
 

Unit III – HADOOP MAPREDUCE FRAMEWORK  

Relationship between Mapreduce Framework and HDFS: 

We compare the hadoop software framework as a computer, the mapreduce is the same as software, and the hdfs 

is the same as hardware. 

MapReduce is a framework that is used by Hadoop to process the data residing with HDFS. 

HDFS store data in each block which size is 64MB or 128MB. And MapReduce can interaction with HDFS and 

operates the data in HDFS. 

The configuration which we set when we set the environment of hadoop. 

The below diagram will show the structure of hadoop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Map Task (HDFS data localization): 

The unit of input for a map task is an HDFS data block of the input file. The map task functions most efficiently 

if the data block it has to process is available locally on the node on which the task is scheduled. This approach 

is called HDFS data localization. 

  

An HDFS data locality miss occurs if the data needed by the map task is not available locally. In such a case, the 

map task will request the data from another node in the cluster: an operation that is expensive and time 

consuming, leading to inefficiencies and, hence, delay in job completion. 

  

Clients, Data Nodes, and HDFS Storage: 

Input data is uploaded to the HDFS file system in either of following two ways: 

1. An HDFS client has a large amount of data to place into HDFS. 
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2. An HDFS client is constantly streaming data into HDFS. 

  

Both these scenarios have the same interaction with HDFS, except that in the streaming case, the client waits for 

enough data to fill a data block before writing to HDFS. Data is stored in HDFS in large blocks, generally 64 to 

128 MB or more in size. This storage approach allows easy parallel processing of data. 

  

HDFS-SITE.XML 

<property> 

<name>dfs.block.size</name> 

<value>134217728</value> ç 128MB Block size 

</property> 

  

OR 

  

<property> 

<name>dfs.block.size</name> 

<value>67108864</value> ç 64MB Block size (Default is this value is not set) 

</property> 

  

Block Replication Factor: 

During the process of writing to HDFS, the blocks are generally replicated to multiple data nodes for 

redundancy. The number of copies, or the replication factor, is set to a default of 3 and can be modified by the 

cluster administrator as below: 

  

HDFS-SITE.XML 

<property> 

<name>dfs.replication</name> 

<value>3</value> 

</property> 

<property> 

  

When the replication factor is three, HDFS’s placement policy is to: 

-     Put one replica on one node in the local rack, 

-     Another on a node in a different (remote) rack, 

-     Last on a different node in the same remote rack. 



  

When a new data block is stored on a data node, the data node initiates a replication process to replicate the data 

onto a second data node. The second data node, in turn, replicates the block to a third data node, completing the 

replication of the block. 

  

With this policy, the replicas of a file do not evenly distribute across the racks. One third of replicas are on one 

node, two thirds of replicas are on one rack, and the other third are evenly distributed across the remaining racks. 

This policy improves write performance without compromising data reliability or read performance. 

  

 

  

Hadoop Data Types Hadoop 
Online Tutorials 
Serialization: 
 
Serialization is the process of converting object data into byte stream data for transmission over 
a network across different nodes in a cluster or for persistent data storage. 
 
Deserialization: 
 
Deserialization is the reverse process of serialization and converts byte stream data into object 
data for reading data from HDFS. Hadoop provides Writables for serialization and eserialization 
purpose.Writable and WritableComparable Interfaces To provide mechanisms for serialization and 
deserialization of data, Hadoop provided two important interfaces Writable and WritableComparable. Writable 
interface specification is as follows: 
 
package org.apache.hadoop.io; 
import java.io.DataInput; 
import java.io.DataOutput; 
import java.io.IOException; 
public interface Writable 
{ 
void write(DataOutput out) throws IOException; 
void readFields(DataInput in) throws IOException; 
} 
WritableComparable interface is subinterface 
of Hadoop’s Writable and Java’s Comparable 
interfaces. and its specification is shown below: 
1 
2 
3 
public interface WritableComparable extends Writable, Comparable 
{} 
The standard java.lang.Comparable Interface contains single method compareTo() method for 
comparing the operators passed to it. 
 
public interface Comparable 
{ 
public int compareTo(Object obj); 
} 
 
 
 



The compareTo() method returns 1, 0 , or 1 depending on whether the compared object is 
less than, equal to, or greater than the current object. 
 
The above two interfaces are provided in org.apache.hadoop.io package 
 
Constraints on Keyvalues in Mapreduce 
 
Hadoop data types used in Mapreduce for key or value fields must satisfy two constraints. 
Any data type used for a Value field in mapper or reducer input/output must implement 
 
Writable Interface. 
Any data type used for a Key field in mapper or reducer input/output must implement 
WritableComparable interface along with Writable interface to compare the keys of this type 
with each other for sorting purposes 
. 
Writable Classes – Hadoop Data Types 
Hadoop provides classes that wrap the Java primitive types and implement the WritableComparable 
and Writable Interfaces. They are provided in the org.apache.hadoop.io package. 
All the Writable wrapper classes have a get() and a set() method for retrieving and storing the 
wrapped value. 
 
Primitive Writable Classes 
These are Writable Wrappers for Java primitive data types and they hold a single primitive value 
that can be set either at construction or via a setter method. 
All these primitive writable wrappers have get() and set() methods to read or write the wrapped 
value. Below is the list of primitive writable data types available in Hadoop. 
 

 BooleanWritable 

 ByteWritable 

 IntWritable 

 VIntWritable 

 FloatWritable 

 LongWritable 

 VLongWritable 

 DoubleWritable 
 
In the above list VIntWritable and VLongWritable are used for variable length Integer types and 
variable length long types respectively. 
Serialized sizes of the above primitive writable data types are same as the size of actual java data 
type. So, the size of IntWritable is 4 bytes and LongWritable is 8 bytes. 
 
Array Writable Classes 
Hadoop provided two types of array writable classes, one for singledimensional 
and another for twodimensional arrays. But the elements of these arrays must be other writable objects like 
IntWritable or LongWritable only but not the java native data types like int or float. 

 ArrayWritable 

 TwoDArrayWritable 
 

Map Writable Classes 
 
Hadoop provided below MapWritable data types which implement java.util.Map interface 
 

 AbstractMapWritable – This is abstract or base class for other MapWritable classes. 

 MapWritable – This is a general purpose map mapping Writable keys to Writable 
values. 

 SortedMapWritable – This is a specialization of the MapWritable class that also implements the 
SortedMap interface. 

 
Other Writable Classes 

 NullWritable 



NullWritable is a special type of Writable representing a null value. No bytes are read or written 
when a data type is specified as NullWritable. So, in Mapreduce, a key or a value can be declared as a 
NullWritable when we don’t need to use that field. 

 ObjectWritable 
This is a generalpurpose 
generic object wrapper which can store any objects like Java primitives, 
String, Enum, Writable, null, or arrays. 

 Text 
Text can be used as the Writable equivalent of java.lang.String and It’s max size is 2 GB. Unlike 
java’s String data type, Text is mutable in Hadoop. 

 BytesWritable 
BytesWritable is a wrapper for an array of binary data. 

 GenericWritable 
It is similar to ObjectWritable but supports only a few types. User need to subclass this 
GenericWritable class and need to specify the types to support. Example Program to Test Writables 
 
Lets write a WritablesTest.java program to test most of the data types mentioned above in this post 
with get(), set(), getBytes(), getLength(), put(), containsKey(), keySet() methods. 
 
import org.apache.hadoop.io.* ; 
import java.util.* ; 
public class WritablesTest 
{ 
public static class TextArrayWritable extends ArrayWritable 
{ 
public TextArrayWritable() 
{ 
super(Text.class) ; 
} 
} 
public static class IntArrayWritable extends ArrayWritable 
{ 
public IntArrayWritable() 
{ 
super(IntWritable.class) ; 
} 
} 
public static void main(String[] args) 
{ 
IntWritable i1 = new IntWritable(2) ; 
IntWritable i2 = new IntWritable() ; 
i2.set(5); 
IntWritable i3 = new IntWritable(); 
i3.set(i2.get()); 
System.out.printf("Int Writables Test I1:%d , I2:%d , I3:%d", i1.get(), i2.get(), i3.get()) ; 
BooleanWritable bool1 = new BooleanWritable() ; 
bool1.set(true); 
ByteWritable byte1 = new ByteWritable( (byte)7) ; 
System.out.printf("\n Boolean Value:%s Byte Value:%d", bool1.get(), byte1.get()) ; 
Text t = new Text("hadoop"); 
Text t2 = new Text(); 
t2.set("pig"); 
System.out.printf("\n t: %s, t.legth: %d, t2: %s, t2.length: %d \n", t.toString(), t.getLength(), 
t2.getBytes(), t2.getBytes().length); 
ArrayWritable a = new ArrayWritable(IntWritable.class) ; 
a.set( new IntWritable[]{ new IntWritable(10), new IntWritable(20), new IntWritable(30)}) ; 
ArrayWritable b = new ArrayWritable(Text.class) ; 
b.set( new Text[]{ new Text("Hello"), new Text("Writables"), new Text("World !!!")}) ; 
for (IntWritable i: (IntWritable[])a.get()) 
System.out.println(i) ; 
for (Text i: (Text[])b.get()) 



System.out.println(i) ; 
IntArrayWritable ia = new IntArrayWritable() ; 
ia.set( new IntWritable[]{ new IntWritable(100), new IntWritable(300), new IntWritable(500)}) ; 
IntWritable[] ivalues = (IntWritable[])ia.get() ; 
for (IntWritable i : ivalues) 
System.out.println(i); 
MapWritable m = new MapWritable() ; 
IntWritable key1 = new IntWritable(1) ; 
NullWritable value1 = NullWritable.get() ; 
m.put(key1, value1) ; 
m.put(new VIntWritable(2), new LongWritable(163)); 
m.put(new VIntWritable(3), new Text("Mapreduce")); 
System.out.println(m.containsKey(key1)) ; 
System.out.println(m.get(new VIntWritable(3))) ; 
m.put(new LongWritable(1000000000), key1) ; 
Set<Writable> keys = m.keySet() ; 
for(Writable w: keys) 
System.out.println(m.get(w)) ; 
} 
} 
 

 

 
 
 
 
 

MAPREDUCE ­ COMBINERS 
 
 
 

A Combiner, also known as a semi­reducer, is an optional class that operates by accepting the inputs from 

the Map class and thereafter passing the output key­value pairs to the Reducer class. 
 

The main function of a Combiner is to summarize the map output records with the same key. The output key 

−valuecollection of the combiner will be sent over the network to the actual Reducer task as input. 
 

Combiner 
 

The Combiner class is used in between the Map class and the Reduce class to reduce the volume of data 

transfer between Map and Reduce. Usually, the output of the map task is large and the data transferred to 

the reduce task is high. 
 

The following MapReduce task diagram shows the COMBINER PHASE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 

How Combiner Works? 
 

Here is a brief summary on how MapReduce Combiner works − 
 

 A combiner does not have a predefined interface and it must implement the Reducer interface’s 

reduce method. 
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 A combiner operates on each map output key. It must have the same output key­value types as the 

Reducer class. 
 

 A combiner can produce summary information from a large dataset because it replaces the original 

Map output. 
 

Although, Combiner is optional yet it helps segregating data into multiple groups for Reduce phase, which 

makes it easier to process. 
 

MapReduce Combiner Implementation 
 

The following example provides a theoretical idea about combiners. Let us assume we have the following 

input text file named input.txt for MapReduce. 

 
What do you mean by Object  
What do you know about Java 
What is Java Virtual Machine 
How Java enabled High Performance 

 
The important phases of the MapReduce program with Combiner are discussed below. 

 

Record Reader 

 
This is the first phase of MapReduce where the Record Reader reads every line from the input text file as 

text and yields output as key­value pairs. 
 

Input − Line by line text from the input file. 
 

Output − Forms the key­value pairs. The following is the set of expected key­value pairs. 

 
<1, What do you mean by Object> 
<2, What do you know about Java> 
<3, What is Java Virtual Machine> 
<4, How Java enabled High Performance> 

 

Map Phase 

 
The Map phase takes input from the Record Reader, processes it, and produces the output as another set 

of key­value pairs. 
 

Input − The following key­value pair is the input taken from the Record Reader. 

 
<1, What do you mean by Object> 
<2, What do you know about Java> 
<3, What is Java Virtual Machine> 
<4, How Java enabled High Performance> 

 
The Map phase reads each key­value pair, divides each word from the value using StringTokenizer, treats 

each word as key and the count of that word as value. The following code snippet shows the Mapper class 
 
 
 
 

 
http://www.tutorialspoint.com/cgibin/printpage.cgi 2/8 



3/28/2016 MapReduce Combiners 
 
 
 

 

and the map function. 

 
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>  
{  

private final static IntWritable one = new 
IntWritable(1); private Text word = new Text(); 

 
public void map(Object key, Text value, Context context) throws 

IOException, InterruptedException 
{ 

StringTokenizer itr = new StringTokenizer(value.toString()); 
while (itr.hasMoreTokens()) 
{ 

word.set(itr.nextToken()); 
context.write(word, one); 

} 
} 

} 

 
Output − The expected output is as follows − 

 
<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1> 

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1> 

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1> 

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1> 

 

Combiner Phase 

 
The Combiner phase takes each key­value pair from the Map phase, processes it, and produces the output 

as key­value collection pairs. 
 

Input − The following key­value pair is the input taken from the Map phase. 

 
<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1> 

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1> 

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1> 

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1> 

 
The Combiner phase reads each key­value pair, combines the common words as key and values as 
collection. Usually, the code and operation for a Combiner is similar to that of a Reducer. Following is the 

code snippet for Mapper, Combiner and Reducer class declaration. 

 
job.setMapperClass(TokenizerMapper.class);  
job.setCombinerClass(IntSumReducer.class);  
job.setReducerClass(IntSumReducer.class); 

 
Output − The expected output is as follows − 

 
<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1> 
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<know,1> <about,1> <Java,1,1,1> 
<is,1> <Virtual,1> <Machine,1>  
<How,1> <enabled,1> <High,1> <Performance,1> 

 

Reducer Phase 

 
The Reducer phase takes each key­value collection pair from the Combiner phase, processes it, and passes 

the output as key­value pairs. Note that the Combiner functionality is same as the Reducer. 
 

Input − The following key­value pair is the input taken from the Combiner phase. 

 
<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> 
<Object,1> <know,1> <about,1> <Java,1,1,1> 
<is,1> <Virtual,1> <Machine,1> 
<How,1> <enabled,1> <High,1> <Performance,1> 

 
The Reducer phase reads each key­value pair. Following is the code snippet for the Combiner. 

 
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>  
{  

private IntWritable result = new IntWritable(); 
 

public void reduce(Text key, Iterable<IntWritable> values,Context context) 
throws IOException, InterruptedException 

{ 
int sum = 0; 
for (IntWritable val : values) 
{ 

sum += val.get(); 
}  
result.set(sum); 
context.write(key, result); 

} 
} 

 
Output − The expected output from the Reducer phase is as follows − 

 
<What,3> <do,2> <you,2> <mean,1> <by,1> 
<Object,1> <know,1> <about,1> <Java,3> 
<is,1> <Virtual,1> <Machine,1> 
<How,1> <enabled,1> <High,1> <Performance,1> 

 

Record Writer 

 
This is the last phase of MapReduce where the Record Writer writes every key­value pair from the Reducer 

phase and sends the output as text. 
 

Input − Each key­value pair from the Reducer phase along with the Output format. 
 

Output − It gives you the key­value pairs in text format. Following is the expected output. 
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What 3 
do 2 
you 2 
mean 1 
by 1 
Object 1 
know 1 
about 1 
Java 3 
is 1 
Virtual 1 
Machine 1 
How 1 
enabled 1 
High 1 
Performance 1 

  

 

Example Program 

 
The following code block counts the number of words in a program. 

 
import java.io.IOException; import 

java.util.StringTokenizer; 
 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path; 
 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 
 

import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
 

public class WordCount {  
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> 
{ 

private final static IntWritable one = new 
IntWritable(1); private Text word = new Text(); 

 
public void map(Object key, Text value, Context context) throws 

IOException, InterruptedException 
{ 

StringTokenizer itr = new StringTokenizer(value.toString()); 
while (itr.hasMoreTokens()) 
{ 

word.set(itr.nextToken()); 
context.write(word, one); 

} 
} 
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} 

 
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>  
{ 

private IntWritable result = new IntWritable(); 
public void reduce(Text key, Iterable<IntWritable> values, Context context) 

throws IOException, InterruptedException 
{ 

int sum = 0; 
for (IntWritable val : values) 
{ 

sum += val.get(); 
} 
result.set(sum); 
context.write(key, result); 

} 
} 

 
public static void main(String[] args) throws Exception  
{ 

Configuration conf = new Configuration(); 
Job job = Job.getInstance(conf, "word count"); 

 
job.setJarByClass(WordCount.class); 

job.setMapperClass(TokenizerMapper.class); 

job.setCombinerClass(IntSumReducer.class); 

job.setReducerClass(IntSumReducer.class); 
 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 
 

FileInputFormat.addInputPath(job, new Path(args[0]));  
FileOutputFormat.setOutputPath(job, new Path(args[1])); 

 
System.exit(job.waitForCompletion(true) ? 0 : 1);  

}  
} 

 
Save the above program as WordCount.java. The compilation and execution of the program is given 

below. 
 

Compilation and Execution  

Let us assume we are in the home directory of Hadoop user forexample ,/home 

hadoop/. Follow the steps given below to compile and execute the above program. 
 

Step 1 − Use the following command to create a directory to store the compiled java classes. 

 
$ mkdir units 

 
Step 2 − Download Hadoop­core­1.2.1.jar, which is used to compile and execute the MapReduce program. 
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You can download the jar from  mvnrepository.com. 
 

Let us assume the downloaded folder is /home/hadoop/. 
 

Step 3 − Use the following commands to compile the WordCount.java program and to create a jar for the 

program. 

 
$ javac ‐classpath hadoop‐core‐1.2.1.jar ‐d units 

WordCount.java $ jar ‐cvf units.jar ‐C units/ . 

 
Step 4 − Use the following command to create an input directory in HDFS. 

 
$HADOOP_HOME/bin/hadoop fs ‐mkdir input_dir 

 
Step 5 − Use the following command to copy the input file named input.txt in the input directory of 

HDFS. 

 
$HADOOP_HOME/bin/hadoop fs ‐put /home/hadoop/input.txt input_dir 

 
Step 6 − Use the following command to verify the files in the input directory. 

 
$HADOOP_HOME/bin/hadoop fs ‐ls input_dir/ 

 
Step 7 − Use the following command to run the Word count application by taking input files from the 

input directory. 

 
$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir output_dir 

 
Wait for a while till the file gets executed. After execution, the output contains a number of input splits, 

Map tasks, and Reducer tasks. 
 

Step 8 − Use the following command to verify the resultant files in the output folder. 

 
$HADOOP_HOME/bin/hadoop fs ‐ls output_dir/ 

 
Step 9 − Use the following command to see the output in Part­00000 file. This file is generated by 

HDFS. 

 
$HADOOP_HOME/bin/hadoop fs ‐cat output_dir/part‐00000 

 
Following is the output generated by the MapReduce program. 

 
What 3 
Do 2 
You 2 
Mean 1 
By 1 
Object 1 
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Know 1  

about 1  

Java 3  

Is 1  

Virtual 1  

Machine 1  

How 1  

enabled 1  

High 1  

Performance 1  
   

 

 

 
 
 
 
 
 

MAPREDUCE ­ PARTITIONER 
 
 

A partitioner works like a condition in processing an input dataset. The partition phase takes place after the 

Map phase and before the Reduce phase. 
 

The number of partitioners is equal to the number of reducers. That means a partitioner will divide the data 

according to the number of reducers. Therefore, the data passed from a single partitioner is processed by a 

single Reducer. 
 

Partitioner 
 

A partitioner partitions the key­value pairs of intermediate Map­outputs. It partitions the data using a 

user­defined condition, which works like a hash function. The total number of partitions is same as the 

number of Reducer tasks for the job. Let us take an example to understand how the partitioner works. 
 

MapReduce Partitioner Implementation 
 

For the sake of convenience, let us assume we have a small table called Employee with the following data. 

We will use this sample data as our input dataset to demonstrate how the partitioner works. 

 

Id Name Age Gender Salary 
     

1201 gopal 45 Male 50,000 
     

1202 manisha 40 Female 50,000 
     

1203 khalil 34 Male 30,000 
     

1204 prasanth 30 Male 30,000 
     

1205 kiran 20 Male 40,000 
     

1206 laxmi 25 Female 35,000 
     



1207 bhavya 20 Female 15,000 
     

1208 reshma 19 Female 15,000 
     

1209 kranthi 22 Male 22,000 
     

1210 Satish 24 Male 25,000 
     

1211 Krishna 25 Male 25,000 
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1212 Arshad 28 Male 20,000 
     

1213 lavanya 18 Female 8,000 
     

 
 

We have to write an application to process the input dataset to find the highest salaried employee by 

gender in different age groups (for example, below 20, between 21 to 30, above 30). 
 

Input Data 

 
The above data is saved as input.txt in the “/home/hadoop/hadoopPartitioner” directory and given as 

input. 

 

1201 gopal 45 Male 50000 
     

1202 manisha 40 Female 51000 
     

1203 khaleel 34 Male 30000 
     

1204 prasanth 30 Male 31000 
     

1205 kiran 20 Male 40000 
     

1206 laxmi 25 Female 35000 
     

1207 bhavya 20 Female 15000 
     

1208 reshma 19 Female 14000 
     

1209 kranthi 22 Male 22000 
     

1210 Satish 24 Male 25000 
     

1211 Krishna 25 Male 26000 
     

1212 Arshad 28 Male 20000 
     

1213 lavanya 18 Female 8000 
     

 
 

Based on the given input, following is the algorithmic explanation of the program. 
 

Map Tasks 

 
The map task accepts the key­value pairs as input while we have the text data in a text file. The input for this 
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map task is as follows − 
 

Input − The key would be a pattern such as “any special key + filename + line number” (example: key = 

@input1) and the value would be the data in that line (example: value = 1201 \t gopal \t 45 \t Male \t 

50000). 
 

Method − The operation of this map task is as follows − 
 

 Read the value (record data), which comes as input value from the argument list in a string. 
 

 Using the split function, separate the gender and store in a string variable. 

 
String[] str = value.toString().split("\t", ‐3);  
String gender=str[3]; 

 
 Send the gender information and the record data value as output key­value pair from the map task to 

the partition task. 

 
context.write(new Text(gender), new Text(value)); 

 
 Repeat all the above steps for all the records in the text file. 

 
Output − You will get the gender data and the record data value as key­value pairs. 

 

Partitioner Task 

 
The partitioner task accepts the key­value pairs from the map task as its input. Partition implies dividing 

the data into segments. According to the given conditional criteria of partitions, the input key­value paired 

data can be divided into three parts based on the age criteria. 
 

Input − The whole data in a collection of key­value pairs. 
 

key = Gender field value in the record. 
 

value = Whole record data value of that gender. 
 

Method − The process of partition logic runs as follows. 
 

 Read the age field value from the input key­value pair. 

 
String[] str = value.toString().split("\t"); 

int age = Integer.parseInt(str[2]); 

 
 Check the age value with the following conditions. 

 
 Age less than or equal to 20 

 
 Age Greater than 20 and Less than or equal to 30. 

 
 Age Greater than 30. 
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if(age<=20)  
{ 

return 0; 
} 
else if(age>20 && age<=30) 
{ 

return 1 % numReduceTasks; 
} 
else 
{ 

return 2 % numReduceTasks; 
} 

 
Output − The whole data of key­value pairs are segmented into three collections of key­value pairs. The 

Reducer works individually on each collection. 
 

Reduce Tasks 

 
The number of partitioner tasks is equal to the number of reducer tasks. Here we have three partitioner 

tasks and hence we have three Reducer tasks to be executed. 
 

Input − The Reducer will execute three times with different collection of key­value pairs. 
 

key = gender field value in the record. 
 

value = the whole record data of that gender. 
 

Method − The following logic will be applied on each collection. 
 

 Read the Salary field value of each record. 

 
String [] str = val.toString().split("\t", ‐3);  
Note: str[4] have the salary field value. 

 
 Check the salary with the max variable. If str[4] is the max salary, then assign str[4] to max, 

otherwise skip the step. 

 
if(Integer.parseInt(str[4])>max)  
{ 

max=Integer.parseInt(str[4]); 
} 

 
 Repeat Steps 1 and 2 for each key collection (Male & Female are the key collections). After executing 

these three steps, you will find one max salary from the Male key collection and one max salary from 

the Female key collection. 

 
context.write(new Text(key), new IntWritable(max)); 

 
Output − Finally, you will get a set of key­value pair data in three collections of different age groups. It 

contains the max salary from the Male collection and the max salary from the Female collection in each age 
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group respectively. 
 

After executing the Map, the Partitioner, and the Reduce tasks, the three collections of key­value pair data 

are stored in three different files as the output. 
 

All the three tasks are treated as MapReduce jobs. The following requirements and specifications of these 

jobs should be specified in the Configurations − 
 

 Job name 
 

 Input and Output formats of keys and values 
 

 Individual classes for Map, Reduce, and Partitioner tasks 

 
Configuration conf = getConf(); 

 
//Create Job  
Job job = new Job(conf, "topsal"); 

job.setJarByClass(PartitionerExample.class); 
 

// File Input and Output paths 

FileInputFormat.setInputPaths(job, new Path(arg[0])); 

FileOutputFormat.setOutputPath(job,new Path(arg[1])); 
 

//Set Mapper class and Output format for key‐value 
pair. job.setMapperClass(MapClass.class); 
job.setMapOutputKeyClass(Text.class); 
job.setMapOutputValueClass(Text.class); 

 
//set partitioner statement 

job.setPartitionerClass(CaderPartitioner.class); 
 

//Set Reducer class and Input/Output format for key‐value 

pair. job.setReducerClass(ReduceClass.class); 
 

//Number of Reducer tasks. 

job.setNumReduceTasks(3); 
 

//Input and Output format for data 

job.setInputFormatClass(TextInputFormat.class); 
job.setOutputFormatClass(TextOutputFormat.class); 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(Text.class); 

 

Example Program 

 
The following program shows how to implement the partitioners for the given criteria in a MapReduce 

program. 

 
package partitionerexample; 

 
import java.io.*; 
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import org.apache.hadoop.io.*;  
import org.apache.hadoop.mapreduce.*; 
import org.apache.hadoop.conf.*; 
import org.apache.hadoop.conf.*; 
import org.apache.hadoop.fs.*; 

 
import org.apache.hadoop.mapreduce.lib.input.*; 

import org.apache.hadoop.mapreduce.lib.output.*; 
 

import org.apache.hadoop.util.*; 
 

public class PartitionerExample extends Configured implements Tool  
{  

//Map class 
 

public static class MapClass extends Mapper<LongWritable,Text,Text,Text>  
{ 

public void map(LongWritable key, Text value, Context context) 
{ 

try{  
String[] str = value.toString().split("\t", ‐
3); String gender=str[3]; 
context.write(new Text(gender), new Text(value)); 

} 
catch(Exception e) 
{ 

System.out.println(e.getMessage()); 
} 

} 
} 

 
//Reducer class 

 
public static class ReduceClass extends Reducer<Text,Text,Text,IntWritable>  
{ 

public int max = ‐1; 
public void reduce(Text key, Iterable <Text> values, Context context) throws 

IOException, InterruptedException 
{  

max = ‐1; 
 

for (Text val : values)  
{  

String [] str = val.toString().split("\t", ‐
3); if(Integer.parseInt(str[4])>max) 
max=Integer.parseInt(str[4]);  

} 
 

context.write(new Text(key), new IntWritable(max));  
} 

} 
 

//Partitioner class 
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public static class CaderPartitioner 
extends Partitioner < Text, Text > 
{ 

@Override 
public int getPartition(Text key, Text value, int numReduceTasks) 
{ 

String[] str = value.toString().split("\t"); 

int age = Integer.parseInt(str[2]); 
 

if(numReduceTasks == 0)  
{ 

return 0; 
} 

 
if(age<=20)  
{ 

return 0; 
} 
else if(age>20 && age<=30) 
{ 

return 1 % numReduceTasks; 
} 
else 
{ 

return 2 % numReduceTasks; 
} 

}  
} 

 
@Override  
public int run(String[] arg) throws Exception 
{ 

Configuration conf = getConf(); 
 

Job job = new Job(conf, "topsal"); 

job.setJarByClass(PartitionerExample.class); 
 

FileInputFormat.setInputPaths(job, new Path(arg[0]));  
FileOutputFormat.setOutputPath(job,new Path(arg[1])); 

 
job.setMapperClass(MapClass.class); 

 
job.setMapOutputKeyClass(Text.class);  
job.setMapOutputValueClass(Text.class); 

 
//set partitioner statement 

 
job.setPartitionerClass(CaderPartitioner.class);  
job.setReducerClass(ReduceClass.class); 
job.setNumReduceTasks(3); 
job.setInputFormatClass(TextInputFormat.class); 

 
job.setOutputFormatClass(TextOutputFormat.class); 
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job.setOutputKeyClass(Text.class);  
job.setOutputValueClass(Text.class); 

 
System.exit(job.waitForCompletion(true)? 0 : 
1); return 0; 

} 
 

public static void main(String ar[]) throws Exception  
{  

int res = ToolRunner.run(new Configuration(), new 
PartitionerExample(),ar); System.exit(0); 

}  
} 

 

 

 
Hadoop Input Format 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Input Splits, Input Formats and Record Reader: 
 

 
On job startup, each input file is broken into splits and each map processes a single split. Each split is 

further divided into records of key/value pairs which are processed by map tasks one record at a time. 



 
To get split details of an input file, Hadoop provides an InputSplit class in org.apache.hadoop.mapreduce 

package and its implementation is as follows. 

 
public abstract class InputSplit 
 
{ 
 
public abstract long getLength() throws IOException, InterruptedException; public 

abstract String[] getLocations() throws IOException, InterruptedException; 
 
} 
 

 
From the above two methods, programmer can get length of a split and storage locations. A good input 

split size is equal to the HDFS block size. But if the splits are too smaller than the default HDFS block size, 

then managing splits and creation of map tasks becomes an overhead than the job execution time. 
 
But these file splits need not be taken care by Mapreduce programmer because Hadoop provides 

InputFormat class in org.apache.hadoop.mapreduce package for the below two responsibilities. 
 
To provide details on how to split an input file into the splits. 



To create a RecordReader class that will generate the series of key/value pairs from a split. 
 
To meet these two requirements, Hadoop provides below implementation for InputFormat class with two 

methods. 

 
public abstract class InputFormat<K, V> 
 
{ 
 
public abstract List<InputSplit> getSplits(JobContext context) throws IOException, 

InterruptedException; 
 
public abstract RecordReader<K, V> createRecordReader(InputSplit split, 

TaskAttemptContext context) throws IOException, InterruptedException; 
 
} 

 
public abstract class RecordReader<Key, Value> implements Closeable 
 
{ 
 
public abstract void initialize(InputSplit split, TaskAttemptContext context) ; 
 
public abstract boolean nextKeyValue() throws IOException, InterruptedException ; 

public abstract Key getCurrentKey() throws IOException, InterruptedException ; 

public abstract Value getCurrentValue() throws IOException, InterruptedException ; 

public abstract float getProgress() throws IOException, InterruptedException ; 

public abstract close() throws IOException ; 
 
} 
 

 
Thus, Record reader creates key/value pairs from input splits and writes on to Context, which will be 

shared with Mapper class. Mapper class’s run() method retrieves these key/value pairs from context by 

calling getCurrentKey() and getCurrentValue() methods and passes onto map() method for further 

processing of the record. 
 
Mapper’s run() method: 

 
public void run(Context context) throws IOException, InterruptedException 
 
{ 
 

setup(context); 
 

while (context.nextKeyValue()) 
 
{ 
 

map(context.getCurrentKey(), context.getCurrentValue(), context); 
 
} 
 
cleanup(context); 
 
} 

 
Builtin Hadoop Input Formats: 
 
Hadoop provided some built in InputFormat implementations in the 

org.apache.hadoop.mapreduce.lib.input package: 
 
FileInputFormat: Base class for all filebased InputFormat implementations. 



Some of the important sub classes of the FileInputFormat class are: 
 
TextInputFormat : 
 
The default InputFormat class when no other class is specified. It treats the input files as text files. 
 
KeyValueTextInputFormat : 
 
An InputFormat for plain text files. Files are broken into lines. Each line is divided into key and value parts 

by a separator byte. If no such a byte exists, the key will be the entire line and value will be empty. 
 
FixedLengthInputFormat : 
 
An input format to read input files with fixed length records. These need not be text files and can be binary 

files. Users must configure the record length property by calling: 
 
FixedLengthInputFormat.setRecordLength(conf, recordLength); 
 
NLineInputFormat : 
 
It splits N lines of input as one split which will be fed to a single map task. It can be used in applications, 

that splits the input file such that by default, one line is fed as a value to one map task, and key is the 

offset. i.e. (k,v) is (LongWritable, Text). 
 
CombineFileInputFormat : 
 
This input file format is suitable for processing huge number of small files. CombineFileInputFormat packs 

many small files into each split so that each mapper has more to process. Thus it can improve the 

efficiency of mapreduce job by making less number of map tasks to process huge number of small files. 
 
MultiFileInputFormat : 
 
An abstract InputFormat class that returns MultiFileSplit’s in getSplits() method from the files under the 

input paths. 
 
SequenceFileInputFormat : 
 
Hadoop specific Binary file format for efficient file processing. 
 
SequenceFileAsTextInputFormat : 
 
SequenceFileAsTextInputFormat is a sub class of SequenceFileInputFormat. This class is similar to 

SequenceFileInputFormat, except it generates SequenceFileAsTextRecordReader which converts 

the input keys and values to their String forms by calling toString() method. 
 
SequenceFileAsBinaryInputFormat : 
 
SequenceFileAsBinaryInputFormat is another sub class of SequenceFileInputFormat. It is an input format 

for reading keys, values from Sequence Files in binary (raw) format. 
 
MultipleInputs : 
 
DBInputFormat : 
 
A InputFormat that reads input data from an SQL table. DBInputFormat emits LongWritables containing the 

record number as key and DBWritables as value. The SQL query, and input class can be using one of the 

two setInput() methods. 

 
Hadoop Output Format: 
 
Hadoop provides output formats that corresponding to each input format. All hadoop output formats 

must implement the interface org.apache.hadoop.mapreduce.OutputFormat. 



OutputFormat describes the outputspecification for a MapReduce job. Based on Output specification, 
 
 
1.Mapreduce job checks that the output directory doesn’t already exist. 
 
2.OutputFormat provides the RecordWriter implementation to be used to write out the output files of the 

job. 
 
These two requirements of the OutputFormat are accomplished with below two methods in the interface. 

1.public abstract void checkOutputSpecs(JobContext context) throws IOException, 

InterruptedException{} 
 
This method checks that output directory doesn’t exist already and throws an exception when it already 

exists, so that output is not overwritten. 
 
2.public abstract RecordWriter<K,V> getRecordWriter(TaskAttemptContext context) 

throws IOException, InterruptedException{} 
 
This method Gets the RecordWriter for the given task. 
 
org.apache.hadoop.mapreduce.RecordWriter<K,V> class implementations are used to write the output 

<key, value> pairs to an output file. 
 
BuiltIn Hadoop Output Formats 
 
Hadoop provided some built in InputFormat implementations in 

the org.apache.hadoop.mapreduce.lib.output package: 
 
FileOutputFormat Base class for all file based OutputFormat implementations. 

Some of the important sub classes of the FileOutputFormat class are: 
 
TextOutputFormat 
 
The default output format provided by hadoop is TextOuputFormat and it writes records as lines of text. If 

file output format is not specified explicitly, then text files are created as output files. Output Keyvalue pairs 

can be of any format because TextOutputFormat converts these into strings with toString() method. Output 

keyvalue pairs are tab delimited by default. 
 
For reading these output text files as input, KeyValueTextInputFormat is best suitable, since it breaks input 

lines into key value pairs based on a separator character. 
 
SequenceFileOutputFormat 
 
This output format class is useful to write out sequence files which is a best option when the output files 

need to be fed into another mapreduce jobs as input files, since these are compressed and compact. 
 
SequenceFileAsBinaryOutputFormat 
 
SequenceFileAsBinaryOutputFormat is a direct subclass of SequenceFileOutputFormat and it is counter 

part for SequenceFileAsBinaryInputFormat. It writes keys and values to sequence Files in binary format. 
 
MapFileOutputFormat 
 
It is also a direct subclass of FileOutputFormat and it is used to write output as Map files. 
 
MultipleOutputs 
 
The MultipleOutputs class is used to write output data to multiple outputs. Below are the two main use 

cases of MultipleOutputs. 
 
1. Job output can be written to additional outputs other than the default output. Each additional output, or 

named output, may be configured with its own OutputFormat, with its own key class and value class. 



2. Write data to different files provided by user 
 
MultipleOutputs supports counters to count the number records written to each output name. But these 

are disabled by default. 
 
MultipleOutputFormat 
 
It is an abstract class which is extended by MultipleTextOutputFormat and 

MultipleSequenceFileOutputFormat. This abstract class extends the FileOutputFormat, 
 
The main advantage of this format is the ability to write the output data to different output 

files. Below are the three scenarios where output file names can be changed. 
 
1.If there is at least one reducer in the mapreduce job, output can be written to different 

files depending on the actual keys. 
 
2.If the mapreduce job is a map only job, then job can use the output file name that is either a part of the 

input file name or any name derived from it. 
 
3.If it is a map only job, job can use the output file name that depends on both the keys and the input file 

name. 
 
MultipleSequenceFileOutputFormat 
 
This is also a sub class of MultipleOutputFormat class. Using this format the output data can be written to 

different output files in Sequence file format. 
 
MultipleTextOutputFormat 
 
This is also a sub class of MultipleOutputFormat class. Using this format the output data can be written to 

different output files in Text output format. 
 
LazyOutputFormat 
 
By Default FileOutputFormat creates the output files even if a single output record is not emitted from 

reducers. Thus Mapreduce jobs create empty output files some times. This can be avoided with 

LazyOutputFormat in which output files are created only when the first output is emitted from the 

reducers. It is used in conjunction with org.apache.hadoop.mapreduce.lib.output.MultipleOutputs to 
 
recreate the behavior of org.apache.hadoop.mapred.lib.MultipleTextOutputFormat of the old Hadoop API. 
 
DBOutputFormat 
 
This output format is used to write an output into SQL tables using mapreduce jobs. 
 
DBOutputFormat accepts <key,value> pairs, where key has a type extending DBWritable. Returned 

DBOutputFormat. DBRecordWriter writes only the key to the database with a batch SQL query. 
 
NullOutputFormat 
 
NullOutputFormat writes nothing to output directory. It Consumes all outputs and put them in /dev/null. 

We can suppress the key or value in the output using a NullWritable type. Both can be suppressed if the 

output file format is NullOutputFormat. 

 

 
 

 
Using Advanced Hadoop MapReduce Features 



 
Counters 
 
 
Counters help in quantitative analysis of the job. It provides aggregated statistics at the end and hence 

can be referred to validate the output. Hadoop provides some built in as well as user defined counters. 

We can analysis them using apis in Driver class or all counters are listed in output logs at last. 
 
The best thing about counters are that they work at the cluster level i.e., provides aggregated 

information about all the mappers and reducers. 
 
 
Built-in Counters 
 
Hadoop provides some built in counter to provide information about each process of hadoop for 

a particular job. 
 
Few important ones for debugging and testing perspective: MAP_INPUT_RECORDS 

— number of input records consumed by all the maps. MAP_OUTPUT_RECORDS — 

number of output records produced by all the maps. 
 
REDUCE_INPUT_RECORDS — number of input reocords consumed by all the reducers. 

REDUCE_OUTPUT_RECORDS — number of output records produced by all the reducers. 

 
 
User-Defined Java Counters 
 
We can have our own counters to report the state of job. These provide output in form of a map. There 

are two ways to create and access the counters viz., enums and Strings. Enum is more easy and is type 

safe. It should be used in case we know all the output states in advance. Enum based counters are best 

suited for case where we want to calculate the number of requests based on HttpResponseCode. String 

based counters are dynamic and can be used where we don’t have visibility in advance. This can be used 

when we want to do count based on domain. 

 

 
Counters are incremented through the Reporter.incrCounter() method. The names of the counters are 

defined as Java enum's. The following example demonstrates how to count the number of "A" vs. "B" 

records seen by the mapper: 

 

 
Custom Writables 

 
Custom Types (Data) 
 
 
For user provided Mapper and Reducer, the Hadoop MapReduce framework always uses typed data. 

The data which passes through Mappers and Reducers is stored in Java objects. 



 
Writable Interface: The Writable interface is one of the most important interfaces. The objects which can 

be marshaled to/from files and over the network use this interface. Hadoop also uses this interface to 

transmit data in a serialized form. Some of the classes that implement Writable interface are mentioned 

below: 

 
1. Text class(It stores String data)  

 
2. LongWritable  

 
3. FloatWritable  

 
4. IntWritable  

 
5. BooleanWritable  

 
 
Custom data type can also be created by implementing the Writable interface. Hadoop is capable of 

transmitting any custom data type (which fits your requirement) that implements Writable interface. 

 
The following is the Writable interface that has two methods readFields and write. The first method 

(readFields) initializes the data of the object from the data contained in the 'in' binary stream. The second 

method (write) is used to reconstruct the object to the binary stream 'out'. The most important contract of 

the entire process is that the order of read and write to the binary stream is same. 

 
public interface Writable { 
 

void readFields(DataInput in); 

void write(DataOutput out); 
 
} 
 
Custom Types (Key) 
 
 
In the previous section we discussed custom data types to meet an application specific data requirement. 

It manages the value part only. Now we will discuss the custom key type. In Hadoop MapReduce, the 

Reducer processes the key in sorted order. So the custom key type needs to implement the interface 

called WritableComparable. The key types should also implement hashCode (). 

 
The following shows WritableComparable interface. It represents a Writable that is also Comparable. 
 
 
public interface WritableComparable<T> 

extends Writable, Comparable<T> 



 
 
 
How to use Custom Types 
 
 
We have already discussed the custom value and key types that can be processed by Hadoop. Now we 

explore the mechanism that Hadoop uses to understand it. The JobConf object (which defines the job) 

has two methods called setOutputKeyClass () and setOutputValueClass () and these methods are used 

to control the value and key data types. If the Mapper produces different types that do not match the 

Reducer then JobConf's setMapOutputKeyClass () and setMapOutputValueClass () methods can be used 

to set the input type as expected by the Reducer. 

 
public class WritableComparator extends Object implements RawComparator 
 
 
Custom data and key types allow us to use a higher level data structure in the Hadoop framework. In a 

practical Hadoop application, the custom data type is one of the most important requirements. So this 

feature allows the use of custom writable types and provides a significant performance improvement. 

 
Data Partitioning 
 
 
Partitioning can be defined as a process that determines which Reducer instance will receive which 

intermediate key/value pair. Each Mapper should determine the destination Reducer for all its output 

key/value pairs. The most important point is that for any key, regardless of its Mapper instance, the 

destination partition is the same. For performance reasons Mappers never communicate with each other 

to the partition of a particular key. 

 
The Partitioner interface is used by the Hadoop system to determine the destination partition for a 

key/value pair. The number of partitions should match with the number of reduce tasks. The MapReduce 

framework determines the number of partitions when a job starts. 

 
The following is the signature of Partitioner interface. 
 
 
public interface Partitioner<K2,V2> 

extends JobConfigurable 



Unit Testing Framework for Map reduce Job 
 
Being a parallel programming framework it becomes a bit difficult to properly unit test and validate 

map reduce jobs from a developer’s scope let alone the Test Driven Development. 
 
 
We will focus on various ways to do unit testing for map reduce jobs. 
 
 
In the post we will discuss how to validate map reduce output using : 
 
1. JUnit framework to test mappers and reducers using mocking (Mockito)  
 
2. MRUnit framework to completely test the flow but in a single JVM.  
 
3. mini-HDFS and a mini-MapReduce cluster to perform Integration Testing.  
 
4. Hadoop Inbuilt Counters  
 
5. LocalJobRunner to debug jobs using local filesystem.  
 
 
1. JUnit framework to test mappers and reducers using mocking (Mockito) 
 
Junit tests can be easily executed for Map Reduce jobs provided we test map function and reduce 

function in isolation. We can also test Driver function but with SpringData - Hadoop[ 

http://www.springsource.org/spring-data/hadoop] project, driver configuration can be moved out of 

code. Using springData beans can further ease testing. If we execute the map and reduce function in 

isolation then there is dependency only on context object. We can easily clone context object using 

Mockito[ http://code.google.com/p/mockito/]. 
 
All the tests can be executed from IDE. We just need to hadoop distribution jars and Mockito and junit 

jars in classpath. 
 
 
Example to test the WordCount Mapper. It works with hadoop 1.0.3 and junit 4.1. 

 
public class WordCountTest { 
 

private TokenizerMapper 
mapper; private Context context;  
final Map<Object,Object> test = new HashMap(); final 
AtomicInteger counter = new AtomicInteger(0); 

 
@Before  
public void setUp() throws Exception { 

mapper = new TokenizerMapper(); 
context = mock(Context.class);  

} 
 

@Test  
public void testMethod() throws IOException, InterruptedException { 

 
doAnswer(new Answer<Object>() {  

public Object answer(InvocationOnMock invocation) 
{ Object[] args = invocation.getArguments(); 
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test.put(args[0].toString(), args[1].toString()); 
counter.incrementAndGet();  
return "called with arguments: " + args; 

}  
}).when(context).write(any(Text.class),any(IntWritable.class)); 

 
mapper.map(new LongWritable(1L), new Text("counter counter counter" + 
" test test test"), context);  
Map<String,String> actualMap = new HashMap<String, 
String>(); actualMap.put("counter", "1");  
actualMap.put("test", "1"); 
assertEquals(6,counter.get()); 
assertEquals(actualMap, test);  

}  
} 
 
On the similiar lines reducer can be tested. 
 

 
Key to use this strategy effectively is to refactor the code properly.Business logic related code should 

be moved out of map and reduce methods. It helps in effectively testing the business logic. We should 

also think about moving the mapper and reducer is separate classes. This follows strategy pattern and 

better reusability. 

 
 
Junit tests with Mockito are very easy to use. Only problem is that we can not test the solution as a 

whole. It at max certifies the business logic. We should consider other testing strategy to test the 

complete solution. 

 
 
2. MRUnit framework to completely test the flow but in a single JVM. 
 
MRUnit is testing framework which provides support structure to test map reduce jobs. It provides 

mocking support which can be helpful in testing Mapper, Reducer, Mapper+Reducer and Driver as well. 

http://mrunit.apache.org/ is a top level apache project now. It takes JUnit mocking a level up for map 

reduce job testing. 
 
Example 
 
We require mrunit and mockito jars and hadoop supporting jars. Test has been executed on hadoop 
 
0.20.203 and junit4. We are testing the PiEstimator example provided with hadoop 
distribution. public class TestExample { 
 

MapDriver<LongWritable, LongWritable, BooleanWritable,  
LongWritable> mapDriver;  
ReduceDriver<BooleanWritable, LongWritable, WritableComparable<?>,  
Writable> reduceDriver;  
MapReduceDriver<LongWritable, LongWritable, BooleanWritable, 
LongWritable, WritableComparable<?>, Writable> mapReduceDriver; 

 
@Before  
public void setUp() {  

PiEstimator.PiMapper mapper = new PiEstimator.PiMapper(); 
PiEstimator.PiReducer reducer = new PiEstimator.PiReducer(); 

http://mrunit.apache.org/
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mapDriver = new MapDriver<LongWritable, LongWritable, 
BooleanWritable, LongWritable>(); 
mapDriver.setMapper(mapper);  
reduceDriver = new ReduceDriver<BooleanWritable, 
LongWritable, WritableComparable<?>, Writable>(); 
reduceDriver.setReducer(reducer);  
mapReduceDriver = new MapReduceDriver<LongWritable, LongWritable, 
BooleanWritable,LongWritable,  
WritableComparable<?>, Writable>(); 
mapReduceDriver.setMapper(mapper); 
mapReduceDriver.setReducer(reducer);  

} 
 

@Test  
public void testMapper() {  

mapDriver.withInput(new LongWritable(10), new LongWritable(10)); 
mapDriver.withOutput(new BooleanWritable(true), new LongWritable(10)); 
mapDriver.addOutput(new BooleanWritable(false), new LongWritable(0)); 
mapDriver.runTest();  

} 
 

@Test  
public void testReducer() {  

List<LongWritable> values = new ArrayList<LongWritable>(); 
values.add(new LongWritable(10)); reduceDriver.withInput(new 
BooleanWritable(true), values); 

 
reduceDriver.runTest();  

}  
} 
 
These tests are extemely fast as we dont require any interaction with filesystem. This are very good 

but lacks support to test code in distributed environment. Please check  

http://mrunit.apache.org/documentation/javadocs/0.9.0- 

incubating/org/apache/hadoop/mrunit/mock/package-summary.html for other useful support classes. 
 
These tests can be sufficient to test code in isolation but doesn’t test interaction with HDFS and 

test execution on cluster. 

 
Hadoop Error Handling 
 
Hadoop Error Handling! How can we make this work for us? The problem is that when errors happen in 

the mappers and/or reducers it is really hard to get the meaningful error information back to client. 
 
 
The biggest reason for this is because a job would have been submitted at one node in cluster and then 

the job gets processed on other remote data nodes. Sure errors will be written into the log files of those 

data nodes, but that really does not allow for some nice neat error message to be displayed for someone 

to review. 

 
 
The ability to present users with meaningful error messages is becoming more and more important. As 

the user base expands beyond the group of highly technical Hadoop nerds and moves into the 
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mainstream, with business analysts, market researchers, etc… using Hadoop. These less technical users 

need a different standard of interaction with the cluster. 

 
 
Generally, they will need easy to use graphical interfaces that provide understandable error messages, 

when things go wrong. Thus effective Hadoop Error Handling will become a necessity. 

 
 
The three approaches are: 
 
 Handling non-fatal errors that need to be tracked 




 Fatal errors that occurs that you want to define explicitly and occur only once 




 Fatal errors that occur during the processing and can use a simple message 


 
The Hadoop Error Handling for non-fatal errors that need to be tracked can be done by using counters. 

The basic idea is to create a counter with the Context.getCounter() and then increment it with each erorr. 

 
 
Finally, on the client side after the job has completed to read the counter to get the total. For a very 

simplified example, see below. 

 
 
In the mapper: 
 
 
if(some_error_confidtion){ 
 

context.getCounter(COUNTER_GROUP, COUNTER).increment(1); 
 
} 
 
In the client: 
 

 
boolean okay = 

job.waitForCompletion(true); if (okay){ 
 

Counters counters = job.getCounters(); 
 

Counter bwc = counters.findCounter(COUNTER_GROUP, COUNTER); 

System.out.println("Errors" + bwc.getDisplayName()+":" + bwc.getValue()); 
 
} 
 
For the Hadoop Error Handling of fatal errors that you want to explicitly define and happen once, I have 

found that using an Enum is an excellent way to go. When you encounter the error condition, you would 

create the counter and use the Enum parameter with the error code value as the value of the counter: 

 
 
catch (NullPointerException 

npe){ npe.printStackTrace(); 
 

context.getCounter(ExceptionTypeEnum.PLACEHOLDER).setValue( 



 
ExceptionTypeEnum.NULL_POINTER.getErrorCode()); 

needToStop++; 
 
} 
 
Then on the client side, you would need to retrieve the counter and then convert the PLACEHOLDER into 

the actual error message for presentation: 

 
 
Counters counters = job.getCounters(); 
 
Counter bwc = counters.findCounter(ExceptionTypeEnum.PLACEHOLDER); 

ExceptionTypeEnum err = ExceptionTypeEnum.get(bwc.getValue()); 

System.out.println(); 
 
System.out.println("Terminal error, " + err.getName()); 

System.out.println("With message: " + err.getMessage()); 
 
The only real drawback of this approach is that you need to ensure that you do not terminate the mapper 

when the error occurs. It needs to be allowed to complete at least one iteration, because otherwise the 

counter will be zeroed out. 

 
 
The final Hadoop Error Handling approach is to reach into the data returned by the TaskTracker and then 

processing it. The challenge here is that the data is not readily available and there will be some 

duplication of the error messages. The first thing to know is that you will need to use the MR API to get 

the report. 

 
 
The first thing you need to do is to take you JobID and downgrade it to the old API object. Then you need 

to create a JobClient() instance. With the JobClient, you can then get a RunningJob instance which gives 

you status information for the entire job. Next, you will want to get the specific error messages from the 

TaskTrackers. 

 
 
You can use the JobClient.getMapTaskReports() and getReduceTaskReports() methods to get all the 

error messages from all of the failed tasks. This is where you will need to de-duplicate the error 

messages to ensure there is only one. 

 
 
boolean okay = job.waitForCompletion(true); 

JobID jobId = job.getJobID(); 
 
org.apache.hadoop.mapred.JobID oldJobId = org.apache.hadoop.mapred.JobID.downgrade(jobId); 

RunningJob runningJob = jobClient.getJob(oldJobId); 
 
JobStatus jobStatus = runningJob.getJobStatus(); 
 
TaskReport[] mapReports = jobClient.getMapTaskReports(oldJobId); 

Map<String,String> errMap = new HashMap<String,String>(); 



for (TaskReport report : mapReports){ 
 

TIPStatus status = report.getCurrentStatus(); 
 

if (status.compareTo(TIPStatus.COMPLETE) == 

0){ // not interested in tasks that completed 

continue; 
 

} 
 

for (String err : report.getDiagnostics()){ 
 

// only need first line, can get the rest from logs  
 

// and don't want to get duplicates  
 

String[] errArr = err.split("\n"); 

errMap.put(errArr[0],errArr[0]); 
 

} 
 
} 
 
 
 
Tuning of Mapreduce program 

 
• Most important process of mapreduce program is shuffling of outputs produced by map function .  

 

• So we need to concentrate mainly on map phase for better optimization of mapreduce programs 

. hence , We should do the following things for optimization :-  

 
1. We should give as much as more memory to shuffle process , but also need to keep in mind that we 

also give sufficient memory to map and reduce function . 

 
2. Amount of memory given to JVM for map reduce tasks is set by :- mapred.child.java.opts , we need to 

make this value more as much as we can. 

 
3. Map Side optimization :-  

 

a) optimization can be done by minimizing the multi spills ,, which can be controlled by io.sort.*  

 

b) We can use counters to check about the count of spill records  

 

c) We should increaseio.sort.mb :- which is used as amount of memory buffer used while sorting 

out the map output  

 

d) io.sort.spill.percent :- threshold value for using memory buffer , afterwards records started to 

spill.Default value :- 0.80  
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e) io.sort.factor :- property which help to merge output streams by map. We should increase this upto 100 

for optimization . 

 
f)mapred.compress.map.output :- we should compress the ouptput of mapper phase , it saves space as 

ell increase transfer of data between tasks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


