SAEX 1013 AIRFRAME MAINTENANCE & REPAIR PTACTICES

UNIT IV REVIEW OF HYDRAULIC & PNEUMATIC SYSTEMS

Hydraulic systems in aircraft provide a means for the operation of aircraft components. The operation of landing gear, flaps, flight control surfaces and brakes is largely accomplished with hydraulic power systems. Hydraulic system complexity varies from small aircraft that require fluid only for manual operation of the wheel brakes to large transport aircraft where the systems are large and complex.

Each subsystem has a power generating device (pump) reservoir, accumulator, heat exchanger, filtering system, etc. System operating pressure may vary from a couple hundred psi in small aircraft and rotorcraft to several thousand psi in large transports.

PURPOSES OF HYDRAULIC SYSTEMS. Hydraulic systems make possible the transmission of pressure and energy at the best weight per horsepower ratio.

TYPES OF HYDRAULIC FLUID.

There are three principal categories of hydraulic fluids; mineral base fluids, polyalphaolefin base, and phosphate ester base fluids.

Mineral-Base Fluids. MIL-H-5606, mineral oil-based hydraulic fluid is the oldest, dating back to the 1940's. It is used in many systems, especially where the fire hazard is comparatively low. **Polyalphaolefin-Based Fluids.**

MIL-H-83282, is a fire-resistant hydrogenated polyalphaolefin-based fluid developed in the 1960's to overcome the flammability characteristics of MIL-H-5606. MIL-H-83282 is significantly more flame resistant than MIL-H-5606, but a disadvantage is the high viscosity at low temperature.

Phosphate Ester-Based Fluid (Skydrol/Hyjet). These fluids are used in most commercial transport category aircraft, and are extremely fire-resistant. However, they are not fireproof and under certain conditions, they will burn.

Materials of Construction. Hydraulic systems require the use of special accessories that are compatible with the hydraulic fluid. Appropriate seals, gaskets, and hoses must be specifically designated for the type of fluid in use. Care must be taken to ensure that the components installed in the system are compatible with the fluid. When gaskets, seals, and hoses are replaced, positive identification should be made to ensure that they are made of the appropriate material.

HANDLING HYDRAULIC FLUID.

In addition to any other instructions provided in the aircraft maintenance manual or by the fluid supplier, the following general precautions must be observed in the handling of hydraulic fluids:

a. Ensure that each aircraft hydraulic system is properly identified to show the kind of fluid to be used in the system. Identification at the filler cap or valve must clearly show the type of fluid to be used or added.

b. Never allow different categories of hydraulic fluids to become mixed. Chemical reactions

may occur, fire resistant fluids may lose their fire resistance, seals may be damaged, etc.

c. Never, under any circumstances, service an aircraft system with a fluid different from that shown on the instruction plate.

d. Make certain that hydraulic fluids and fluid containers are protected from contamination of any kind. Dirt particles may cause hydraulic units to become inoperative, cause seal damage, etc. If there is any question regarding the cleanliness of the fluid, do not use it. Containers for hydraulic fluid must never be left open to air longer than necessary.

e. Do not expose fluids to high temperature or open flames. Mineral-based fluids are highly flammable.

HYDRAULIC SYSTEM MAINTENANCE PRACTICES.

The maintenance of hydraulic and pneumatic systems should be performed in accordance with the aircraft manufacturer's instructions. The following is a summary of general practices followed when dealing with hydraulic and pneumatic systems.

Service. The servicing of hydraulic and pneumatic systems should be performed at the intervals specified by the manufacturer. Some components, such as hydraulic reservoirs, have servicing information adjacent to the component. When servicing a hydraulic reservoir,make certain to use the correct type of fluid.

Contamination Control. Contamination, both particulate and chemical, is detrimental to the performance and life of components in the aircraft hydraulic system. Contamination enters the system through normal wear of components, by ingestion through external seals, during servicing, or maintenance when the system is opened to replace/repair components, etc. To control the particulate contamination in the system, filters are installed in the pressure line, in the return line, and in the pump case drain line of each system. The filter rating is given in terms of "micron," and is an indication of the particle size that will be filtered out.

Flushing a Hydraulic System. When inspection of hydraulic filters or hydraulic fluid evaluation indicates that the fluid is contaminated, flushing the system may be necessary. This must be done according to the manufacturer's instructions; however, a typical procedure for flushing is as follows:

(1) Connect a ground hydraulic test stand to the inlet and outlet test ports of the

system. Verify that the ground unit fluid is clean and contains the same fluid as the aircraft.

(2) Change the system filters.

(3) Pump clean, filtered fluid through the system, and operate all subsystems until no obvious signs of contamination are found during inspection of the filters. Dispose of contaminated fluid and filter.

(4) Disconnect the test stand and cap the ports.

(5) Ensure that the reservoir is filled to the FULL line or proper service level.

Inspections. Hydraulic and pneumatic systems are inspected for leakage, worn or damaged tubing, worn or damaged hoses, wear of moving parts, security of mounting for all units, safetying, and any other condition specified by the maintenance manual. A complete

inspection includes considering the age, cure date, stiffness of the hose, and an operational check of all subsystems.

(1) Leakage from any stationary connection in a system is not permitted, and if found, it should be repaired. A small amount of fluid seepage may be permitted on actuator piston rods and rotating shafts. In a hydraulic system, a thin film of fluid in these areas indicates that the seals are being properly lubricated. When a limited amount of leakage is allowed at any point, it is usually specified in the appropriate manual.

(2) Tubing should not be nicked, cut, dented, collapsed, or twisted beyond approved limits. The identification markings or lines on a flexible hose will show whether the hose has been twisted.(3) All connections and fittings associated with moving units must be examined for play evidencing wear. Such units should be in an unpressurized condition when they are checked for wear.

Troubleshooting. Hydraulic system troubleshooting varies according to the complexity of the system and the components in the system. It is, therefore, important that the technician refer to the troubleshooting information furnished by the manufacturer.

(1) Lack of pressure in a system can be caused by a sheared pump shaft, defective relief valve, the pressure regulator, an unloading valve stuck in the "kicked-out" position, lack of fluid in the system, the check valve installed backward, or any condition that permits free flow back to the reservoir or overboard. If a system operates satisfactorily with a ground test unit but not with the system pump, the pump should be examined.

(2) If a system fails to hold pressure in the pressure section, the likely cause is the pressure regulator, an unloading valve, a leaking relief valve, or a leaking check valve. (3) If the pump fails to keep pressure up during operation of the subsystem, the pump may be worn or one of the pressure-control units may be leaking.

(4) High pressure in a system may be caused by a defective or improperly-adjusted pressure regulator, an unloading valve, or by an obstruction in a line or control unit.

(5) Unusual noise in a hydraulic system, such as banging and chattering, may be caused by air or contamination in the system. Such noises can also be caused by a faulty pressure regulator, another pressure-control unit, or a lack of proper accumulator action.

(6) Maintenance of hydraulic system components involves a number of standard practices together with specialized procedures set forth by manufacturers such as the replacement of valves, actuators, and other units, including tubing and hoses. Care should be exercised to prevent system contamination damage to seals, packings, and other parts, and to apply proper torque in connecting fittings. When installing fittings, valves, etc. always lubricate the threads with hydraulic fluid.

Disposal of Used Hydraulic Fluids. In the absence of organizational guidelines, the technician should be guided by local, state, and federal regulations, with regard to means of disposal of used hydraulic fluid. Presently, the most universally accepted procedure for disposal of phosphate ester-based fluid is incineration

During inspection, consider the following to determine whether seal replacement is necessary.(1) How much fluid is permitted to seep past the seals? In some installations minor seepage is normal. Refer to the manufacturer's maintenance information.

(2) What effect does the leak have on the operation of the system? Know the system.

(3) Does the leak of fluid create a hazard or affect surrounding installations? A check of the system fluid and a knowledge of previous fluid replenishment is helpful.

(4) Will the system function safely without depleting the reservoirs until the next inspection?

INSPECTION AND MAINTENANCE OF LANDING GEAR

The landing gear on aircraft may be fixed or retractable. A fixed gear may be wheels, floats, or skis; and for amphibians a combination of floats and wheels.

Retractable gear on aircraft is usually operated with hydraulic or electric power, although

some models of light general aviation aircraft have manual retract systems operated by a lever in the cockpit.

(1) In addition to the normal operating system, emergency systems are usually provided to ensure that the landing gear can be lowered in case of main-system failure.

(2) Emergency systems consist of backup hydraulic systems, or stored nitrogen gas bottles that can be directed into actuating cylinders, mechanical systems that can be operated manually, or free-fall gravity systems.

GENERAL INSPECTION. A thorough inspection of the landing gear involves

the entire structure of the gear, including attachments, struts, wheels, brakes, actuating mechanisms for retractable gears, gear hydraulic system and valves, gear doors, and all associated parts. The manufacturer's inspection procedures should be followed where applicable.

CLEANING AND LUBRICATING.

It is recommended that only easily removable neutral solutions be used when cleaning landing gear components. Any advantage, such as speed or effectiveness, gained by using cleaners containing corrosive materials, can be quickly counteracted if these materials become trapped in close-fitting surfaces and crevices.

Wear points, such as landing gear up-and down latches, jack-screws, door hinges, pulleys, cables, bell cranks, and all pressure-type grease fittings, should be lubricated after every cleaning operation.

To prevent possible failure of a component due to incompatibility or breakdown of the grease, the following should be observed:

1. Use only greases approved for use by the product manufacturer.

2. Never mix different kinds of grease without approval from the product manufacturer.

3. Follow the manufacturer's instructions or FAA approved process for cleaning, purging, and lubricating of the component.

FIXED-GEAR INSPECTION. Fixed landing gear should be examined regularly for wear, deterioration, corrosion, alignment, and other factors that may cause failure or unsatisfactory operation. During a 100-hour or annual inspection of the fixed gear, the aircraft should be jacked up to relieve the aircraft weight. The gear struts and wheels should be checked for abnormal play and corrected.

Old aircraft landing gear that employs a rubber shock (bungee) cord for shock absorption must be inspected for age, fraying of the braided sheath, narrowing (necking) of the cord, and wear at points of contact with the structure and stretch. If the age of the shock cord is near 5 years or more, it is advisable to replace it with a new cord. A cord that shows other defects should be replaced, regardless of age.

The cord is color-coded to indicate when it was manufactured and to determine the life of the shock cord. According to MIL-C-5651A, the color code for the year of manufacture is repeated in cycles of 5 years. Table 9-1 shows the color of the code thread for each year and quarter year.

The color coding is composed of threads interwoven in the cotton sheath that holds the strands of rubber cord together. Two spiral threads are used for the year coding and one thread is used for the quarter of the year sheath, e.g. yellow and blue would indicate that the cord was manufactured in 1994 during April, May, or June.

Shock struts of the spring-oleo type should be examined for leakage, smoothness of operation, looseness between the moving parts, and play at the attaching points. The extension of the struts should be checked to make sure that the springs are not worn or broken The piston section of the strut should be free of nicks, cuts, and rust.

INSPECTION OF RETRACTABLE LANDING GEAR.

Inspection of the retractable landing gear should include all applicable items mentioned in the inspection for the fixed gear. In addition, the actuating mechanisms must be inspected for wear looseness in any joint, trunnion, or bearing; leakage of fluid from any hydraulic line or unit; and, smoothness of operation. The operational check is performed by jacking the aircraft according to the manufacturer's instructions and then operating the gear retracting and extending system.

During the operational test, the smoothness of operation, effectiveness of up and- down locks, operation of the warning horn, operation of indicating systems, clearance of tires in wheel wells, and operation of landing-gear doors should be checked. Improper adjustment of sequence valves may cause doors to rub against gear structures or wheels. The manufacturer's checklist should be followed to ensure that critical items are checked. While the aircraft is still on jacks, the gear can be tested for looseness of mounting points, play in torque links, condition of the inner strut cylinder, play in wheel bearings, and play in actuating linkages. Emergency blow down gear bottles should be inspected for damage and corrosion and weighed to see if the bottle is still retaining the charge.

Mechanics should be aware that retread tires can be dimensionally bigger than a "new" tire. While this does not pose a problem on fixed landing gear aircraft, it may present a serious problem when installed on retractable landing gear aircraft. It is strongly recommended that if a retread tire is installed on a retractable landing gear aircraft, a retraction test be performed. With the gear in the up-and-lock position, the mechanic should determine that if the tire expands due to high ambient temperature, heat generated from taxi and take-off, repeated landings, or heavy braking, the tire will not expand to the point that it becomes wedged in the wheel well.

The proper operation of the ant retraction system should be checked in accordance with the manufacturer's instructions. Where safety switches are actuated by the torque links, the actual time of switch closing or opening can be checked by removing all air from the strut and then collapsing the strut. In every case, the adjustment should be such that the gear control cannot be

placed in the UP position or that the system cannot operate until the shock strut is at the full extended position.

LANDING GEAR COMPONENTS.

The following items are susceptible to service difficulties and should be inspected.

Shock Absorbers. Inspect the entire shock-strut for evidence of leaks, cracks, and possible bottoming of the piston, as this condition causes overloading of landing-gear components and contributes to fatigue cracks. Check all bolts, bolt holes, pins, and bushings for condition, lubrication, and proper torque values. Grease fitting holes (pressure-type) are especially vulnerable to cracks and cross threading damage. Check all safety wire and other locking devices, especially at the main packing gland nuts.

Nose Gear Assembly. Inspection of the steering mechanism should include torque links (scissors), torque-tubes, control rods and rod-end bearings, shimmy dampers, cables, and turning stops. In addition, check all nose landing gear components, including mudscrapers and slush deflectors, for damage.

Tail Wheels. Disassembly, cleaning, and re-rigging of tail wheels are periodically necessary. Inspect them for loose or broken bolts, broken springs, lack of lubrication, and general condition. Check steerable tail wheels for proper steering action, steering-horn wear, clearances, and for security and condition of steering springs and cables.

Gear Doors. Inspect gear doors frequently for cracks, deformation, proper rigging, and general condition. Gear door hinges are especially susceptible to progressive cracking, which can ultimately result in complete failure, allowing the door to move and cause possible jamming of the gear.

Wheels. Inspect the wheels periodically for cracks, corrosion, dents, distortion, and faulty bearings in accordance with the manufacturer's service information. In split type wheels, recondition bolt holes which have become elongated due to some play in the through-bolt, by the use of inserts or other FAA-approved means. Pay particular attention to the condition of the through-bolts and nuts. Carefully inspect the wheels used with tubeless tires for damage to the wheel flange and for proper sealing of the valve. The sealing ring used between the wheel halves should be free of damage and deformation.

Brakes. Disassemble and inspect the brakes periodically and examine the parts for wear, cracks, warpage, corrosion, elongated holes, etc. Discolored brake disks are an indication of overheated brakes and should be replaced. If any of these or other faults are indicated, repair, recondition, or replace the affected parts in accordance with the manufacturer's recommendations.

Hydraulic Brakes. For proper maintenance, periodically inspect the entire hydraulic system from the reservoir to the brakes. Maintain the fluid at the recommended level with proper brake fluid. When air is present in the brake system, bleed in accordance with the manufacturer's instructions. Replace flexible hydraulic hoses which have deteriorated due to long periods of service and replace hydraulic piston seals when there is evidence of leakage.

TYPES OF LANDING GEAR PROBLEMS. During inspection and before removing any accumulated dirt, closely observe the area being inspected while the wingtips are gently rocked up and down. Excessive motion between normally close-fitting landing gear components may indicate wear, cracks, or improper adjustment. If a crack exists, it will generally be indicated by dirt or metallic particles which tend to outline the fault. Seepage of rust inhibiting oils, used to

coat internal surfaces of steel tubes, also assists in the early detection of cracks. In addition, a sooty, oily residue around bolts, rivets, and pins is a good indication of looseness or wear.

a. Thoroughly clean and re-inspect the landing gear to determine the extent of any damage or wear. Some components may require removal and complete disassembly for detailed inspection. Others may require a specific check using an inspection process such as dye penetrant, magnetic particle, radiographic, ultrasonic, or eddy current. The frequency, degree of thoroughness, and selection of inspection methods are dependent upon the age, use, and general condition of the landing gear.

b. Inspect the aircraft or landing gear structure surrounding any visible damage to ensure that no secondary damage remains undetected. Forces can be transmitted along the affected member to remote areas where subsequent normal loads can cause failure at a later date

Prime locations for cracks on any landing gear are bolts, bolt holes, pins, rivets, and welds. The following are typical locations where cracks may develop.

d. Most susceptible areas for bolts are at the radius between the head and the shank, and in the location where the threads join the shank.

e. Cracks primarily occur at the edge of bolt holes on the surface and down inside the bore.

f. The usual types of failure in riveted joints or seams are deformation of the rivet heads and skin cracks originating at the rivets' holes.

g. Cracks and subsequent failures of rod ends usually begin at the thread end near the bearing and adjacent to or under the jam nut

h.Cracks develop primarily along the edge of the weld adjacent to the base metal and along the centerline of the bead.

i. Elongated holes are especially prevalent in taper-pin holes and bolt holes or at the riveted joints of torque tubes and push-pull rods.

Deformation is common in rods and tubes and usually is noticeable as stretched, bulged, or bent sections. Because deformations of this type are difficult to see, feel along the tube for evidence of this discrepancy. Deformation of sheet-metal web sections, at landing-gear component attachment points, usually can be seen when the area is highlighted with oblique lighting.

SPECIAL INSPECTIONS. When an aircraft experiences a hard or overweight landing, the mechanic should perform a special structural inspection of the aircraft, including the landing gear. Landing gear support trusses should be inspected for cracked welds, sheared bolts and rivets, and buckled structures. Wheels and tires should be inspected for cracks and cuts, and upper and lower wing surfaces should be inspected for wrinkles, deformation, and loose or sheared rivets. If any damage is found, a detailed inspection is recommended.

RETRACTION TESTS. Periodically perform a complete operational check of the landing gear retraction system. Inspect the normal extension and retraction system, the

emergency extension system, and the indicating and emergency warning system. Determine that the actuating cylinders, linkage, slide tubes, sprockets, chain or drive gears, gear doors, and the up-and-down locks are in good condition and properly adjusted and lubricated, and the wheels have adequate clearance in the wheel wells. In addition, an electrical continuity check of micro-switches and associated wiring is recommended. Only qualified personnel should attempt adjustments to the gear position and warning system micro-switches. Follow the manufacturer's recommendations.

TIRE AND TUBE MAINTENANCE.

A program of tire maintenance can minimize tire failures and increase tire service life.

Correct balance is important since a heavy spot on an aircraft tire, tube, or wheel assembly is likely to cause that heavy spot to hit the ground first when landing. This results in excessive wear at one spot and an early failure at that part of the tire. A severe case of imbalance causes excessive vibration during take-off and landing, especially at high speed.

b. A protective cover should be placed over a tire while servicing units that might drip fluid on the tire.

TIRE INSPECTION AND REPAIR.

Tires should be inspected frequently for cuts, worn spots, bulges on the side walls, foreign bodies in the treads, and tread condition. Defective or worn tires may be repaired or retreaded. The term, retread, refers to several means of restoring a used tire, whether by applying a new tread alone or tread and side wall material in varying amounts. The following guidelines should be used for tire inspection:

a. Tread Wear. Inspect the tires visually for remaining tread. Tires should be removed when tread has worn to the base of any groove at any spot, or to a minimum depth as specified by the tire or aircraft manufacturer. Tires worn to fabric in the tread area should be removed regardless of the amount of tread remaining.

b. Uneven Wear. If tread wear is excessive on one side, the tire can be dismounted and turned around, providing there is no exposed fabric. Gear misalignment causing this condition should be corrected.

Tread Cuts. Inspect tread for cuts and other foreign object damage, and mark with crayon or chalk. Remove tires that have the following:

Any cuts into the carcass ply. Cuts extending more than half of the width of a rib and deeper than 50 percent of the remaining groove depth.

(3) Weather checking, cracking, cuts, and snags extending down to the carcass ply in the sidewall and bead areas.

(4) Bulges in any part of tire tread, sidewall, or bead areas that indicate a separation or damaged tire.

(5) Cracking in a groove that exposes fabric or if cracking undercuts tread ribs.

d. Flat Spots. Generally speaking, tires need not be removed because of flat spots due to skid or hydroplane burns unless fabric is exposed. If objectionable unbalance results, remove the tire from service.

Beads. Inspect bead areas next to wheel flanges for damage due to excessive heat, especially if brake drag or severe braking has been reported during taxi, takeoff or landing.

f. Tire Clearance. Look for marks on tires, the gear, and in the wheel wells that might indicate rubbing due to inadequate clearance.

INFLATION OF TIRES. There is serious danger involved with inflating and tire assembly. The tire should not be inflated beyond the recommended pressure (when it is not being installed

in a safety cage). Over inflation can cause damage to the aircraft, as well as personal injury. Under-inflation will cause excessive tire wear and imbalance. The airframe manufacturer's load and pressure chart should be consulted before inflating tires. Sufficiently inflate the tires to seat the tire beads; then deflate them to allow the tube to assume its position. Inflate to the recommended pressure with the tire in a horizontal position.

Tire check of storage aircraft should be done in accordance with the applicable aircraft storage manual.

PERSONAL SAFETY. When servicing aircraft tires, personnel should stand either

in the front or rear of the wheel and avoid approaching from either side of the tire. Personnel should wear protective eye gear to reduce the risk of eye injury due to inflation and deflation of tires.

DISASSEMBLE THE WHEEL in accordance with aircraft manufacturer's instructions. Do not attempt to disassemble wheel until the tire has been completely deflated: otherwise serious injury or damage to equipment can result.

Do not attempt to remove valve core until tire has been completely deflated. Valve cores will eject at high velocity if unscrewed before air pressure has been released.

Never attempt to remove wheel bolts or break tire beads loose until tire has been completely deflated: otherwise, explosive separation of wheel components will result.

Do not pry between wheel flanges and tire beads as this can damage the wheel and tire. Use caution when removing wheel bolts or nuts. Remove tire from wheel using a wheel demounting fixture.

REASSEMBLING THE WHEEL.

The correct assembly of the wheel affects the balance of the tire. After the wheel halves and bolts/nuts have been inspected and found serviceable, put a little talc on the tube and insert it in the tire. Align the heavy spot of the tube (usually marked with a yellow line) with the light spot of the tire (usually marked with a red dot). If the tube does not have a balance mark, align the valve of the tube with the balance mark on the line. Remove the valve core and inflate the tube momentarily to "seat" the tube and let the air run out. Put one wheel half in the tire and align the wheel half with the valve hole up with the valve on the tube. Insert the other wheel half in the tire and align the bolt holes. Insert the wheel bolts and torque to the manufacturer's recommended value.

Again inflate the tube with 5 or 10 psi and let the air out to re-seat the tube. Install the valve core, and fill the tire to the recommended pressure.

SLIPPAGE. To reduce the possibility of tire and tube failure due to slippage, and to provide a means of detecting tire slippage, tires should be marked and indexed with the wheel rim. Paint a mark one inch wide and two inches long across the tire side wall and wheel rim. Use a permanent type paint in a contrasting color, such as white, red, or orange. Pre-flight inspection must include a check of slippage marks for alignment. If the slippage marks are not in alignment, a detailed inspection must be made, the reason determined, and if necessary, the condition corrected before the next flight.

WHEEL INSPECTION. Check wheels for damage. Wheels that are cracked or damaged must be taken out of service for repair or replacement in accordance with the manufacturer's instruction manual.

WHEEL INSTALLATION. Various procedures are used for installing wheel assemblies on an aircraft.

a. The axle should first be cleaned and inspected for surface damage, damage to the axle threads, and the general condition and security of bolts holding the axle onto the landing-gear leg. The wheel bearings should be cleaned and packed with approved grease. The wheel bearing and tire must be inspected and assembled. Many aircraft have specific torque requirements for the wheel-retaining nuts. These torque requirements may have two values specified. The retaining nut is first tightened to the higher value to seat the bearing. It is then backed off and tightened to the lower value specified. While tightening the wheel retaining nuts, the wheel should be rotated.

b. Great care should be exercised to see that the wheel-retaining nuts are not over tightened.

In the absence of specific instructions, the wheel-retaining nut is tightened until bearing drag is felt. The nut is then backed off about one serration (castellation) or one-sixth turn before bending up the tab on the tab-lock washer or installing the cotter pin.

c. The grease cover or wheel cover, if used, is then installed. During this installation any required brake, air-pressure sensors, and speed-sensor components should be installed and connected, as appropriate, for the specific aircraft.

Aircraft Pneumatic Systems

Some aircraft manufacturers have equipped their aircraft with a high pressure pneumatic system (3,000 psi) in the past. The last aircraft to utilize this type of system was the Fokker F27. Such systems operate a great deal like hydraulic systems, except they employ air instead of a liquid for transmitting power. Pneumatic systems are sometimes used for:

- Brakes
- Opening and closing doors
- Driving hydraulic pumps, alternators, starters, water

Injection pumps, etc.

• Operating emergency devices

Both pneumatic and hydraulic systems are similar units and use confined fluids. The word confined means trapped or completely enclosed. The word fluid implies such liquids as water, oil, or anything that flows. Since both liquids and gases flow, they are considered as fluids; however, there is a great deal of difference in the characteristics of the two.

Liquids are practically incompressible; a quart of water still occupies about a quart of space regardless of how hard it is compressed. But gases are highly compressible; a quart of air can be compressed into a thimbleful of space. In spite of this difference, gases and liquids are both fluids and can be confined and made to transmit power. The type of unit used to provide pressurized air for pneumatic systems is determined by the system's air pressure requirements.

High-Pressure Systems

For high-pressure systems, air is usually stored in metal bottles at pressures ranging from 1,000 to 3,000 psi, depending on the particular system. [Figure 12-70] This type of air bottle has two valves, one of which is a charging valve. A ground-operated compressor can be connected to this valve to add air to the bottle. The other valve is a control valve. It acts as a shutoff valve, keeping air trapped inside the bottle until the system is operated. Although the high-pressure storage cylinder is light in weight, it has a definite disadvantage. Since the system cannot be recharged during flight, operation is limited by the small supply of bottled air. Such an arrangement cannot

be used for the continuous operation of a system. Instead, the supply of bottled air is reserved for emergency operation of such systems as the landing gear or brakes. The usefulness of this type of system is increased, however, if other air-pressurizing units are added to the aircraft.

Pneumatic System Components

Pneumatic systems are often compared to hydraulic systems, but such comparisons can only hold true in general terms. Pneumatic systems do not utilize reservoirs, hand pumps, accumulators, regulators, or engine-driven or electrically driven power pumps for building normal pressure. But similarities do exist in some components.

Air Compressors

On some aircraft, permanently installed air compressors have been added to recharge air bottles whenever pressure is used for operating a unit. Several types of compressors are used for this purpose. Some have two stages of compression, while others have three, depending on the maximum desired operating pressure.

Relief Valves

Relief valves are used in pneumatic systems to prevent damage. They act as pressure limiting units and prevent excessive pressures from bursting lines and blowing out seals.

Control Valves

Control valves are also a necessary part of a typical pneumatic system. illustrates how a valve is used to control emergency air brakes. The control valve consists of a three-port housing, two poppet valves, and a control lever with two lobes.

Check Valves

Check valves are used in both hydraulic and pneumatic systems. illustrates a flap-type pneumatic check valve. Air enters the left port of the check valve, compresses

a light spring, forcing the check valve open and allowing air to flow out the right port. But if air enters from the right, air pressure closes the valve, preventing a flow of air out the left port. hus, a pneumatic check valve is a one-direction flow control valve.

Restrictors

Restrictors are a type of control valve used in pneumatic systems. The small outlet port reduces the rate of airflow and the speed of operation of an actuating unit.

Filters

Pneumatic systems are protected against dirt by means of various types of filters. A micronic filter consists of a housing with two ports, a replaceable cartridge, and a relief valve. Normally, air enters the inlet, circulates around the cellulose cartridge, and flows to the center of the cartridge and out the outlet port. If the cartridge becomes clogged with dirt, pressure forces the relief valve open and allows unfiltered air to flow out the outlet port.

A screen-type filter is similar to the micron filter but contains a permanent wire screen instead of a replaceable cartridge. In the screen filter, a handle extends through the top of the housing and can be used to clean the screen by rotating it against metal scrapers.

Emergency Extension Sequence:

- 1. Landing gear handle is placed in the DOWN position.
- 2. Red light in the landing gear control handle is illuminated.
- 3. EMER LDG GEAR handle is pulled fully outward.
- 4. Compressed nitrogen is released to the landing gear selector/dump valve.

5. Pneudraulic pressure actuates the dump valve portion of the landing gear selector/dump valve.

- 6. Blue DUMP legend is illuminated on the LDG GR DUMP switch.
- 7. Landing gear system is isolated from the remainder of hydraulic system.

8. Pneudraulic pressure is routed to the OPEN side of the landing gear door actuators, the UNLOCK side of the landing gear uplock actuators, and the EXTEND side of the main landing gear side brace actuators and nose landing gear extend/retract actuator.

9. Landing gear doors open.

- 10. Uplock actuators unlock.
- 11. Landing gear extends down and locks.
- 12. Three green DOWN AND LOCKED lights on the landing gear control panel are illuminated.
- 13. Landing gear doors remain open.

Pneumatic Power System Maintenance

Maintenance of the pneumatic power system consists of servicing, troubleshooting, removal, and installation of components, and operational testing. The air compressor's lubricating oil level should be checked daily in accordance with the applicable manufacturer's instructions. The oil level is indicated by means of a sight gauge or dipstick. When refilling the compressor oil tank, the oil (type specified in the applicable instructions manual) is added until the specified level. After the oil is added, ensure that the filler plug is torqued and safety wire is properly installed.

The pneumatic system should be purged periodically to remove the contamination, moisture, or oil from the components and lines. Purging the system is accomplished by pressurizing it and removing the plumbing from various components throughout the system. Removal of the pressurized lines causes a high rate of airflow through the system, causing foreign matter to be exhausted from the system. If an excessive amount of foreign matter, particularly oil, is exhausted from any one system, the lines and components should be removed and cleaned or replaced.

Upon completion of pneumatic system purging and after reconnecting all the system components, the system air bottles should be drained to exhaust any moisture or impurities that may have accumulated there. After draining the air bottles, service the system with nitrogen or clean, dry compressed air. The system should then be given a thorough operational check and an inspection for leaks and security.

Basic Fuel System Requirements

All powered aircraft require fuel on board to operate the engine(s). A fuel system consisting of storage tanks, pumps, filters, valves, fuel lines, metering devices, and monitoring devices is designed and certified under strict Title 14 of the Code of Federal Regulations (14 CFR) guidelines. Each system must provide an uninterrupted flow of contaminant free fuel regardless of the aircraft's attitude. Since fuel load can be a significant portion of the aircraft's weight, a sufficiently strong airframe must be designed. Varying fuel loads and shifts in weight during

maneuvers must not negatively affect control of the craft in flight.ir

Fuel System Independence

Each fuel system for a multiengine airplane must be arranged so that, in at least one system configuration, the failure of any one component (other than a fuel tank) does not result in the loss of power of more than one engine or require immediate action by the pilot to prevent the loss of power of more than one engine.raf

Fuel System Lightning Protection

The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by direct lightning strikes or swept lightning strokes (where highly probable). Swept strokes occur when the lightning strike is deformed by interaction with aerodynamic forces and propagates in a unique manner due to the material and shape of the airframe surfaces. Corona and stream ring must also be inhibited at fuel vent outlets since they may ignite the fuel-air mixture. A corona is a luminous discharge that occurs as a result of an electrical potential difference between the aircraft and the surrounding area. Stream ring is a branch-like ionized path that occurs in the presence of a direct stroke or under conditions when lightning strokes are imminent.

Fuel Tanks

Each fuel tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads to which it may be subjected in operation. Fuel tanks with flexible liners must demonstrate that the liner is suitable for the particular application. The total usable capacity of any tank(s) must be enough for at least 30 minutes of operation at maximum continuous power. Each integral fuel tank must have adequate facilities for interior inspection and repair. Additionally, each fuel quantity indicator must be adjusted to account for the unusable fuel supply

Fuel System Components

Fuel system components in an engine nacelle or in the fuselage must be protected from damage that could result in spillage of enough fuel to constitute a fire hazard as a result of a wheels-up landing on a paved runway.

IFuel System Repair

The integrity of an aircraft fuel system is critical and should not be compromised. Any evidence of malfunction or leak should be addressed before the aircraft is released for flight. The danger of fire, explosion, or fuel starvation in flight makes it imperative that fuel system irregularities be given top priority. Each manufacturer's maintenance and operation instructions must be used to guide the technician in maintaining the fuel system in airworthy condition. Follow the manufacturer's instructions at all times. Component manufacturers and STC holder instructions should be used when applicable. Some general instructions for fuel system

Troubleshooting the Fuel System

Knowledge of the fuel system and how it operates is essential when troubleshooting. manufacturers produce diagrams and descriptions in their maintenance manuals to aid the technician. Study these for insight. Many manuals have troubleshooting charts or flow diagrams that can be followed. As with all troubleshooting, a logical sequence of steps to narrow the problem to a specific component or location should be followed. Defects within the system can often be maintenance and repair are given in the following sections located by tracing the fuel flow from the tank through the system to the engine. Each component must be functioning as designed and the cause of the defect symptom must be ruled out sequentially.

Location of Leaks and Defects

Close visual inspection is required whenever a leak or defect is suspected in a fuel system. Leaks can often be traced to the connection point of two fuel lines or a fuel line and a component. Occasionally, the component itself may have an internal leak. Fuel leaks also occur in fuel tanks and are discussed below. Leaking fuel produces a mark where it travels. It can also cause a stronger than normal odor. Gasoline may collect enough of its dye for it to be visible or an area clean of dirt may form. Jet fuel is difficult to detect at first, but it has a slow evaporation rate. Dirt and dust eventually settle into it, which makes it more visible

Fuel Leak Classification

Four basic classifications are used to describe aircraft fuel leaks: stain, seep, heavy seep, and running leak. In 30 minutes, the surface area of the collected fuel from a leak is a certain size. This is used as the classification standard. When the area is less than $\frac{3}{4}$ inch in diameter, the leak is said to be a stain. From $\frac{3}{4}$ to $\frac{1}{2}$ inches in diameter, the leak is classified as a seep. Heavy seeps form an area from $\frac{1}{2}$ inches to 4 inches in diameter. Running leaks pool and actually drip from the aircraft. They may follow the contour of the aircraft for a long distance.

Replacement of Gaskets, Seals, and Packings

A leak can often be repaired by replacing a gasket or seal. When this occurs or a component is replaced or reassembled after a maintenance operation, a new gasket, seal, or packing must be installed. Do not use the old one(s). Always be sure to use the correct replacement as identified by part number. Also, most gaskets, seals, and packings have a limited shelf life. They should be used only if they are within the service life stamped on the package.

Fuel Tank Repair

Whether rigid removable, bladder-type, or integral, all fuel tanks have the potential to develop leaks. Repair a tank according to the manufacturer's instructions. Some general notes for repair of each tank type follow. Note that at the time a tank is repaired, a thorough inspection should be made. Corrosion, such as that caused by water and microbes, should be identified and treated at this time, even if it is not the cause of the leak. Rigid removable fuel tanks can be riveted, elded, or soldered together. A leak can develop at any of these types of seams or can be elsewhere on the tank. Generally, the repair must match the construction in technique.

Fire Safety

Fuel vapor, air, and a source of ignition are the requirements for a fuel fire. Whenever working with fuel or a fuel system component, the technician must be vigilant to prevent these elements from coming together to cause a fire or explosion. A source of ignition is often the most controllable. In addition to removing all sources of ignition from the work area, care must be exercised to guard against static electricity. Static electricity can easily ignite fuel vapor, and its potential for igniting fuel vapor may not be as obvious as a flame or an operating electrical device. The action of fuel flowing through a fuel line can cause a static buildup as can many other situations in which one object moves past another. Always assess the work area and take steps to remove any potential static electricity ignition sources.

Fuel System Servicing

Maintaining aircraft fuel systems in acceptable condition to deliver clean fuel to the engine(s) is a major safety factor in aviation. Personnel handling fuel or maintaining fuel systems should be properly trained and use best practices to ensure that the fuel, or fuel system, are not the cause of an incident or accident.

Ice Control Systems

Rain, snow, and ice are transportation's longtime enemies. Flying has added a new dimension, particularly with respect to ice. Under certain atmospheric conditions, ice can build rapidly on airfoils and air inlets. On days when there is visible moisture in the air, ice can form on aircraft leading edge surfaces at altitudes where freezing temperatures start. Water droplets in the air can be super cooled to below freezing without actually turning into ice unless they are disturbed in some manner. This unusual occurrence is partly due to the surface tension of the water droplet not allowing the droplet to expand and freeze. However, when aircraft surfaces disturb these droplets, they immediately turn to ice on the aircraft surfaces.

The two types of ice encountered during flight are clear and rime. Clear ice forms when the remaining liquid portion of the water drop flows out over the aircraft surface, gradually freezing as a smooth sheet of solid ice. Formation occurs when droplets are large, such as in rain or in cumuliform clouds. Clear ice is hard, heavy, and tenacious. Its removal by deicing equipment is especially difficult.

Ice or frost forming on aircraft creates two basic hazards:

1. The resulting malformation of the airfoil that could decrease the amount of lift.

2. The additional weight and unequal formation of the ice that could cause unbalancing of the aircraft, making it hard to control.

Icing Effects

Ice buildup increases drag and reduces lift. It causes destructive vibration and hampers true instrument readings. Control surfaces become unbalanced or frozen. Fixed slots are filled and movable slots jammed. Radio reception is hampered and engine performance is affected. Ice, snow, and slush have a direct impact on the safety of flight. Not only because of degraded lift, reduced takeoff performance, and/ or maneuverability of the aircraft, but when chunks break off, they can also cause engine failures and structural damage. Fuselage aft-mounted engines are particularly susceptible to this foreign object damage (FOD) phenomenon. Wing mounted

engines are not excluded however. Ice can be present on any part of the aircraft and, when it breaks off, there is some probability that it could go into an engine. The worst case is that ice on the wing breaks off during takeoff due to the flexing of the wing and goes directly into the engine, leading to surge, vibration, and complete thrust loss. Light snow that is loose on the wing surfaces and the fuselage can also cause engine damage leading to surge, vibration, and thrust loss.

The ice and rain protection systems used on aircraft keep ice

from forming on the following airplane components:

- Wing leading edges
- Horizontal and vertical stabilizer leading edges
- Engine cowl leading edges
- Propellers

Ice Detector System

Ice can be detected visually, but most modern aircraft have one or more ice detector sensors that warn the flight crew of icing conditions. An enunciator light comes on to alert the flight crew. In some aircraft models, multiple ice detectors are used, and the ice detection system automatically turns on the WAI systems when icing is detected.

Ice Prevention

Several means to prevent or control ice formation are used in aircraft today:

- 1. Heating surfaces with hot air
- 2. Heating by electrical elements
- 3. Breaking up ice formations, usually by inflatable boots
- 4. Chemical application

Equipment is designed for anti-icing or for deicing. Anti-icing equipment is turned on before entering icing conditions and is designed to prevent ice from forming. A surface may be anti-iced by keeping it dry, by heating to a temperature that evaporates water upon impingement, or by heating the surface just enough to prevent freezing, maintaining it running wet. Deicing equipment is designed to remove ice after it begins to accumulate typically on the wings and stabilizer leading edges.

Thermal Electric Anti-Icing

Electricity is used to heat various components on an aircraft so that ice does not form. This type of anti-ice is typically limited to small components due to high amperage draw. Effective thermal electric anti-ice is used on most air data probes, such as pitot tubes, static air ports, TAT and AOA probes, ice detectors, and engine P2/T2 sensors. Water lines, waste water drains, and some turboprop inlet cowls are also heated with electricity to prevent ice from forming. Transport category and high performance aircraft use thermal electric anti-icing in windshields.

Chemical Anti-Icing

Chemical anti-icing is used in some aircraft to anti-ice the leading edges of the wing, stabilizers, windshields, and propellers. The wing and stabilizer systems are often called weeping wing systems or are known by their trade name of TKSTM systems. Ice protection is based upon the freezing point depressant concept. An antifreeze solution is pumped from a reservoir through a mesh screen embedded in the leading edges of the wings and stabilizers. Activated by a switch in the cockpit, the liquid flows over the wing and tail surfaces, preventing the formation of ice as it flows.

The solution mixes with the super cooled water in the cloud, depresses its freezing point, and allows the mixture to flow off of the aircraft without freezing. The system is designed to anti-ice, but it is also capable of deicing an aircraft as well. When ice has accumulated on the leading edges, the antifreeze solution chemically breaks down the bond between the ice and airframe.

This allows aerodynamic forces to carry the ice away. Thus, the system clears the airframe of accumulated ice before transitioning to anti-ice protection.

Wing and Stabilizer Deicing Systems

GA aircraft and turboprop commuter-type aircraft often use a pneumatic deicing system to break off ice after it has formed on the leading edge surfaces. The leading edges of the wings and stabilizers have inflatable boots attached to them. The boots expand when inflated by pneumatic pressure, which breaks away ice accumulated on the boot. Most boots are inflated for 6 to 8 seconds. They are deflated by vacuum suction. The vacuum is continuously applied to hold the boots tightly against the aircraft while not in use.

Deicing System Components

Several components are used to construct all deice boot systems. The components may differ slightly in name and location within the system depending on the aircraft. Components may also combine functions to save space and weight. The basic functions of filtering, pressure regulation, distribution, and attachment to a vacuum when boots are not in use must all be present. Check valves must also be installed to prevent back flow in the system. Manifolds are common on multiengine aircraft to allow sourcing of low pressure air from both engine pumps. Note that airpump pressure is typically expelled overboard when not needed. Bleed air is shut off by a valve when not needed for deice boot operation on turbine engine aircraft. A timer, or control unit with an automatic mode, exists on many aircraft to repeat the deice cycle periodically.

Inspection, Maintenance, and Troubleshooting of Rubber Deicer Boot Systems

Maintenance on pneumatic deicing systems varies with each aircraft model. The instructions of the airframe or system components manufacturer should be followed in all cases. Depending on the aircraft, maintenance usually consists of operational checks, adjustments, troubleshooting, and inspection.

Troubleshooting

Not all troubles that occur in a deicer system can be corrected by adjusting system components. Some troubles must be corrected by repair or replacement of system components or by tightening loose connections. Note the probable causes and the remedy of each trouble listed in the chart. In addition to using troubleshooting charts, operational checks are sometimes necessary to determine the possible cause of trouble.

Inspection

During each preflight and scheduled inspection, check the deicer boots for cuts, tears, deterioration, punctures, and security; during periodic inspections, go a little further and check deicer components and lines for cracks. If weather cracking of rubber is noted, apply a coating of conductive cement. The cement, in addition to sealing the boots against weather, dissipates static electricity so that it does not puncture the boots by arcing to the metal surfaces.

Deice Boot Maintenance

The life of the deicers can be greatly extended by storing them when they are not needed and by observing these rules when they are in service:

- 1. Do not drag gasoline hoses over the deicers.
- 2. Keep deicers free of gasoline, oil, grease, dirt, and other deteriorating substances.
- 3. Do not lay tools on or lean maintenance equipment against the deicers.
- 4. Promptly repair or resurface the deicers when abrasion or deterioration is noted.
- 5. Wrap deice boots in paper or canvas when storing.

Deicing and Anti-icing of Transport Type Aircraft

Deicing Fluid

The deicing fluid must be accepted according to its type for holdover times, aerodynamic performance, and material compatibility. The coloring of these fluids is also standardized. In general, glycol is colorless, Type-I fluids are orange, Type-II fluids are white/pale yellow, and Type- IV fluids are green. The color for Type-III fluid has not yet been determined.

When aircraft surfaces are contaminated by frozen moisture, they must be deiced prior to dispatch. When freezing precipitation exists, and there is a risk of contamination of the surface at the time of dispatch, aircraft surfaces must be anti-iced. If both deicing and anti-icing are enquired, the procedure may be performed in one or two steps. The selection of a one- or two-step process depends upon weather conditions, available equipment, available fluids, and the holdover time to be achieved.

Aircraft Oxygen Systems

The negative effects of reduced atmospheric pressure at flight altitudes, forcing less oxygen into the blood, can be overcome. There are two ways this is commonly done: increase the pressure of the oxygen or increase the quantity of oxygen in the air mixture. Large transport-category and high performance passenger aircraft pressurize the air in the cabin. This serves to push more of the normal 21 percent oxygen found in the air into the blood for saturation. Techniques for pressurization are discussed later in this chapter. When utilized, the percentage of oxygen available for breathing remains the same; only the pressure is increased.

Forms of Oxygen and Characteristics

Gaseous Oxygen

Oxygen is a colorless, odorless, and tasteless gas at normal atmospheric temperatures and pressures. It transforms into a liquid at -183 °C (its boiling point). Oxygen combines readily with most elements and numerous compounds. This combining is called oxidation. Typically, oxidation produces heat. When something burns, it is actually rapidly combining with oxygen. Oxygen itself does not burn because it does not combine with itself, except to form oxygen or ozone. But, pure oxygen combines violently with petroleum products creating a significant hazard when handling these materials in close proximity to each other. Nevertheless, oxygen and various petroleum fuels combine to create the energy produced in internal combustion engines.

Pure gaseous oxygen, or nearly pure gaseous oxygen, is stored and transported in high-pressure cylinders that are typically painted green. Technicians should be cautious to keep pure oxygen away from fuel, oil, and grease to prevent unwanted combustion. Not all oxygen in containers is the same. Aviator's breathing oxygen is tested for the presence of water. This is done to avoid

the possibility of it freezing in the small passage ways of valves and regulators. Ice could prevent delivery of the oxygen when needed. Aircraft often operate in subzero temperatures, increasing the possibility of icing. The water level should be a maximum of .02ml per liter of oxygen. The words "Aviator's Breathing Oxygen" should be marked clearly on any cylinders containing oxygen for this purpose.

Oxygen Systems and Components

Built-in and portable oxygen systems are used in civilian aviation. They use gaseous or solid oxygen (oxygen generators) as suits the purpose and aircraft. LOX systems and molecular sieve oxygen systems are not discussed, as current applications on civilian aircraft are limited.

Oxygen Systems and Regulators

The design of the various oxygen systems used in aircraft depends largely on the type of aircraft, its operational requirements, and whether the aircraft has a pressurization system. Systems are often characterized by the type of regulator used to dispense the oxygen: continuous-flow and demand flow. In some aircraft, a continuous-flow oxygen system is installed for both passengers and crew. The pressure demand system is widely used as a crew system, especially on the larger transport aircraft. Many aircraft have a combination of both systems that may be augmented by portable equipment.

Oxygen System Servicing

Servicing Gaseous Oxygen

Gaseous oxygen systems are prevalent in general, corporate, and airline aviation. The use of light weight aluminum and composite storage cylinders has improved these simple and reliable life support systems. All gaseous oxygen systems require servicing and maintenance. Various procedures and requirements to perform these functions are covered in this section.

Leak Testing Gaseous Oxygen Systems

Leaks in a continuous-flow oxygen system may be difficult to detect because the system is open at the user end. Blocking the flow of oxygen allows pressure to build and leak check procedures can be followed that are similar to those used in the high pressure sections of the systems. detection of leaks should be performed with oxygen-safe leak check fluid. This is a soapy liquid free from elements that might react with pure oxygen or contaminate the system. As with leak detection on an inflated tire or tube assembly, the oxygen leak detection solution is applied to the outside of fittings and mating surfaces. The formation of bubbles indicates a leak.

Filling an Oxygen System

Filling procedures for oxygen systems vary. Many general aviation aircraft are set up to simply replace an empty cylinder with one that is fully charged. This is also the case with a portable oxygen system. High performance and air transport category aircraft often have built-in oxygen systems that contain plumbing designed to refill gaseous oxygen cylinders while they are in place.

Draining an Oxygen System

The biggest factor in draining an oxygen system is safety. The oxygen must be released into the atmosphere without causing a fire, explosion, or hazard. Draining outside is highly

recommended. The exact method of draining can vary. The basic procedure involves establishing a continuous flow in a safe area until the system is empty.

The following is a list of steps to safely fill an aircraft oxygen system from a typical oxygen refill cart.

1. Check hydrostatic dates on all cylinders, especially those that are to be filled on the aircraft. If a cylinder is out of date, remove and replace it with a specified unit that is serviceable.

2. Check pressures on all cylinders on the cart and in the aircraft. If pressure is below 50 psi, replace the cylinder(s). On the aircraft, this may require purging the system with oxygen when completed. Best practices dictate that any low-pressure or empty cylinder(s) on the cart should also be removed and replaced when discovered.

3. Take all oxygen handling precautions to ensure a safe environment around the aircraft.

4. Ground the refill cart to the aircraft.

5. Connect the cart hose from the cart manifold to the aircraft fill port. Purge the air from the refill hose with oxygen before opening the refill valve on the aircraft. Some hoses are equipped with purge valves to do this while the hose is securely attached to the aircraft. Others hoses need to be purged while attached to the refill fitting but not fully tightened.

6. Observe the pressure on the aircraft bottle to be filled. Open it. On the refill cart, open the cylinder with the closest pressure to the aircraft cylinder that exceeds it.

7. Open the aircraft oxygen system refill valve. Oxygen will flow from cart cylinder (manifold) into the aircraft cylinder.

Inspection of Masks and Hoses

The wide varieties of oxygen masks used in aviation require periodic inspection. Mask and hose integrity ensure effective delivery of oxygen to the user when it is needed. Sometimes this is in an emergency situation. Leaks, holes, and tears are not acceptable. Most discrepancies of this type are remedied by replacement of the damaged unit. Some continuous-flow masks are designed for disposal after use. Be sure there is a mask for each potential user on board the aircraft. Masks designed to be reused should be clean, as well as functional. This reduces the danger of infection and prolongs the life of the mask. Various mild cleaners and antiseptics that are free of petroleum products can be used. A supply of individually wrapped alcohol swabs are often kept in the cockpit.

Oxygen System Inspection and Maintenance

When working around oxygen and oxygen systems, cleanliness enhances safety. Clean, greasefree hands, clothes, and tools are essential. A good practice is to use only tools dedicated for work on oxygen systems. There should be absolutely no smoking or open flames within a minimum of 50 feet of the work area. Always use protective caps and plugs when working with oxygen cylinders, system components, or plumbing. Do not use any kind of adhesive tape. Oxygen cylinders should be stored in a designated, cool, ventilated area in the hanger away from petroleum products or heat sources.

Aircraft Pressurization Systems

Pressure of the Atmosphere

The gases of the atmosphere (air), although invisible, have weight. A one square inch column of air stretching from sea level into space weighs 14.7 pounds. Therefore, it can be stated that the pressure of the atmosphere, or atmospheric pressure, at sea level is 14.7 psi. Atmospheric pressure is also known as barometric pressure and is measured with a barometer. Expressed in various ways, such as in inches of mercury or millimeters of mercury, these measurements come from observing the height of mercury in a column when air pressure is exerted on a reservoir of mercury into which the column is set. The column must be evacuated so air inside does not act against the mercury rising. A column of mercury 29.92 inches high weighs the same as a column of air that extends from sea level to the top of the atmosphere and has the same cross-section as the column of mercury.

Temperature and Altitude

Temperature variations in the atmosphere are of concern to aviators. Weather systems produce changes in temperature near the earth's surface. Temperature also changes as altitude is increased. The troposphere is the lowest layer of the atmosphere. On average, it ranges from the earth's surface to about 38,000 feet above it. Over the poles, the troposphere extends to only 25,000–30,000 feet and, at the equator, it may extend to around 60,000 feet. This oblong nature of the troposphere is illustrated. Most civilian aviation takes place in the troposphere in which temperature decreases as altitude increases. The rate of change is somewhat constant at about -2 °C or -3.5 °F for every 1,000 feet of increase in altitude. The upper boundary of the troposphere is the troposphere is the troposphere of relatively constant temperature of -57 °C or -69 °F.

Pressurization Terms

The following terms should be understood for the discussion of pressurization and cabin environmental systems that follows:

1. Cabin altitude—given the air pressure inside the cabin, the altitude on a standard day that has the same pressure as that in the cabin. Rather than saying the pressure inside the cabin is 10.92 psi, it can be said that the cabin altitude is 8,000 feet (MSL).

2. Cabin differential pressure—the difference between the air pressure inside the cabin and the air pressure outside the cabin. Cabin pressure (psi) – ambient pressure (psi) = cabin differential pressure (psid or Δ psi).

3. Cabin rate of climb—the rate of change of air pressure inside the cabin, expressed in feet per minute (fpm) of cabin altitude change.

Pressurization Issues

Pressurizing an aircraft cabin assists in making flight possible in the hostile environment of the upper atmosphere. The degree of pressurization and the operating altitude of any aircraft are limited by critical design factors. A cabin pressurization system must accomplish several functions if it is to ensure adequate passenger comfort and safety. It must be capable of maintaining a cabin pressure altitude of approximately 8,000 feet or lower regardless of the cruising altitude of the aircraft. This is to ensure that passengers and crew have enough oxygen present at sufficient pressure to facilitate full blood saturation.

A pressurization system must also be designed to prevent rapid changes of cabin pressure, which can be uncomfortable or injurious to passengers and crew. Additionally, a pressurization system should circulate air from inside the cabin to the outside at a rate that quickly eliminates odors and to remove stale air. Cabin air must also be heated or cooled on pressurized aircraft. Typically, these functions are incorporated into the pressurization source

Sources of Pressurized Air

The source of air to pressurize an aircraft varies mainly with engine type. Reciprocating aircraft have pressurization sources different from those of turbine-powered aircraft. Note that the compression of air raises its temperature. A means for keeping pressurization air cool enough is built into most pressurization systems. It may be in the form of a heat exchanger, using cold ambient air to modify the temperature of the air from the pressurization source. A full air cycle air conditioning system with expansion turbine may also be used.

Control of Cabin Pressure

Pressurization Modes

Aircraft cabin pressurization can be controlled via two different modes of operation. The first is the isobaric mode, which works to maintain cabin altitude at a single pressure despite the changing altitude of the aircraft. For example, the flight crew may select to maintain a cabin altitude of 8,000 feet (10.92 psi). In the isobaric mode, the cabin pressure is established at the 8,000 foot level and remains at this level, even as the altitude of the aircraft fluctuates.

Cabin Pressure Controller

The cabin pressure controller is the device used to control the cabin air pressure. Older aircraft use strictly pneumatic means for controlling cabin pressure. Selections for the desired cabin altitude, rate of cabin altitude change, and barometric pressure setting are all made directly to the pressure controller from pressurization panel in the cockpit

Pressurization Gauges

While all pressurization systems differ slightly, usually three cockpit indications, in concert with various warning lights and alerts, advise the crew of pressurization variables. They are the cabin altimeter, the cabin rate of climb or vertical speed indicator, and the cabin differential pressure indicator. These can be separate gauges or combined into one or two gauges. All are typically located on the pressurization panel, although sometimes they are elsewhere on the instrument panel. Outflow valve position indicator(s) are also common

Cabin Pressurization Troubleshooting

While pressurization systems on different aircraft operate similarly with similar components, it cannot be assumed that they are the same. Even those systems constructed by a single manufacturer likely have differences when installed on different aircraft. It is important to check the aircraft manufacture's service information when troubleshooting the pressurization system. A fault, such as failure to pressurize or failure to maintain pressurization, can have many different causes. Adherence to the steps in a manufacturer's troubleshooting procedures is highly

recommended to sequentially evaluate possible causes. Pressurization systemtest kits are available, or the aircraft can be pressurized by its normal sources during troubleshooting. A test flight may be required after maintenance.

Air Conditioning Systems

There are two types of air conditioning systems commonly used on aircraft. Air cycle air conditioning is used on most turbine-powered aircraft. It makes use of engine bleed air or APU pneumatic air during the conditioning process. Vapor cycle air conditioning systems are often used on reciprocating aircraft. This type system is similar to that found in homes and automobiles. Note that some turbine-powered aircraft also use vapor cycle air conditioning.

Air Cycle Air Conditioning

Air cycle air conditioning prepares engine bleed air to pressurize the aircraft cabin. The temperature and quantity of the air must be controlled to maintain a comfortable cabin environment at all altitudes and on the ground. The air cycle system is often called the air conditioning package or pack. It is usually located in the lower half of the fuselage or in the tail section of turbine-powered aircraft.

System Servicing

Vapor cycle air conditioning systems can give many hours of reliable, maintenance-free service. Periodic visual inspections, tests, and refrigerant level and oil level checks may be all that is required for some time. Follow the manufacturer's instructions for inspection criteria and intervals.

Visual Inspection

All components of any vapor cycle system should be checked to ensure they are secure. Be vigilant for any damage, misalignment, or visual signs of leakage. The evaporator and condenser fins should be checked to ensure they are clean, unobstructed, and not folded over from an impact. Dirt and inhibited airflow through the fins can prevent effective heat exchange to and from the refrigerant. Occasionally, these units can be washed.

Leak Test

As mentioned under the leak detector section above, leaks in a vapor cycle air conditioning system must be discovered and repaired. The most obvious sign of a possible leak is a low refrigerant level. Bubbles present in the sight glass of the receiver dryer while the system is operating indicate more refrigerant is needed. A system check for a leak may be in order. Note that vapor cycle systems normally lose a small amount of refrigerant each year. No action is needed if this amount is within limits.

Fire Protection Systems

Because fire is one of the most dangerous threats to an aircraft, the potential fire zones of modern multiengine aircraft are protected by a fixed fire protection system. A fire zone is an area, or region, of an aircraft designed by the manufacturer to require fire detection and/or fire extinguishing equipment and a high degree of inherent fire resistance. The term "fixed" describes a permanently installed system in contrast to any type of portable fire extinguishing equipment, such as a hand-held Halon or water fire extinguisher. A complete fire protection system on modern aircraft, and on many older aircraft, includes a fire detection system and a fire extinguishing system.

Typical zones on aircraft that have a fixed fire detection and/or fire extinguisher system are:

- 1. Engines and auxiliary power unit (APU)
- 2. Cargo and baggage compartments
- 3. Lavatories on transport aircraft
- 4. Electronic bays
- 5. Wheel wells
- 6. Bleed air ducts

To detect fires or overheat conditions, detectors are placed in the various zones to be monitored. Fires are detected in reciprocating engine and small turboprop aircraft using one or more of the following:

- 1. Overheat detectors
- 2. Rate-of-temperature-rise detectors3. Flame detectors4. Observation by rewmembersFir

The complete aircraft fire protection systems of most large turbine-engine aircraft incorporate several of these different detection methods.

- 1. Rate-of-temperature-rise detectors
- 2. Radiation sensing detectors
- 3. Smoke detectors
- 4. Overheat detectors
- 5. Carbon monoxide detectors
- 6. Combustible mixture detectors
- 7. Optical detectors
- 8. Observation of crew or passing

Classes of Fires

The following classes of fires that are likely to occur onboard aircraft, as defined in the U.S. National Fire Protection Association (NFPA) Standard 10, Standard for Portable Fire Extinguishers, 2007 Edition, are:

1. Class A—fires involving ordinary combustible materials, such as wood, cloth, paper, rubber, and plastics.

2. Class B—fires involving flammable liquids, petroleum oils, greases, tars, oil-based paints, lacquers, solvents, alcohols, and flammable gases.

Requirements for Overheat and Fire Protection Systems

Fire protection systems on current-production aircraft do not rely on observation by crew members as a primary method of fire detection. An ideal fire detector system includes as many of the following features as possible:

1. No false warnings under any flight or ground condition.

- 2. Rapid indication of a fire and accurate location of the fire.
- 3. Accurate indication that a fire is out.
- 4. Indication that a fire has re-ignited.
- 5. Continuous indication for duration of a fire.
- 6. Means for electrically testing the detector system from the aircraft cockpit.
- 7. Resists damage from exposure to oil, water, vibration, extreme temperatures, or handling.
- 8. Light in weight and easily adaptable to any mounting position.
- 9. Circuitry that operates directly from the aircraft power system without inverters.

10. Minimum electrical current requirements when not indicating a fire.

11. Cockpit light that illuminates, indicating the location of the fire, and with an audible alarm system.

12. A separate detector system for each engine.

Fire Detection/Overheat Systems

A fire detection system should signal the presence of a fire. Units of the system are installed in locations where there are greater possibilities of a fire. Three detector system types in common use are the thermal switch, thermocouple, and the continuous loop.P

rSmoke, Flame, and Carbon Monoxide

Detection Systems

Smoke Detectors

A smoke detection system monitors the lavatories and cargo baggage compartments for the presence of smoke, which is indicative of a fire condition. Smoke detection instruments that collect air for sampling are mounted in the compartments in strategic locations. A smoke detection system is used where the type of fire anticipated is expected to generate a substantial amount of smoke before temperature changes are sufficient to actuate a heat detection system. Two common types used are light refraction and ionization.

Light Refraction Type

The light refraction type of smoke detector contains a photoelectric cell that detects light refracted by smoke particles. Smoke particles refract the light to the photoelectric cell and, when it senses enough of this light, it creates an electrical current that sets off a light.

Ionization Type

Some aircraft use an ionization type smoke detector. The system generates an alarm signal (both horn and indicator) by detecting a change in ion density due to smoke in the cabin. The system is connected to the 28 volt DC electrical power supplied from the aircraft. Alarm output and sensor sensitive checks are performed simply with the test switch on the control panel.ot

Reinstalled Fire Extinguishing Systems

Transport aircraft have fixed fire extinguishing systems installed in:

- 1. Turbine engine compartments
- 2. APU compartments

3. Cargo and baggage compartments

4. Lavatories

CO2 Fire Extinguishing Systems

Older aircraft with reciprocating engines used CO2 as an extinguishing agent, but all newer aircraft designs with turbine engines use Halon or equivalent extinguishing agent, such as halocarbon clean agents.ct

Fire Detection System Maintenance

Fire detector sensing elements are located in many high activity areas around aircraft engines. Their location, together with their small size, increases the chance of damage to the sensing elements during maintenance. An inspection and maintenance program for all types of continuous-loop systems should include the following visual checks. Note: These procedures are examples and should not be used to replace the applicable manufacturer's instructions. Sensing elements of a continuous-loop system should be inspected for the following:1. Cracked or broken sections caused by crushing or squeezing between inspection plates, cowl panels, or engine components

i2. Abrasion caused by rubbing of the element on cowling, accessories, or structural embers.

3. Pieces of safety wire, or other metal particles, that may short the spot-detector terminals.

4. Condition of rubber grommets in mounting clamps that may be softened from exposure to oils or hardened from excessive heat.

5. Dents and kinks in sensing element sections. Limits on the element diameter, acceptable dents and kinks, and degree of smoothness of tubing contour are specified by manufacturers. No attempt should be made to straighten any acceptable dent or kink, since stresses may be set up that could cause tubing failure.

Fire Detection System Troubleshooting

The following troubleshooting procedures represent the most common difficulties encountered in engine fire detection systems:

1. Intermittent alarms are most often caused by an intermittent short in the detector system wiring. Such shorts may be caused by a loose wire that occasionally touches a nearby terminal, a frayed wire brushing against a structure, or a sensing element rubbing against a structural member long enough to weary through the insulation. Intermittent faults often can be located by moving wires to recreate the short.

2. Fire alarms and warning lights can occur when no engine fire or overheat condition exists. Such false alarms can be most easily located by disconnecting the engine sensing loop connections from the control unit. If the false alarm ceases when the engine sensing loop is disconnected, the fault is in the disconnected sensing loop, which should be examined for areas that have been bent into contact with hot parts of the engine. If no bent element can be found, the shorted section can be located by isolating the connecting elements consecutively around the

entire loop. 3. Kinks and sharp bends in the sensing element can cause an internal wire to short intermittently to the outer tubing. The fault can be located by checking the sensing element with an ohm meter while tapping the element in the suspected areas to produce the short. 4. Moisture in the detection system seldom causes a false fire alarm. If, however, moisture does cause an alarm, the warning persists until the contamination is removed, or boils away, and the resistance of the loop

returns to its normal value.

5. Failure to obtain an alarm signal when the test switch is actuated may be caused by a defective test switch or control unit, the lack of electrical power, inoperative indicator light, or an opening

in the sensing element or connecting wiring. When the test switch fails to provide an alarm, the continuity of a two-wire sensing loop can be determined by opening the loop and measuring the resistance. In a single-wire, continuous loop system, the center conductor should be grounded.