
UNIT-V Hadoop Project Environment 

HBASE-ARCHITECTURE 

In HBase, tables are split into regions and are served by the region servers. Regions are 

vertically divided by column families into ―Stores‖. Stores are saved as files in HDFS. Shown 

below is the architecture of HBase. 

Note: The term ‗store‘ is used for regions to explain the storage structure. 

 

 

HBase has three major components: the client library, a master server, and region servers. 

Region servers can be added or removed as per requirement. 

MasterServer 

The master server - 

 Assigns regions to the region servers and takes the help of Apache ZooKeeper for this 

task. 

 Handles load balancing of the regions across region servers. It unloads the busy servers 

and shifts the regions to less occupied servers. 

 Maintains the state of the cluster by negotiating the load balancing. 

 Is responsible for schema changes and other metadata operations such as creation of 

tables and column families. 



 

Regions 

Regions are nothing but tables that are split up and spread across the region servers. 

Region server 

The region servers have regions that - 

 Communicate with the client and handle data-related operations. 

 Handle read and write requests for all the regions under it. 

 Decide the size of the region by following the region size thresholds. 

When we take a deeper look into the region server, it contain regions and stores as shown 

below: 

 

The store contains memory store and HFiles. Memstore is just like a cache memory. Anything 

that is entered into the HBase is stored here initially. Later, the data is transferred and saved in 

Hfiles as blocks and the memstore is flushed. 

Zookeeper 

 Zookeeper is an open-source project that provides services like maintaining 

configuration information, naming, providing distributed synchronization, etc. 

 Zookeeper has ephemeral nodes representing different region servers. Master servers use 

these nodes to discover available servers. 



 In addition to availability, the nodes are also used to track server failures or network 

partitions. 

 Clients communicate with region servers via zookeeper. 

 In pseudo and standalone modes, HBase itself will take care of zookeeper. 

Client API Features:-Filters 

HBase filters are a powerful feature that can greatly enhance your effectiveness when working 

with data stored in tables. 

The two prominent read functions for HBase are get() and scan(), both supporting either direct 

access to data or the use of a start and end key, respectively.  

These include column families, column qualifiers, timestamps or ranges, as well as version 

number. 

 

Fig- Shows the  filters created on the client side, sent through the RPC, and executed on the 

server side 

The filter hierarchy 

The lowest level in the filter hierarchy is the Filter interface, and the abstractFilterBase class that 

implements an empty shell, or skeleton, that is used by the actual filter classes to avoid having 

the same boilerplate code in each of them. 



 You define a new instance of the filter you want to apply and hand it to the Get or 

Scan instances, using: 

setFilter(filter) 

Comparison operators 

As CompareFilter-based filters add one more feature to the base FilterBaseclass, namely 

the compare() operation, it has to have a user-supplied operator type that defines how the result 

of the comparison is interpreted.  

Table  The possible comparison operators for CompareFilter-based filters 

Operator Description 

LESS Match values less than the provided one. 

LESS_OR_EQUAL 

Match values less than or equal to the provided 

one. 

EQUAL 

Do an exact match on the value and the provided 

one. 

NOT_EQUAL 

Include everything that does not match the 

provided value. 

GREATER_OR_EQUAL 

Match values that are equal to or greater than the 

provided one. 

GREATER Only include values greater than the provided one. 

NO_OP Exclude everything. 



The comparison operators define what is included, or excluded, when the filter is applied. This 

allows you to select the data that you want as either a range, subset, or exact and single match. 

 

Comparators 

The second type that you need to provide to CompareFilter-related classes is a comparator, 

which is needed to compare various values and keys in different ways. They are derived 

from WritableByteArrayComparable, which implements Writable, and Comparable. You do not 

have to go into the details if you just want to use an implementation provided by HBase and 

listed in the Table . The constructors usually take the control value, that is, the one to compare 

each table value against. 

Table- The HBase-supplied comparators, used with CompareFilter-based filters 

Comparator Description 

BinaryComparator 

Uses Bytes.compareTo() to compare the current 

with the provided value. 

BinaryPrefixComparator 

Similar to the above, but does a lefthand, prefix-

based match usingBytes.compareTo(). 

NullComparator 

Does not compare against an actual value but 

whether a given one is null, or notnull. 

BitComparator 

Performs a bitwise comparison, providing 

a BitwiseOp class with AND,OR, 

and XOR operators. 

RegexStringComparator 

Given a regular expression at instantiation this 

comparator does a pattern match on the table data. 

SubstringComparator Treats the value and table data as Stringinstances 

https://www.safaribooksonline.com/library/view/hbase-the-definitive/9781449314682/ch04.html#tbl_comparators


Comparator Description 

and performs a contains()check. 

 

 

FILTERROW() AND BATCH MODE 

A filter using filterRow() to filter out an entire row, or filterRow(List) to modify the final list of 

included values, must also override the hasRowFilter() function to return true. 

Figure shows the logical flow of the filter methods for a single row. There is a more fine-grained 

process to apply the filters on a column level, which is not relevant in this context. 

 



 

Advanced Usage of HBASE: 

It is important to have a good understanding of how to design tables, row keys, column names, 

and so on, to take full advantage of the architecture. 

Key Design 

HBase has two fundamental key structures: the row key and the column key. Both can be used to 

convey meaning, by either the data they store, or by exploiting their sorting order. In the 

following sections, we will use these keys to solve commonly found problems when designing 

storage solutions. 

Concepts 

The first concept to explain in more detail is the logical layout of a table, compared to on-disk 

storage. HBase‘s main unit of separation within a table is the column family—not the actual 

columns as expected from a column-oriented database in their traditional sense.  

Figure - shows the fact that, although you store cells in a table format logically, in reality these 

rows are stored as linear sets of the actual cells, which in turn contain all the vital information 

inside them. 

The top-left part of the figure shows the logical layout of your data—you have rows and 

columns. The columns are the typical HBase combination of a column family name and a 

column qualifier, forming the column key. The rows also have a row key so that you can address 

all columns in one logical row. 

 

  

https://www.safaribooksonline.com/library/view/hbase-the-definitive/9781449314682/ch09.html#img_folding


HBASE Design Schema 

With HBase, you have a ―query-first‖ schema design; all possible queries should be identified 

first, and the schema model designed accordingly. You should design your HBase schema to take 

advantage of the strengths of HBase. Think about your access patterns, and design your schema 

so that the data that is read together is stored together. Remember that HBase is designed for 

clustering. 

 

 Distributed data is stored and accessed together 

 It is query-centric, so focus on how the data is read 

 Design for the questions 

Parent-Child Relationship–Nested Entity 

 Here is an example of denormalization in HBase, if your tables exist in a one-to-many 

relationship, it‘s possible to model it in HBase as a single row.  In the example below, the 



order and related line items are stored together and can be read together with a get on the 

row key.  This makes the reads a lot faster than joining tables together. 

 

 The rowkey corresponds to the parent entity id, the OrderId. There is one column family 

for the order data, and one column family for the order items. The Order Items are nested, 

the Order Item IDs are put into the column names and any non-identifying attributes are 

put into the value. 

 This kind of schema design is appropriate when the only way you get at the child entities 

is via the parent entity. 

Self-Join Relationship – HBase 

 A self-join is a relationship in which both match fields are defined in the same table. 

 Consider a schema for twitter relationships, where the queries are: which users does 

userX follow, and which users follow userX? Here‘s a possible solution: The userids are 

put in a composite row key with the relationship type as a separator. For example, Carol 

follows Steve Jobs and Carol is followed by BillyBob. This allows for row key scans for 

everyone carol:follows or carol:followedby 



 Below is the example Twitter table: 

 

 

Schema Design Exploration: 

 Raw data from HDFS or HBase 

 MapReduce for data transformation and ETL from raw data. 

 Use bulk import from MapReduce to HBase 

 Serve data for online reads from HBase 

Designing for reads means aggressively de-normalizing data so that the data that is read together 

is stored together. 

Data Access Pattern 

The batch layer precomputes the batch views. In the batch view, you read the results from a 

precomputed view. The precomputed view is indexed so that it can be accessed quickly with 

random reads.  

The serving layer indexes the batch view and loads it up so it can be efficiently queried to get 

particular values out of the view. A serving layer database only requires batch updates and 

random reads. The serving layer updates whenever the batch layer finishes precomputing a batch 

view. 



You can do stream-based processing with Storm and batch processing with Hadoop. The speed 

layer only produces views on recent data, and is for functions computed on data in the few hours 

not covered by the batch. 

 

 

Advance Indexing In HBase 

In HBase, the row key provides the same data retrieval benefits as a primary index. So, when you 

create a secondary index, use elements that are different from the row key. 

Secondary indexes allow you to have a secondary way to read an HBase table. They provide a 

way to efficiently access records by means of some piece of information other than the primary 

key.  

Secondary indexes require additional cluster space and processing because the act of creating a 

secondary index requires both space and processing cycles to update. 

A method of index maintenance, called Diff-Index, can help IBM® Big SQL to create secondary 

indexes for HBase, maintain those indexes, and use indexes to speed up queries. 

 

 



Why is this important? 

With secondary indexing, I can either find a single row to find all of the rows that contain an 

attribute with a specific value.  

Like everything in HBase, its stored in sort order so it becomes rather trivial for the client to 

fetch several rows and join them in sort order, or to take the intersection if we are trying to find 

the records that meet a specific qualification. (e.g. find all of Bob's employees who live in 

Cleveland, OH.  Or find the average cost of repairing a Volvo S80 that was involved in a front 

end collision....) 

As more people want to use HBase like a database and apply SQL, using secondary indexing 

makes filtering and doing data joins much more efficient. One just takes the intersection of the 

indexed qualifiers specified, and then apply the unindexed qualifiers as filters further reducing 

the resulset 

Problems in Indexing 

This design appears to mimic the concept of the column families, where like data is stored in a 

column family file. So that like data can be accessed quickly. But like the column families, we 

run in to the same problem... too many column families can be a bad thing when it comes to 

compaction. 

Depending on the number of columns to be indexed, the size of the index table could easily be 

larger than the base table. (Especially when you add in geo-spatial indexing. ) 

Co-Processor 

The idea of HBase Coprocessors was inspired by Google‘s BigTable coprocessors. which 

Google developed to bring computing parallelism to BigTable. They have the following 

characteristics:  

 Arbitrary code can run at each tablet in table server 

 High-level call interface for clients  



o Calls are addressed to rows or ranges of rows and the coprocessor client library 

resolves them to actual locations; 

o Calls across multiple rows are automatically split into multiple parallelized RPC 

 Provides a very flexible model for building distributed services 

 Automatic scaling, load balancing, request routing for applications 

Back to HBase, we definitely want to support efficient computational parallelism as well, beyond 

what Hadoop MapReduce can provide.  

In addition, exciting new features can be built on top of it, for example secondary indexing, 

complex filtering (push down predicates), and access control. 

Coprocessors can be loaded globally on all tables and regions hosted by the region server, these 

are known as system coprocessors; or the administrator can specify which coprocessors should 

be loaded on all regions for a table on a per-table basis, these are known as table coprocessors.  

In order to support sufficient flexibility for potential coprocessor behaviors, two different aspects 

of extension are provided by the framework. One is the observer, which are like triggers in 

conventional databases, and the other is the endpoint, dynamic RPC endpoints that resemble 

stored procedures.  

Observers 

The idea behind observers is that we can insert user code by overriding upcall methods provided 

by the coprocessor framework. The callback functions are executed from core HBase code when 

certain events occur.  

The coprocessor framework handles all of the details of invoking callbacks during various base 

HBase activities; the coprocessor need only insert the desired additional or alternate 

functionality.  

The RegionObserver interface provides callbacks for:  

 preOpen, postOpen: Called before and after the region is reported as online to the master. 



 preFlush, postFlush: Called before and after the memstore is flushed into a new store file. 

 preGet, postGet: Called before and after a client makes a Get request. 

 preExists, postExists: Called before and after the client tests for existence using a Get. 

 prePut and postPut: Called before and after the client stores a value. 

 preDelete and postDelete: Called before and after the client deletes a value etc. 

Endpoint 

 As mentioned previously, observers can be thought of like database triggers. Endpoints, 

on the other hand, are more powerful, resembling stored procedures. One can invoke an 

endpoint at any time from the client.  

 The endpoint implementation will then be executed remotely at the target region or 

regions, and results from those executions will be returned to the client.  

 

 Endpoint is an interface for dynamic RPC extension. The endpoint implementation is 

installed on the server side and can then be invoked with HBase RPC. The client library 

provides convenience methods for invoking such dynamic interfaces.  

 

In order to build and use your own endpoint, you need to:  

 Have a new protocol interface which extends CoprocessorProtocol. 

 Implement the Endpoint interface. The implementation will be loaded into and executed 

from the region context. 

 Extend the abstract class BaseEndpointCoprocessor. This convenience class hides some 

internal details that the implementer need not necessary be concerned about, such as 

coprocessor framework class loading. 

 On the client side, the Endpoint can be invoked by two new HBase client APIs:  

Executing against a single region:  

o HTableInterface.coprocessorProxy(Class<T> protocol, byte[] row) 



Executing over a range of regions  

o HTableInterface.coprocessorExec(Class<T> protocol, byte[] 

startKey, byte[] endKey, Batch.Call<T,R> callable) 

Coprocessor Management 

After you have a good understanding of how coprocessors work in HBase, you can start to build 

your own experimental coprocessors, deploy them to your HBase cluster, and observe the new 

behaviors.  

Build Your Own Coprocessor 

We now assume you have your coprocessor code ready, compiled and packaged as a jar file. 

Coprocessor Deployment 

Currently we provide two options for deploying coprocessor extensions: load from configuration, 

which happens when the master or region servers start up; or load from table attribute, dynamic 

loading when the table is (re)opened. Because most users will set table attributes by way of the 

‗alter‘ command of the HBase shell, let‘s call this load from shell.  

Load from Configuration 

When a region is opened, the framework tries to read coprocessor class names supplied as the 

configuration entries:  

 hbase.coprocessor.region.classes: for RegionObservers and Endpoints 

 hbase.coprocessor.master.classes: for MasterObservers 

 hbase.coprocessor.wal.classes: for WALObservers 

Hers is an example of the hbase-site.xml where one RegionObserver is configured for all the 

HBase tables:  

<property> 

    <name>hbase.coprocessor.region.classes</name> 



    

<value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value> 

 </property> 

Hadoop 2.0 

Apache Hadoop 2.0 represents a generational shift in the architecture of Apache Hadoop. With 

YARN, Apache Hadoop is recast as a significantly more powerful platform – one that takes 

Hadoop beyond merely batch applications to taking its position as a ‗data operating system‘ 

where HDFS is the file system and YARN is the operating system. 

YARN is a re-architecture of Hadoop that allows multiple applications to run on the same 

platform. With YARN, applications run ―in‖ Hadoop, instead of ―on‖ Hadoop: 

 

The fundamental idea of YARN is to split up the two major responsibilities of the JobTracker 

and TaskTracker into separate entities. In Hadoop 2.0, the JobTracker and TaskTracker no longer 

exist and have been replaced by three components: 

 ResourceManager: a scheduler that allocates available resources in the cluster amongst 

the competing applications. 

 NodeManager: runs on each node in the cluster and takes direction from the 

ResourceManager. It is responsible for managing resources available on a single node. 

 ApplicationMaster: an instance of a framework-specific library, an ApplicationMaster 

runs a specific YARN job and is responsible for negotiating resources from the 

http://s.radar.oreilly.com/files/2013/12/R1.jpg


ResourceManager and also working with the NodeManager to execute and monitor 

Containers. 

The actual data processing occurs within the Containers executed by the ApplicationMaster. A 

Container grants rights to an application to use a specific amount of resources (memory, cpu etc.) 

on a specific host. 

YARN is not the only new major feature of Hadoop 2.0. HDFS has undergone a major 

transformation with a collection of new features that include: 

 NameNode HA: automated failover with a hot standby and resiliency for the NameNode 

master service. 

 Snapshots: point-in-time recovery for backup, disaster recovery and protection against 

use errors. 

 Federation: a clear separation of namespace and storage by enabling generic block 

storage layer. 

MRv2-YARN 

The new architecture introduced in hadoop-0.23, divides the two major functions of the 

JobTracker: resource management and job life-cycle management into separate components. 

The new ResourceManager manages the global assignment of compute resources to applications 

and the per-application ApplicationMaster manages the application‘s scheduling and 

coordination. 

An application is either a single job in the sense of classic MapReduce jobs or a DAG of such 

jobs. 

The ResourceManager and per-machine NodeManager daemon, which manages the user 

processes on that machine, form the computation fabric. 

The per-application ApplicationMaster is, in effect, a framework specific library and is tasked 

with negotiating resources from the ResourceManager and working with the NodeManager(s) to 

execute and monitor the tasks. 



he fundamental idea of YARN is to split up the functionalities of resource management and job 

scheduling/monitoring into separate daemons. The idea is to have a global ResourceManager 

(RM) and per-application ApplicationMaster (AM). An application is either a single job or a 

DAG of jobs. 

The ResourceManager and the NodeManager form the data-computation framework. The 

ResourceManager is the ultimate authority that arbitrates resources among all the applications in 

the system.  

The NodeManager is the per-machine framework agent who is responsible for containers, 

monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the 

ResourceManager/Scheduler. 

The per-application ApplicationMaster is, in effect, a framework specific library and is tasked 

with negotiating resources from the ResourceManager and working with the NodeManager(s) to 

execute and monitor the tasks. 

 



The ResourceManager has two main components: Scheduler and ApplicationsManager. 

The Scheduler is responsible for allocating resources to the various running applications subject 

to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that 

it performs no monitoring or tracking of status for the application. Also, it offers no guarantees 

about restarting failed tasks either due to application failure or hardware failures.  

The Scheduler performs its scheduling function based the resource requirements of the 

applications; it does so based on the abstract notion of a resource Container which incorporates 

elements such as memory, cpu, disk, network etc. 

NameNode High Availablity 

Prior to Hadoop 2.0.0, the NameNode was a single point of failure (SPOF) in an HDFS cluster. 

Each cluster had a single NameNode, and if that machine or process became unavailable, the 

cluster as a whole would be unavailable until the NameNode was either restarted or brought up 

on a separate machine. 

This impacted the total availability of the HDFS cluster in two major ways: 

 In the case of an unplanned event such as a machine crash, the cluster would be 

unavailable until an operator restarted the NameNode. 

 Planned maintenance events such as software or hardware upgrades on the NameNode 

machine would result in windows of cluster downtime. 

The HDFS High Availability feature addresses the above problems by providing the option of 

running two redundant NameNodes in the same cluster in an Active/Passive configuration with a 

hot standby.  

This allows a fast failover to a new NameNode in the case that a machine crashes, or a graceful 

administrator-initiated failover for the purpose of planned maintenance. 

 



Architecture 

In a typical HA cluster, two separate machines are configured as NameNodes. At any point in 

time, exactly one of the NameNodes is in an Active state, and the other is in a Standby state. The 

Active NameNode is responsible for all client operations in the cluster, while the Standby is 

simply acting as a slave, maintaining enough state to provide a fast failover if necessary. 

In order for the Standby node to keep its state synchronized with the Active node, the current 

implementation requires that the two nodes both have access to a directory on a shared storage 

device (eg an NFS mount from a NAS). This restriction will likely be relaxed in future versions. 

When any namespace modification is performed by the Active node, it durably logs a record of 

the modification to an edit log file stored in the shared directory. The Standby node is constantly 

watching this directory for edits, and as it sees the edits, it applies them to its own namespace. 

 In the event of a failover, the Standby will ensure that it has read all of the edits from the shared 

storage before promoting itself to the Active state. This ensures that the namespace state is fully 

synchronized before a failover occurs. 

In order to provide a fast failover, it is also necessary that the Standby node have up-to-date 

information regarding the location of blocks in the cluster. In order to achieve this, the 

DataNodes are configured with the location of both NameNodes, and send block location 

information and heartbeats to both. 

Hardware resources 

In order to deploy an HA cluster, you should prepare the following: 

 NameNode machines - the machines on which you run the Active and Standby 

NameNodes should have equivalent hardware to each other, and equivalent hardware to 

what would be used in a non-HA cluster. 

 Shared storage - you will need to have a shared directory which both NameNode 

machines can have read/write access to. Typically this is a remote filer which supports 



NFS and is mounted on each of the NameNode machines. Currently only a single shared 

edits directory is supported.  

Thus, the availability of the system is limited by the availability of this shared edits 

directory, and therefore in order to remove all single points of failure there needs to be 

redundancy for the shared edits directory.  

HDFS Federation 

HDFS Federation improves the existing HDFS architecture through a clear separation of 

namespace and storage, enabling generic block storage layer. It enables support for multiple 

namespaces in the cluster to improve scalability and isolation 

This guide provides an overview of the HDFS Federation feature and how to configure and 

manage the federated cluster. 

Background 

 

HDFS has two main layers: 

 Namespace  

o Consists of directories, files and blocks. 

o It supports all the namespace related file system operations such as create, delete, 

modify and list files and directories. 

 Block Storage Service, which has two parts: 

o Block Management (performed in the Namenode)  



 Provides Datanode cluster membership by handling registrations, and 

periodic heart beats. 

 Processes block reports and maintains location of blocks. 

 Supports block related operations such as create, delete, modify and get 

block location. 

 Manages replica placement, block replication for under replicated blocks, 

and deletes blocks that are over replicated. 

o Storage - is provided by Datanodes by storing blocks on the local file system and 

allowing read/write access. 

The prior HDFS architecture allows only a single namespace for the entire cluster. In that 

configuration, a single Namenode manages the namespace. HDFS Federation addresses 

this limitation by adding support for multiple Namenodes/namespaces to HDFS. 

Key Benefits 

 Namespace Scalability - Federation adds namespace horizontal scaling. Large 

deployments or deployments using lot of small files benefit from namespace scaling by 

allowing more Namenodes to be added to the cluster. 

 Performance - File system throughput is not limited by a single Namenode. Adding more 

Namenodes to the cluster scales the file system read/write throughput. 

 Isolation - A single Namenode offers no isolation in a multi user environment. For 

example, an experimental application can overload the Namenode and slow down 

production critical applications. By using multiple Namenodes, different categories of 

applications and users can be isolated to different namespaces. 

Federation configuration is backward compatible and allows existing single Namenode 

configurations to work without any change. The new configuration is designed such that all the 

nodes in the cluster have the same configuration without the need for deploying different 

configurations based on the type of the node in the cluster. 

 



Configuration: 

Step 1: Add the dfs.nameservices parameter to your configuration and configure it with a list of 

comma separated NameServiceIDs. This will be used by the Datanodes to determine the 

Namenodes in the cluster. 

Step 2: For each Namenode and Secondary Namenode/BackupNode/Checkpointer add the 

following configuration parameters suffixed with the corresponding NameServiceID into the 

common configuration file: 

Formatting Namenodes 

Step 1: Format a Namenode using the following command: 

[hdfs]$ $HADOOP_PREFIX/bin/hdfs namenode -format [-clusterId <cluster_id>] 

Choose a unique cluster_id which will not conflict other clusters in your environment. If a 

cluster_id is not provided, then a unique one is auto generated. 

Step 2: Format additional Namenodes using the following command: 

[hdfs]$ $HADOOP_PREFIX/bin/hdfs namenode -format -clusterId <cluster_id> 

Upgrading from an older release and configuring federation 

Older releases only support a single Namenode. Upgrade the cluster to newer release in order to 

enable federation During upgrade you can provide a ClusterID as follows: 

[hdfs]$ $HADOOP_PREFIX/bin/hdfs start namenode --config $HADOOP_CONF_DIR  -

upgrade -clusterId <cluster_ID> 

If cluster_id is not provided, it is auto generated. 

Adding a new Namenode to an existing HDFS cluster 

Perform the following steps: 

 Add dfs.nameservices to the configuration. 



 Update the configuration with the NameServiceID suffix. Configuration key names 

changed post release 0.20. You must use the new configuration parameter names in order 

to use federation. 

 Add the new Namenode related config to the configuration file. 

 Propagate the configuration file to the all the nodes in the cluster. 

 Start the new Namenode and Secondary/Backup. 

 Refresh the Datanodes to pickup the newly added Namenode by running the following 

command against all the Datanodes in the cluster: 

[hdfs]$ $HADOOP_PREFIX/bin/hdfs dfsadmin -refreshNameNodes 

<datanode_host_name>:<datanode_rpc_port> 

Managing the cluster 

Starting and stopping cluster 

To start the cluster run the following command: 

[hdfs]$ $HADOOP_PREFIX/sbin/start-dfs.sh 

To stop the cluster run the following command: 

[hdfs]$ $HADOOP_PREFIX/sbin/stop-dfs.sh 

Balancer 

The Balancer has been changed to work with multiple Namenodes. The Balancer can be run 

using the command: 

[hdfs]$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start balancer [-policy <policy>] 

Decommissioning 

Decommissioning is similar to prior releases. The nodes that need to be decomissioned are added 

to the exclude file at all of the Namenodes. Each Namenode decommissions its Block Pool. 

When all the Namenodes finish decommissioning a Datanode, the Datanode is considered 

decommissioned. 



Step 1: To distribute an exclude file to all the Namenodes, use the following command: 

[hdfs]$ $HADOOP_PREFIX/sbin/distribute-exclude.sh <exclude_file> 

Step 2: Refresh all the Namenodes to pick up the new exclude file: 

[hdfs]$ $HADOOP_PREFIX/sbin/refresh-namenodes.sh 

The above command uses HDFS configuration to determine the configured Namenodes in the 

cluster and refreshes them to pick up the new exclude file. 

Cluster Web Console 

Similar to the Namenode status web page, when using federation a Cluster Web Console is 

available to monitor the federated cluster at http://<any_nn_host:port>/dfsclusterhealth.jsp. Any 

Namenode in the cluster can be used to access this web page. 

Migrating from MapReduce 1 (MRv1) to MapReduce 2  

MapReduce from Hadoop 1 (MapReduce MRv1) has been split into two components. The 

cluster resource management capabilities have become YARN (Yet Another Resource 

Negotiator), while the MapReduce-specific capabilities remain MapReduce.  

In the MapReduce MRv1 architecture, the cluster was managed by a service called the 

JobTracker. TaskTracker services lived on each host and would launch tasks on behalf of jobs. 

The JobTracker would serve information about completed jobs. 

In MapReduce MRv2, the functions of the JobTracker have been split between three services. 

The ResourceManager is a persistent YARN service that receives and runs applications (a 

MapReduce job is an application) on the cluster.  

It contains the scheduler, which, as previously, is pluggable. The MapReduce-specific 

capabilities of the JobTracker have been moved into the MapReduce Application Master, one of 

which is started to manage each MapReduce job and terminated when the job completes.  



The JobTracker function of serving information about completed jobs has been moved to the 

JobHistory Server. The TaskTracker has been replaced with the NodeManager, a YARN service 

that manages resources and deployment on a host. It is responsible for launching containers, each 

of which can house a map or reduce task. 

Nearly all jobs written for MRv1 will be able to run without any modifications on an MRv2 

cluster. 

 

The new architecture has its advantages. First, by breaking up the JobTracker into a few different 

services, it avoids many of the scaling issues faced by MapReduce in Hadoop 1.  

More importantly, it makes it possible to run frameworks other than MapReduce on a Hadoop 

cluster. For example, Impala can also run on YARN and share resources with MapReduce. 

Configuration Migration 

Since MapReduce 1 functionality has been split into two components, MapReduce cluster 

configuration options have been split into YARN configuration options, which go in yarn-

site.xml, and MapReduce configuration options, which go in mapred-site.xml. Many have been 

given new names to reflect the shift. As JobTrackers and TaskTrackers no longer exist in MRv2, 

all configuration options pertaining to them no longer exist, although many have corresponding 

options for the ResourceManager, NodeManager, and JobHistoryServer. 

A minimal configuration required to run MRv2 jobs on YARN is:  

yarn-site.xml configuration  

<?xml version="1.0" encoding="UTF-8"?> 

<configuration>   

http://www.cloudera.com/documentation/enterprise/5-2-x/topics/cm_mc_managing_resources.html#xd_583c10bfdbd326ba--43d5fd93-1410993f8c2--7ff3


  <property>     

    <name>yarn.resourcemanager.hostname</name>     

    <value>you.hostname.com</value>   

  </property>   

 

  <property>     

    <name>yarn.nodemanager.aux-services</name>     

    <value>mapreduce_shuffle</value>   

  </property>   

</configuration> 

mapred-site.xml configuration  

<?xml version="1.0" encoding="UTF-8"?> 

<configuration>   

  <property>     

    <name>mapreduce.framework.name</name>     

    <value>yarn</value>   

  </property> 

</configuration> 

Below is a table with HA-related configurations used in MRv1 and their equivalents in YARN:  

MRv1 YARN / MRv2 Comment 

mapred.jobtrackers.name yarn.resourcemanager.ha.rm-ids   

mapred.ha.jobtracker.id yarn.resourcemanager.ha.id Unlike in MRv1, this 

must be configured in 

YARN. 

mapred.jobtracker.rpc-

address.name.id 

yarn.resourcemanager.rpc-address.id YARN/ MRv2 has 

different RPC ports for 

different 

functionalities. Each 

port-related 

configuration must be 

suffixed with an id. 

Note that there is no 

<name> in YARN. 

mapred.ha.jobtracker.rpc-

address.name.id 

yarn.resourcemanager.ha.admin.addres

s 

  

mapred.ha.fencing.methods yarn.resourcemanager.ha.fencer Not required to be 

specified 

mapred.client.failover.* None Not required 

  yarn.resourcemanager.ha.enabled Enable HA 

mapred.jobtracker.restart.recove

r 

yarn.resourcemanager.recovery.enable

d 

Enable recovery of jobs 

after failover 

  yarn.resourcemanager.store.class org.apache 

.hadoop.yarn 



MRv1 YARN / MRv2 Comment 

.server.resourcemanage

r .recovery                   

.ZKRMStateStore 

mapred.ha.automatic-

failover.enabled 

yarn.resourcemanager.ha.automatic-

failover.enabled 

Enable automatic 

failover 

mapred.ha.zkfc.port yarn.resourcemanager.ha.automatic-

failover.port 

  

mapred.job.tracker yarn.resourcemanager.cluster.i 
 

 

Programming in YARN Framework 

Under Hadoop 2.0, MapReduce is but one instance of a YARN application, where YARN has 

taken center stage as the ―operating system‖ of Hadoop.  Because YARN allows any application 

to run on equal footing with MapReduce, it opened the floodgates for a new generation of 

software applications with these kinds of features: 

 

More programming models. Because YARN supports any application that can divide itself into 

parallel tasks, they are no longer shoehorned into the palette of ―mappers,‖ ―combiners,‖ and 

―reducers.‖  This in turn supports complex data-flow applications like ETL and ELT, and 

iterative programs like massively-parallel machine learning and modeling. 

Integration of native libraries. Because YARN has robust support for any executable – not 

limited to MapReduce, and not even limited to Java – application vendors with a large mature 

code base have a clear path to Hadoop integration. 

Support for large reference data. YARN automatically ―localizes‖ and caches large reference 

datasets, making them available to all nodes for ―data local‖ processing.  This supports legacy 

functions like address standardization, which require large reference data sets that cannot be 

accessed from the Hadoop Distributed File System (HDFS) by the legacy libraries. 

 

Of course, MapReduce isn‘t the only option for processing data at scale using Hadoop. Tools 

like Pig (a large scale query and analysis system), Hive (a data warehousing application) and 

others have been available for some time.  These tools can express transforms and analysis using 

more accessible constructs: Hive uses HQL, a language similar to SQL.  



Pig provides a script language (Pig Latin) to create MapReduce jobs. Business analysts familiar 

with conventional tools like SQL and SAS should be able to use these tools to write programs to 

solve large data problems on Hadoop clusters 

The Value of Visual Application Development Tools 

 

A new generation of ―visual design‖ application development tools could help solve these coding 

problems. By running as native YARN applications and side-stepping the need for MapReduce, 

some of these programs eliminate coding altogether.  

Other tools reduce coding by generating MapReduce code or by generating scripts like Pig. 

Visual designers are powerful for several reasons: 

• Increased level of abstraction:  Instead of thinking about classes and methods, users see 

operations, data, and outcomes. 

• Fast ―what-if‖: The drag-and-connect interface supports quick try/observe/adjust cycles. 

• Automatic optimization: Scaling and efficiency are built-in. 

• High-level palette: High-level constructs like ―standardize address‖, ―deduplicate consumers‖, 

or ―parse names‖ are often directly on the designer palette. 

How does this look in practice?  Here‘s an illustration that shows how three competing 

approaches differ: 

•  MapReduce written in Java 

• Pig scripts developed from scratch 

• A visually-designed process running a native YARN ETL application. The application is from 

RedPoint Global, but comparable approaches can be seen in Talend and Actian. 

Using these three approaches, we conducted a ―Word Count‖ test on 30,000 files (20 gigabytes) 

of Project Gutenberg books. This test reads lines of text, breaks them into words, and creates a 

concordance (list of words and the number of times each occurs).  

Our Hadoop cluster was small—only four nodes—but was large enough to demonstrate the 

concepts and tradeoffs 

 

 

http://www.gutenberg.org/


MapReduce:  

Set-up time: While flexible, MapReduce had the longest learning curve and required significant 

coding skills—both as a Java programmer and a MapReduce specialist—to prepare the test. 

Performance: It took 3 hours 20 minutes to run the test initially due to the ―small files problem‖ 

that is familiar to seasoned MapReduce programmers.  

This problem occurs when reading large collections of small files, because MapReduce‘s default 

behavior is to assign a mapper task to each file.  This results in a huge number of tasks.   

 To address this issue, we created a custom InputFormat class to read multiple files at once.  This 

reduced our run time to 58 minutes.  Then we tuned the split sizes and mapper task limit 

appropriately, which dropped the run time to about six minutes. 

Comments: Each performance improvement came at a cost. Overall, nearly a full day of 

programmer time was spent optimizing the original code. 

Pig: 

Set-up time:  Learning Pig was fairly easy. It was pretty natural to create the coding for this test. 

However to make a common adjustment in the code—changing the set of whitespace separators 

to include punctuation—required the addition of a ―User defined function‖ or UDF which had to 

be written in Java.   

Pig is generally easy enough to use by people who aren‘t professional programmers but who 

know how to write scripting languages like JavaScript or Visual Basic. 

Performance:  The results were not stellar: run time was close to 15 minutes. 

Comments: While coding took less time, Java programming was ultimately required to meet the 

test requirements. 

 
 

 

 

http://data-informed.com/yarn-opens-doors-easier-programming-tools-hadoop-2-0-users/sample-pig-script-560x194/


YARN-enabled ETL/ELT designer: 
Set-up time:  The tool is designed to have a shorter learning curve than even Pig scripting.  

Dragging tools like ―Delimited Input‖, ―Summarize‖ and ―Tokenize‖ from the palette and 

configuring them is designed to be discoverable and intuitive, and the resulting diagram has a 

one-to-one correspondence between icons and operations. There‘s no need for coding or learning 

a language like Java or Pig.  

The visual design covers the input file format, tokenizing and counting steps.  The resulting data 

flow graph contains seven icons along with a grouping construct that shows what executes 

―inside‖ Hadoop. Each icon represents a step in the data transformation. 

Performance: The run time for this data flow is just over three minutes with no tuning. 

Comments: Because there is no code to manage, and editing is done visually, running ―what if‖ 

scenarios is quick for non-programmers.  

Once the data flow is designed, it can be stored and saved for later use.  In addition, the logic can 

be captured into a ―macro‖ for sharing and reuse between multiple data flows. 

 
 

 

 

 

Oozie workflow scheduler for Hadoop 

 

Oozie is a framework that helps automate this process and codify this work into repeatable units 

or workflows that can be reused over time without the need to write any new code or steps. 

http://data-informed.com/yarn-opens-doors-easier-programming-tools-hadoop-2-0-users/redpoint-global-visual-tool-image-559x474/


Apache Oozie is an open source project based on Java™ technology that simplifies the process 

of creating workflows and managing coordination among jobs. In principle, Oozie offers the 

ability to combine multiple jobs sequentially into one logical unit of work. 

One advantage of the Oozie framework is that it is fully integrated with the Apache Hadoop 

stack and supports Hadoop jobs for Apache MapReduce, Pig, Hive, and Sqoop. 

. In addition, it can be used to schedule jobs specific to a system, such as Java programs. 

In practice, there are different types of Oozie jobs: 

 Oozie Workflow jobs — Represented as directed acyclical graphs to specify a sequence of 

actions to be executed. 

 Oozie Coordinator jobs — Represent Oozie workflow jobs triggered by time and data 

availability. 

Oozie Bundle— Facilitates packaging multiple coordinator and workflow jobs, and makes it 

easier to manage the life cycle of those jobs. 

How does Oozie work? 

An Oozie workflow is a collection of actions arranged in a directed acyclic graph (DAG). This 

graph can contain two types of nodes: control nodes and action nodes. Control nodes, which are 

used to define job chronology, provide the rules for beginning and ending a workflow and 

control the workflow execution path with possible decision points known as fork and join nodes. 

Action nodes are used to trigger the execution of tasks. In particular, an action node can be a 

MapReduce job, a Pig application, a file system task, or a Java application. (The shell and ssh 

actions have been deprecated). 

Oozie is a native Hadoop stack integration that supports all types of Hadoop jobs and is 

integrated with the Hadoop stack. 

Figure shown below  illustrates a sample Oozie workflow that combines six action nodes (Pig 

scrip, MapReduce jobs, Java code, and HDFS task) and five control nodes (Start, Decision 



control, Fork, Join, and End). Oozie workflows can be also parameterized. When submitting a 

workflow job, values for the parameters must be provided. If the appropriate parameters are 

used, several identical workflow jobs can occur concurrently. 

 

 

In practice, it is sometimes necessary to run Oozie workflows on regular time intervals, but in 

coordination with other conditions, such as the availability of specific data or the completion of 

any other events or tasks. 

Oozie in action 

Use an Oozie workflow to run a recurring job. Oozie workflows are written as an XML file 

representing a directed acyclic graph. Let's look at the following simple workflow example that 

chains two MapReduce jobs. The first job performs an initial ingestion of the data and the second 

job merges data of a given type. 

Simple example of Oozie workflow 

<workflow-app xmlns='uri:oozie:workflow:0.1' name='SimpleWorkflow'> 

 <start to='ingestor'/> 

 <action name='ingestor'> 

  </java> 

   <job-tracker>${jobTracker}</job-tracker> 

   <name-node>${nameNode}</name-node> 

   <configuration> 

    <property> 

     <name>mapred.job.queue.name</name> 

     <value>default</value> 

    </property> 

   </configuration> 



   <arg>${driveID}</arg> 

  </java> 

  <ok to='merging'/> 

  <error to='fail'/> 

 </action> 

 <fork name='merging'> 

  <path start='mergeT1'/> 

  <path start='mergeT2'/> 

 </fork> 

 <action name='mergeT1'> 

  <java> 

   <job-tracker>${jobTracker}</job-tracker> 

   <name-node>${nameNode}</name-node> 

   <configuration> 

    <property> 

     <name>mapred.job.queue.name</name> 

     <value>default</value> 

    </property> 

   </configuration> 

   <arg>-drive</arg> 

   <arg>${driveID}</arg> 

   <arg>-type</arg> 

   <arg>T1</arg> 

  </java> 

  <ok to='completed'/> 

  <error to='fail'/> 

 </action> 

 <action name='mergeT2'> 

  <java> 

   <job-tracker>${jobTracker}</job-tracker> 

   <name-node>${nameNode}</name-node> 

   <configuration> 

    <property> 

     <name>mapred.job.queue.name</name> 

     <value>default</value> 

    </property> 

   </configuration> 

   <main-

class>com.navteq.assetmgmt.hdfs.merge.MergerLoader</main-class> 

   <arg>-drive</arg> 

   <arg>${driveID}</arg> 

   <arg>-type</arg> 

   <arg>T2</arg> 

  </java> 

  <ok to='completed'/> 

  <error to='fail'/> 



 </action> 

 <join name='completed' to='end'/> 

 <kill name='fail'> 

  <message>Java failed, error 

message[${wf:errorMessage(wf:lastErrorNode())}]</message> 

 </kill> 

 <end name='end'/> 

</workflow-app> 


