
 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Unit III – HADOOP IMPLEMENTATION AND HADOOP ECO TOOLS

 Understanding Hadoop and Its Ecosystem

It is quite interesting to envision how we could adopt the Hadoop eco system within the

realms of DevOps. I will try to cover it in upcoming series. Hadoop managed by the

Apache Foundation is a powerful open-source platform written in java that is capable of

processing large amounts of heterogeneous data-sets at scale in a distributive fashion

on cluster of computers using simple programming models. It is designed to scale up

from single server to thousands of machines, each offering local computation and

storage and has become an in-demand technical skill. Hadoop is an Apache top-level

project being built and used by a global community of contributors and users.

Hadoop Architecture:

The Apache Hadoop framework includes following four modules:

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 Hadoop Common: Contains Java libraries and utilities needed by other Hadoop

modules. These libraries give filesystem and OS level abstraction and comprise of

the essential Java files and scripts that are required to start Hadoop.

 Hadoop Distributed File System (HDFS): A distributed file-system that provides

high-throughput access to application data on the community machines thus

providing very high aggregate bandwidth across the cluster.

 Hadoop YARN: A resource-management framework responsible for job

scheduling and cluster resource management.

 Hadoop MapReduce: This is a YARN- based programming model for parallel

processing of large data sets.

Below diagram portray four components that are available in Hadoop framework.

All the modules in Hadoop are designed with a fundamental assumption i.e., hardware

failure, so should be automatically controlled in software by the framework. Beyond

HDFS, YARN and MapReduce, the entire Apache Hadoop “platform” is now commonly

http://devops.com/wp-content/uploads/2015/06/Hadoop.png

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

considered to consist of a number of related projects as well: Apache Pig, Apache Hive,

Apache HBase, and others.

Hadoop Ecosystem:

Hadoop has gained its popularity due to its ability of storing, analyzing and accessing

large amount of data, quickly and cost effectively through clusters of commodity

hardware. It wont be wrong if we say that Apache Hadoop is actually a collection of

several components and not just a single product.

With Hadoop Ecosystem there are several commercial along with an open source

products which are broadly used to make Hadoop laymen accessible and more usable.

The following sections provide additional information on the individual components:

MapReduce

Hadoop MapReduce is a software framework for easily writing applications which

process big amounts of data in-parallel on large clusters of commodity hardware in a

reliable, fault-tolerant manner. In terms of programming, there are two functions which

are most common in MapReduce.

 The Map Task: Master computer or node takes input and convert it into divide it

into smaller parts and distribute it on other worker nodes. All worker nodes solve

their own small problem and give answer to the master node.

 The Reduce Task: Master node combines all answers coming from worker node

and forms it in some form of output which is answer of our big distributed problem.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Generally both the input and the output are reserved in a file-system. The framework is

responsible for scheduling tasks, monitoring them and even re-executes the failed

tasks.

Hadoop Distributed File System (HDFS)

HDFS is a distributed file-system that provides high throughput access to data. When

data is pushed to HDFS, it automatically splits up into multiple blocks and

stores/replicates the data thus ensuring high availability and fault tolerance.

Note: A file consists of many blocks (large blocks of 64MB and above).

Here are the main components of HDFS:

 NameNode: It acts as the master of the system. It maintains the name system

i.e., directories and files and manages the blocks which are present on the

DataNodes.

 DataNodes: They are the slaves which are deployed on each machine and

provide the actual storage. They are responsible for serving read and write

requests for the clients.

 Secondary NameNode: It is responsible for performing periodic checkpoints. In

the event of NameNode failure, you can restart the NameNode using the

checkpoint.

Hive

Hive is part of the Hadoop ecosystem and provides an SQL like interface to Hadoop. It

is a data warehouse system for Hadoop that facilitates easy data summarization, ad-

hoc queries, and the analysis of large datasets stored in Hadoop compatible file

systems.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

It provides a mechanism to project structure onto this data and query the data using a

SQL-like language called HiveQL. Hive also allows traditional map/reduce programmers

to plug in their custom mappers and reducers when it is inconvenient or inefficient to

express this logic in HiveQL.

The main building blocks of Hive are –

1. Metastore – To store metadata about columns, partition and system catalogue.

2. Driver – To manage the lifecycle of a HiveQL statement

3. Query Compiler – To compiles HiveQL into a directed acyclic graph.

4. Execution Engine – To execute the tasks in proper order which are produced by

the compiler.

5. HiveServer – To provide a Thrift interface and a JDBC / ODBC server.

HBase (Hadoop DataBase)

HBase is a distributed, column oriented database and uses HDFS for the underlying

storage. As said earlier, HDFS works on write once and read many times pattern, but

this isn’t a case always. We may require real time read/write random access for huge

dataset; this is where HBase comes into the picture. HBase is built on top of HDFS and

distributed on column-oriented database.

Here are the main components of HBase:

 HBase Master: It is responsible for negotiating load balancing across all

RegionServers and maintains the state of the cluster. It is not part of the actual

data storage or retrieval path.

 RegionServer: It is deployed on each machine and hosts data and processes I/O

requests.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Zookeeper

ZooKeeper is a centralized service for maintaining configuration information, naming,

providing distributed synchronization and providing group services which are very useful

for a variety of distributed systems. HBase is not operational without ZooKeeper.

Mahout

Mahout is a scalable machine learning library that implements various different

approaches machine learning. At present Mahout contains four main groups of

algorithms:

 Recommendations, also known as collective filtering

 Classifications, also known as categorization

 Clustering

 Frequent itemset mining, also known as parallel frequent pattern mining

Algorithms in the Mahout library belong to the subset that can be executed in a

distributed fashion and have been written to be executable in MapReduce. Mahout is

scalable along three dimensions: It scales to reasonably large data sets by leveraging

algorithm properties or implementing versions based on Apache Hadoop.

Sqoop (SQL-to-Hadoop)

Sqoop is a tool designed for efficiently transferring structured data from SQL Server and

SQL Azure to HDFS and then uses it in MapReduce and Hive jobs. One can even use

Sqoop to move data from HDFS to SQL Server.

Apache Spark:

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Apache Spark is a general compute engine that offers fast data analysis on a large

scale. Spark is built on HDFS but bypasses MapReduce and instead uses its own data

processing framework. Common uses cases for Apache Spark include real-time

queries, event stream processing, iterative algorithms, complex operations and machine

learning.

Pig

Pig is a platform for analyzing and querying huge data sets that consist of a high-level language

for expressing data analysis programs, coupled with infrastructure for evaluating these programs.

Pig’s built-in operations can make sense of semi-structured data, such as log files, and the

language is extensible using Java to add support for custom data types and transformations.

Pig has three main key properties:

 Extensibility

 Optimization opportunities

 Ease of programming

The salient property of Pig programs is that their structure is amenable to substantial

parallelization, which in turns enables them to handle very large data sets. At the present time,

Pig’s infrastructure layer consists of a compiler that produces sequences of MapReduce

programs.

Apache Pig MapReduce

Apache Pig is a data flow language. MapReduce is a data processing paradigm.

It is a high level language. MapReduce is low level and rigid.

Performing a Join operation in Apache Pig is pretty

simple.

It is quite difficult in MapReduce to

perform a Join operation between datasets.

Any novice programmer with a basic knowledge of

SQL can work conveniently with Apache Pig.

Exposure to Java is must to work with

MapReduce.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Apache Pig uses multi-query approach, thereby

reducing the length of the codes to a great extent.

MapReduce will require almost 20 times

more the number of lines to perform the

same task.

There is no need for compilation. On execution, every

Apache Pig operator is converted internally into a

MapReduce job.

MapReduce jobs have a long compilation

process.

Pig Data Model.

The data model of Pig Latin is fully nested and it allows complex non-atomic datatypes such

as map and tuple.

Types

Pig’s data types can be divided into two categories: scalar types, which contain a single value,

and complex types, which contain other types.

Scalar Types

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Pig’s scalar types are simple types that appear in most programming languages. With the

exception of bytearray, they are all represented in Pig interfaces byjava.lang classes, making

them easy to work with in UDFs:

Int,Long ,Float Double, CharArray and byteArray.

Complex Types

Pig has three complex data types: maps, tuples, and bags. All of these types can contain data of

any type, including other complex types.

Map

A map in Pig is a chararray to data element mapping, where that element can be any Pig type,

including a complex type. The chararray is called a key and is used as an index to find the

element, referred to as the value.

Map constants are formed using brackets to delimit the map, a hash between keys and values,

and a comma between key-value pairs. For example,['name'#'bob', 'age'#55] will create a map

with two keys, “name” and“age”. The first value is a chararray, and the second is an integer.

Tuple

A tuple is a fixed-length, ordered collection of Pig data elements. Tuples are divided into fields,

with each field containing one data element. These elements can be of any type—they do not all

need to be the same type. A tuple is analogous to a row in SQL, with the fields being SQL

columns.

Tuple constants use parentheses to indicate the tuple and commas to delimit fields in the tuple.

For example, ('bob', 55) describes a tuple constant with two fields.

Bag

A bag is an unordered collection of tuples. Because it has no order, it is not possible to reference

tuples in a bag by position. Like tuples, a bag can, but is not required to,

have a schema associated with it. In the case of a bag, the schema describes all tuples within the

bag.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Bag constants are constructed using braces, with tuples in the bag separated by commas. For

example, {('bob', 55), ('sally', 52), ('john', 25)}constructs a bag with three tuples,

each with two fields.

Pig Latin.

The language used to analyze data in Hadoop using Pig is known as Pig Latin. It is a high level

data processing language which provides a rich set of data types and operators to perform

various operations on the data.

To perform a particular task Programmers using Pig, programmers need to write a Pig script

using the Pig Latin language, and execute them using any of the execution mechanisms (Grunt

Shell, UDFs, Embedded). After execution, these scripts will go through a series of

transformations applied by the Pig Framework, to produce the desired output.

Pig Latin – Type Construction Operators-

() Tuple constructor operator − This operator is used to construct a tuple.

{} Bag constructor operator − This operator is used to construct a bag.

[] Map constructor operator − This operator is used to construct a tuple.

Pig Latin – Relational Operators

Operator Description

Loading and Storing

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

LOAD To Load the data from the file system (local/HDFS) into a relation.

STORE To save a relation to the file system (local/HDFS).

Filtering

FILTER To remove unwanted rows from a relation.

Grouping and Joining

JOIN To join two or more relations.

COGROUP To group the data in two or more relations.

GROUP To group the data in a single relation.

CROSS To create the cross product of two or more relations.

Sorting

ORDER To arrange a relation in a sorted order based on one or more fields (ascending or

descending).

LIMIT To get a limited number of tuples from a relation.

Combining and Splitting

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

UNION To combine two or more relations into a single relation.

SPLIT To split a single relation into two or more relations.

Diagnostic Operators

DUMP To print the contents of a relation on the console.

DESCRIBE To describe the schema of a relation.

EXPLAIN To view the logical, physical, or MapReduce execution plans to compute a

relation.

ILLUSTRATE To view the step-by-step execution of a series of statements.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Architecture of PIG

As shown in the figure, there are various components in the Apache Pig framework. Let us take

a look at the major components.

Parser

Initially the Pig Scripts are handled by the Parser. It checks the syntax of the script, does type

checking, and other miscellaneous checks. The output of the parser will be a DAG (directed

acyclic graph), which represents the Pig Latin statements and logical operators.

In the DAG, the logical operators of the script are represented as the nodes and the data flows

are represented as edges.

Optimizer

The logical plan (DAG) is passed to the logical optimizer, which carries out the logical

optimizations such as projection and pushdown.

Compiler

The compiler compiles the optimized logical plan into a series of MapReduce jobs.

Execution engine

Finally the MapReduce jobs are submitted to Hadoop in a sorted order. Finally, these

MapReduce jobs are executed on Hadoop producing the desired results.

Developing and Testing Pig Latin Script.

Pig provides several tools and diagnostic operators to help you develop your

applications. In this section we will explore these and also look at some tools others

have written to make it easier to develop Pig with standard editors and integrated

development environments (IDEs).

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Syntax Highlighting and Checking

Syntax highlighting often helps users write code correctly, at least syntactically, the first time

around. Syntax highlighting packages exist for several popular editors.

Pig Latin syntax highlighting packages

Tool URL

Eclipse http://code.google.com/p/pig-eclipse

Emacs http://github.com/cloudera/piglatin-mode,http://sf.net/projects/pig-mode

TextMate http://www.github.com/kevinweil/pig.tmbundle

Vim http://www.vim.org/scripts/script.php?script_id=218

describe

describe shows you the schema of a relation in your script. This can be very helpful as you are

developing your scripts. It is especially useful as you are learning Pig Latin and understanding

how various operators change the data. describe can be applied to any relation in your script,

and you can have multiple describes in a script:

-describe.pig

divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,

 date:chararray, dividends:float);

trimmed = foreach divs generate symbol, dividends;

grpd = group trimmed by symbol;

avgdiv = foreach grpd generate group, AVG(trimmed.dividends);

describe trimmed;

describe grpd;

describe avgdiv;

http://code.google.com/p/pig-eclipse
http://github.com/cloudera/piglatin-mode
http://sf.net/projects/pig-mode
http://www.github.com/kevinweil/pig.tmbundle
http://www.vim.org/scripts/script.php?script_id=2186

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

trimmed: {symbol: chararray,dividends: float}

grpd: {group: chararray,trimmed: {(symbol: chararray,dividends: float)}}

avgdiv: {group: chararray,double}

explain

One of Pig’s goals is to allow you to think in terms of data flow instead of MapReduce. But

sometimes you need to peek into the barn and see how Pig is compiling your script into

MapReduce jobs. Pig provides explain for this. explain is particularly helpful when you are

trying to optimize your scripts or debug errors.

There are two ways to use explain. You can explain any alias in your Pig Latin script, which

will show the execution plan Pig would use if you stored that relation. You can also take an

existing Pig Latin script and apply explain to the whole script in Grunt.

illustrate

Often one of the best ways to debug your Pig Latin script is to run your data through it. But if

you are using Pig, the odds are that you have a large data set. If it takes several hours to process

your data, this makes for a very long debugging cycle.

For example, if you have a join, you have to be careful to sample records from each input such

that at least some have the same key. Otherwise, your join will return no results.

To address this issue, the scientists in Yahoo! Research built illustrate into

Pig. illustrate takes a sample of your data and runs it through your script, but as it

encounters operators that remove data (such as filter, join, etc.), it makes sure that some

records pass through the operator and some do not.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Pig Statistics

Beginning in version 0.8, Pig produces a summary set of statistics at the end of every run:

The Input, Output, and Counters sections are self-explanatory. The statistics on spills record

how many times Pig spilled records to local disk to avoid running out of memory. In local mode

theCounters section will be missing because Hadoop does not report counters in local mode.

The Job DAG section at the end describes how data flowed between MapReduce jobs. In this

case, the flow was linear.

MapReduce Job Status

When you are running your Pig Latin scripts on your Hadoop cluster, finding the status and logs

of your job can be challenging. Logs generated by Pig while it plans and manages your query are

stored in the current working directory.

Debugging Tips

Beyond the tools covered previously, there are a few things I have found useful in debugging Pig

Latin scripts. First, if illustrate does not do what you need, use local mode to test your script

before running it on your Hadoop cluster.

Testing Your Scripts with PigUnit

As part of your development, you will want to test your Pig Latin scripts. Even once they are

finished, regular testing helps assure that changes to your UDFs, to your scripts, or in the

versions of Pig and Hadoop that you are using do not break your code. PigUnit provides a unit-

testing framework that plugs into JUnit to help you write unit tests that can be run on a regular

basis.PigUnit was added in Pig 0.8.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Writing Evaluation

Pig and Hadoop are implemented in Java, and so it is natural to implement UDFs in Java.

This allows UDFs access to the Hadoop APIs and to many of Pig’s facilities.

Evaluation Function Basics

All evaluation functions extend the Java class org.apache.pig.EvalFunc. This class uses Java

generics. It is parameterized by the return type of your UDF. The core method in this class

is exec. It takes one record and returns one result, which will be invoked for every record that

passes through your execution pipeline.

UDFs can also be handed the entire record by passing * to the UDF. You might expect that

in this case the input Tuple argument passed to the UDF would contain all the fields passed

into the operator the UDF is in. But it does not.

Interacting with Pig values

Evaluation functions and other UDFs are exposed to the internals of how Pig represents data

types. This means that when you read a field and expect it to be an integer, you need to know

that it will be an instance of java.lang.Integer. For a complete list of Pig types and how they

are represented in Java, see “Types”.

Memory Issues in Eval Funcs

Some operations you will perform in your UDFs will require more memory than is available. As

an example, you might want to build a UDF that calculates the cumulative sum of a set of inputs.

This will return a bag of values because, for each input, it needs to return the intermediate sum at

that input.

http://chimera.labs.oreilly.com/books/1234000001811/ch04.html#types

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Filter

The filter statement allows you to select which records will be retained in your data pipeline.

A filter contains a predicate. If that predicate evaluates to true for a given record, that record

will be passed down the pipeline.

Predicates can contain the equality operators you expect, including == to test equality,

and !=, >, >=,<, and <=. These comparators can be used on any scalar data type. == and != can be

applied to maps and tuples.

-- filter_matches.pig

divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,

 date:chararray, dividends:float);

startswithcm = filter divs by symbol matches 'CM.*';

Load and Store Functions

Pig’s load function is built on top of a Hadoop InputFormat, the class that Hadoop uses to read

data.InputFormat serves two purposes: it determines how input will be split between map tasks,

and it provides a RecordReader that produces key-value pairs as input to those map tasks. The

load function takes these key-value pairs and returns a Pig Tuple.

The base class for the load function is LoadFunc. This is an abstract class, which allows it to

provide helper functions and default implementations. Many load functions will only need to

extendLoadFunc.

Frontend Planning Functions

For all load functions, Pig must do three things as part of frontend planning: 1) it needs to know

the input format it should use to read the data; 2) it needs to be sure that the load function

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

understands where its data is located; and 3) it needs to know how to cast bytearrays returned

from the load function.

Determining InputFormat

Pig needs to know which InputFormat to use for reading your input. It calls getInputFormat to

get an instance of the input format. It gets an instance rather than the class itself so that your load

function can control the instantiation: any generic parameters, constructor arguments, etc. For

our example load function, this method is very simple. It uses TextInputFormat, an input

format that reads text data from HDFS files:

// JsonLoader.java

public InputFormat getInputFormat() throws IOException {

 return new TextInputFormat();

}

Determining the location

Pig communicates the location string provided by the user to the load function

via setLocation. So, if the load operator in Pig Latin is A = load 'input';, “input” is the

location string. This method is called on both the frontend and backend, possibly multiple times.

Thus you need to take care that this method does not do anything that will cause problems if

done more than one time. Your load function should communicate the location to its input

format. For example, JsonLoader passes the filename via a helper method

on FileInputFormat (a superclass of TextInputFormat):

// JsonLoader.java

public void setLocation(String location, Job job) throws IOException {

 FileInputFormat.setInputPaths(job, location);

}

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

The Hadoop Job is passed along with the location because that is where input formats usually

store their configuration information.

Getting the casting functions

Some Pig functions, such as PigStorage and HBaseStorage, load data by default without

understanding its type information, and place the data unchanged in DataByteArray objects. At

a later time, when Pig needs to cast that data to another type, it does not know how to because it

does not understand how the data is represented in the bytearray.

Passing Information from the Frontend to the Backend

As with evaluation functions, load functions can make use of UDFContext to pass information

from frontend invocations to backend invocations. For details on UDFContext,

see “UDFContext”. One significant difference between using UDFContext in evaluation and load

functions is determining the instance-specific signature of the function.

In evaluation functions, constructor arguments were suggested as a way to do this. For load

functions, the input location usually will be the differentiating factor. However, LoadFunc does

not guarantee that it will call setLocation before other methods where you might want to

use UDFContext.

Additional Load Function Interfaces

Your load function can provide more complex features by implementing additional interfaces.

(Implementation of these interfaces is optional.)

Loading metadata

Many data storage mechanisms can record the schema along with the data. Pig does not assume

the ability to store schemas, but if your storage can hold the schema, it can be very useful. This

frees script writers from needing to specify the field names and types as part of the load operator

in Pig Latin.

http://chimera.labs.oreilly.com/books/1234000001811/ch10.html#udf_context

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Some types of data storage also partition the data. If Pig understands this partitioning, it can load

only those partitions that are needed for a particular script. Both of these functions are enabled

by implementing the LoadMetadata interface.

getSchema in the LoadMetadata interface gives your load function a chance to provide a

schema. It is passed the location string the user provides as well as the Hadoop Job object, in

case it needs information in this object to open the schema.

Using partitions

Some types of storage partition their data, allowing you to read only the relevant sections for a

given job. The LoadMetadata interface also provides methods for working with partitions in

your data. In order for Pig to request the relevant partitions, it must know how the data is

partitioned. Pig determines this by calling getPartitionKeys.

Store Functions

Pig’s store function is, in many ways, a mirror image of the load function. It is built on top of

Hadoop’s OutputFormat. It takes Pig Tuples and creates key-value pairs that its associated

output format writes to storage.

StoreFunc is an abstract class, which allows it to provide default implementations for some

methods. However, some functions implement both load and store functionality; PigStorage is

one example.

Store Function Frontend Planning

Store functions have three tasks to fulfill on the frontend:

 Instantiate the OutputFormat they will use to store data.

 Check the schema of the data being stored.

 Record the location where the data will be stored.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Determining OutputFormat

Pig calls getOutputFormat to get an instance of the output format that your store function will

use to store records. This method returns an instance rather than the classname or the class itself.

This allows your store function to control how the class is instantiated.

JsonStorage.java

public OutputFormat getOutputFormat() throws IOException {

 return new TextOutputFormat<LongWritable, Text>();

}

Setting the output location

Pig calls setStoreLocation to communicate the location string the user provides to your store

function. Given the Pig Latin store Z into 'output';, “output” is the location string. This

method, called on both the frontend and the backend, could be called multiple times

The Hadoop Job is passed to this function as well. Most output formats store the location

information in the job.

Pig calls setStoreLocation on both the frontend and backend because output formats usually

store their location in the job, as we see in our example store function. This works for

MapReduce jobs, where a single output format is guaranteed.

Store Functions and UDFContext

Store functions work with UDFContext exactly as load functions do, but with one exception: the

signature for store functions is passed to the store function

via setStoreFuncUDFContextSignature. See “Passing Information from the Frontend to the

Backend” for a discussion of how load functions work with UDFContext.

http://chimera.labs.oreilly.com/books/1234000001811/ch11.html#load_func_udfcontext
http://chimera.labs.oreilly.com/books/1234000001811/ch11.html#load_func_udfcontext

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Writing Data

During backend processing, the store function is first initialized, and then takes Pig tuples and

converts them to key-value pairs to be written to storage.

Preparing to write

Pig calls your store function’s prepareToWrite method in each map or reduce task before

writing any data. This call passes a RecordWriter instance to use when writing

data. RecordWriter is a class that OutputFormat uses to write individual records.

Writing records

putNext is the core method in the store function class. Pig calls this method for every tuple it

needs to store. Your store function needs to take these tuples and produce the key-value pairs

that its output format expects.

Storing Metadata

If your storage format can store schemas in addition to data, your store function can implement

the interface StoreMetadata. This provides a storeSchema method that is called by Pig as part

of its frontend operations. Pig passes storeSchema a ResourceSchema, the location string, and

the job object so that it can connect to its storage.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Hive – Introduction
The term ‘Big Data’ is used for collections of large datasets that include

huge volume, high velocity, and a variety of data that is increasing day by

day. Using traditional data management systems, it is difficult to process

Big Data. Therefore, the Apache Software Foundation introduced a

framework called Hadoop to solve Big Data management and processing

challenges.

Hadoop
Hadoop is an open-source framework to store and process Big Data in a

distributed environment. It contains two modules, one is MapReduce and

another is Hadoop Distributed File System (HDFS).

 MapReduce: It is a parallel programming model for processing large amounts

of structured, semi-structured, and unstructured data on large clusters of

commodity hardware.

 HDFS:Hadoop Distributed File System is a part of Hadoop framework, used to

store and process the datasets. It provides a fault-tolerant file system to run on

commodity hardware.

The Hadoop ecosystem contains different sub-projects (tools) such as

Sqoop, Pig, and Hive that are used to help Hadoop modules.

 Sqoop: It is used to import and export data to and from between HDFS and

RDBMS.

 Pig: It is a procedural language platform used to develop a script for MapReduce

operations.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 Hive: It is a platform used to develop SQL type scripts to do MapReduce

operations.

Note: There are various ways to execute MapReduce operations:

 The traditional approach using Java MapReduce program for structured, semi-

structured, and unstructured data.

 The scripting approach for MapReduce to process structured and semi structured

data using Pig.

 The Hive Query Language (HiveQL or HQL) for MapReduce to process structured

data using Hive.

What is Hive
Hive is a data warehouse infrastructure tool to process structured data in

Hadoop. It resides on top of Hadoop to summarize Big Data, and makes

querying and analyzing easy.

Initially Hive was developed by Facebook, later the Apache Software

Foundation took it up and developed it further as an open source under the

name Apache Hive. It is used by different companies. For example, Amazon

uses it in Amazon Elastic MapReduce.

Hive is not

 A relational database

 A design for OnLine Transaction Processing (OLTP)

 A language for real-time queries and row-level updates

Features of Hive

 It stores schema in a database and processed data into HDFS.

 It is designed for OLAP.

 It provides SQL type language for querying called HiveQL or HQL.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 It is familiar, fast, scalable, and extensible.

Architecture of Hive
The following component diagram depicts the architecture of Hive:

This component diagram contains different units. The following table

describes each unit:

Unit Name Operation

User Interface Hive is a data warehouse infrastructure software that can

create interaction between user and HDFS. The user

interfaces that Hive supports are Hive Web UI, Hive

command line, and Hive HD Insight (In Windows server).

Meta Store Hive chooses respective database servers to store the

schema or Metadata of tables, databases, columns in a

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

table, their data types, and HDFS mapping.

HiveQL Process Engine HiveQL is similar to SQL for querying on schema info on

the Metastore. It is one of the replacements of traditional

approach for MapReduce program. Instead of writing

MapReduce program in Java, we can write a query for

MapReduce job and process it.

Execution Engine The conjunction part of HiveQL process Engine and

MapReduce is Hive Execution Engine. Execution engine

processes the query and generates results as same as

MapReduce results. It uses the flavor of MapReduce.

HDFS or HBASE Hadoop distributed file system or HBASE are the data

storage techniques to store data into file system.

Working of Hive
The following diagram depicts the workflow between Hive and Hadoop.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

The following table defines how Hive interacts with Hadoop framework:

Step

No.

Operation

1 Execute Query

The Hive interface such as Command Line or Web UI sends query to

Driver (any database driver such as JDBC, ODBC, etc.) to execute.

2 Get Plan

The driver takes the help of query compiler that parses the query to

check the syntax and query plan or the requirement of query.

3 Get Metadata

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

The compiler sends metadata request to Metastore (any database).

4 Send Metadata

Metastore sends metadata as a response to the compiler.

5 Send Plan

The compiler checks the requirement and resends the plan to the

driver. Up to here, the parsing and compiling of a query is complete.

6 Execute Plan

The driver sends the execute plan to the execution engine.

7 Execute Job

Internally, the process of execution job is a MapReduce job. The

execution engine sends the job to JobTracker, which is in Name node

and it assigns this job to TaskTracker, which is in Data node. Here, the

query executes MapReduce job.

7.1 Metadata Ops

Meanwhile in execution, the execution engine can execute metadata

operations with Metastore.

8 Fetch Result

The execution engine receives the results from Data nodes.

9 Send Results

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

The execution engine sends those resultant values to the driver.

10 Send Results

The driver sends the results to Hive Interfaces.

Hadoop Hive Architecture

Hive is one of the most important component of Hadoop,In previous post we discussed

about Hive Introduction.Now we have to know about Hadoop Hive Architecture.

Hadoop Hive Architecture

The above diagram shows the basic Hadoop Hive architecture. Primarily The diagram

represents CLI (Command Line Interface),JDBC/ODBC and Web GUI (Web Graphical User

Interface).This represents when user comes with CLI(Hive Terminal) it directly connected to

Hive Drivers,When User comes with JDBC/ODBC(JDBC Program) at that time by using

http://www.hadooptpoint.com/introduction-hive/
http://www.hadooptpoint.com/wp-content/uploads/2015/01/Hadoop-Hive-Architecture.jpg

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

API(Thrift Server) it connected to Hive driver and when the user comes with Web GUI(Ambari

server) it directly connected to Hive Driver.

The hive driver receives the tasks(Queries) from user and send to Hadoop architecture.The

Hadoop architecture uses name node,data node,job tracker and task tracker for receiving and

dividing the work what Hive sends to Hadoop (Mapreduce Architecture) .

The below diagram represents clear internal Hadoop Hive Architecture

Hive_architecture

The above diagram shows how a typical query flows through the system

Step 1 :- The UI calls the execute interface to the Driver

http://www.hadooptpoint.com/hadoop-mapreduce/
http://www.hadooptpoint.com/wp-content/uploads/2015/01/Hive_architecture.png

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Step 2 :- The Driver creates a session handle for the query and sends the query to the compiler to

generate an execution plan

Step 3&4 :- The compiler needs the metadata so send a request for getMetaData and receives the

sendMetaData request from MetaStore.

Step 5 :- This metadata is used to typecheck the expressions in the query tree as well as to prune

partitions based on query predicates. The plan generated by the compiler is a DAG of stages

with each stage being either a map/reduce job, a metadata operation or an operation on HDFS.

For map/reduce stages, the plan contains map operator trees (operator trees that are executed on

the mappers) and a reduce operator tree (for operations that need reducers).

Step 6 :- The execution engine submits these stages to appropriate components (steps 6, 6.1, 6.2

and 6.3). In each task (mapper/reducer) the deserializer associated with the table or intermediate

outputs is used to read the rows from HDFS files and these are passed through the associated

operator tree.Once the output generate it is written to a temporary HDFS file though the

serializer. The temporary files are used to provide the to subsequent map/reduce stages of the

plan.For DML operations the final temporary file is moved to the table’s location

Step 7&8&9 :- For queries, the contents of the temporary file are read by the execution engine

directly from HDFS as part of the fetch call from the Driver

Major Components of Hive

UI :- UI means User Interface, The user interface for users to submit queries and other

operations to the system.

Driver :- The Driver is used for receives the quires from UI .This component implements the

notion of session handles and provides execute and fetch APIs modeled on JDBC/ODBC

interfaces.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Compiler :- The component that parses the query, does semantic analysis on the different query

blocks and query expressions and eventually generates an execution plan with the help of the

table and partition metadata looked up from the metastore.

MetaStore :- The component that stores all the structure information of the various tables and

partitions in the warehouse including column and column type information, the serializers and

deserializers necessary to read and write data and the corresponding HDFS files where the data is

stored.

Execution Engine :- The component which executes the execution plan created by the compiler.

The plan is a DAG of stages. The execution engine manages the dependencies between these

different stages of the plan and executes these stages on the appropriate system components.

This is the main theme of hadoop hive architecture

HIVE VS TRADITIONAL DATABASE

 Hive resembles a traditional database by supporting SQL interface but it is not a full database.

Hive can be better called as data warehouse instead of database.

 Hive enforces schema on read time whereas RDBMS enforces schema on write time.

In RDBMS, a table’s schema is enforced at data load time, If the data being

loaded doesn’t conform to the schema, then it is rejected. This design is called schema on write.

But Hive doesn’t verify the data when it is loaded, but rather when a

it is retrieved. This is called schema on read.

Schema on read makes for a very fast initial load, since the data does not have to be read, parsed,

and serialized to disk in the database’s internal format. The load operation is just a file copy or move.

Schema on write makes query time performance faster, since the database can index columns and

perform compression on the data but it takes longer to load data into the database.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 Hive is based on the notion of Write once, Read many times but RDBMS is designed for Read

and Write many times.

 In RDBMS, record level updates, insertions and deletes, transactions and indexes are possible.

Whereas these are not allowed in Hive because Hive was built to operate over HDFS data using

MapReduce, where full-table scans are the norm and a table update is achieved by transforming

the data into a new table.

 In RDBMS, maximum data size allowed will be in 10’s of Terabytes but whereas Hive can

100’s Petabytes very easily.

 As Hadoop is a batch-oriented system, Hive doesn’t support OLTP (Online Transaction

Processing) but it is closer to OLAP (Online Analytical Processing) but not ideal since there

is significant latency between issuing a query and receiving a reply, due to the overhead of

Mapreduce jobs and due to the size of the data sets Hadoop was designed to serve.

 RDBMS is best suited for dynamic data analysis and where fast responses are expected

but Hive is suited for data warehouse applications, where relatively static data is analyzed, fast

response times are not required, and when the data is not changing rapidly.

 To overcome the limitations of Hive, HBase is being integrated with Hive to support record level

operations and OLAP.

 Hive is very easily scalable at low cost but RDBMS is not that much scalable that too it is very

costly scale up.

HIVEQL Data Types
This chapter takes you through the different data types in Hive, which are

involved in the table creation. All the data types in Hive are classified into

four types, given as follows:

 Column Types

 Literals

 Null Values

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 Complex Types

Column Types
Column type are used as column data types of Hive. They are as follows:

Integral Types

Integer type data can be specified using integral data types, INT. When the

data range exceeds the range of INT, you need to use BIGINT and if the

data range is smaller than the INT, you use SMALLINT. TINYINT is smaller

than SMALLINT.

The following table depicts various INT data types:

Type Postfix Example

TINYINT Y 10Y

SMALLINT S 10S

INT - 10

BIGINT L 10L

String Types

String type data types can be specified using single quotes (' ') or double

quotes (" "). It contains two data types: VARCHAR and CHAR. Hive follows

C-types escape characters.

The following table depicts various CHAR data types:

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Data Type Length

VARCHAR 1 to 65355

CHAR 255

Timestamp

It supports traditional UNIX timestamp with optional nanosecond precision.

It supports java.sql.Timestamp format “YYYY-MM-DD HH:MM:SS.fffffffff”

and format “yyyy-mm-dd hh:mm:ss.ffffffffff”.

Dates

DATE values are described in year/month/day format in the form {{YYYY-

MM-DD}}.

Decimals

The DECIMAL type in Hive is as same as Big Decimal format of Java. It is

used for representing immutable arbitrary precision. The syntax and

example is as follows:

DECIMAL(precision, scale)

decimal(10,0)

Union Types

Union is a collection of heterogeneous data types. You can create an

instance using create union. The syntax and example is as follows:

UNIONTYPE<int, double, array<string>, struct<a:int,b:string>>

{0:1}

{1:2.0}

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

{2:["three","four"]}

{3:{"a":5,"b":"five"}}

{2:["six","seven"]}

{3:{"a":8,"b":"eight"}}

{0:9}

{1:10.0}

Literals
The following literals are used in Hive:

Floating Point Types

Floating point types are nothing but numbers with decimal points.

Generally, this type of data is composed of DOUBLE data type.

Decimal Type
Decimal type data is nothing but floating point value with higher range than DOUBLE

data type. The range of decimal type is approximately -10-308 to 10308.

Null Value
Missing values are represented by the special value NULL.

Complex Types
The Hive complex data types are as follows:

Arrays

Arrays in Hive are used the same way they are used in Java.

Syntax: ARRAY<data_type>

Maps

Maps in Hive are similar to Java Maps.

Syntax: MAP<primitive_type, data_type>

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Structs

Structs in Hive is similar to using complex data with comment.

Syntax: STRUCT<col_name : data_type [COMMENT col_comment], ...>

Hive - Built-in Operators
This chapter explains the built-in operators of Hive. There are four types of

operators in Hive:

 Relational Operators

 Arithmetic Operators

 Logical Operators

 Complex Operators

Relational Operators
These operators are used to compare two operands. The following table

describes the relational operators available in Hive:

Operator Operand Description

A = B all primitive types TRUE if expression A is equivalent to

expression B otherwise FALSE.

A != B all primitive types TRUE if expression A is not equivalent to

expression B otherwise FALSE.

A < B all primitive types TRUE if expression A is less than expression

B otherwise FALSE.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

A <= B all primitive types TRUE if expression A is less than or equal to

expression B otherwise FALSE.

A > B all primitive types TRUE if expression A is greater than

expression B otherwise FALSE.

A >= B all primitive types TRUE if expression A is greater than or equal

to expression B otherwise FALSE.

A IS NULL all types TRUE if expression A evaluates to NULL

otherwise FALSE.

A IS NOT NULL all types FALSE if expression A evaluates to NULL

otherwise TRUE.

A LIKE B Strings TRUE if string pattern A matches to B

otherwise FALSE.

A RLIKE B Strings NULL if A or B is NULL, TRUE if any substring

of A matches the Java regular expression B ,

otherwise FALSE.

A REGEXP B Strings Same as RLIKE.

Example

Let us assume the employee table is composed of fields named Id, Name,

Salary, Designation, and Dept as shown below. Generate a query to retrieve

the employee details whose Id is 1205.

+-----+--------------+--------+---------------------------+------+

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

| Id | Name | Salary | Designation | Dept |

+-----+--------------+------------------------------------+------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali | 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

|1205 | Kranthi | 30000 | Op Admin | Admin|

+-----+--------------+--------+---------------------------+------+

The following query is executed to retrieve the employee details using the

above table:

hive> SELECT * FROM employee WHERE Id=1205;

On successful execution of query, you get to see the following response:

+-----+-----------+-----------+----------------------------------+

| ID | Name | Salary | Designation | Dept |

+-----+---------------+-------+----------------------------------+

|1205 | Kranthi | 30000 | Op Admin | Admin |

+-----+-----------+-----------+----------------------------------+

The following query is executed to retrieve the employee details whose

salary is more than or equal to Rs 40000.

hive> SELECT * FROM employee WHERE Salary>=40000;

On successful execution of query, you get to see the following response:

+-----+------------+--------+----------------------------+------+

| ID | Name | Salary | Designation | Dept |

+-----+------------+--------+----------------------------+------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

+-----+------------+--------+----------------------------+------+

Arithmetic Operators
These operators support various common arithmetic operations on the

operands. All of them return number types. The following table describes

the arithmetic operators available in Hive:

Operators Operand Description

A + B all number types Gives the result of adding A and B.

A - B all number types Gives the result of subtracting B from A.

A * B all number types Gives the result of multiplying A and B.

A / B all number types Gives the result of dividing B from A.

A % B all number types Gives the reminder resulting from dividing A by B.

A & B all number types Gives the result of bitwise AND of A and B.

A | B all number types Gives the result of bitwise OR of A and B.

A ^ B all number types Gives the result of bitwise XOR of A and B.

~A all number types Gives the result of bitwise NOT of A.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Example

The following query adds two numbers, 20 and 30.

hive> SELECT 20+30 ADD FROM temp;

On successful execution of the query, you get to see the following

response:

+--------+

| ADD |

+--------+

| 50 |

+--------+

Logical Operators
The operators are logical expressions. All of them return either TRUE or

FALSE.

Operators Operands Description

A AND B boolean TRUE if both A and B are TRUE, otherwise FALSE.

A && B boolean Same as A AND B.

A OR B boolean TRUE if either A or B or both are TRUE, otherwise

FALSE.

A || B boolean Same as A OR B.

NOT A boolean TRUE if A is FALSE, otherwise FALSE.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

!A boolean Same as NOT A.

Example

The following query is used to retrieve employee details whose Department

is TP and Salary is more than Rs 40000.

hive> SELECT * FROM employee WHERE Salary>40000 && Dept=TP;

On successful execution of the query, you get to see the following

response:

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

+------+--------------+-------------+-------------------+--------+

Complex Operators
These operators provide an expression to access the elements of Complex

Types.

Operator Operand Description

A[n] A is an Array and n is

an int

It returns the nth element in the array A.

The first element has index 0.

M[key] M is a Map<K, V> and

key has type K

It returns the value corresponding to the

key in the map.

S.x S is a struct It returns the x field of S.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Hive - Built-in Functions
This chapter explains the built-in functions available in Hive. The functions

look quite similar to SQL functions, except for their usage.

Built-In Functions
Hive supports the following built-in functions:

Return Type Signature Description

BIGINT round(double a) It returns the rounded BIGINT value

of the double.

BIGINT floor(double a) It returns the maximum BIGINT

value that is equal or less than the

double.

BIGINT ceil(double a) It returns the minimum BIGINT

value that is equal or greater than

the double.

double rand(), rand(int seed) It returns a random number that

changes from row to row.

string concat(string A, string

B,...)

It returns the string resulting from

concatenating B after A.

string substr(string A, int start) It returns the substring of A starting

from start position till the end of

string A.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

string substr(string A, int start,

int length)

It returns the substring of A starting

from start position with the given

length.

string upper(string A) It returns the string resulting from

converting all characters of A to

upper case.

string ucase(string A) Same as above.

string lower(string A) It returns the string resulting from

converting all characters of B to

lower case.

string lcase(string A) Same as above.

string trim(string A) It returns the string resulting from

trimming spaces from both ends of

A.

string ltrim(string A) It returns the string resulting from

trimming spaces from the beginning

(left hand side) of A.

string rtrim(string A) rtrim(string A) It returns the string

resulting from trimming spaces from

the end (right hand side) of A.

string regexp_replace(string A,

string B, string C)

It returns the string resulting from

replacing all substrings in B that

match the Java regular expression

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

syntax with C.

int size(Map<K.V>) It returns the number of elements in

the map type.

int size(Array<T>) It returns the number of elements in

the array type.

value of <type> cast(<expr> as <type>) It converts the results of the

expression expr to <type> e.g.

cast('1' as BIGINT) converts the

string '1' to it integral

representation. A NULL is returned if

the conversion does not succeed.

string from_unixtime(int

unixtime)

convert the number of seconds from

Unix epoch (1970-01-01 00:00:00

UTC) to a string representing the

timestamp of that moment in the

current system time zone in the

format of "1970-01-01 00:00:00"

string to_date(string

timestamp)

It returns the date part of a

timestamp string: to_date("1970-

01-01 00:00:00") = "1970-01-01"

int year(string date) It returns the year part of a date or

a timestamp string: year("1970-01-

01 00:00:00") = 1970, year("1970-

01-01") = 1970

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

int month(string date) It returns the month part of a date

or a timestamp string:

month("1970-11-01 00:00:00") =

11, month("1970-11-01") = 11

int day(string date) It returns the day part of a date or a

timestamp string: day("1970-11-01

00:00:00") = 1, day("1970-11-01")

= 1

string get_json_object(string

json_string, string path)

It extracts json object from a json

string based on json path specified,

and returns json string of the

extracted json object. It returns

NULL if the input json string is

invalid.

Example

The following queries demonstrate some built-in functions:

round() function

hive> SELECT round(2.6) from temp;

On successful execution of query, you get to see the following response:

2.0

floor() function

hive> SELECT floor(2.6) from temp;

On successful execution of the query, you get to see the following

response:

2.0

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

floor() function

hive> SELECT ceil(2.6) from temp;

On successful execution of the query, you get to see the following

response:

3.0

Aggregate Functions
Hive supports the following built-in aggregate functions. The usage of

these functions is as same as the SQL aggregate functions.

Return Type Signature Description

BIGINT count(*),

count(expr),

count(*) - Returns the total number of

retrieved rows.

DOUBLE sum(col),

sum(DISTINCT col)

It returns the sum of the elements in the

group or the sum of the distinct values of

the column in the group.

DOUBLE avg(col),

avg(DISTINCT col)

It returns the average of the elements in

the group or the average of the distinct

values of the column in the group.

DOUBLE min(col) It returns the minimum value of the column

in the group.

DOUBLE max(col) It returns the maximum value of the

column in the group.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

This chapter explains how to create a table and how to insert data into it.

The conventions of creating a table in HIVE is quite similar to creating a

table using SQL.

Create Table Statement
Create Table is a statement used to create a table in Hive. The syntax and

example are as follows:

Syntax

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.] table_name

[(col_name data_type [COMMENT col_comment], ...)]

[COMMENT table_comment]

[ROW FORMAT row_format]

[STORED AS file_format]

Example

Let us assume you need to create a table named employee using CREATE

TABLE statement. The following table lists the fields and their data types in

employee table:

Sr.No Field Name Data Type

1 Eid Int

2 Name String

3 Salary Float

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

4 Designation String

The following data is a Comment, Row formatted fields such as Field

terminator, Lines terminator, and Stored File type.

COMMENT ‘Employee details’

FIELDS TERMINATED BY ‘\t’

LINES TERMINATED BY ‘\n’

STORED IN TEXT FILE

The following query creates a table named employee using the above data.

hive> CREATE TABLE IF NOT EXISTS employee (eid int, name String,

salary String, destination String)

COMMENT ‘Employee details’

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ‘\t’

LINES TERMINATED BY ‘\n’

STORED AS TEXTFILE;

If you add the option IF NOT EXISTS, Hive ignores the statement in case

the table already exists.

On successful creation of table, you get to see the following response:

OK

Time taken: 5.905 seconds

hive>

JDBC Program

The JDBC program to create a table is given example.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveCreateTable {

 private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.getConnection("jdbc:hive://localhost:10000/userdb", "",

"");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("CREATE TABLE IF NOT EXISTS "

 +" employee (eid int, name String, "

 +" salary String, destignation String)"

 +" COMMENT ‘Employee details’"

 +" ROW FORMAT DELIMITED"

 +" FIELDS TERMINATED BY ‘\t’"

 +" LINES TERMINATED BY ‘\n’"

 +" STORED AS TEXTFILE;");

 System.out.println(“ Table employee created.”);

 con.close();

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 }

}

Save the program in a file named HiveCreateDb.java. The following

commands are used to compile and execute this program.

$ javac HiveCreateDb.java

$ java HiveCreateDb

Output

Table employee created.

Load Data Statement
Generally, after creating a table in SQL, we can insert data using the Insert

statement. But in Hive, we can insert data using the LOAD DATA statement.

While inserting data into Hive, it is better to use LOAD DATA to store bulk

records. There are two ways to load data: one is from local file system and

second is from Hadoop file system.

Syntax

The syntax for load data is as follows:

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename

[PARTITION (partcol1=val1, partcol2=val2 ...)]

 LOCAL is identifier to specify the local path. It is optional.

 OVERWRITE is optional to overwrite the data in the table.

 PARTITION is optional.

Example

We will insert the following data into the table. It is a text file

namedsample.txt in /home/user directory.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

1201 Gopal 45000 Technical manager

1202 Manisha 45000 Proof reader

1203 Masthanvali 40000 Technical writer

1204 Kiran 40000 Hr Admin

1205 Kranthi 30000 Op Admin

The following query loads the given text into the table.

hive> LOAD DATA LOCAL INPATH '/home/user/sample.txt'

OVERWRITE INTO TABLE employee;

On successful download, you get to see the following response:

OK

Time taken: 15.905 seconds

hive>

JDBC Program

Given below is the JDBC program to load given data into the table.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveLoadData {

 private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException {

 // Register driver and create driver instance

 Class.forName(driverName);

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 // get connection

 Connection con = DriverManager.getConnection("jdbc:hive://localhost:10000/userdb", "",

"");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("LOAD DATA LOCAL INPATH '/home/user/sample.txt'" + "OVERWRITE INTO

TABLE employee;");

 System.out.println("Load Data into employee successful");

 con.close();

 }

}

Save the program in a file named HiveLoadData.java. Use the following

commands to compile and execute this program.

$ javac HiveLoadData.java

$ java HiveLoadData

Output:

Load Data into employee successful

Hive - Alter Table
This chapter explains how to alter the attributes of a table such as changing

its table name, changing column names, adding columns, and deleting or

replacing columns.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Alter Table Statement
It is used to alter a table in Hive.

Syntax

The statement takes any of the following syntaxes based on what attributes

we wish to modify in a table.

ALTER TABLE name RENAME TO new_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])

ALTER TABLE name DROP [COLUMN] column_name

ALTER TABLE name CHANGE column_name new_name new_type

ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])

Rename To… Statement
The following query renames the table from employee to emp.

hive> ALTER TABLE employee RENAME TO emp;

JDBC Program

The JDBC program to rename a table is as follows.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveAlterRenameTo {

 private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException {

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.getConnection("jdbc:hive://localhost:10000/userdb", "",

"");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("ALTER TABLE employee RENAME TO emp;");

 System.out.println("Table Renamed Successfully");

 con.close();

 }

}

Save the program in a file named HiveAlterRenameTo.java. Use the

following commands to compile and execute this program.

$ javac HiveAlterRenameTo.java

$ java HiveAlterRenameTo

Output:

Table renamed successfully.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

HiveQL – Query Data

Select-Order By
The Hive Query Language (HiveQL) is a query language for Hive to process

and analyze structured data in a Metastore. This chapter explains how to

use the SELECT statement with WHERE clause.

SELECT statement is used to retrieve the data from a table. WHERE clause

works similar to a condition. It filters the data using the condition and gives

you a finite result. The built-in operators and functions generate an

expression, which fulfils the condition.

Syntax
Given below is the syntax of the SELECT query:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list]]

[LIMIT number];

Example
Let us take an example for SELECT…WHERE clause. Assume we have the

employee table as given below, with fields named Id, Name, Salary,

Designation, and Dept. Generate a query to retrieve the employee details

who earn a salary of more than Rs 30000.

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali | 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

|1205 | Kranthi | 30000 | Op Admin | Admin |

+------+--------------+-------------+-------------------+--------+

The following query retrieves the employee details using the above

scenario:

hive> SELECT * FROM employee WHERE salary>30000;

On successful execution of the query, you get to see the following

response:

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali | 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

+------+--------------+-------------+-------------------+--------+

JDBC Program

The JDBC program to apply where clause for the given example is as

follows.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveQLWhere {

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.getConnection("jdbc:hive://localhost:10000/userdb", "",

"");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 Resultset res = stmt.executeQuery("SELECT * FROM employee WHERE salary>30000;");

 System.out.println("Result:");

 System.out.println(" ID \t Name \t Salary \t Designation \t Dept ");

 while (res.next()) {

 System.out.println(res.getInt(1) + " " + res.getString(2) + " " + res.getDouble(3) +

" " + res.getString(4) + " " + res.getString(5));

 }

 con.close();

 }

}

Save the program in a file named HiveQLWhere.java. Use the following

commands to compile and execute this program.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

$ javac HiveQLWhere.java

$ java HiveQLWhere

Output:

ID Name Salary Designation Dept

1201 Gopal 45000 Technical manager TP

1202 Manisha 45000 Proofreader PR

1203 Masthanvali 40000 Technical writer TP

1204 Krian 40000 Hr Admin HR

HiveQL - Select-Group By

This chapter explains the details of GROUP BY clause in a SELECT

statement. The GROUP BY clause is used to group all the records in a result

set using a particular collection column. It is used to query a group of

records.

Syntax
The syntax of GROUP BY clause is as follows:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[ORDER BY col_list]]

[LIMIT number];

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Example
Let us take an example of SELECT…GROUP BY clause. Assume employee

table as given below, with Id, Name, Salary, Designation, and Dept fields.

Generate a query to retrieve the number of employees in each department.

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali | 40000 | Technical writer | TP |

|1204 | Krian | 45000 | Proofreader | PR |

|1205 | Kranthi | 30000 | Op Admin | Admin |

+------+--------------+-------------+-------------------+--------+

The following query retrieves the employee details using the above

scenario.

hive> SELECT Dept,count(*) FROM employee GROUP BY DEPT;

On successful execution of the query, you get to see the following

response:

+------+--------------+

| Dept | Count(*) |

+------+--------------+

|Admin | 1 |

|PR | 2 |

|TP | 3 |

+------+--------------+

JDBC Program

Given below is the JDBC program to apply the Group By clause for the given

example.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveQLGroupBy {

 private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 Resultset res = stmt.executeQuery(“SELECT Dept,count(*) ” + “FROM employee GROUP BY

DEPT; ”);

 System.out.println(" Dept \t count(*)");

 while (res.next()) {

 System.out.println(res.getString(1) + " " + res.getInt(2));

 }

 con.close();

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 }

}

Save the program in a file named HiveQLGroupBy.java. Use the following

commands to compile and execute this program.

$ javac HiveQLGroupBy.java

$ java HiveQLGroupBy

Output:

 Dept Count(*)

 Admin 1

 PR 2

 TP 3

HiveQL - Select-Joins

JOIN is a clause that is used for combining specific fields from two tables by

using values common to each one. It is used to combine records from two

or more tables in the database. It is more or less similar to SQL JOIN.

Syntax
join_table:

 table_reference JOIN table_factor [join_condition]

 | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference

 join_condition

 | table_reference LEFT SEMI JOIN table_reference join_condition

 | table_reference CROSS JOIN table_reference [join_condition]

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Example
We will use the following two tables in this chapter. Consider the following

table named CUSTOMERS..

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Consider another table ORDERS as follows:

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

There are different types of joins given as follows:

 JOIN

 LEFT OUTER JOIN

 RIGHT OUTER JOIN

 FULL OUTER JOIN

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

JOIN
JOIN clause is used to combine and retrieve the records from multiple

tables. JOIN is same as OUTER JOIN in SQL. A JOIN condition is to be raised

using the primary keys and foreign keys of the tables.

The following query executes JOIN on the CUSTOMER and ORDER tables,

and retrieves the records:

hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT

FROM CUSTOMERS c JOIN ORDERS o

ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following

response:

+----+----------+-----+--------+

| ID | NAME | AGE | AMOUNT |

+----+----------+-----+--------+

| 3 | kaushik | 23 | 3000 |

| 3 | kaushik | 23 | 1500 |

| 2 | Khilan | 25 | 1560 |

| 4 | Chaitali | 25 | 2060 |

+----+----------+-----+--------+

LEFT OUTER JOIN
The HiveQL LEFT OUTER JOIN returns all the rows from the left table, even

if there are no matches in the right table. This means, if the ON clause

matches 0 (zero) records in the right table, the JOIN still returns a row in

the result, but with NULL in each column from the right table.

A LEFT JOIN returns all the values from the left table, plus the matched

values from the right table, or NULL in case of no matching JOIN predicate.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

The following query demonstrates LEFT OUTER JOIN between CUSTOMER

and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

FROM CUSTOMERS c

LEFT OUTER JOIN ORDERS o

ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following

response:

+----+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+----+----------+--------+---------------------+

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | NULL | NULL |

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

+----+----------+--------+---------------------+

RIGHT OUTER JOIN
The HiveQL RIGHT OUTER JOIN returns all the rows from the right table,

even if there are no matches in the left table. If the ON clause matches 0

(zero) records in the left table, the JOIN still returns a row in the result, but

with NULL in each column from the left table.

A RIGHT JOIN returns all the values from the right table, plus the matched

values from the left table, or NULL in case of no matching join predicate.

The following query demonstrates RIGHT OUTER JOIN between the

CUSTOMER and ORDER tables.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

notranslate"> hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c

RIGHT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following

response:

+------+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+------+----------+--------+---------------------+

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

+------+----------+--------+---------------------+

FULL OUTER JOIN
The HiveQL FULL OUTER JOIN combines the records of both the left and the

right outer tables that fulfil the JOIN condition. The joined table contains

either all the records from both the tables, or fills in NULL values for missing

matches on either side.

The following query demonstrates FULL OUTER JOIN between CUSTOMER

and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

FROM CUSTOMERS c

FULL OUTER JOIN ORDERS o

ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following

response:

+------+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+------+----------+--------+---------------------+

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | NULL | NULL |

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

+------+----------+--------+---------------------+

NoSQL Databases: An Overview

Over the last few years we have seen the rise of a new type of

databases, known as NoSQL databases, that are challenging the

dominance of relational databases. Relational databases have

dominated the software industry for a long time providing mechanisms

to store data persistently, concurrency control, transactions, mostly

standard interfaces and mechanisms to integrate application data,

reporting. The dominance of relational databases, however, is cracking.

NoSQL what does it mean
What does NoSQL mean and how do you categorize these databases?

NoSQL means Not Only SQL, implying that when designing a software

solution or product, there are more than one storage mechanism that

could be used based on the needs. NoSQL was a hashtag (#nosql)

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

choosen for a meetup to discuss these new databases. The most

important result of the rise of NoSQL is Polyglot Persistence. NoSQL

does not have a prescriptive definition but we can make a set of

common observations, such as:

 Not using the relational model

 Running well on clusters

 Mostly open-source

 Built for the 21st century web estates

 Schema-less

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Why NoSQL Databases

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Application developers have been frustrated with the impedance

mismatch between the relational data structures and the in-memory

data structures of the application. Using NoSQL databases allows

developers to develop without having to convert in-memory structures

to relational structures.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

There is also movement away from using databases as integration

points in favor of encapsulating databases with applications and

integrating using services.

The rise of the web as a platform also created a vital factor change in

data storage as the need to support large volumes of data by running

on clusters.

Relational databases were not designed to run efficiently on clusters.

The data storage needs of an ERP application are lot more different

than the data storage needs of a Facebook or an Etsy, for example.

Aggregate Data Models:

Relational database modelling is vastly different than the types of data

structures that application developers use. Using the data structures as

modelled by the developers to solve different problem domains has

given rise to movement away from relational modelling and towards

aggregate models, most of this is driven by Domain Driven Design, a

book by Eric Evans. An aggregate is a collection of data that we interact

with as a unit. These units of data or aggregates form the boundaries

for ACID operations with the database, Key-value, Document, and

Column-family databases can all be seen as forms of aggregate-

oriented database.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Aggregates make it easier for the database to manage data storage

over clusters, since the unit of data now could reside on any machine

and when retrieved from the database gets all the related data along

with it. Aggregate-oriented databases work best when most data

interaction is done with the same aggregate, for example when there is

need to get an order and all its details, it better to store order as an

aggregate object but dealing with these aggregates to get item details

on all the orders is not elegant.

Aggregate-oriented databases make inter-aggregate relationships more

difficult to handle than intra-aggregate relationships. Aggregate-

ignorant databases are better when interactions use data organized in

many different formations. Aggregate-oriented databases often

compute materialized views to provide data organized differently from

their primary aggregates. This is often done with map-reduce

computations, such as a map-reduce job to get items sold per day.

Distribution Models:

Aggregate oriented databases make distribution of data easier, since

the distribution mechanism has to move the aggregate and not have to

worry about related data, as all the related data is contained in the

aggregate. There are two styles of distributing data:

 Sharding: Sharding distributes different data across multiple servers,

so each server acts as the single source for a subset of data.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 Replication: Replication copies data across multiple servers, so each

bit of data can be found in multiple places. Replication comes in two

forms,

o Master-slave replication makes one node the authoritative copy

that handles writes while slaves synchronize with the master and

may handle reads.

o Peer-to-peer replication allows writes to any node; the nodes

coordinate to synchronize their copies of the data.

Master-slave replication reduces the chance of update conflicts but

peer-to-peer replication avoids loading all writes onto a single server

creating a single point of failure. A system may use either or both

techniques. Like Riak database shards the data and also replicates it

based on the replication factor.

CAP theorem:

In a distributed system, managing consistency(C), availability(A) and

partition toleration(P) is important, Eric Brewer put forth the CAP

theorem which states that in any distributed system we can choose only

two of consistency, availability or partition tolerance. Many NoSQL

databases try to provide options where the developer has choices

where they can tune the database as per their needs. For example if you

consider Riak a distributed key-value database. There are essentially

three variables r, w, n where

 r=number of nodes that should respond to a read request before its

considered successful.

http://basho.com/riak

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 w=number of nodes that should respond to a write request before

its considered successful.

 n=number of nodes where the data is replicated aka replication

factor.

In a Riak cluster with 5 nodes, we can tweak the r,w,n values to make

the system very consistent by setting r=5 and w=5 but now we have

made the cluster susceptible to network partitions since any write will

not be considered successful when any node is not responding. We can

make the same cluster highly available for writes or reads by setting r=1

and w=1 but now consistency can be compromised since some nodes

may not have the latest copy of the data. The CAP theorem states that if

you get a network partition, you have to trade off availability of data

versus consistency of data. Durability can also be traded off against

latency, particularly if you want to survive failures with replicated data.

NoSQL databases provide developers lot of options to choose from and

fine tune the system to their specific requirements. Understanding the

requirements of how the data is going to be consumed by the system,

questions such as is it read heavy vs write heavy, is there a need to

query data with random query parameters, will the system be able

handle inconsistent data.

Understanding these requirements becomes much more important, for

long we have been used to the default of RDBMS which comes with a

standard set of features no matter which product is chosen and there is

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

no possibility of choosing some features over other. The availability of

choice in NoSQL databases, is both good and bad at the same time.

Good because now we have choice to design the system according to

the requirements. Bad because now you have a choice and we have to

make a good choice based on requirements and there is a chance

where the same database product may be used properly or not used

properly.

An example of feature provided by default in RDBMS is transactions,

our development methods are so used to this feature that we have

stopped thinking about what would happen when the database does

not provide transactions. Most NoSQL databases do not provide

transaction support by default, which means the developers have to

think how to implement transactions, does every write have to have the

safety of transactions or can the write be segregated into “critical that

they succeed” and “its okay if I lose this write” categories.

Sometimes deploying external transaction managers like ZooKeeper can

also be a possibility.

Types of NoSQL Databases:
NoSQL databases can broadly be categorized in four types.

https://zookeeper.apache.org/

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Key-Value databases

Key-value stores are the simplest NoSQL data stores to use from an API

perspective. The client can either get the value for the key, put a value

for a key, or delete a key from the data store. The value is a blob that

the data store just stores, without caring or knowing what's inside; it's

the responsibility of the application to understand what was stored.

Since key-value stores always use primary-key access, they generally

have great performance and can be easily scaled.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Some of the popular key-value databases are Riak, Redis (often referred

to as Data Structure server), Memcached and its flavors, Berkeley

DB, upscaledb (especially suited for embedded use), Amazon

DynamoDB (not open-source), Project Voldemort and Couchbase.

All key-value databases are not the same, there are major differences

between these products, for example: Memcached data is not persistent

while in Riak it is, these features are important when implementing

certain solutions. Lets consider we need to implement caching of user

preferences, implementing them in memcached means when the node

goes down all the data is lost and needs to be refreshed from source

system, if we store the same data in Riak we may not need to worry

about losing data but we must also consider how to update stale data.

Its important to not only choose a key-value database based on your

requirements, it's also important to choose which key-value database.

Document databases

http://basho.com/riak/
http://redis.io/
http://memcached.org/
http://www.oracle.com/technetwork/database/berkeleydb/index.html
http://www.oracle.com/technetwork/database/berkeleydb/index.html
http://upscaledb.com/
http://www.couchbase.com/

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Documents are the main concept in document databases. The database

stores and retrieves documents, which can be XML, JSON, BSON, and so

on. These documents are self-describing, hierarchical tree data

structures which can consist of maps, collections, and scalar values. The

documents stored are similar to each other but do not have to be

exactly the same. Document databases store documents in the value

part of the key-value store; think about document databases as key-

value stores where the value is examinable. Document databases such

as MongoDB provide a rich query language and constructs such as

database, indexes etc allowing for easier transition from relational

databases.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Some of the popular document databases we have seen

are MongoDB, CouchDB , Terrastore, OrientDB, RavenDB, and of course

the well-known and often reviled Lotus Notes that uses document

storage.

Column family stores

 Column-family databases store data in column families as rows that

have many columns associated with a row key (Figure 10.1). Column

families are groups of related data that is often accessed together. For a

Customer, we would often access their Profile information at the same

time, but not their Orders.

Each column family can be compared to a container of rows in an

RDBMS table where the key identifies the row and the row consists of

multiple columns. The difference is that various rows do not have to

have the same columns, and columns can be added to any row at any

time without having to add it to other rows.

https://www.mongodb.org/
http://couchdb.apache.org/
https://code.google.com/p/terrastore/
http://www.orientechnologies.com/orientdb/
http://ravendb.net/

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

When a column consists of a map of columns, then we have a super

column. A super column consists of a name and a value which is a map

of columns. Think of a super column as a container of columns.

Cassandra is one of the popular column-family databases; there are

others, such as HBase, Hypertable, and Amazon DynamoDB. Cassandra

can be described as fast and easily scalable with write operations spread

across the cluster. The cluster does not have a master node, so any read

and write can be handled by any node in the cluster.

http://www.datastax.com/
https://hbase.apache.org/
http://hypertable.org/

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Graph Databases

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Graph databases allow you to store entities and relationships between

these entities. Entities are also known as nodes, which have properties.

Think of a node as an instance of an object in the application. Relations

are known as edges that can have properties. Edges have directional

significance; nodes are organized by relationships which allow you to

find interesting patterns between the nodes. The organization of the

graph lets the data to be stored once and then interpreted in different

ways based on relationships.

Usually, when we store a graph-like structure in RDBMS, it's for a single

type of relationship ("who is my manager" is a common example).

Adding another relationship to the mix usually means a lot of schema

changes and data movement, which is not the case when we are using

graph databases. Similarly, in relational databases we model the graph

beforehand based on the Traversal we want; if the Traversal changes,

the data will have to change.

In graph databases, traversing the joins or relationships is very fast. The

relationship between nodes is not calculated at query time but is

actually persisted as a relationship. Traversing persisted relationships is

faster than calculating them for every query.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Nodes can have different types of relationships between them, allowing

you to both represent relationships between the domain entities and to

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

have secondary relationships for things like category, path, time-trees,

quad-trees for spatial indexing, or linked lists for sorted access. Since

there is no limit to the number and kind of relationships a node can

have, they all can be represented in the same graph database.

Relationships are first-class citizens in graph databases; most of the

value of graph databases is derived from the relationships.

Relationships don't only have a type, a start node, and an end node, but

can have properties of their own. Using these properties on the

relationships, we can add intelligence to the relationship—for example,

since when did they become friends, what is the distance between the

nodes, or what aspects are shared between the nodes. These properties

on the relationships can be used to query the graph.

Since most of the power from the graph databases comes from the

relationships and their properties, a lot of thought and design work is

needed to model the relationships in the domain that we are trying to

work with. Adding new relationship types is easy; changing existing

nodes and their relationships is similar to data migration, because these

changes will have to be done on each node and each relationship in the

existing data.

There are many graph databases available, such as Neo4J, Infinite

Graph, OrientDB, or FlockDB (which is a special case: a graph database

that only supports single-depth relationships or adjacency lists, where

you cannot traverse more than one level deep for relationships).

http://www.neo4j.org/
http://www.objectivity.com/infinitegraph
http://www.objectivity.com/infinitegraph
http://www.orientechnologies.com/orientdb/
https://github.com/twitter/flockdb

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Why choose NoSQL database

We've covered a lot of the general issues you need to be aware of to

make decisions in the new world of NoSQL databases. It's now time to

talk about why you would choose NoSQL databases for future

development work. Here are some broad reasons to consider the use of

NoSQL databases.

 To improve programmer productivity by using a database that

better matches an application's needs.

 To improve data access performance via some combination of

handling larger data volumes, reducing latency, and improving

throughput.

It's essential to test your expectations about programmer productivity

and/or performance before committing to using a NoSQL technology.

Since most of the NoSQL databases are open source, testing them is a

simple matter of downloading these products and setting up a test

environment.

Even if NoSQL cannot be used as of now, designing the system using

service encapsulation supports changing data storage technologies as

needs and technology evolve. Separating parts of applications into

services also allows you to introduce NoSQL into an existing application.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Choosing NoSQL database

Given so much choice, how do we choose which NoSQL database? As

described much depends on the system requirements, here are some

general guidelines:

 Key-value databases are generally useful for storing session

information, user profiles, preferences, shopping cart data. We

would avoid using Key-value databases when we need to query by

data, have relationships between the data being stored or we need

to operate on multiple keys at the same time.

 Document databases are generally useful for content management

systems, blogging platforms, web analytics, real-time analytics,

ecommerce-applications. We would avoid using document

databases for systems that need complex transactions spanning

multiple operations or queries against varying aggregate structures.

 Column family databases are generally useful for content

management systems, blogging platforms, maintaining counters,

expiring usage, heavy write volume such as log aggregation. We

would avoid using column family databases for systems that are in

early development, changing query patterns.

 Graph databases are very well suited to problem spaces where we

have connected data, such as social networks, spatial data, routing

information for goods and money, recommendation engines

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Schema-less ramifications

All NoSQL databases claim to be schema-less, which means there is no

schema enforced by the database themselves. Databases with strong

schemas, such as relational databases, can be migrated by saving each

schema change, plus its data migration, in a version-controlled

sequence. Schema-less databases still need careful migration due to the

implicit schema in any code that accesses the data.

Schema-less databases can use the same migration techniques as

databases with strong schemas, in schema-less databases we can also

read data in a way that's tolerant to changes in the data's implicit

schema and use incremental migration to update data, thus allowing for

zero downtime deployments, making them more popular with 24*7

systems.

HBase – Introduction
Since 1970, RDBMS is the solution for data storage and maintenance

related problems. After the advent of big data, companies realized the

benefit of processing big data and started opting for solutions like Hadoop.

Hadoop uses distributed file system for storing big data, and MapReduce to

process it. Hadoop excels in storing and processing of huge data of various

formats such as arbitrary, semi-, or even unstructured.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Limitations of Hadoop
Hadoop can perform only batch processing, and data will be accessed only

in a sequential manner. That means one has to search the entire dataset

even for the simplest of jobs.

A huge dataset when processed results in another huge data set, which

should also be processed sequentially. At this point, a new solution is

needed to access any point of data in a single unit of time (random access).

Hadoop Random Access Databases
Applications such as HBase, Cassandra, couchDB, Dynamo, and MongoDB

are some of the databases that store huge amounts of data and access the

data in a random manner.

What is HBase?
HBase is a distributed column-oriented database built on top of the Hadoop

file system. It is an open-source project and is horizontally scalable.

HBase is a data model that is similar to Google’s big table designed to

provide quick random access to huge amounts of structured data. It

leverages the fault tolerance provided by the Hadoop File System (HDFS).

It is a part of the Hadoop ecosystem that provides random real-time

read/write access to data in the Hadoop File System.

One can store the data in HDFS either directly or through HBase. Data

consumer reads/accesses the data in HDFS randomly using HBase. HBase

sits on top of the Hadoop File System and provides read and write access.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

HBase and HDFS
HDFS HBase

HDFS is a distributed file

system suitable for storing large

files.

HBase is a database built on top of the HDFS.

HDFS does not support fast

individual record lookups.

HBase provides fast lookups for larger tables.

It provides high latency batch

processing; no concept of batch

processing.

It provides low latency access to single rows

from billions of records (Random access).

It provides only sequential

access of data.

HBase internally uses Hash tables and provides

random access, and it stores the data in

indexed HDFS files for faster lookups.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Storage Mechanism in HBase
HBase is a column-oriented database and the tables in it are sorted by

row. The table schema defines only column families, which are the key

value pairs. A table have multiple column families and each column family

can have any number of columns. Subsequent column values are stored

contiguously on the disk. Each cell value of the table has a timestamp. In

short, in an HBase:

 Table is a collection of rows.

 Row is a collection of column families.

 Column family is a collection of columns.

 Column is a collection of key value pairs.

Given below is an example schema of table in HBase.

Rowid Column Family Column Family Column Family Column Family

col1 col2 col3 col1 col2 col3 col1 col2 col3 col1 col2 col3

1

2

3

Column Oriented and Row Oriented
Column-oriented databases are those that store data tables as sections of

columns of data, rather than as rows of data. Shortly, they will have column

families.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Row-Oriented Database Column-Oriented Database

It is suitable for Online Transaction Process

(OLTP).

It is suitable for Online Analytical

Processing (OLAP).

Such databases are designed for small

number of rows and columns.

Column-oriented databases are

designed for huge tables.

The following image shows column families in a column-oriented database:

HBase and RDBMS
HBase RDBMS

HBase is schema-less, it doesn't have the

concept of fixed columns schema; defines

only column families.

An RDBMS is governed by its

schema, which describes the whole

structure of tables.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

It is built for wide tables. HBase is

horizontally scalable.

It is thin and built for small tables.

Hard to scale.

No transactions are there in HBase. RDBMS is transactional.

It has de-normalized data. It will have normalized data.

It is good for semi-structured as well as

structured data.

It is good for structured data.

Features of HBase

 HBase is linearly scalable.

 It has automatic failure support.

 It provides consistent read and writes.

 It integrates with Hadoop, both as a source and a destination.

 It has easy java API for client.

 It provides data replication across clusters.

Where to Use HBase
 Apache HBase is used to have random, real-time read/write access to Big Data.

 It hosts very large tables on top of clusters of commodity hardware.

 Apache HBase is a non-relational database modeled after Google's Bigtable.

Bigtable acts up on Google File System, likewise Apache HBase works on top of

Hadoop and HDFS.

Applications of HBase

 It is used whenever there is a need to write heavy applications.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 HBase is used whenever we need to provide fast random access to available

data.

 Companies such as Facebook, Twitter, Yahoo, and Adobe use HBase internally.

HBase History
Year Event

Nov 2006 Google released the paper on BigTable.

Feb 2007 Initial HBase prototype was created as a Hadoop contribution.

Oct 2007 The first usable HBase along with Hadoop 0.15.0 was released.

Jan 2008 HBase became the sub project of Hadoop.

Oct 2008 HBase 0.18.1 was released.

Jan 2009 HBase 0.19.0 was released.

Sept 2009 HBase 0.20.0 was released.

May 2010 HBase became Apache top-level project.

In HBase, tables are split into regions and are served by the region servers.

Regions are vertically divided by column families into “Stores”. Stores are

saved as files in HDFS. Shown below is the architecture of HBase.

Note: The term ‘store’ is used for regions to explain the storage structure.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

HBase has three major components: the client library, a master server, and

region servers. Region servers can be added or removed as per

requirement.

MasterServer
The master server -

 Assigns regions to the region servers and takes the help of Apache ZooKeeper

for this task.

 Handles load balancing of the regions across region servers. It unloads the busy

servers and shifts the regions to less occupied servers.

 Maintains the state of the cluster by negotiating the load balancing.

 Is responsible for schema changes and other metadata operations such as

creation of tables and column families.

Regions
Regions are nothing but tables that are split up and spread across the

region servers.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Region server

The region servers have regions that -

 Communicate with the client and handle data-related operations.

 Handle read and write requests for all the regions under it.

 Decide the size of the region by following the region size thresholds.

When we take a deeper look into the region server, it contain regions and

stores as shown below:

The store contains memory store and HFiles. Memstore is just like a cache

memory. Anything that is entered into the HBase is stored here initially.

Later, the data is transferred and saved in Hfiles as blocks and the

memstore is flushed.

Zookeeper
 Zookeeper is an open-source project that provides services like maintaining

configuration information, naming, providing distributed synchronization, etc.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 Zookeeper has ephemeral nodes representing different region servers. Master

servers use these nodes to discover available servers.

 In addition to availability, the nodes are also used to track server failures or

network partitions.

 Clients communicate with region servers via zookeeper.

 In pseudo and standalone modes, HBase itself will take care of zookeeper.

Loading Data in HBase & Querying Data

in Hbase.

HBase - Create Data:
Inserting Data using HBase Shell
This chapter demonstrates how to create data in an HBase table. To create

data in an HBase table, the following commands and methods are used:

 put command,

 add() method of Put class, and

 put() method of HTable class.

As an example, we are going to create the following table in HBase.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Using put command, you can insert rows into a table. Its syntax is as

follows:

put ’<table name>’,’row1’,’<colfamily:colname>’,’<value>’

Inserting the First Row

Let us insert the first row values into the emp table as shown below.

hbase(main):005:0> put 'emp','1','personal data:name','raju'

0 row(s) in 0.6600 seconds

hbase(main):006:0> put 'emp','1','personal data:city','hyderabad'

0 row(s) in 0.0410 seconds

hbase(main):007:0> put 'emp','1','professional

data:designation','manager'

0 row(s) in 0.0240 seconds

hbase(main):007:0> put 'emp','1','professional data:salary','50000'

0 row(s) in 0.0240 seconds

Insert the remaining rows using the put command in the same way. If you

insert the whole table, you will get the following output.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

hbase(main):022:0> scan 'emp'

 ROW COLUMN+CELL

1 column=personal data:city, timestamp=1417524216501, value=hyderabad

1 column=personal data:name, timestamp=1417524185058, value=ramu

1 column=professional data:designation, timestamp=1417524232601,

 value=manager

1 column=professional data:salary, timestamp=1417524244109, value=50000

2 column=personal data:city, timestamp=1417524574905, value=chennai

2 column=personal data:name, timestamp=1417524556125, value=ravi

2 column=professional data:designation, timestamp=1417524592204,

 value=sr:engg

2 column=professional data:salary, timestamp=1417524604221, value=30000

3 column=personal data:city, timestamp=1417524681780, value=delhi

3 column=personal data:name, timestamp=1417524672067, value=rajesh

3 column=professional data:designation, timestamp=1417524693187,

value=jr:engg

3 column=professional data:salary, timestamp=1417524702514,

value=25000

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Inserting Data Using Java API
You can insert data into Hbase using the add() method of the Put class.

You can save it using the put() method of the HTable class. These classes

belong to the org.apache.hadoop.hbase.client package. Below given are

the steps to create data in a Table of HBase.

Step 1:Instantiate the Configuration Class

The Configuration class adds HBase configuration files to its object. You

can create a configuration object using the create() method of

theHbaseConfiguration class as shown below.

Configuration conf = HbaseConfiguration.create();

Step 2:Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This

class is used to communicate with a single HBase table. While instantiating

this class, it accepts configuration object and table name as parameters.

You can instantiate HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the PutClass

To insert data into an HBase table, the add() method and its variants are

used. This method belongs to Put, therefore instantiate the put class. This

class requires the row name you want to insert the data into, in string

format. You can instantiate the Put class as shown below.

Put p = new Put(Bytes.toBytes("row1"));

Step 4: Insert Data

The add() method of Put class is used to insert data. It requires 3 byte

arrays representing column family, column qualifier (column name), and

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

the value to be inserted, respectively. Insert data into the HBase table

using the add() method as shown below.

p.add(Bytes.toBytes("coloumn family "), Bytes.toBytes("column

name"),Bytes.toBytes("value"));

Step 5: Save the Data in Table

After inserting the required rows, save the changes by adding the put

instance to the put() method of HTable class as shown below.

hTable.put(p);

Step 6: Close the HTable Instance

After creating data in the HBase Table, close the HTable instance using

theclose() method as shown below.

hTable.close();

Given below is the complete program to create data in HBase Table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.util.Bytes;

public class InsertData{

 public static void main(String[] args) throws IOException {

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 // Instantiating Configuration class

 Configuration config = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable hTable = new HTable(config, "emp");

 // Instantiating Put class

 // accepts a row name.

 Put p = new Put(Bytes.toBytes("row1"));

 // adding values using add() method

 // accepts column family name, qualifier/row name ,value

 p.add(Bytes.toBytes("personal"),

 Bytes.toBytes("name"),Bytes.toBytes("raju"));

 p.add(Bytes.toBytes("personal"),

 Bytes.toBytes("city"),Bytes.toBytes("hyderabad"));

 p.add(Bytes.toBytes("professional"),Bytes.toBytes("designation"),

 Bytes.toBytes("manager"));

 p.add(Bytes.toBytes("professional"),Bytes.toBytes("salary"),

 Bytes.toBytes("50000"));

 // Saving the put Instance to the HTable.

 hTable.put(p);

 System.out.println("data inserted");

 // closing HTable

 hTable.close();

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 }

}

Compile and execute the above program as shown below.

$javac InsertData.java

$java InsertData

The following should be the output:

data inserted

HBase - Update Data

Updating Data using HBase Shell
You can update an existing cell value using the put command. To do so,

just follow the same syntax and mention your new value as shown below.

put ‘table name’,’row ’,'Column family:column name',’new value’

The newly given value replaces the existing value, updating the row.

Example

Suppose there is a table in HBase called emp with the following data.

hbase(main):003:0> scan 'emp'

 ROW COLUMN + CELL

row1 column = personal:name, timestamp = 1418051555, value = raju

row1 column = personal:city, timestamp = 1418275907, value = Hyderabad

row1 column = professional:designation, timestamp = 14180555,value = manager

row1 column = professional:salary, timestamp = 1418035791555,value = 50000

1 row(s) in 0.0100 seconds

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

The following command will update the city value of the employee named

‘Raju’ to Delhi.

hbase(main):002:0> put 'emp','row1','personal:city','Delhi'

0 row(s) in 0.0400 seconds

The updated table looks as follows where you can observe the city of Raju

has been changed to ‘Delhi’.

hbase(main):003:0> scan 'emp'

 ROW COLUMN + CELL

row1 column = personal:name, timestamp = 1418035791555, value = raju

row1 column = personal:city, timestamp = 1418274645907, value = Delhi

row1 column = professional:designation, timestamp = 141857555,value = manager

row1 column = professional:salary, timestamp = 1418039555, value = 50000

1 row(s) in 0.0100 seconds

Updating Data Using Java API
You can update the data in a particular cell using the put() method. Follow

the steps given below to update an existing cell value of a table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can

create a configuration object using the create() method of

theHbaseConfiguration class as shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This

class is used to communicate with a single HBase table. While instantiating

this class, it accepts the configuration object and the table name as

parameters. You can instantiate the HTable class as shown below.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Put Class

To insert data into HBase Table, the add() method and its variants are

used. This method belongs to Put, therefore instantiate the put class. This

class requires the row name you want to insert the data into, in string

format. You can instantiate the Put class as shown below.

Put p = new Put(Bytes.toBytes("row1"));

Step 4: Update an Existing Cell

The add() method of Put class is used to insert data. It requires 3 byte

arrays representing column family, column qualifier (column name), and

the value to be inserted, respectively. Insert data into HBase table using

theadd() method as shown below.

p.add(Bytes.toBytes("coloumn family "), Bytes.toBytes("column

name"),Bytes.toBytes("value"));

p.add(Bytes.toBytes("personal"),

Bytes.toBytes("city"),Bytes.toBytes("Delih"));

Step 5: Save the Data in Table

After inserting the required rows, save the changes by adding the put

instance to the put() method of the HTable class as shown below.

hTable.put(p);

Step 6: Close HTable Instance

After creating data in HBase Table, close the HTable instance using the

close() method as shown below.

hTable.close();

Given below is the complete program to update data in a particular table.

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.util.Bytes;

public class UpdateData{

 public static void main(String[] args) throws IOException {

 // Instantiating Configuration class

 Configuration config = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable hTable = new HTable(config, "emp");

 // Instantiating Put class

 //accepts a row name

 Put p = new Put(Bytes.toBytes("row1"));

 // Updating a cell value

 p.add(Bytes.toBytes("personal"),

 Bytes.toBytes("city"),Bytes.toBytes("Delih"));

 // Saving the put Instance to the HTable.

 hTable.put(p);

 System.out.println("data Updated");

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 // closing HTable

 hTable.close();

 }

}

Compile and execute the above program as shown below.

$javac UpdateData.java

$java UpdateData

The following should be the output:

data Updated

HBase - Read Data
Reading Data using HBase Shell
The get command and the get() method of HTable class are used to read

data from a table in HBase. Using get command, you can get a single row

of data at a time. Its syntax is as follows:

get ’<table name>’,’row1’

Example

The following example shows how to use the get command. Let us scan the

first row of the emp table.

hbase(main):012:0> get 'emp', '1'

 COLUMN CELL

personal : city timestamp = 1417521848375, value = hyderabad

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

personal : name timestamp = 1417521785385, value = ramu

professional: designation timestamp = 1417521885277, value = manager

professional: salary timestamp = 1417521903862, value = 50000

4 row(s) in 0.0270 seconds

Reading a Specific Column
Given below is the syntax to read a specific column using the get method.

hbase> get 'table name', ‘rowid’, {COLUMN ⇒ ‘column family:column name ’}

Example

Given below is the example to read a specific column in HBase table.

hbase(main):015:0> get 'emp', 'row1', {COLUMN ⇒ 'personal:name'}

 COLUMN CELL

personal:name timestamp = 1418035791555, value = raju

1 row(s) in 0.0080 seconds

Reading Data Using Java API
To read data from an HBase table, use the get() method of the HTable

class. This method requires an instance of the Get class. Follow the steps

given below to retrieve data from the HBase table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can

create a configuration object using the create() method of

theHbaseConfiguration class as shown below.

Configuration conf = HbaseConfiguration.create();

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This

class is used to communicate with a single HBase table. While instantiating

this class, it accepts the configuration object and the table name as

parameters. You can instantiate the HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Get Class

You can retrieve data from the HBase table using the get() method of

theHTable class. This method extracts a cell from a given row. It requires

a Getclass object as parameter. Create it as shown below.

Get get = new Get(toBytes("row1"));

Step 4: Read the Data

While retrieving data, you can get a single row by id, or get a set of rows by

a set of row ids, or scan an entire table or a subset of rows.

You can retrieve an HBase table data using the add method variants

in Getclass.

To get a specific column from a specific column family, use the following

method.

get.addFamily(personal)

To get all the columns from a specific column family, use the following

method.

get.addColumn(personal, name)

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

Step 5: Get the Result

Get the result by passing your Get class instance to the get method of

theHTable class. This method returns the Result class object, which holds

the requested result. Given below is the usage of get() method.

Result result = table.get(g);

Step 6: Reading Values from the Result Instance

The Result class provides the getValue() method to read the values from

its instance. Use it as shown below to read the values from

the Result instance.

byte [] value = result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("name"));

byte [] value1 = result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("city"));

Given below is the complete program to read values from an HBase table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.util.Bytes;

public class RetriveData{

 public static void main(String[] args) throws IOException, Exception{

 // Instantiating Configuration class

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

 Configuration config = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable table = new HTable(config, "emp");

 // Instantiating Get class

 Get g = new Get(Bytes.toBytes("row1"));

 // Reading the data

 Result result = table.get(g);

 // Reading values from Result class object

 byte [] value = result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("name"));

 byte [] value1 = result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("city"));

 // Printing the values

 String name = Bytes.toString(value);

 String city = Bytes.toString(value1);

 System.out.println("name: " + name + " city: " + city);

 }

}

Compile and execute the above program as shown below.

$javac RetriveData.java

$java RetriveData

The following should be the output:

 SATHYABAMA UNIVERSITY
 COURSE MATERIAL - BIG DATA (SIT1606)

FACULTY OF COMPUTING

name: Raju city: Delhi

