
ENVELOPE

A curve which touches each member of a given family of curves is called envelope of that
family.

Procedure to find envelope for the given family of curves:

Case 1: Envelope of one parameter family of curves

Let us consider y = f(x,α) to be the given family of curves with ‘α’ as the parameter.

Step 1: Differentiate w.r.t to the parameter α partially, and find the value of the parameter

Step 2: By Substituting the value of parameter α in the given family of curves, we get the 
 required envelope.

Special Case: If the given equation of curve is quadratic in terms of parameter,i.e.
 Aα2+Bα+c=0, then envelope is given by discriminant = 0 i.e. B2- 4AC=0

Case 2: Envelope of two parameter family of curves.

Let us consider y = f(x,α, β) to be the given family of curves, and a relation connecting the
 two parameters α and β, g(α, β) = 0

Step 1: Consider α as independent variable and β depends α . Differentiate y = f(x,α, β)
 and g(α, β) = 0, w.r. to the parameter α partially. 

Step 2: Eliminating the parameters α, β from the equations resulting from step 1 and    
 g(α, β) = 0, we get the required envelope.

Problems on envelope of one parameter family of curves :

1. Find the envelope of pammxy   where m is the parameter and a, p are constants

   Solution : Differentiate    pammxy  (1)   

with respect to the parameter m, we get,
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Using (2) eliminate m from (1)
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i.e. pxpppxpypap )(11 

which is the required equation of envelope of (1)

2.  Determine the envelope of  ayx  cossin , where  θ being the parameter.

     Solution :   Differentiate ,

     ayx  cossin     (1)

    with respect to θ , we get, 

   ayx   sincos (2)

    As θ  cannot be eliminated between (1) and (2) ,we solve (1) and (2) for x and y in terms of θ.

    For this, multiply (2) by sinθ and (1) by cosθ  and then subtracting, we get,

   )cos(sin   ay . Using similar simplification, we get, )cossin(   ax .

3. (Leibnitz’s problem) Calculate the envelope of family of circles whose centres lie on the x-axis

    and radii are proportional to the abscissa of the centre.

 Solution : Let (a,0) be the centre of any one of the member of family of curves with a as the

parameter.  Then  the  equation  of  family  of  circles  with  centres  on  x-axis  and  radius

proportional to the abscissa of the centre is 
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where k is the proportionality constant. Differentiating (1) with respect to a, we get,
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i.e.   1,022122  
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4. Find the envelope of aecyx   2cos2sec , where θ is the parameter.

   Solution : The given equation is rewritten as , ayx  










  2cot12tan1

i.e. 02tan)(4tan  yayxx  , 

which is a quadratic equation in  2tant . Therefore the required envelope is given by the

discriminant equation : B
2
-4AC = 0

i.e. 042)(  xyayx

i.e. 0222222  aayaxxyyx .

Envelope of Two parameter family of curves :

1.  Find  the  envelope  of  family  of  straight  lines  ax+by=1,  where  a  and  b  are

parametersconnected by the relation ab = 1

Solution : 

1byax (1)



1ab (2)

Differentiating  (1)  with  respect  to  a  (  considering  ‘a’  as  independent  variable  and  ‘b’

depends on a ). 
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Differentiating (2) with respect to a
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From (3) and (4), we have 
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Using (5) in (2), we get the envelope as   4xy = 1

2. Find the envelope of family of straight lines 1
b

y

a

x
 , where a and b are parameters

connected by the relation 1 ba

Solution :
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Differentiating (1) with respect to a 

0
232232





 da

db

b

y

a

x

i.e. 23

23

a

b

y

x

da

db  (3)

Differentiating (2) with respect to a
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From (3) and (4), we have 
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Using (5) in (2), we get the envelope as  14141  yx

3. Find  the  envelope  of  family  of  straight  lines  1
b
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,  where  a  and  b  are  parameters

connected by the relation a
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Differentiating (1) with respect to a,
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Differentiating (2) with respect to a
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From (3) and (4), we have 
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Using (5) in (2), we get the envelope as   
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4. Find the envelope of the family of circles whose centres lie on the ellipse  1
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which pass through its centre.



Solution:  Let (α,β) be the centre of arbitrary member of family of circles which lie on the

ellipse 1
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 , whose centre is (0,0). Therefore, equation of the circles passing through

origin and having centreat (α,β) is
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Differentiating (1) with respect to α ( ‘α’ as independent variable and ‘β’ depends on α ),
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Differentiating (2) with respect to α
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From (3) and (4), we have 
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, where k = αx+βy
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From  (1), we have ,  kyx 222  (6)

Using (5) and (6) in (2), we get the envelope as   
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5. Determine  the  equation  of  the  envelope  of  family  of  ellipses  1
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Differentiating (1) with respect to a,
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Differentiating (2) with respect to a
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From (3) and (4), we have 
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i.e. lxa 2 and myb 2 (5)

Using (5)  in (2), we get the envelope as   1
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Problems on Evolute as envelope of its normals :

1. Determine the evolute of hyperbola 1
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by considering it as an envelope of its normal

Solution : Let P (a cosht, b sinht) be any point on the given hyperbola. Then 
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Equation of normal line to the hyperbola is 
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Differentiating  (2) partially with respect to t, we have,
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Using (3) in (2) , we get, 
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2. By considering the evolute of a curve as the envelope of its normal, find the evolute of 

 sincos x ,  cossin y

Solution :
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Equation of normal line to the hyperbola is 

  


 sincos
tan

1
))(( cossin   xy
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i.e. 1cossin   xy (1)

Differentiating (1) with respect to the parameter θ, we have

0sincos   xy (2)  

Multiplying (1) by cosθ and (2) by sinθ and then subtracting, we have,

cosx (3) 

Similarly we get,

siny (4)

Eliminating θ between (3) and (4) we get the required evolute as   122  yx




