ENVELOPE

A curve which touches each member of a given family of curves is called envelope of that family.

Procedure to find envelope for the given family of curves:

Case 1: Envelope of one parameter family of curves
Let us consider $y=f(x, \alpha)$ to be the given family of curves with ' α ' as the parameter.

Step 1: Differentiate w.r.t to the parameter a partially, and find the value of the parameter
Step 2: By Substituting the value of parameter α in the given family of curves, we get the required envelope.

Special Case: If the given equation of curve is quadratic in terms of parameter, i.e.
$A \alpha^{2}+B \alpha+c=0$, then envelope is given by discriminant $=0$ i.e. $B^{2}-4 A C=0$
Case 2: Envelope of two parameter family of curves.
Let us consider $y=f(x, \alpha, \beta)$ to be the given family of curves, and a relation connecting the two parameters α and $\beta, g(\alpha, \beta)=0$

Step 1: Consider α as independent variable and β depends α. Differentiate $y=f(x, \alpha, \beta)$ and $g(\alpha, \beta)=0$, w.r. to the parameter α partially.

Step 2: Eliminating the parameters α, β from the equations resulting from step 1 and $g(\alpha, \beta)=0$, we get the required envelope.

Problems on envelope of one parameter family of curves :

1. Find the envelope of $y=m x+a m^{p}$ where m is the parameter and a, p are constants

Solution: Differentiate $\quad y=m x+a m^{p}$
with respect to the parameter m, we get,

$$
0=x+\text { pam }^{p-1}
$$

$$
\begin{equation*}
\Rightarrow m=\left(\frac{-x}{p a}\right)^{\frac{1}{p-1}} \tag{2}
\end{equation*}
$$

Using (2) eliminate m from (1)
$y=\left(\frac{-x}{p a}\right)^{\frac{1}{p-1}} x+a\left(\frac{-x}{p a}\right)^{\frac{p}{p-1}}$
$\Rightarrow \quad y^{p-1}=\left(\frac{-x}{p a}\right) x^{p-1}+a^{p-1}\left(\frac{-x}{p a}\right)^{p}$
i.e. $\quad a p^{p}{ }_{y} p-1=-x^{p} p^{p-1}+(-x)^{p}$
which is the required equation of envelope of (1)
2. Determine the envelope of $x \sin \theta-y \cos \theta=a \theta$, where θ being the parameter.

Solution: Differentiate,
$x \sin \theta-y \cos \theta=a \theta$
with respect to θ, we get,

$$
\begin{equation*}
x \cos \theta+y \sin \theta=a \tag{2}
\end{equation*}
$$

As θ cannot be eliminated between (1) and (2), we solve (1) and (2) for x and y in terms of θ.

For this, multiply (2) by $\sin \theta$ and (1) by $\cos \theta$ and then subtracting, we get,
$y=a(\sin \theta-\theta \cos \theta)$. Using similar simplification, we get, $x=a(\theta \sin \theta+\cos \theta)$.
3. (Leibnitz's problem) Calculate the envelope of family of circles whose centres lie on the x-axis and radii are proportional to the abscissa of the centre.

Solution : Let $(a, 0)$ be the centre of any one of the member of family of curves with a as the parameter. Then the equation of family of circles with centres on x-axis and radius proportional to the abscissa of the centre is

$$
\begin{equation*}
(x-a)^{2}+y^{2}=k a^{2} \tag{1}
\end{equation*}
$$

where k is the proportionality constant. Differentiating (1) with respect to a , we get,
$-2(x-a)=2 k a$
i.e. $a=\frac{x}{1-k}$.

From (1), $\quad\left(x-\frac{x}{1-k}\right)^{2}+y^{2}=\frac{k}{(1-k)^{2}} x^{2}$
i.e. $\left(k^{2}-k\right) x^{2}+(1-k)^{2} y^{2}=0, \quad k \neq 1$
4. Find the envelope of $x \sec ^{2} \theta+y \operatorname{cosec}^{2} \theta=a$, where θ is the parameter.

Solution : The given equation is rewritten as, $x\left(1+\tan ^{2} \theta\right)+y\left(1+\cot ^{2} \theta\right)=a$
i.e. $x \tan ^{4} \theta+(x+y-a) \tan ^{2} \theta+y=0$,
which is a quadratic equation in $t=\tan ^{2} \theta$. Therefore the required envelope is given by the discriminant equation: $B^{2}-4 A C=0$
i.e. $(x+y-a)^{2}-4 x y=0$
i.e. $x^{2}+y^{2}-2 x y-2 a x-2 a y+a^{2}=0$.

Envelope of Two parameter family of curves :

1. Find the envelope of family of straight lines $a x+b y=1$, where a and b are parametersconnected by the relation $\mathrm{ab}=1$

Solution :

$$
\begin{equation*}
a x+b y=1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a b=1 \tag{2}
\end{equation*}
$$

Differentiating (1) with respect to a (considering 'a' as independent variable and 'b' depends on a).

$$
\begin{align*}
& \quad x+\frac{d b}{d a} y=0 \\
& \text { i.e. } \quad \frac{d b}{d a}=\frac{-x}{y} \tag{3}
\end{align*}
$$

Differentiating (2) with respect to a

$$
\begin{align*}
& b+a \frac{d b}{d a}=0 \\
& \text { i.e. } \frac{d b}{d a}=\frac{-b}{a} \tag{4}
\end{align*}
$$

From (3) and (4), we have

$$
\begin{align*}
& \quad \frac{x}{y}=\frac{b}{a} \\
& \text { i.e. } \quad \frac{a x}{1}=\frac{b y}{1}=\frac{a x+b y}{2}=\frac{1}{2} \\
& \therefore \quad a=\frac{1}{2 x} \text { and } \quad b=\frac{1}{2 y} \tag{5}
\end{align*}
$$

Using (5) in (2), we get the envelope as $4 x y=1$
2. Find the envelope of family of straight lines $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$, where a and b are parameters connected by the relation $\sqrt{a}+\sqrt{b}=1$

Solution :

$$
\begin{align*}
& \sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1 \tag{1}\\
& \sqrt{a}+\sqrt{b}=1 \tag{2}
\end{align*}
$$

Differentiating (1) with respect to a

$$
\frac{\sqrt{x}}{-2 a^{3 / 2}}+\frac{\sqrt{y}}{-2 b^{3 / 2}} \frac{d b}{d a}=0
$$

i.e. $\frac{d b}{d a}=\frac{-\sqrt{x}}{\sqrt{y}} \frac{b^{3 / 2}}{a^{3 / 2}}$

Differentiating (2) with respect to a

$$
\frac{1}{2 \sqrt{a}}+\frac{1}{2 \sqrt{b}} \frac{d b}{d a}=0
$$

i.e. $\frac{d b}{d a}=\frac{-\sqrt{b}}{\sqrt{a}}$

From (3) and (4), we have

$$
\frac{\sqrt{x}}{\sqrt{y}} \frac{b}{a}=1
$$

i.e. $\frac{\sqrt{\frac{x}{a}}}{\sqrt{a}}=\frac{\sqrt{\frac{y}{b}}}{\sqrt{b}}=\frac{\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}}{\sqrt{a}+\sqrt{b}}=\frac{1}{1}$

$$
\begin{equation*}
\therefore \quad a=\sqrt{x} \text { and } b=\sqrt{y} \tag{5}
\end{equation*}
$$

Using (5) in (2), we get the envelope as $x^{1 / 4}+y^{1 / 4}=1$
3. Find the envelope of family of straight lines $\frac{x}{a}+\frac{y}{b}=1$, where a and b are parameters connected by the relation $a^{2} b^{3}=c^{5}$

$$
\begin{align*}
& \frac{x}{a}+\frac{y}{b}=1 \tag{1}\\
& a^{2} b^{3}=c^{5} \tag{2}
\end{align*}
$$

Differentiating (1) with respect to a,

$$
\frac{-x}{a^{2}}-\frac{y}{b^{2}} \frac{d b}{d a}=0
$$

i.e. $\frac{d b}{d a}=\frac{-b^{2} x}{a^{2} y}$

Differentiating (2) with respect to a

$$
2 a b^{3}+3 a^{2} b^{2} \frac{d b}{d a}=0
$$

i.e. $\quad \frac{d b}{d a}=\frac{-2 b}{3 a}$

From (3) and (4), we have

$$
\frac{3 x}{a}=\frac{2 y}{b}
$$

i.e. $\frac{\frac{x}{a}}{3}=\frac{\frac{y}{b}}{2}=\frac{\frac{x}{a}+\frac{y}{b}}{5}=\frac{1}{5}$

$$
\begin{equation*}
\therefore \quad a=\frac{5 x}{3} \text { and } \quad b=\frac{5 y}{2} \tag{5}
\end{equation*}
$$

Using (5) in (2), we get the envelope as $\quad x^{2} y^{3}=\frac{72}{3125} c^{5}$
4. Find the envelope of the family of circles whose centres lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and which pass through its centre.

Solution: Let (α, β) be the centre of arbitrary member of family of circles which lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, whose centre is $(0,0)$. Therefore, equation of the circles passing through origin and having centreat (α, β) is

$$
\begin{equation*}
x^{2}+y^{2}-2 \alpha x-2 \beta y=0 \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\alpha^{2}}{a^{2}}+\frac{\beta^{2}}{b^{2}}=1 \tag{2}
\end{equation*}
$$

Differentiating (1) with respect to (' α ' as independent variable and ' β ' depends on α),

$$
x+\frac{d \beta}{d \alpha} y=0
$$

i.e. $\frac{d \beta}{d \alpha}=\frac{-x}{y}$

Differentiating (2) with respect to α

$$
\frac{2 \alpha}{a^{2}}+\frac{2 \beta}{b^{2}} \frac{d \beta}{d \alpha}=0
$$

i.e. $\frac{d \beta}{d \alpha}=\frac{-b^{2} \alpha}{a^{2} \beta}$

From (3) and (4), we have

$$
\frac{x}{y}=\frac{b^{2} \alpha}{a^{2} \beta}
$$

i.e. $\frac{\alpha x}{\alpha^{2}}=\frac{\beta y}{a^{2}} \frac{\alpha x+\beta y}{\beta^{2}}=\frac{k}{\frac{\alpha^{2}}{a^{2}}+\frac{\beta^{2}}{b^{2}}}=\frac{k}{1}$, where $\mathrm{k}=\alpha \mathrm{x}+\beta \mathrm{y}$
$\therefore \quad \alpha=\frac{a^{2} x}{k}$ and $\quad \beta=\frac{b^{2} y}{k}$

From (1), we have , $x^{2}+y^{2}=2 k$

Using (5) and (6) in (2), we get the envelope as $\quad\left(x^{2}+y^{2}\right)^{2}=4\left(a^{2} x^{2}+b^{2} y^{2}\right)$
5. Determine the equation of the envelope of family of ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where the parameters a and b are connected by the relation $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=1, l$ and m are non-zero constants.

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}\\
& \frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=1 \tag{2}
\end{align*}
$$

Differentiating (1) with respect to a,

$$
\frac{-2 x^{2}}{a^{3}}-\frac{2 y^{2}}{b^{3}} \frac{d b}{d a}=0
$$

i.e. $\quad \frac{d b}{d a}=\frac{-b^{3} x^{2}}{a^{3} y^{2}}$

Differentiating (2) with respect to a

$$
\frac{2 a}{l^{2}}+\frac{2 b}{m^{2}} \frac{d b}{d a}=0
$$

i.e. $\quad \frac{d b}{d a}=\frac{-m^{2} a}{l^{2} b}$

From (3) and (4), we have

$$
\frac{b^{4} x^{2}}{a^{4} y^{2}}=\frac{m^{2}}{l^{2}}
$$

i.e. $\quad \frac{\frac{x^{2}}{a^{2}}}{\frac{a^{2}}{l^{2}}}=\frac{\frac{y^{2}}{b^{2}}}{\frac{b^{2}}{m^{2}}}=\frac{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}}{\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}}=\frac{1}{1}$
$\Rightarrow \quad a^{4}=l^{2} x^{2}$ and $\quad b^{4}=m^{2} y^{2}$
i.e. $\quad a^{2}=l x$ and $\quad b^{2}=m y$

Using (5) in (2), we get the envelope as $\frac{x}{l}+\frac{y}{m}=1$

Problems on Evolute as envelope of its normals :

1. Determine the evolute of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ by considering it as an envelope of its normal

Solution : Let P (a cosht, b sinht) be any point on the given hyperbola. Then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{b \cosh t}{a \sinh t}=\frac{b}{a} \operatorname{coth} t
$$

Equation of normal line to the hyperbola is

$$
\begin{align*}
& (y-b \sinh t)=\frac{-a}{b \cosh t}(x-a \cosh t) \tag{1}\\
& \Rightarrow \quad \frac{b y}{\sinh t}+\frac{a x}{\cosh t}=a^{2}+b^{2} \tag{2}
\end{align*}
$$

Differentiating (2) partially with respect to t, we have,

$$
\begin{align*}
& \quad \frac{-b y}{(\sinh t)^{2}} \cosh t-\frac{a x}{(\cosh t)^{2}} \sinh t=0 \\
& \Rightarrow \tanh t=-\left(\frac{b y}{a x}\right)^{1 / 3} \\
& \Rightarrow \sinh t=\mp\left(\frac{b y}{h}\right)^{1 / 3} \text { and } \cosh t= \pm\left(\frac{a x}{h}\right)^{1 / 3} \tag{3}\\
& \text { Where } \quad h=\sqrt{(a x)^{2 / 3}-(b y)^{2 / 3}}
\end{align*}
$$

Using (3) in (2) , we get,

$$
\frac{b y}{-(b y)^{1 / 3}} h+\frac{a x}{(a x)^{1 / 3}} h=a^{2}+b^{2}
$$

i.e. $\quad\left((a x)^{2 / 3}-(b y)^{2 / 3}\right)\left((a x)^{2 / 3}-(b y)^{2 / 3}\right)^{1 / 2}=a^{2}+b^{2}$
i.e. $\quad(a x)^{2 / 3}-(b y)^{2 / 3}=\left(a^{2}+b^{2}\right)^{2 / 3}$
2. By considering the evolute of a curve as the envelope of its normal, find the evolute of

$$
x=\cos \theta+\theta \sin \theta, y=\sin \theta-\theta \cos \theta
$$

Solution :

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\theta \sin \theta}{\theta \cos \theta}=\tan \theta
$$

Equation of normal line to the hyperbola is

$$
(y-(\sin \theta-\theta \cos \theta))=\frac{-1}{\tan \theta}(x-(\cos \theta+\theta \sin \theta))
$$

$$
\begin{align*}
& \Rightarrow \quad y \sin \theta-\sin ^{2} \theta+\theta \sin \theta \cos \theta=-x \cos \theta+\cos ^{2} \theta+\theta \sin \theta \cos \theta \\
& \text { i.e. } \quad y \sin \theta+x \cos \theta=1 \tag{1}
\end{align*}
$$

Differentiating (1) with respect to the parameter θ, we have

$$
\begin{equation*}
y \cos \theta-x \sin \theta=0 \tag{2}
\end{equation*}
$$

Multiplying (1) by $\cos \theta$ and (2) by $\sin \theta$ and then subtracting, we have,

$$
\begin{equation*}
x=\cos \theta \tag{3}
\end{equation*}
$$

Similarly we get,

$$
\begin{equation*}
y=\sin \theta \tag{4}
\end{equation*}
$$

Eliminating θ between (3) and (4) we get the required evolute as $x^{2}+y^{2}=1$

