
SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

Base class and derived class relationship-Derived class declaration-Forms of inheritance-
Inheritance and member accessibility- Constructors in derived class-Destructors in derived class-
Multiple inheritance-Multi level inheritance-Hybrid inheritance-Virtual base classes-Member
function overriding-Virtual functions.

3.1 INHERITANCE

The mechanism of deriving a new class from an old one is called inheritance(or

derivation). The old class is referred to as the base class and the new one is called the derived

class. The derived class with only one base class is called single inheritance and one with several

base classes is called multiple inheritance. On the other hand, the traits of one class may be

inherited by more than one class. This process is known as hierarchical inheritance. The

mechanism of deriving a class from another ‘derived class’ is known as multilevel inheritance.

The following figure shows various forms of inheritance that could be used for writing extensible

programs. The direction of arrow indicates the direction of inheritance.

DEFINITION:

The mechanism of deriving the new class from an old one is called inheritance.

The old class is called as base class and the new class is called as derived class.

Types of Inheritance:

1. Single inheritance

2. Multiple inheritance

3. Multilevel inheritance

4. Hierarchical inheritance(refer Assignment)

5. Hybrid inheritance

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

 A

Single Inheritance
B

A B

Multiple Inheritance
C

Hierarchical Inheritance

A

C
B D

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

Multilevel Inheritance

A

B

C

Hybrid Inheritance
A

CB

D

Defining derived classes:-

A derived class is defined by specifying its relationship with the base class in

addition to its own details.

The general form:-

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

class derived-class-name: visibly-mode base-class-name

{

------------//

------------//members of derived class

};

The colon indicates that the derived-class-name is derived from the base-class-

name. The visibility mode is optional and, if present, may be either private or public. The default

visibility-mode is private. Visibility mode specifies whether the features of the base class are

privately derived or publicly derived. Examples:-

class ABC:private XYZ//private derivation

{
members of ABC

};

class ABC:public XYZ//public derivation

{

members of ABC

};

class ABC:XYZ//private derivation by default

{

members of ABC

};

When base class is privately inherited by a derived class, ’public members’ of the

base class become ‘private members’ of the derived class and therefore the public members of

the base class can only be accessed by the member functions of the derived class. They are

inaccessible to the objects of the derived class. Remember, a public member of a class be

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

accessed by its own objects using the dot operator. The result is that no member of the base class

is accessible to the objects of the derived class.

When the base class is publicly inherited, ‘public members’ of the base class

become ‘public members’ of the derived class and therefore they are accessible to the objects of

the derived class. In both the cases, the private members are not inherited and therefore, the

private members of the base class will never become the members of its derived class.

1. SINGLE INHERITANCE:-

The new class can be derived from only one base class is called single inheritance.

Let us consider a simple example to illustrate inheritance. The following program shows

the base class B and a derived class D. The class B contains one private data member, one public

data member, and three public member functions. The class D contains one private data member

and two public member functions.

#include<iostream.h>

class B

{

int a; //private; not inheritable

public:

int b; //public; ready for inheritance

void get_ab()

{

a=5;

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

b=10;

}

int get_a(void)

{

return a;

}

void show_a(void)

{

cout<<”a=”<<a<<endl;

}

};

class D:public B //public derivation

{

int c;

public:

void mul(void)

{

c=b*get_ab();
}

void display()

{

cout<<”a=”<<get_ab()<<endl;

cout<<”b=”<<b<<endl;

cout<<”c=”<<c<<endl;

}

};

void main()

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

{

D d;

d.get_ab();

d.mul();

d.show_a();

d.display();

d.b=20;

d.mul();

d.display();

}

Output:-

a=5

a=5

b=10

c=50

a=5

b=20

c=100

The class D is a public derivation of the class B. Therefore, D inherits all the public members of

B and retains their visibility. Thus a public member of the base class B is also a public member

of the derived class D. The private members of B cannot be inherited by D. The program

illustrates that the objects of class D have access to all the public members of B. Let us have a

look at the functions show_a() and mul().

void show_a()

{

cout<<”a=”<<a<<endl;

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

}

void mul()

{

c=b*get_a();//c=b*a

Although the data member a is private in B and cannot be inherited, objects of D are able

to access it through an inherited member function of B. Let us now consider the case of private

derivation.

#include<iostream.h>

class B

{

int a;

public:

int b;

void get_ab();

int get_a(void);

void show_a(void);

};

class D:private B

{

int c;

public:

void mul(void);

void display();

};

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

In private derivation, the public members of the base class become private members of

derived class. Therefore, the objects of D can not have direct access to the public member

functions of B.The statement such as d.get_ab(),d.get_a(),d.show_a() will not work.

Program:-

#include<iostream.h>

class B

{

int a;//private; not inheritable

public:

int b;//public; ready for inheritance

void get_ab()

{

a=5;

b=10;

}

int get_a(void)

{

return a;

}

void show_a(void)

{

cout<<”a=”<<a<<endl;

}

};

class D:private B//private derivation

{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

int c;

public:

void mul(void)

{
c=b*get_ab();

}

void display()

{

cout<<”a=”<<get_ab()<<endl;

cout<<”b=”<<b<<endl;

cout<<”c=”<<c<<endl;

}

};

void main()

{

D d;

/ d.get_ab(); it won’t work

d.mul();

//d.show_a(); won’t work

d.display();

//d.b=20; won’t work

d.mul(); d.display();

}

Output:-

a=5

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

b=10

c=50

a=12

b=20

c=240

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

A private member of a base class cannot be inherited and therefore it is not available for

derived class directly. A protected which serve a limited purpose in inheritance. A member

declared as protected is accessible by the member functions within its class and any class

immediately derived from it. It cannot be accessed by the functions outside these two classes. A

class can now use all the three visibility modes as illustrated below:

class alpha

{

private:

------- //optional

------- // visible to member functions

------- // within its class

protected:

---------- // visible to member functions

---------- // of its own and derived class

public:

---------- // visible to all functions

---------- //in the program

}

When a protected member is inherited in public mode, it becomes protected in the

derived class too, and therefore is accessible by the member functions of the derived class. It is

also ready for further inheritance. A protected member, inherited in the private mode derivation,

becomes private in the derived class. Although it is available to the member functions of the

derived class, it is not available for further inheritance.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

2.Multilevel Inheritance:-

The class A serves as a base class for the derived class B which in turn serves as a base

class for the derived class C. The chain ABC is known as inheritance path.

Base class
A

Grandfather

B

Intermediate base class Father

Derived class
C

Child

A derived class with multilevel inheritance is declared as follows.

class A(….) ;

class B:public A(…..);

class C:public B(…..);

The multilevel inheritance is defined as, the new class is derived from another derived class.

Here the class A serves as a base class for the derived class B which in turn serves as a base class

for the derived class C. The derived class is defined as,

Class A

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

{

//body of base class A

};

Class B : public A

{

//body of intermediate base class B

};
Class C : public B

{

//body of derived class

};

Example Program

EXAMPLE :1

#include <iostream.h>

class student

{

protected:

int rollno:

public:

void getroll(int x)

{

rollno = x;

}

};

void test: public student

{

protected:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

float sub1, sub2;

public:

void getmart(int y, int z)

{

sub1 = y; sub2= z;

}

};

void result : public test

{

float total;
public:

void display() {

total = sub1 + sub2;

cout<<rollno<<sub1<<sub2;

cout<<total;

}

};

void main()

{

result s;

s.getroll(101);

s.getmark(90, 100);

s.display();

EXAMPLE :2

#include<iostream.h>

class student

{

protected:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

int roll_number;

public:

void get_number(int);

{

roll_number=a;

}

void put_number(void)

{

cout<<”Roll Number:”<<roll_number<<endl;

}

};

class test: public student //First level derivation

{
protected:

float sub1;

float sub2;

public:

void get_marks(float,float)

{

sub1=x;

sub2=y;

}

void put_marks(void)

{

cout<<”Marks in sub1=”<<sub1<<endl;

cout<<”Marks in sub2=”<<sub2<<endl;

}

};

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

class result : public test // second level derivation

{

float total;

public:

void display(void)

{

total=sub1+sub2;

put_number();

put_marks();

cout<<”Total=”<<total<<”\n”;

}

);

void main()

{

result student1;

student1.get_number(111);
student1.get_marks(75.0,59.5);

student1.display();

}

Output:-

Roll Number:111

Marks in sub1:75

Marks in sub2:59.5

Total:134.5

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

3.MULTIPLE INHERITANCE:-

A class can inherit the attributes or properties of two or more classes that is a new class

can be derived from more than one base class is called multiple inheritance. Here the class A ,

class B and class C serves as a base class for the derived class D

The derived class definition syntax is:

class d: visibility base-1, visibility base 2,…

{

body of class D;

};

Example:

#include<iostream.h>

class A

{

protected:

int rollno;

public:

void getroll(int x)

{
rollno=x;

}

};

class B

{

protected:

int sub1,sub2;

public:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

void getmark(int y,int z)\

{

sub1=y;

sub2=z;

}

};

class C : public A, public B

{

int total;

public:

void display()

{

total=sub1+sub2;

cout<<”roll no:”<<rollno<<”sub1:”<<sub1<<”sub2:”<<sub2;

cout<<”total”<<total;

}

};

void main()

{

C s;

s. getroll(435);

s.getmark(100,90);

s.display();

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

}

Run:

Roll no : 435

Sub1: 100

Sub2: 90

4.HIERARCHICAL INHERITANCE:-

The hierarchical inheritance structure is given below .This type is helpful when we have

class hierarchies. In this scheme the base class will include all the features that are common to

the subclasses.

#include<iostream.h>

#include<string.h>

class A

{

protected:

int x, y;

public:

void get ()

{

cout<<”Enter two values”<<endl;

cin>> x>>y;

}

};

class B : public A

{

private:

int m;

public:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

void add()

{

m= x + y;

cout<<”The Sum is “<<m;
}

};

class C : public A

{

private:

int n;

public:

void mul()

{

n= x * y;

cout << “The Product is “<<n;

}

};

class D : public A

{

private:

float l;

public:

void division()

{

l = x / y;

cout <<”The Quotient is “<< l;

}

};

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

void main()

{

B obj1;

C obj2;

D obj3;

B .get();

B .add();

C .get();

C .mul();
D .get();

D .division();

}

Output of the Program

Enter two values

12 6

The Sum is 18

The Product is 72

The Quotient is 2.0

5.HYBRID INHERITANCE:-

Hybrid inheritance = multiple inheritance + multi-level inheritance

The hybrid inheritance is defined as a combination of multilevel and multiple

inheritances. This new class can be derived by either multilevel or multiple method or both.

Example program

In this program the derived class (result) object will be inheriting the properties of

both test class and sports class.

#include <iostream.h>

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

class student

{

protected:

int rollno;

public:

void getroll (int x)

{

rollno = x;

}

};

class test: public student

{
protected:

int sub1, sub2’

public:

void getmark (int y, int z)

{

sub1 = y; sub2 = z;

}

};

class sports

{

protected:

int score;

public:

void getscore (int a)

{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

score=a;

}

};

class result: public test, public sports

{

int total;

public:

void display()

{

total= sub1+sub2+score;

cout<<”rollno:”<<rollno<< “total:”<<”Score:”<<total;

}

};

void main()

{

result S;
s.getroll(101);

s.getmark(90,98);

s.getscore(2000);

s. display();

}

Run:

Rollno: 101

Total: 188

Score: 2000

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

3.2 VIRTUAL FUNCTION

When we use the same function name in base and derived classes, the function in the

base classes is declared as virtual using keyword ‘virtual’ preceding its normal declaration.

The member function that can be changed at runtime is called virtual function.

Class classname

{

public:

.

virtual returntype functionname (arguments)

{

.

.}};

The virtual function should be defined in the public section of a class. When one function

is made virtual and another one is normal, and compiler determines which function to call at

runtime. In this we have to create a ‘basepointeer’.

If the basepointer paints to a base class object means it will execute the baseclass

function.

If the basepointer points to a derived class object means it will execute the

derived class function.

Example Program:

#include <iostream.h>

Class A

{

public:

void displayA()

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

{

cout<<”Welcome”;

}

virtual void show()

{

cout<<”Hello”;

}

};

class B: public A

{

public:

void display()

{

cout<<”Good Morning”;

}

void show()

{

cout<<”Hai”;

}

};

void main()

{

A S1;
B S2;

A *bptr;

bptr = &S1;

bptr→show(); //Calls base class show

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

bptr=&S2();

bptr→show();

S2. displayA();

S2.display();

//Calls derived class show

//Calls base class displayA

//Calls derived class display

}

RUN:

Hello

Hai

Welcome

Good Morning

Explanation:

The base pointer first holds the address of the base class object means it will run the base

class member function display and show will be executed. Next the base pointer points to the

derived class object, in this before executing the derived class function if will check whether the

corresponding base class function is ‘virtual’ or not, if it is not virtual then execute the base class

function otherwise it will execute the derived class function.

Rules for virtual function:

1. Virtual function must be a members of some class.

2. They cannot be static members.

3. They are accessed by using base pointer.

4. A virtual function in a base class must be defined eventhough it may not be used.

5. A prototype (or declaration) of a base class virtual function and all the derived class

version must be identical.

6. We cannot we a pointer to a derived class to access an object of the base class.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

The duplication of inherited members due to the multiple paths can be avoided by making

the common base class as virtual base class while declaring the direct or intermediate base

classes as shown below.

class A

{

};

class B1:virtual public A

{

};

class B2:public virtual A

{

};

class C:public B1,public B2

{

};

When a class is made a virtual base class, C++ takes necessary care to see that only one

copy of that class is inherited, regardless of how many inheritance paths exist between the virtual

base class and a derived class.

class A

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

{

private:
int a;

public:

void funcA()

{

cin>>a;

cout<<”a=”<<a;

}

};

class B:virtual public A

{private:

int b;

public:

void funcB()

{

cin>>b;

cout<<”b=”>>b;

}};

class C:public virtual A

{

private:

int c;

public:

void funC()

{

cin>>c;

cout<<”c=”>>c;

}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT III Subject Code : SBS1102
 PROGRAMMING WITH C++

};

class D : public B, public C
{

private:

int d;

public: void funD()

{

cin>>d;

cout<<”d=”>>d;

}

};

void main()

{ d1; C c1; c1.funC(); d1.funA();
d1.funB();

d1.funC();

d1.funD();

}

Output:-

5

c=5

4

a=4

6

b=6

8

c=8

9

d=9

SCHOOL OF COMPUTING

