
SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Classes and objects - class specification, class objects, accessing class members, defining
member functions, inline functions, accessing member functions within class, data hiding, class
member accessibility, empty classes, constructors, parameterized constructors, constructor
overloading, copy constructors, new, delete operators, “this” pointer, friend classes and friend
functions.

1.1 Classes and Objects

The most important feature of C++ is the “class”. A class is an extension of the idea of
structure used in C. it is a new way of creating and implementing a user-defined data type.

OOP constructs modeled out of data types called classes. Defining variables of a class
data type is known as a class instantiation and such variables are called objects.(Object is a n
instance of a class.)

SCHOOL OF COMPUTING

DATA

FUNCTIONS

data 1
data 2
data 3

funct1()
funct2()
funct3()

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 Fig.Class grouping of data and functions

 Placing data and functions together in a single unit is the central theme of the OOP. The
programmers are entirely responsible for creating their own classes and can also have access to
classes developed by the software vendors. The variables and functions enclosed in a class are
called data members and member functions respectively. Member functions define the
permissible operations on the data members of a class.

 Classes are the basic language construct of C++ for creating the user-defined data types.
They are syntactically extension of structures. The difference is that, all the members of a
structures are public by default where as, the members of classes are private by default. Class
follows the principle that the members should be private unless it is specifically declared public.

1.2 Class specification

 A class is a way to bind the data and its associated functions together. It allows
the data (and functions) to be hidden, if necessary, from external use.

A class specification has two parts:

1. class declaration
2. class function definitions

The class declaration describes the type and the scope of its members. The class function
definitions describe how the class functions are implemented.

The general form of a class declaration is:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

class class_name
{
 private:
 variable declarations;
 function declarations:
 public:
 variable declarations;
 function declarations:
};

 The class decaration is similar to a struct declaration.The keyword class specifies that
what follows is an abstract data of type class_name. The body of the class is enclosed within
braces and terminated by a semicolon. The class body contains the declarations of variables and
functions. These variables and functions are collectively known members. They are usually
grouped under two sections namely private and public to denote which of them are members of
private and public. The keywords private and public and private are known as visibility labels.
Note that these keywords are followed by a colon (:).

 The members that have been declared as private can be accessed only from within the
class. From the other hand the public members can be accessed from outside the class also. The
data hiding is the key future of object oriented programming. The use of the keyword private is
optional, by default the members of the class are private . If both the labels are missing, then by
default , all the members are private. Such a class is completely hidden from the outside world.

 The variables which are declared inside the class are known as data members and the
functions are known as member functions. Only the member functions can have access to the
private data members and private functions. The binding of data and functions together into a
single class_type variable is referred to as encapsulation.

A simple example for class

Class item
{

int number; //variables declared in the
float cost; //private section

public:
void getdata(); //function declared in public section
void putdata(); //function declared in public section

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

};

 class is given some meaningful name,such as item . The class contains two data members
and two function members. The data members are private by default. The function getdata() can
be used to read values for number and cost and putdata() to print the values. Note that the
function is declared and not defined. Actually the function definition appears after the program.
The data members are usually declared as private and the member functions as public.

1.2.1Creating objects (Class Objects)

 The above example class item shows what that class will contain, if we want to create an
object of that class, we must use the class name in such a way.

Item x; //memory for x is created

Which creates a variable x of type item. In C++ , the class variables are known as objects.
Therefore x is called as an object of type item. We may also declare more than one object in one
statement.

Eg: Item x,y,z;

The declaration of an object is similar to that of variables of any basic data type.

 Objects can also be created by placing the objects name immediately after the closing
brace, as we do in the case of structures. That is, the definition

Class item
i. {

……….
……….
……….
} x , y , z ;

would create the objects x,y,z of type item.

1.2.2Accessing class members

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 As pointed out earlier, the private data of a class can be accessed only through the member
functions of that class. The main() cannot contain statements that access number and cost
directly. The following is the format for calling a member functions.

Object_name . function_name (actual-arguments);

For example the function call statement

x.getdata(100,75.5);

is an valid and aasigns the value 100 to number and 75.5 to cost of the object x by implementing
the getdata() function. The assignments occur in the actual functions.

Similarly,
 x.putdata();

would display the values of data members.Remember,a member function can be invoked only by
using an object(of the same class).

The statements like,

getdata(100,75.5); //has no meaning
x.number=100; // illegal

The variables declared as public can be accessed by the objects directly.

Eg:
Class xyz
{

int x;
int y;

public:
int z;
………..
………..

}

void main()
{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

………..
………..
xyz p; //creating an object of class xyz
p.x = 0; // error, x is private
p.z = 10 //ok z is public
………..
………..
}

in the above example it makes an error when the private variables are assigned some values, it
does not create any error if the public variables are assigned directly.

1.2.3Defining member function

Member functions can be defined in two places:

 Outside the class definition
 Inside the class definition

Where ever the class is defined , it does the same job.

1.2.4Outside the class definition

 Member functions that are declared inside the class have to be defined outside the class
separately. Their definitions are very much like the normal functions. They should have a
function header and a function body.

 An important difference between a member function and normal function is that a
member function incorporates a membership ‘identity label’ in the header. This ‘label’ in the
header tells which class the function belongs to.

The general form of member function is :

return_type class_name : : function –name(argument declaration)
{
function body
}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 The membership label class-name :: tells the compiler that the function-name belongs to the
class class-name. That is the scope of the function is restricted to the class-name specified in the
header line. The symbol :: is called scope resolution operator.

 Consider the example below that we have declared the function inside the class (getdata()
and putdata()), and defining the function outside the class using the scope resolution operator
(: :).

Example program:

#include<iostream.h>
#include<conio.h>
class item
{

int number;
float cost;

public:
void getdata(); //function declared//
void putdata(); //function declared//

};

void item : : getdata() //defining the function getdata()
{
cout<<”enter the value of number and cost”;
cin>>number>>cost;
}

void item : : putdata() //defining the function putdata()
{
cout<<number<<cost;
}

void main()
{
item x; //creating an object x of class item
x.getdata(); //calls the function getdata()

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

x.putdata(); //calls the function putdata()
}

1.2.5 Inside the class definition

In the above program the function is defined outside the class using the scope resolution
operator .Those functions getdata() and putdata() can also be written inside the class as shown
below:

#include<iostream.h>
#include<conio.h>
class item
{

int number;
float cost;

public :
void getdata() //declaring and defining the function inside the class
{
cout<<”enter the value of number and cost”;
cin>>number>>cost;
}

void putdata() //declaring and defining the function putdata() inside the class
{
cout<<number<<cost;
}

};

void main()
{
item x;
x.getdata();
x.putdata();
}

Both the functions does the same job without any changes

1.2.6 Inline function

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

One of the objective of using functions in a program is to save some memory space ,
which becomes appreciable when a function is likely to be called many times. However, every
time a function is called, it takes a lot of extra time in executing a series of instructions for tasks
such as jumping to the function, saving registers, pushing arguments into the stack and returning
to the calling function. When a function is small a substantial percentage of execution time may
be spent in such overheads.

C++ has a solution to this problem. To eliminate the cost of calls to small function C++
proposes a new feature called inline function. An inline function is a function that is expanded
in line when it is invoked.That is,the compiler replaces the function call with the
corresponding function code.

An inline function can be defined as below:

inline function_header
{
function body
}

Example:
inline int cube(int a)
{
return (a*a*a);
}

The above inline function can be invoked by the statement like;

c = cube(3);
d = cube(2+2);

The output of the above statements will be 27 and 64 for c and d respectively.

 To make the function inline, just prefix the keyword inline to the function definition.
All inline functions must be defined before they are called.

 Remember that the inline keyword merely sends a request , not a command to the
compiler. The compiler may ignore this request if the the function definition is too long or too
complicated and compile the function as a normal function.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Some of the situations where the inline function may not work are:

 For functions returning values, if a loop, a switch, or a goto exists.
 For functions not returning values, if a return statement exists.
 If a function contains static variables.
 If inline function are recrusive.

Example program:

/* program to multiply and divide two different data type using inline function*/

#include<iostream.h>
#include<conio.h>
class inlinefunc
{

int a,b;
float c,d;
public:
 void multiply();
void divide();

}; inline void inlinefunc:: multiply()
{

cout<<"Enter 2 integers:";
cin>>a>>b;
int x=a*b;
cout<<x;

}
inline void inlinefunc::divide()
{

cout<<endl<<"Enter 2 float values:";
cin>>c>>d;
float y=c/d;
cout<<y;

}

void main()
{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

inlinefunc f;
clrscr();
f.multiply();
f.divide();
getch();

}

1.2.7 Accessing member functions within class (Nesting of member functions)

 A member of class is accessed by the objects of that class using dot operator.a
member function of class can call any other function of its own class , this is called as
nesting of member functions.

Example program:

#include<iostream.h>
#include<conio.h>
class greater
{

 int num1,num2;

 public:
void read()
{

cout<<”enter first number”;
cin>>num1;
cout<<”enter second number”;
cin>>num2;

}
int max()
{

if(num1>num2)
return num1;

else
return num2;

}

void showmax()
{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

cout<<”maximum=”<<max();
}

};

void main()
{

clrscr();
greater g1;

 g1.read();
 g1.showmax();
 getch();
}

1.2.8Static Data Members
 Intitialized to zero when the first object is created
 Only one copy is created for the entire class and is shared by all the objects
 Visiblity is within the class but its lifetime is throughout the program

Syntax for defining a static data member:
Datatype classname::staticmember_name;
Eg.

#include<iostream.h>
#include<conio.h>
class abc
{
static int ct;
public:
int a;

void get()
{
a++;
ct++;
}
void disp()
{
cout<<"a = "<<a<<endl;
cout<<"ct = "<<ct<<endl;

}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

};
int abc::ct;
void main()
{
clrscr();
abc o1,o2;
o1.a=0;
o2.a=0;
cout<<"o1.get"<<endl;
o1.get();
cout<<"o1.disp"<<endl;
o1.disp();
cout<<"o2.get"<<endl;
o2.get();
cout<<"o2.disp"<<endl;
o2.disp();
getch();
}

1.2.9 Static member function
 A static member function can access only the static data members of a class
 Syntax for calling the static member function from the main

Classname::staticfunction_name;

Example:
#include<iostream.h>
#include<conio.h>
class abc
{
static int ct;
public:
int a;

void get()
{
a++;
ct++;
}
void disp()
{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

cout<<"a = "<<a<<endl;

}
static void show()
{
cout<<"ct = "<<ct<<endl;
}
};
int abc::ct;
void main()
{
clrscr();
abc o1,o2;
o1.a=0;
o2.a=0;
cout<<"o1.get"<<endl;
o1.get();
cout<<"o1.disp"<<endl;
o1.disp();
abc::show();
cout<<"o2.get"<<endl;
o2.get();
cout<<"o2.disp"<<endl;
o2.disp();
abc::show();
getch();
}

1.2.10 Array of objects
#include<iostream.h>
#include<conio.h>
class abc
{
int a;
public:

void get()
{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

cin>>a;

}
void disp()
{
cout<<"a = "<<a<<endl;

}
};

void main()
{
clrscr();
abc o[5];
for(int i=0;i<3;i++)
{
o[i].get();
}
for(i=0;i<3;i++)
{
o[i].disp();
}

getch();
}

1.2.11 Passing objects as arguments
#include<iostream.h>
#include<conio.h>
class abc
{
int a;
public:

void get()
{

cin>>a;

}
void disp(abc o)

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

{
cout<<"a = "<<o.a<<endl;

}
};

void main()
{
clrscr();
abc o;
o.get();

o.disp(o);

getch();
}

1.2.12 Returning objects
#include<iostream.h>
#include<conio.h>
class abc
{

public:
int a;

void get()
{

cin>>a;

}
abc disp(abc o)
{
abc o1;
o1.a=o.a;
return o1;

}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

};

void main()
{
clrscr();
abc o;
o.get();

abc o2=o.disp(o);
cout<<o2.a;

getch();
}

1.2.13 Data hiding

 Data is hidden inside a class, so that it cannot be accessed by mistake by any function
outside the class,which is a key feature of OOP.

 C++ imposes a restriction to access both the data and functions of a class.It is achieved
by declaring the data part as private.All the data and functions defined in a class are private by
default.But for the sake of clarity,the members are declared explicitly as private.Normally,data
members are declared private and member functions are declared public.

1.2.14 Class member accessibility

 Access specifiers in OOP’s:

 Private
 Protected
 Public

 Private members

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 The private members of a class have strict access control.only the member functions of the
same class can access these members.The private members of a class are inaccessible outside the
class,thus providing a mechanism for preventing accidental modification of the data members.

Example:

class person
{

 private: //access specifier
…………
int age;
int getage();
………..

};
person p1;
a=p1.age(); //cannot access private data
p1.getage(); //cannot access private function

 Protected members

 The access control of the protected members is similar to that of private members and
has more significance in inheritance.

Example:

class person
{

 protected: //access specifier
…………
int age;
int getage();
………..

};

person p1;
a=p1.age(); //cannot access protected data
p1.getage(); //cannot access protected function

 (same as private)

 Public members

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 The members of a class which are to be visible(accessible) outside the class,should be
decalred in public section.All data members and function declared in the public section of the
class can be accessed without any restriction from anywhere in the program.

Example:

class person
{

 public: //access specifier
…………
int age;
int getage();
………..

};

person p1;
a=p1.age(); //can access public data
p1.getage(); //can access public function

S.No. Access specifier
Accessible to

Own class Members Objects of a Class

1.

2.

3.

Private:

Protected:

Public:

Yes

Yes

Yes

No

No

Yes

Fig.Visibily of class members

1.2.15 Empty classes

 The main reason for using a class is to encapsulate data and code. It is however,
possible to have a class that has neither data nor code i.e., it is possible to have empty
classes.

The declaration of empty classes is as follows:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

i. class b{};

ii. class Empty{};

iii. class abc
 {
 };

 are perfectly legal.

 This type of constructs is useful when developing a skeleton for a class.

 During the initial stages of development of a project, some of the classes are either
not fully identified or not fully implemented. In such cases, they are implemented as
empty classes during the first few implementations of the project. Such empty classes are
also called as stubs.

 The significant usage of empty classes can be found with exception handling.

 An empty class has size greater than zero.
 The memory allocated for objects of such classes is of nonzero size.

Example program:

/*to find the size of empty class object*/

#include <iostream.h>
#include<conio.h>

class nomembers
{
};

int main()
{
 nomembers n; // n is Object of class nomembers
 cout << "The size of an object of empty class is: " << sizeof(n) << endl;

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 getch();
 return();

}

Output:

The size of an object of empty class is: 1

 Two class objects of empty classes will have distinct addresses.
 Therefore, the objects have different addresses. Having different addresses makes it

possible to compare pointers to objects for identity.

Example program:

/* Two class objects of empty classes will have distinct addresses */

Eg1:

#include<iostream.h>
#include<conio.h>
class abc
{
};
void main()
{
abc o1,o2;
clrscr();
cout<<sizeof(o1)<<"\t"<<sizeof(o2)<<endl;
cout<<&o1<<"\t"<<&o2;
getch();

}

Output:

1 1

0x8feefff4 0x8feefff2

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Eg: 2

#include <iostream.h>
#include<conio.h>

 class A
 {

 };

 void main()
 {

clrscr():
A* p1 = new A;
A* p2 = new A;

cout << "The size of p1 object of empty class is: " << sizeof(p1)
<< endl;

cout << "The size of p2 object of empty class is: " << sizeof(p2)
<< endl;

cout<<”address of object p1 is”<<&p1<<endl;
cout<<”address of object p2 is”<<&p2<<endl;

 /* p1 != p2 at this point ...*/

getch();
}

Output:

The size of p1 object of empty class is:2
The size of p2 object of empty class is:2
address of object p1 is:4002
address of object p2 is:4004

1.2.16 Constructors

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 In all the C++ programs written using classes,we have used member functions such as
putdata() and setvalue() to provide initial values to the private member variables.

 For example the following statement,

A.input();
invokes the member function input(),which assigns the initial values to the data
items of object A.

 Similarly the statement,

x.getdata(100,29.5);
passes the initial values as arguments to the function getdata().Where these values
are assigned to the private variables of object x.

 All these functions call statements are used with the appropriate objects that have
already been created.

 These functions cannot be used to initialize the member variables at the time of
creation of their objects.

 In general, if we want to initialize an ordinary variable, we will be initializing as
below,

Ex:
int m = 20;
float x = 5.37;

are valid initialization statements for basic data types.

 When a variable of built-in type goes out of scope, the compiler automatically
destroys the variable. But it has not happened with the objects we have so far studied.

 C++ provides a special member function called the constructor which enables
an object to initialize itself when it is created. This is known as automatic initialization
of objects. It also provides another member function called the destructor that
destroys the objects when they are no longer required.

 Constructors

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 A constructor is a ‘special’ member function whose task is to initialize the objects
of its class and allocate the required resources such as memory i.e., normally
constructors are used for initializing the class data members.

 A constructor is distinct from other member functions of the class, and it is
special because its name is the same as the class name.

 The constructor is invoked whenever an object of its associated class is created.
 It is called constructor because it constructs the values of data members of the

class.
 The C++ run-time system makes sure that the constructor of a class is the first

member function to be executed automatically when an object of the class is
created i.e., the constructor is executed every time when an object of the class is
created.

 Similar to other members, the constructor can be defined either within or outside
the body of a class.

 It can access any data members like all other member functions, but cannot be
invoked explicitly and must have public status to serve its purpose.

 It is possible to define a class which has no constructor at all. In such a case, the
run-time system calls a dummy constructor (i.e., which performs no action)
when its object is created.

A constructor is declared and defined as:

 /*class with a constructor*/

class classname
{

........... //private members

public : //must be public

classname (); //constructor declared
…………
………..

};
 //no return type nor void

classname : : classname () //constructor defined
{
 //constructor body definition
}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Example:

 class integer
{

int m , n;
public :

integer (); //constructor declared

};

integer : : integer () //constructor defined
{
m=0;
n =0;
}

 When a class contains a constructor like the one defined above, it is guaranteed
that an object created by the class will be initialized automatically.

For example the declaration

integer eg1; // object eg1 created

not only creates an object eg1 of type integer, but also initializes m and n to zero. There
is no need to write any statement to invoke the constructor function (as we do with the
normal function).

The constructor functions have some special characteristics:

 They should be declared in the public section.
 They are invoked automatically when the objects are created.
 They do not have return types, not even void. Therefore, they cannot return any

value.
 They cannot be inherited by any class.
 It is normally used to initialize data members of class.
 They make ‘implicit calls’ to the operators new and delete when memory

allocation is required.
 Like other C++ functions , they can have default arguments.
 Constructors cannot be virtual.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 We cannot refer their address.
 An object with a constructor (or destructor) cannot be used as a member of a unio

Note: When a constructor is declared for a class, initialization of the class objects
become mandatory.

 Default constructor

 A constructor that accepts no parameters i.e., which does not take parameters
explicitly is called default constructor.

 The default constructor for class A is
A::A();

 If no such constructor is defined, then the compiler supplies a default constructor.
 Therefore a statement such as

 A a;
invokes the default constructor of the compiler to create object a.

 Parameterized constructors

 The constructor integer (), defined in the above example program, initializes the
data members of all the objects to zero.

 However in practice it may be necessary to initialize the data elements of different
objects with different values when they are created.

 C++ permits us to achieve this objective by passing arguments to the constructor
function when the objects are created.

 The constructors that can take arguments are called parameterized
constructors.

From the above example the constructor integer() may be modified to take arguments as shown
below:

Class integer
{

int m , n:
public:

integer (int x , int y)

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

};

integer : : integer (int x , int y)
{
m = x;
n = y;
}

 When a constructor has been parameterised,the object declaration statement such as,

integer eg1;
may not work.

 We must pass the initial values as arguments to the constructor function when an
object is declared. This can be done in two ways:

o By calling the constructor explicitly.
o By calling the constructor implicitly.

 Calling the constructor explicitly

The declaration is:

integer eg1 = integer(0,100); //explicit call
this object creates an integer object eg1 and passes the values 10 and 20 to it i.e., in the
above example parameters x and y are passed to the variables m and n.

 Calling the constructor implicitly

The declaration is:

integer eg1(10,20); //implicit call
here above an object eg1 is created of the class integer and the values 10 and 20
initialized to m and n by passing those values as arguments.

 This method is also called as shorthand method, is used very often as it is shorter,
looks better and easy to implement.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Note: When the constructor is parameterized, we must provide appropriate arguments for the
constructor.

Example program for parameterized constructor

 #include<iostream.h>
class integer
{

int m , n:
public:

integer (int , int); //constructor declared
void display(void)
{

cout<<”m“<<m<<endl;
cout<<”n“<<n<<endl;

}
};

integer : : integer (int x , int y) //constructor defined
{
m = x;
n = y;
}

void main()
{

integer eg1(10,20); //constructor called implicitly

integer eg2 = integer(25,75); //constructor called explicitly

cout<<”object1”<<endl;
eg1.display();

cout<<”object2”<<endl;
eg2.display();

}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Output

Object1
m=10
n=20

Object2
m=25
n=75

 The constructor’s functions can also be defined as inline functions.

Example

class integer
{

int m , n:
public:
 integer (int x , int y) //inline constructor
 {

m=x;
y=n;

 }

};

 Copy constructor

 It holds the copy of another constructor.
 A copy constructor takes a reference to an object of the same class as itself as an

argument.
 A copy constructor may be written as

integer (integer & i);

 A copy constructor is used to declare and initialize an object from another object.
 For example the statement:

integer y(x);

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

would define the object y and at the same time initialize it to the values of x .

 Another form of this statement is

integer y = x ;
the process of initializing through a copy constructor is known as copy initialization.

 The statement,
y=x;

will not invoke the copy constructor.

 However, if x and y are objects, this statement is legal and simply assigns the values of x
to y, member-by-member.

Example program:

#include<iostream.h>
#include<conio.h>
class code
{

int id;
public:
code() //default constructor
{
}
code(int a) //parameterized constructor
{
 id=a;
}
code(code &x) //copy constructor
{
 id=x.id; //copy in the value
}
void display(void)
{
 cout<<id;
}

};
void main()
{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

clrscr();

code A(100); //object A is created and initialized
code B(A); //copy constructor is called
code C=A; //copy constructor called again

code D; //object D is created and not initialized
D=A; //copy constructor not called, just assigns values of object A to D

cout<<"id of A:"<<endl;
A.display();

cout<<"id of B:"<<endl;
B.display();

cout<<"id of C:"<<endl;
C.display();

cout<<"id of D:"<<endl;
D.display();

getch();
}

 Constructors overloading

 A class having more than one constructor is called as multiple constructor

 So far we have used three kinds of constructors. They are

integer(); // no argument constructor (null constructor)
integer(int , int); // argument constructor (parameterized constructor)
integer(interger & i); //copy constructor

 In the first case, the constructor itself supplies the data values and no values are passed
by the calling program.

 In the second case, the function call passes the appropriate values from main().

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 In the third case , the constructor takes a reference to an object of the same class as itself
as an argument.

 C++ permits us to use all these constructors in the same class.

For example we could define a class as follows:

class integer
{

int m, n;
public:

integer() // constructor 1
{

m = 0;
n = 0;

}
integer (int a ,int b) //constructor 2
{

m = a;
n = b;

}
 integer(integer & i) //constructor 3
{

m = i. m;
 n = i.n;

}
};

 This declares three constructors for an integer object.
 The first constructor receives no arguments, the second one receives two integer

arguments and third receives one integer object as an argument .

 For example, the declaration

integer a1;
would automatically invoke the first constructor and set the both m and n of a1 to zero.
The statement

integer a2 (20,40)
would call the second constructor and set both m and n of a2 to 20 and 40 respectively,
finally the statement

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

integer a3 (a2);
would invoke the third constructor which copies the values of a2 and a3 . that is , it sets
the value of every data element of a3 to the value of the corresponding data element of
a2. as mentioned earlier, such a constructor is called the copy constructor.

 Sharing the same name by two or more functions is referred to as function overloading.
 When more than one constructor is defined inside the class it is called as constructor

overloading.

Example program:
#include<iostream.h>

class code
{
int m,n;

 Public:
code(); //constructor 1
code(int a,int b); //constructor 2
code(float c,int d); //constructor 3
 void display();
};
code::code()
{
m=0;
n=0;
}
code::code(int a,int b)
{
m=a;
n=b;
}
code::code(float c,int d)
{
m=c;
n=d;
}
Void display()
{
cout<<m;

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

cout<<n;
}

 void main()
{
clrscr();

code c; //would automatically invokes 1st constructor
code b(10,20); //would automatically invokes 2nd constructor
code d(1.20,20); //would automatically invokes 3rd constructor
c.display();
b.display();
d.display();

getch();
}

1.2.17 Friend functions

 It is known that the private and protected members cannot be accessed from outside the
class. i.e., non_member functions cannot have an access to the private and protected data
of the class.

 This feature leads to considerable inconvenience in programming.

 However, there can be a situation where user wants a function to operate on objects of
two different classes (would like two classes to share a particular function).

 At such times, it is required to allow functions outside a class to access and manipulate
the private members of the class.

 For example,consider a case where two classes, manager and scientist, have been
defined. If we would like to use a function incometax() to operate on the objects of the
both the classes.

 In that situation , C++ allows the common function to be made friendly with both the
classes, thereby allowing the function to have access to the private data of these classes.

 To make an outside function ‘ friendly’ to a class, we have to simply declare this function
as a friend of the class as shown below:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Example:

class ex
{
……………..
……………
public:
……………..
…………
friend void xyz(); //declaration of friend function
};

 The function declaration should be prefixed by the keyword friend as shown in the above
example.

 Whereas, the function definition does not use neither the keyword friend nor the :: (scope
resolution Operator).

 This function can be defined elsewhere in the program like a normal c++ program.
 The functions that are declared with the keyword friend are known as friend functions.

 A friend function possesses certian special characteristics:

 The scope of the friend function is not limited to the class in which it has been declared as a
friend.

 Since it is not in the scope of the class, it cannot be called using the object of that class.

 It can be invoked like a normal function without the help of any object.

 A dot operator is not needed to execute this function.

 Unlike class member functions,it cannot access the class members directly.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 However, it can use the object name and dot operator to access the each member of the class
(private and public members).

Example:

 (a.x)

 Friend function can be declared either in the private or public part of the class without
affecting its meaning

 Usually it has the objects as arguments.
Example program:

///program involving friend function//

#include<iostream.h>

class ABC; //advance declaration like function prototype

class XYZ
{

private:
int a;

public:
void getval()

 {
 cin>>a;
 } keyword

 friend void max(ABC m,XYZ n) ; //friend function declaration
};

class ABC
{

private:
int x;

public:
void getval()
{

 cin>>x;
}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 friend void max(ABC m,XYZ n); //friend function declaration
};

 //friend function of class ABC and XYZ

void max(ABC m , XYZ n) //defining the friend function
{ //no friend keyword and no :: operator

if(m.x>=n.a)
{

cout <<”Greater is”<<m.x; //x is the private member of class XYZ
else

cout <<”Greater is”<<n.a; //a is the private member of class ABC

}
}

 void main()
{

clrscr();

ABC obj1;
Obj1. getval(10);

XYZ obj2;
obj2. getval (20);

max(obj1 ,obj2);

getch();
}

Output

Greater is 20

 Here in the above program a common function max() is used by the two classes
XYZ and ABC by sharing the private data’s.

 Though a friend functions add flexibility to the language and make programming
convenient, in certain situations they are controversial.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 It goes against the philosophy that only member functions can access a class’s private
data.

 Friend functions should be used only when it is required.
 If a program uses many friend function, it would be better to redesign such programs.
 However, friend functions are very useful in certain situations.
 One such example is , a friend function is used to increase the versatility of

overloaded operators.

1.2.18 Friend classes

 Just as we have the possibility to define the friend fuction,we can also define a class
as friend of another class.

 So,that all the protected and private members of that class can be accessible.

Example program:

#include<iostream.h>
#include<conio.h>

class rect; //advance declaration like function prototype (it is optional)

class sqr
{
 private:

int side;
 public:

void set_side(int x)
{

side=x;
}

friend class rect;
};

class rect
{
 private:

int width;
 public:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

int area()
{

return (width*height)
}

void convert(sqr a);
};

void rect::convert(sqr a)
{

width=a.side;
height=aside;

}

void main()
{

sqr s;
rect r;
s.set_side(4);
r.convert(s);
cout<<r.area();

}

 In the above program, we have declared rect as a friend of sqr, so that rect
member functions could have access to the protected and private members of sqr.

 rect is considered as a friend class by sqr, but rect does not consider sqr to be a

friend.
 So,rect can access the protected and private members of sqr.But not the reverse

way.

 If want we can declare in reverse way also (i.e., sqr as friend class to rect).

 Also, forward declaration of sqr is made. This is because, the definition of sqr is
included later.

 So, if we did not include a previous empty declaration for sqr,this class would not
be visible from within the definition of rect.

1.2.19 new and delete operators

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 new operator

 Pointers provide the necessary support for C++'s powerful dynamic memory allocation
system.

 Dynamic allocation is the means by which a program can obtain memory while it is
running.

 It is necessary to declare arrays to some approximate size.
 It is not always possible to predict the size of the array and therefore in many cases it can

lead to wastage of memory if the amount of data is much less than the maximum.
 It would be desiable to start the program and then allocate memory as the need arises.
 This capability is provided by the new operator.

 The syntax for the new operator is:

 pointer-variable = new data-type;

 Where pointer variable is a pointer of type data-type,which can be char, int, float or any
user defined data type.

 The type of variable mentioned on the left hand side and he type mentioned on the right
hand side should match.

 The new operator allocates sufficient memory to hold a data object of type data-type and
returns the address of the object.

 The data-type may be any valid data type.
 The pointer-variable holds the address of the memory space allocated.

Examples:

1. char *cPtr;
 cPtr = new char[10];

The above declaration allocates 10 bytes to the pointer cPtr.

2. int *p;
 p = new int;

Subsequently the statement

*p=30;

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

Assigns 30 to the newly created int object.

3. int *p=new int(30):

 delete operator

 The delete operator is used to release the memory, which was allocated, using the new
operator.

 The syntax of the delete operator is:

 delete pointer-variable;

Example:

 int *p;
 p = new int;

 delete p;

The above code releases the allocated memory to the pointer p.

 If we want to free a dynamically allocated array,

 we must use the form:

 delete [size]pointer-variable;

Example:

 char *p;
 p = new char[10];
 delete [10]p;

1.2.20 this pointer

 “When a member function is called, how does C++ know which object it was called

on?”. The answer is that C++ utilizes a hidden pointer named “this”

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 C++ uses a unique keyword called this to represent an object that invokes a member

function.

 The this pointer is a hidden pointer inside every class member function that points to the

class object for which member functions was called i.e., the this pointer points to the

object which made the call to the member function of the class.

Ex:

a.max();
 this acts as an implicit argument to all the member functions i.e., this pointer
points to the address of the object a automatically.

 The this is a pointer which is used to access the nonstatic data members and member

function of the class i.e., The this pointer is only available for nonstatic data members so

static member functions do not have a this pointer.

 Syntax:

this->data-member;

this->member-function;

 Consider an example

class abc
{
int x;
};

 In the above example we can assign some values to x i.e., the private member x can
be directly assigned a value inside the member function as ,

void max()
{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

x=245; //this pointer acts implicitly
}

 The above assignment can also be written using this pointer as

void max()
{

this x=245 //this pointer written explicitly
}

 Here in the above statement this function is written explicitly. But in the former it acts
implicitly.

 For convenience, this pointer is not used so often.
 However, we have been implicitly using the pointer this, when overloading the

operators.
 i.e., when a binary operator is overloaded using a member function, we pass only one

argument to the function. The other argument is implicitly passed using the pointer
this.

 this pointer is also used to return the object it points to.

Ex:

 return *this;
It will return the object that invoked the function.(for prev. eg. It will

return object a)

 this pointer is used while comparing two or more objects inside a member function.

 The this pointer stores the refernce (address) of the class instance, to enable pointer

access of the members to the member functions or data member of the class i.e., it can be

used to find the address of the object in which the function is a member.

 Programmer can not modify this pointer, programmer can call member function of class.

 Most of the time, you never need to explicitly reference the “this” pointer. However,

there are a few occasions where it can be useful:

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

1) If you have a constructor (or member function) that has a parameter of the same name

as a member variable, you can disambiguate them by using “this”:

Example:

class something
{
 private:
 int x;
 public:
 something(int x)

{
this x=x;
}

};

Note that our constructor is taking a parameter of the same name as a member variable. In this

case, “x” refers to the parameter, and “this->x” refers to the member variable.

2) Occasionally it can be useful to have a function return the object it was working with.

Returning *this will return a reference to the object that was implicitly passed to the

function by C++.

 One use for this feature is that it allows a series of functions to be “chained” together, so

that the output of one function becomes the input of another function! The following is

somewhat more advanced and can be considered optional material at this point.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

 the “this” pointer is a hidden parameter of any member function. Most of the time, you

will not need to access it directly. It’s worth noting that “this” is a const pointer — you

can change the value of the object it points to, but you can not make it point to something

else!

 Presence of this pointer is not included in the sizeof calculations.

 Example program:

#include<iostream.h>
#include<string.h>
#include<conio.h>

class person
{

char name[20];
int age;

 public:

person()
{
}

person(char *a,int b)
{

strcpy(name,a);
age=b;

}

greater(person & r)
{

if(r.age>age)
return r;

else
return *this;

}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

void display()
{

cout<<name<<age;
}

};

void main()
{

person x(“aaa”,20),y(“bbb”,10),z(“ccc”,15),m;
m=y.greater(x);
m.display();
m=z.greater(y);
m.display();

}

Output:

 name=aaa
 age=20

 name=bbb
 age=10

1.22 FUNCTION OVERLOADING:-

We can use the same function name to create functions that perform a

variety of different tasks. This is known as function polymorphism in oop. Using the

concept of function overloading, we can design a family of functions with one
function name but with different argument lists. The function would perform

different operations depending on the argument list in the function call. The

correct function to be invoked is determined by checking the number and type of

the arguments but not on the function type.

Example:-

Declarations:-

1. int add (int a, int b);

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

2.int add (int a, int b, int c);

3.double add (double x, double y);

4.double add (int p, double q);

5.double add (double p, int q);
Function calls:-

cout << add (0.75, 5); // uses 5

cout << add (5, 10); // 1

cout << add (15, 10.0); // 4 cout << add (12.5, 7.5); // 3 cout << add (5, 10.15); //2

#include<iostream.h> class funoverloading

{

int a, b, c; public:

void add ()

{

cin>>a>>b; c = a + b; cout << c;

}

int add (int a, int b);

{

c = a + b;
return c;

}

void add (int a)

{

cin>>b;

c = a + b; cout<<c;

}

}

}

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

void main ()

{

funoverloading F; int x;

F. add ();

x = F. add (10, 5); cout<<x;

F. add (5);

}

Output:-

5 3

c = 8

c = 15

5

c = 10

1.23 OPERATOR OVERLOADING:-
 C ++ has the ability to provide the operators with a special meaning

for a data type. The mechanism of giving such special meanings to an operator

is known as operator overloading.

The process of overloading involves the following steps:

Create a class that defines the data type that is to be used in the overloading operation.

Declare the operator function operator op()in the public part of the class

It may be either a member function or a friend function

Define the operator function to implement the required operations.

Syntax:-

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

returntype classname:: operator op (argument list)

{

Function body

}.

Example:-

void space:: operator-()

{

x=-x;

}

1.24 OVERLOADING UNARY OPERATORS:-

Let us consider the unary minus operator. A minus operator when used as a unary takes

just one operand. We know that this operator changes the sign of an operand when applied to a

basic data item. We will see here how to overload this operator so that it can be applied to an

object in much the same way as is applied to an int or float variable. The unary minus when

applied to an object should change the sign of each of its data items.

#include<iostream.h>

{

int x;
int y;

int z;

public:

void getdata(int a, int b, int c); void display(void);

void operator-(); //overload unary minus

};

void space::getdata(int a, int b, int c)

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

{

x=a;

y=b;

z=c;

}

void space::display(void)

{

cout<<x<<” ”; cout<<y<<” “; cout<<z<<” “;

}

void space::operator-()

{

x=-x;y=-y;z=-z;

}

int main()

{

space S; S.getdata(10,-20,30);cout<<”S=”; S.display();

- S; cout<<”S=”; S.display(); return 0;

}

Output:-

S= 10 -20 30

S= -10 20 -30

Note:

The function operator-() takes no argument. Then, what does this operator function do? It

changes the sign of data members of the object S. Since this function is a member function of the

same class, it can directly access the members of the object which activated it.

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

1.25 OVERLOADING BINARY OPERATORS:-

The same mechanism which is used in overloading unary operator can be used to
overload a binary operator.

include<iostream.h> class complex

{

float x; float y; public:

complex()

{

}

complex(float real, float imag)

{

x=real;

y=imag;
}

complex operator+(complex); void display(void);

};

complex complex::operator+(complex c)

{

complex temp; temp.x=x+c.x; temp.y=y+c.x; return(temp);

}

void complex::display(void)

{

cout<<x<<”j”<<y<<”\n”;

}

int main()

{

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIAL

Subject Name : OBJECT ORIENTED UNIT II Subject Code : SBS1102
 PROGRAMMING WITH C++

complex C1,C2,C3; C1=complex(2.5,3.5) C2=complex(1.6,2.7) C3= C1 + C2; cout<<”C1 = ”;

C1.display(); cout<<”C2 = ”; C2.display(); cout<<”C3 = ”; C3.display();

return 0;

}

Output:-

C1=2.5 +j3.5
C2=1.6 + j2.7

C3= 4.1 +j6.2

SCHOOL OF COMPUTING

	1.1 Classes and Objects
	Fig.Class grouping of data and functions
	1.2.1 Creating objects (Class Objects)
	1.2.2 Accessing class members
	1.2.3 Defining member function

	1.2.6 Inline function
	1.2.8 Static Data Members
	1.2.9 Static member function
	Parameterized constructors
	Copy constructor
	class ex

	Output
	“When a member function is called, how does C++ know which object it was called on?”. The answer is that C++ utilizes a hidden pointer named “this”

