but have different objectives. 

For an audio system, the objective may be to reproduce the input signal with no distortion. 

That would require a uniform (flat) magnitude of response up to the bandwidth limitation 

of the system, with the signal delayed by precisely the same amount of time at all 

frequencies. That amount of time could be seconds, or weeks or months in the case of 

recorded media. In contrast, for a feedback apparatus used to control a dynamic system, the 

objective is to give the closed-loop system improved response as compared to the 

uncompensated system. The feedback generally needs to respond to system dynamics 

within a very small number of cycles of oscillation (usually less than one full cycle), and 

with a definite phase angle relative to the commanded control input. For feedback of 

sufficient amplification, getting the phase angle wrong can lead to instability for an open- 

loop stable system, or failure to stabilize a system that is open-loop unstable. Digital filters 

may be used for both audio systems and feedback control systems, but since the objectives 

are different, generally the phase characteristics of the filters will be significantly different 

for the two applications. 



 Nonlinear 

frequency response 

If the system under investigation is nonlinear then applying purely linear frequency domain 

analysis will not reveal all the nonlinear characteristics. To overcome these limitations, 

generalized frequency response functions and nonlinear output frequency response 

functions have been defined that allow the user to analyze complex nonlinear dynamic 

effects.
[2]

 The nonlinear frequency response methods reveal complex resonance, inter 

modulation, and energy transfer effects that cannot be seen using a purely linear analysis 

and are becoming increasingly important in a nonlinear world. 

 

TIME DOMAIN AND FREQUENCY DOMAIN: 

The frequency domainrefers to the analysis of mathematical functions or signals with 

respect to frequency, rather than time.
[1]

 Put simply, a time-domain graph shows how a 

signal changes over time, whereas a frequency-domain graph shows how much of the 

signal lies within each given frequency band over a range of frequencies. A frequency-

domain representation can also include information on the phase shift that must be applied 

to each sinusoid in order to be able to recombine the frequency components to recover the 

original time signal. the frequency domainrefers to the analysis of mathematical 

functions or signals with respect to frequency, rather than time.
[1]

 Put simply, a time-

domain graph shows how a signal changes over time, whereas a frequency-domain graph 

shows how much of the signal lies within each given frequency band over a range of 



frequencies. A frequency-domain representation can also include information on 

the phase shift that must be applied to each sinusoid in order to be able to recombine the 

frequency components to recover the original time signal. Time domain and frequency 

domain are two modes used to analyze data. Both time domain analysis and frequency 

domain analysis are widely used in fields such as electronics, acoustics, 

telecommunications, and many other fields. 

 Frequency domain analysis is used in conditions where processes such as filtering, 

amplifying and mixing are required. 

 Time domain analysis gives the behavior of the signal over time. This allows 

predictions and regression models for the signal. 

 Frequency domain analysis is very useful in creating desired wave patterns such as 

binary bit patterns of a computer. 

 Time domain analysis is used to understand data sent in such bit patterns over time. 

Time Domain: 

Time domain analysis is analyzing the data over a time period. Functions such as 

electronic signals, market behaviors, and biological systems are some of the functions that 

are analyzed using time domain analysis. For an electronic signal, the time domain analysis 

is mainly based on the voltage – time plot or the current – time plot. In a time domain 

analysis, the variable is always measured against time. There are several devices used to 

analyze data on a time domain basis. The cathode ray oscilloscope (CRO) is the most 

common device when analyzing electrical signals on a time domain. 

Frequency Domain: 

Frequency domain is a method used to analyze data. This refers to analyzing a 

mathematical function or a signal with respect to the frequency. Frequency domain 

analysis is widely used in fields such as control systems engineering, electronics and 

statistics. Frequency domain analysis is mostly used to signals or functions that are 

periodic over time. This does not mean that frequency domain analysis cannot be used in 

signals that are not periodic. 

The most important concept in the frequency domain analysis is the transformation. 

Transformation is used to convert a time domain function to a frequency domain function 

and vice versa. The most common transformation used in the frequency domain is the 

Fourier transformations. Fourier transformation is used to convert a signal of any shape 



into a sum of infinite number of sinusoidal waves. Since analyzing sinusoidal functions is 

easier than analyzing general shaped functions, this method is very useful and widely used. 

All signals have a frequency domain representation and Fourier detailed the theory that any 

real world waveform can be generated by the addition of sinusoidal waves. The following 

diagram shows an example of this process: 

There are a number of different mathematical transforms which are used to analyze time 

functions and are referred to as frequency domain methods. The following are some most 

common transforms, and the fields in which they are used: 

 Fourier series – repetitive signals, oscillating systems  

  Fourier transform – nonrepetitive signals, transients  

 Laplace transform – electronic circuits and control systems   

 Z transform – discrete signals, digital signal processing . 

 

 

GAIN AND PHASE MARGINS: 

The gain margin is the amount of gain increase or decrease required to make the loop gain 

unity at the frequency Wgm where the phase angle is –180° (modulo 360°). In other words, 

the gain margin is 1/g if g is the gain at the –180° phase frequency. n electronic amplifiers, 

the phase margin (PM) is the difference between the phase and 180°, for an amplifier's 

output signal (relative to its input), at a certain frequency. 

. 

Typically the open-loop phase lag (relative to input) varies with frequency, progressively 

increasing to exceed 180°, at which frequency the output signal becomes inverted, 

or antiphase in relation to the input. The PM will be positive but decreasing at frequencies 

less than the frequency at which inversion sets in (at which PM = 0), and PM is negative 

(PM < 0) at higher frequencies. In the presence of negative feedback, a zero or negative 

PM at a frequency where the loop gain exceeds unity (1) guarantees instability. Thus 

positive PM is a "safety margin" that ensures proper (non-oscillatory) operation of the 

circuit. This applies to amplifier circuits as well as more generally, to active filters, under 

various load conditions (e.g. reactive loads). In its simplest form, involving ideal negative 

feedback voltage amplifiers with non-reactive feedback, the phase margin is measured at 

the frequency where the open-loop voltage gain of the amplifier equals the desired closed-

loop DC voltage gain.
[1]

 



More generally, PM is defined as that of the amplifier and its feedback network combined 

(the "loop", normally opened at the amplifier input), measured at a frequency where 

the loop gain is unity, and prior to the closing of the loop, through tying the output of the 

open loop to the input source, in such a way as to subtract from it. 

In the above loop-gain definition, it is assumed that the amplifier input presents zero load. 

To make this work for non-zero-load input, the output of the feedback network needs to be 

loaded with an equivalent load for the purpose of determining the frequency response of 

the loop gain. 

It is also assumed that the graph of gain vs. frequency crosses unity gain with a negative 

slope and does so only once. This consideration matters only with reactive 

and active feedback networks, as may be the case with active filters. 

Phase margin and its important companion concept, gain margin, are measures of stability 

in closed-loop, dynamic-control systems. Phase margin indicates relative stability, the 

tendency to oscillate during its damped response to an input change such as a step function. 

Gain margin indicates absolute stability and the degree to which the system will oscillate, 

without limit, given any disturbance. 

The output signals of all amplifiers exhibit a time delay when compared to their input 

signals. This delay causes a phase difference between the amplifier's input and output 

signals. If there are enough stages in the amplifier, at some frequency, the output signal 

will lag behind the input signal by one cycle period at that frequency. In this situation, the 

amplifier's output signal will be in phase with its input signal though lagging behind it by 

360°, i.e., the output will have a phase angle of −360°. This lag is of great consequence in 

amplifiers that use feedback. The reason: the amplifier will oscillate if the fed-back output 

signal is in phase with the input signal at the frequency at which its open-loop voltage gain 

equals its closed-loop voltage gain and the open-loop voltage gain is one or greater. The 

oscillation will occur because the fed-back output signal will then reinforce the input signal 

at that frequency.
[2]

 In conventional operational amplifiers, the critical output phase angle 

is −180° because the output is fed back to the input through an inverting input which adds 

an additional −180°. 

In practice, feedback amplifiers must be designed with phase margins substantially in 

excess of 0°, even though amplifiers with phase margins of, say, 1° are theoretically stable. 

The reason is that many practical factors can reduce the phase margin below the theoretical 

minimum. A prime example is when the amplifier's output is connected to a capacitive 

load. Therefore, operational amplifiers are usuallycompensated to achieve a minimum 



phase margin of 45° or so. This means that at the frequency at which the open and closed 

loop gains meet, the phase angle is −135°. The calculation is: -135° - (-180°) = 45°. See 

Warwick
[3]

 or Stout
[4]

 for a detailed analysis of the techniques and results of compensation 

to insure adequate phase margins. See also the article "Pole splitting". Often amplifiers are 

designed to achieve a typical phase margin of 60 degrees. If the typical phase margin is 

around 60 degrees then the minimum phase margin will typically be greater than 45 

degrees. A phase margin of 60 degrees is also a magic number because it allows for the 

fastest settling time when attempting to follow a voltage step input (a Butterworth design). 

An amplifier with lower phase margin will ring
[nb 1]

 for longer and an amplifier with more 

phase margin will take a longer time to rise to the voltage step's final level. 

A related measure is gain margin. While phase margin comes from the phase where the 

loop gain equals one, the gain margin is based upon the gain where the phase equals -180 

degrees. 

BODE PLOTS: 

 Bode plot   is a graph of the frequency response of a system. It is usually a combination of 

a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency 

response, and a Bode phase plot, expressing the phase shift. Both quantities are plotted 

against a horizontal axis proportional to thelogarithm of frequency. Given that 

the decibel is itself a logarithmic scale, the Bode amplitude plot is log–log plot, whereas 

the Bode phase plot is a lin-logplot.
[1]

 

As originally conceived by Bode in the 1930s, the plot is only 

an asymptoticapproximation of the frequency response, using straight line 

segments.
[2]

However, with the advent of low cost computing, it is often taken nowadays to 

mean the precise plot of the actual frequency response. 

NYQUIST STABILITY CRITERION: 

In control theory and stability theory, the Nyquist stability criterion, discovered by 

Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratoriesin 

1932,
[1]

 is a graphical technique for determining the stability of a dynamical system. 

Because it only looks at the Nyquist plot of the open loop systems, it can be applied 

without explicitly computing the poles and zeros of either the closed-loop or open-loop 

system (although the number of each type of right-half-plane singularities must be known). 

As a result, it can be applied to systems defined by non-rational functions, such as systems 

with delays. In contrast to Bode plots, it can handletransfer functions with right half-plane 



singularities. In addition, there is a natural generalization to more complex systems 

with multiple inputs and multiple outputs, such as control systems for airplanes. 

The Nyquist criterion is widely used in electronics and control system engineering, as well 

as other fields, for designing and analyzing systems with feedback. While Nyquist is one of 

the most general stability tests, it is still restricted to linear, time-invariant (LTI) systems. 

Non-linear systems must use more complex stability criteria, such as Lyapunov or 

the circle criterion. While Nyquist is a graphical technique, it only provides a limited 

amount of intuition for why a system is stable or unstable, or how to modify an unstable 

system to be stable. Techniques like Bode plots, while less general, are sometimes a more 

useful design tool. In control theory and stability theory, the Nyquist stability criterion, 

discovered by Swedish-American electrical engineer Harry Nyquist at Bell Telephone 

Laboratoriesin 1932,
[1]

 is a graphical technique for determining the stability of a dynamical 

system. Because it only looks at the Nyquist plot of the open loop systems, it can be 

applied without explicitly computing the poles and zeros of either the closed-loop or open-

loop system (although the number of each type of right-half-plane singularities must be 

known). As a result, it can be applied to systems defined by non-rational functions, such as 

systems with delays. In contrast to Bode plots, it can handletransfer functions with right 

half-plane singularities. In addition, there is a natural generalization to more complex 

systems with multiple inputs and multiple outputs, such as control systems for airplanes. 

The Nyquist criterion is widely used in electronics and control system engineering, as well 

as other fields, for designing and analyzing systems with feedback. While Nyquist is one of 

the most general stability tests, it is still restricted to linear, time-invariant (LTI) systems. 

Non-linear systems must use more complex stability criteria, such as Lyapunov or 

the circle criterion. While Nyquist is a graphical technique, it only provides a limited 

amount of intuition for why a system is stable or unstable, or how to modify an unstable 

system to be stable. Techniques like Bode plots, while less general, are sometimes a more 

useful design tool. 

The Nyquist criterion 

We first construct the Nyquist contour, a contour that encompasses the right-half of the 

complex plane: 

 a path traveling up the  axis, from  to . 

 a semicircular arc, with radius , that starts at  and travels clock-wise 

to . 



The Nyquist contour mapped through the function  yields a plot of 

 in the complex plane. By the Argument Principle, the number of clock-wise encirclements 

of the origin must be the number of zeros of  in the right-half complex plane 

minus the poles of  in the right-half complex plane. If instead, the contour is 

mapped through the open-loop transfer function , the result is the Nyquist 

Plot of . By counting the resulting contour's encirclements of -1, we find the 

difference between the number of poles and zeros in the right-half complex plane 

of . Recalling that the zeros of  are the poles of the closed-loop 

system, and noting that the poles of  are same as the poles of , we now 

state  

The Nyquist Criterion: 

Given a Nyquist contour , let  be the number of poles of  encircled by , 

and  be the number of zeros of encircled by . Alternatively, and more 

importantly,  is the number of poles of the closed loop system in the right half plane. 

The resultant contour in the -plane,  shall encircle (clock-wise) the 

point   times such that . 

 If the system is originally open-loop unstable, feedback is necessary to stabilize the 

system. Right-half-plane (RHP) poles represent that instability. For closed-loop 

stability of a system, the number of closed-loop roots in the right half of the s-plane 

must be zero. Hence, the number of counter-clockwise encirclements about 

 must be equal to the number of open-loop poles in the RHP. Any clockwise 

encirclements of the critical point by the open-loop frequency response (when judged 

from low frequency to high frequency) would indicate that the feedback control system 

would be destabilizing if the loop were closed. (Using RHP zeros to "cancel out" RHP 

poles does not remove the instability, but rather ensures that the system will remain 

unstable even in the presence of feedback, since the closed-loop roots travel between 

open-loop poles and zeros in the presence of feedback. In fact, the RHP zero can make 

the unstable pole unobservable and therefore not stabilizable through feedback. If the 

open-loop transfer function  has a zero pole of multiplicity , then the Nyquist 

plot has a discontinuity at . During further analysis it should be assumed that 

the phasor travels  times clock-wise along a semicircle of infinite radius. After 



applying this rule, the zero poles should be neglected, i.e. if there are no other unstable 

poles, then the open-loop transfer function  should be considered stable. 

 If the open-loop transfer function  is stable, then the closed-loop system is 

unstable for any encirclement of the point -1. 

  

 If the open-loop transfer function  is unstable, then there must be 

one counter clock-wise encirclement of -1 for each pole of  in the right-half of 

the complex plane. 

 The number of surplus encirclements (greater than N+P) is exactly the number of 

unstable poles of the closed-loop system. 

 However, if the graph happens to pass through the point , then deciding 

upon even the marginal stability of the system becomes difficult and the only 

conclusion that can be drawn from the graph is that there exist zeros on the  axis. 

 

  

 

POLAR PLOTS: 

the polar coordinate system is a two-dimensional coordinate system in which each point on 

a plane is determined by a distance from a reference point and an anglefrom a reference 

direction. Angles in polar notation are generally expressed in 

either degrees or radians (2π rad being equal to 360°). Degrees are traditionally used 

in navigation, surveying, and many applied disciplines, while radians are more common in 

mathematics and mathematical physics.
[9]

 

In many contexts, a positive angular coordinate means that the angle ϕ is 

measuredcounterclockwise from the axis. 

 

Polar equation of a curve 

The equation defining an algebraic curve expressed in polar coordinates is known as 

a polar equation. In many cases, such an equation can simply be specified by defining r as 



afunction of ϕ. The resulting curve then consists of points of the form (r(ϕ), ϕ) and can be 

regarded as the graph of the polar function r. 

Different forms of symmetry can be deduced from the equation of a polar function r. 

If r(−ϕ) = r(ϕ) the curve will be symmetrical about the horizontal (0°/180°) ray, if r(π − ϕ) 

= r(ϕ) it will be symmetric about the vertical (90°/270°) ray, and if r(ϕ − α) = r(ϕ) it will 

be rotationally symmetric by α clockwise and counterclockwise about the pole. 

Because of the circular nature of the polar coordinate system, many curves can be 

described by a rather simple polar equation, whereas their Cartesian form is much more 

intricate. Among the best known of these curves are the polar rose, Archimedean 

spiral, lemniscate,limaçon, and cardioid. 

For the circle, line, and polar rose below, it is understood that there are no restrictions on 

the domain and range of the curve. 

Circle 

 

A circle with equation r(ϕ) = 1 

The general equation for a circle with a center at (r0, ) and radius a is 

 

This can be simplified in various ways, to conform to more specific cases, such as the 

equation 

 

for a circle with a center at the pole and radius a.
[14]

 

When r0 = a, or when the origin lies on the circle, the equation becomes 

. 

In the general case, the equation can be solved for r, giving 

, 



the solution with a minus sign in front of the square root gives the same 

curve 

 

 

 

 

 

 



SEE1203 – CONTROL SYSTEMS 

 

Unit V 

 

COMPENSATION AND CONTROLLERS 

PI, PD, PID Controllers 

 

A Controller with transfer function Gc(s) can be introduced in cascade with open loop 

transfer function, G(s) to modify the transient and steady state response of the system. 

The different types of controllers employed in control system are the following: 

1. Proportional Controller (P- Controller) 

2. Proportional – Plus –Integral Controller (PI Controller) 

3. Proportional – Plus – Derivative Controller (PD Controller) 

4. Proportional – Plus – Derivative- Plus –Integral Controller ( PID Controller) 
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Procedure for Design of PD/PI/PID controller in frequency domain 

Step 1: Determine the magnitude and phase of uncompensated open loop sinusoidal transfer 

function (ie G(j)) 

             Let A1 = |G(j)| at =1 

             And 1= G(j) at =1 

  Step 2: Determine the phase margin of uncompensated system and the angle to be    

contributed by the controller to achieve the desired phase margin. 

   Let yu = phase margin of uncompensated system 

                   Yd = Desired phase margin at 1 

                      = Phase angle of the controller at =1 

         Now yu = 180+1 



                             = yd – yu 

Step 3: Determine the transfer function of the controller 

a) PD Controller 
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b) PI Controller 
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c) PID Controller 

Transfer function of PI controller 
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Evaluate Ki such that the compensated system satisfies the error requirement. For 

example if the compensated system is type 1 system then, 
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 will give the value of ki 
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Step 4:  Determine the open loop transfer function of compensation system 

                              The transfer function of the controller is placed in series with G(s) as shown in fig 



 

                                    Open loop transfer function of compensated system, )()()( sGsGsG co   

  Step 5: Verify the design by calculating phase margin of compensated system. 

            Let A0 = |G0 (j)| at =1 

             and 0= G0(j) at =1 

           Y0 = phase margin of compensated system 

           Now y0 = 180+0 

It can be observed that A0=1 anf y0 satisfies the specifications. 

 

Example:  Consider a unity feedback system with open loop transfer function, 

)1)(5.0(

5
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sss
sG . Design a PD controller so that the phase margin of the system 

is 30 at a frequency of 1.2 rad/sec. 

Solution: 

Step 1: 
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Put s=j in G(s) 

 




1212 tan12tan4190

10

)1)(21(

10
)(

 





jjj
jG  

22 141

10
|)(|





jG  

                          11 tan2tan90)(   jG  

The gain crossover frequency of compensated system 1=1.21 rad/sec 
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To find yu &  

Yu=180+1=180+(-207.5)=-27.5 

=yd-yu = 30 – (-27.5) =57.3 
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   To verify the design 

    Put s=j in G0(s) 
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Phase margin of the compensated system is satisfactory, hence the design is acceptable. 

Transfer function of PD controller Gc(s) =0.262 (1+1.33) 
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Example 2: 

Consider a unity feedback system with open loop transfer function 

)10))(2)(1(
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sss
sG . Design a PID controller, so that the phase margin of the system 

is 45 at a frequency of 4 rad/sec and the steady state error for unit ramp input is 0.1. 

Solution 
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Put s=j in G(s) 
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The gain crossover frequency of compensated system 1=4rad/sec 

Let, A1=|G(j)| at =1 

        1=G(j) at =1 

5.0
401.01425.0141

5

222
1 


A  

 161)41.0(tan)45.0(tan4tan 111

1    

To find yu &  

Yu=180+1=180-161=19 

=yd-yu = 45-19 =26 

To find transfer function of PID controller 

ess =0.1 for unit ramp input 
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To find open loop transfer function of compensated system 
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To verify the design 

Put s=j in G0(s) 
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The phase margin of the compensated system meets the given specification, hence the 

design is acceptable. 

Compensators 

Both a lead compensator and a lag compensator have the same shape: 

Lead compensators: 

 

 

Lag compensators: 

 



 

So they have a zero at 𝑠 = − 1 /𝜏 and a pole at 𝑠 = − 1/ 𝛼 or – 1/ 𝛽 

For lead compensators the pole lies more to the left in the complex plane than the zero and 

vice versa for lag compensators 

Their differences show themselves clearly by comparing their respective Bode plots: 

 

Lead compensators: design with Bode plots 

Required increase in phase gain: 𝜙 

 To compensate for increase GCF due to 𝐶(𝑠) ⇒ 𝜙𝑚 = 𝜙 + 5°. This will determine 𝛼 and 𝜏. 

  𝐾 will be used to tune the steady state error 

Determination of 𝛼 

From the polar plot, we find 

 



 

Determination of τ 

From the Bode plot of the lead compensator, the maximal phase is obtained at the frequency 

of the geometric mean of 

 

Use the gain crossover frequency of 𝑃( 𝑠) 𝐶( 𝑠) as 𝜔𝑚: 

 

 

 

So the value of 𝜔𝑚 can be determined from 𝑃(𝑠)’s Bode plot, 

Determination of K 

Remember the steady state error for references of the shape 𝐴𝑡𝑛𝜀( 𝑡) /𝑛!, with 𝜀(𝑡) the step 

function   

The error constants 𝐾𝑝, 𝐾𝑣 and 𝐾𝑎 as measures for the steady state error for a proportional 

(𝑛 = 0), linear (𝑛 = 1) and accelerating (𝑛 = 2) reference   

So these error constants can be used to find proper values of 

 

Procedure for design of lead compensators using Bode plot 

1. Find 𝐾 from  steady-state requirement 



2. Determine 𝜙, the amount with which to increase the Phase Margin(PM); if the PM is 

OK, then don’t need a lead compensator; a proportional controller with gain 𝐾 

suffices 

3. Add 5°, to get 𝜙𝑚 = 𝜙 + 5° (if 𝜙𝑚 > 60°, then more than one lead compensator) 

4. Find 𝛼 from this 𝜙𝑚:   , and hence also k 

5. Find the desired 𝜔𝑚 by looking at the Bode plot of 𝑃(𝑠) and finding the frequency at 

which the gain equals − 20 log (𝐾 𝛼) dB 

6. find 𝜏 as 1 /𝜔m 

7. Verify if the system behaves as desired. 

Example 

Given: system 𝑃(𝑠) = 4/𝑠(𝑠 + 2) at 𝑃M ≥ 50° and a steady state error for a slope reference of 

𝐴/20. 

Solution: 

 

 



 

 

 

 

 

 

 

 



 

Lag compensators: 

Increase the stability and tune the steady-state error by increasing the phase at the crossover 

frequency 

Impact lag compensator = lead compensator, but different approach 

By decreasing the gain, the gain crossover frequency comes down to a frequency at which the 

corresponding phase is higher. 

Procedure for design of lag compensators using Bode plot 

1. Translate the steady-state requirement into a requirement on lim 𝑠→0 𝐶( 𝑠) = 𝐾 and 

verify whether a proportional controller with gain 𝐾 would suffice 

2. Read 𝜔, the frequency at which the phase margin equals −180° + your desired phase 

margin + 10°, off the Bode diagram; this allows us to compute 𝜏 = 10/ 

3. Read 𝑄, the magnitude at 𝜔 off the Bode plot and determine 𝐾 = 1/ 𝑄 

4. Determine 𝛽 = 𝐾/𝐾 

5.  Verify the behaviour of the resulting system 

Example: 

Given: system 𝑃(𝑠 )= 1/𝑠 (𝑠+1)( 𝑠+2) for 𝑃M ≥ 40° and a ramp input results in a 

steady state error of at most 𝐴/5, or 𝐾𝑣 = 5/s 

Solution: 

 



 

 

1. Steady-state requirement 𝐾𝑣 = 5/s 

 

 

Adding a gain of 10 = 20 dB to get the right steady state error, the phase gain 

would become negative which means the system would become unstable. So Lag 

compensator is necessary 

 



 


